Thymidine (BioDeep_00000000073)
Secondary id: BioDeep_00000398589
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019 Volatile Flavor Compounds
代谢物信息卡片
化学式: C10H14N2O5 (242.0902674)
中文名称: β-胸苷, 胸苷
谱图信息:
最多检出来源 Homo sapiens(blood) 0.01%
Last reviewed on 2024-11-05.
Cite this Page
Thymidine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/thymidine (retrieved
2024-11-21) (BioDeep RN: BioDeep_00000000073). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: CC1=CN(C(=O)NC1=O)C2CC(C(O2)CO)O
InChI: InChI=1S/C10H14N2O5/c1-5-3-12(10(16)11-9(5)15)8-2-6(14)7(4-13)17-8/h3,6-8,13-14H,2,4H2,1H3,(H,11,15,16)/t6-,7+,8+/m0/s1
描述信息
Deoxythymidine, also known as 2-deoxy-5-methyluridine or 5-methyl-2-deoxyuridine, is a member of the class of compounds known as pyrimidine 2-deoxyribonucleosides. Pyrimidine 2-deoxyribonucleosides are compounds consisting of a pyrimidine linked to a ribose which lacks a hydroxyl group at position 2. Deoxythymidine is soluble (in water) and a very weakly acidic compound (based on its pKa). Deoxythymidine can be synthesized from thymine. Deoxythymidine is also a parent compound for other transformation products, including but not limited to, tritiated thymidine, alpha-tritiated thymidine, and 5,6-dihydrothymidine. Deoxythymidine can be found in a number of food items such as butternut squash, mammee apple, catjang pea, and climbing bean, which makes deoxythymidine a potential biomarker for the consumption of these food products. Deoxythymidine can be found primarily in most biofluids, including blood, amniotic fluid, cerebrospinal fluid (CSF), and urine, as well as throughout most human tissues. Deoxythymidine exists in all living species, ranging from bacteria to humans. In humans, deoxythymidine is involved in the pyrimidine metabolism. Deoxythymidine is also involved in few metabolic disorders, which include beta ureidopropionase deficiency, dihydropyrimidinase deficiency, MNGIE (mitochondrial neurogastrointestinal encephalopathy), and UMP synthase deficiency (orotic aciduria). Moreover, deoxythymidine is found to be associated with canavan disease and degenerative disc disease. Thymidine (deoxythymidine; other names deoxyribosylthymine, thymine deoxyriboside) is a pyrimidine deoxynucleoside. Deoxythymidine is the DNA nucleoside T, which pairs with deoxyadenosine (A) in double-stranded DNA. In cell biology it is used to synchronize the cells in G1/early S phase .
Thymidine, also known as deoxythymidine or deoxyribosylthymine or thymine deoxyriboside, is a pyrimidine deoxynucleoside. It consists of the nucleobase thymine attached to deoxyribose through a beta N- glycosidic bond. Thymidine also belongs to the class of organic compounds known as pyrimidine 2-deoxyribonucleosides. Pyrimidine 2-deoxyribonucleosides are compounds consisting of a pyrimidine linked to a ribose which lacks a hydroxyl group at position 2. Deoxythymidine (or thymidine) is the DNA nucleoside T, which pairs with deoxyadenosine (A) in double-stranded DNA. Therefore, thymidine is essential to all life. Indeed, thymidine exists in all living species, ranging from bacteria to plants to humans. Within humans, thymidine participates in a number of enzymatic reactions. In particular, thymidine can be biosynthesized from 5-thymidylic acid through its interaction with the enzyme cytosolic purine 5-nucleotidase. In addition, thymidine can be converted into 5-thymidylic acid; which is catalyzed by the enzyme thymidine kinase. Deoxythymidine can be phosphorylated with one, two or three phosphoric acid groups, creating dTMP (deoxythymidine monophosphate), dTDP, or dTTP (for the di- and tri- phosphates, respectively). dTMP can be incorporated into DNA via DNA polymerases. In cell biology, thymidine can be used to synchronize the cells in S phase. Derivatives of thymidine are used in a number of drugs, including Azidothymidine (AZT), which is used in the treatment of HIV infection. AZT inhibits the process of reverse transcription in the human immunodeficiency virus.
Thymidine is a pyrimidine 2-deoxyribonucleoside having thymine as the nucleobase. It has a role as a metabolite, a human metabolite, an Escherichia coli metabolite and a mouse metabolite. It is functionally related to a thymine. It is an enantiomer of a telbivudine.
Thymidine is a pyrimidine deoxynucleoside. Thymidine is the DNA nucleoside T, which pairs with deoxyadenosine (A) in double-stranded DNA. In cell biology it is used to synchronize the cells in S phase.
Thymidine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
Thymidine is a natural product found in Fritillaria thunbergii, Saussurea medusa, and other organisms with data available.
Thymidine is a pyrimidine nucleoside that is composed of the pyrimidine base thymine attached to the sugar deoxyribose. As a constituent of DNA, thymidine pairs with adenine in the DNA double helix. (NCI04)
Thymidine is a metabolite found in or produced by Saccharomyces cerevisiae.
A nucleoside in which THYMINE is linked to DEOXYRIBOSE.
A pyrimidine 2-deoxyribonucleoside having thymine as the nucleobase.
KEIO_ID T014; [MS2] KO009272
KEIO_ID T014
Thymidine, a specific precursor of deoxyribonucleic acid, is used as a cell synchronizing agent. Thymidine is a DNA synthesis inhibitor that can arrest cell at G1/S boundary, prior to DNA replication[1][2][3].
Thymidine, a specific precursor of deoxyribonucleic acid, is used as a cell synchronizing agent. Thymidine is a DNA synthesis inhibitor that can arrest cell at G1/S boundary, prior to DNA replication[1][2][3].
同义名列表
87 个代谢物同义名
1-(2-Deoxy-beta-D-ribofuranosyl)-5-methyluracil; 1-(2-Deoxy-beta-D-ribofuranosyl)thymine; Thymine deoxyriboside; 2-Deoxythymidine; 5-Methyldeoxyuridine; 1-[(2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-methyl-1,2,3,4-tetrahydropyrimidine-2,4-dione; 1-((2R,4S,5R)-4-Hydroxy-5-(hydroxymethyl)tetrahydro-furan-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione; 1-((2R,4S,5R)-4-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione; 1-[(4S,2R,5R)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-methyl-1,3-dihydropyri midine-2,4-dione; 1-[(2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl]-5-methyl-pyrimidine-2,4-dione; 1-(2-Deoxy-beta-D-erythro-pentofuranosyl)-5-methylpyrimidine-2,4(1H,3H)-dione (Thymidine); 1-(2-DEOXY-.BETA.-D-ERYTHRO-PENTOFURANOSYL)-5-METHYLPYRIMIDINE-2,4(1H,3H)-DIONE [WHO-IP]; 1-[(2R,4S,5R)-4-Hydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-methyl-pyrimidine-2,4-dione; 1-[(2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-methylpyrimidine-2,4-dione; 1-(2-Deoxy-beta-delta-erythro-pentofuranosyl)-5-methyl-2,4(1H,3H)-pyrimidinedione; 2,4(1H,3H)-Pyrimidinedione, 1-(2-deoxy-beta-D-erythro-pentofuranosyl)-5-methyl-; 1-(2-Deoxy-beta-D-erythro-pentofuranosyl)-5-methyl-2,4(1H,3H)-pyrimidinedione; 1-(2-deoxy-beta-D-erythro-pentofuranosyl)-5-methylpyrimidine-2,4(1H,3H)-dione; 1-(2-Deoxy-β-D-erythro-pentofuranosyl)-5-methylpyrimidine-2,4(1H,3H)-dione; 1-(2-Deoxy-b-D-erythro-pentofuranosyl)-5-methylpyrimidine-2,4(1H,3H)-dione; 1-(2-Deoxy-b-D-erythro-pentofuranosyl)-5-methyl-2,4(1H,3H)-pyrimidinedione; 1-[4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-methyl-pyrimidine-2,4-dione; Thymidine, powder, BioReagent, suitable for cell culture; 1-(2-Deoxy-.beta.-D-ribofuranosyl)-5-methyluracil; 1-(2-Deoxy-beta-ribofuranosyl)-5-methyluracil; thymine-1 2-deoxy-beta-delta-Ribofuranoside; beta-D-Ribofuranoside, thymine-1 2-deoxy-; Thymidine, Vetec(TM) reagent grade, 99\\%; D7E43A69-265B-4DAA-BC8F-193FB357140F; thymine-1 2-deoxy-b-D-Ribofuranoside; ZIDOVUDINE IMPURITY E [EP IMPURITY]; STAVUDINE IMPURITY C [EP IMPURITY]; DEOXYTHYMIDINE; 2-DEOXYTHYMIDINE; STAVUDINE IMPURITY C [WHO-IP]; IQFYYKKMVGJFEH-XLPZGREQSA-N; Uridine, 2-deoxy-5-methyl-; Thymidine, >=99.0\\% (HPLC); alpha-tritiated thymidine; 2-deoxy-5-methyl-Uridine; IMPURITY C [EP IMPURITY]; Thymine 2-desoxyriboside; Thymine-2-desoxyriboside; 5-Methyl-2-deoxyuridine; Thymine-2-deoxyriboside; 2-deoxy-5-methyluridine; thymine 2-deoxyriboside; beta-Methyldeoxyuridine; Thymidinedeoxyriboside; Thymine deoxyriboside; 5-Methyldeoxyurindine; 5-Methyldeoxyuridine; Thyminedeoxyriboside; DOXRIBTIMINE [USAN]; deoxyribosylthymine; Thymidine (8CI,9CI); THYMIDINE [WHO-IP]; DOXRIBTIMINE [INN]; THYMIDINE [WHO-DD]; Deoxyribothymidine; Thymidine, >=99\\%; THYMIDINE [MART.]; 2-Deoxythymidine; 2 Deoxythymidine; THYMIDINE [INCI]; UNII-VC2W18DGKR; Beta-Thymidine; THYMIDINE [MI]; [3H]-Thymidine; deoxythymidine; Tox21_111560; Doxribtimine; 2-thymidine; CAS-50-89-5; VC2W18DGKR; Thymidine; AI3-52267; Thymidin; BDBM1; DThyd; 4qsv; dThd; 1w2g; 2-dT; THM; dT; T; L-Thymidine; Thymidine; NSC 21548; Thymidine; Thymidine
数据库引用编号
48 个数据库交叉引用编号
- ChEBI: CHEBI:17748
- KEGG: C00214
- PubChem: 5789
- HMDB: HMDB0000273
- Metlin: METLIN3375
- DrugBank: DB04485
- ChEMBL: CHEMBL52609
- Wikipedia: Thymidine
- MeSH: Thymidine
- ChemIDplus: 0000050895
- MetaCyc: THYMIDINE
- KNApSAcK: C00019698
- foodb: FDB031201
- chemspider: 5585
- MoNA: KO004094
- MoNA: KO009274
- MoNA: PS035509
- MoNA: PS035504
- MoNA: KO001882
- MoNA: KO001881
- MoNA: PS035507
- MoNA: KO001884
- MoNA: KO001883
- MoNA: PS035503
- MoNA: KO001885
- MoNA: KO004095
- MoNA: PS035502
- MoNA: PS035508
- MoNA: KO004093
- MoNA: KO004096
- MoNA: KO009275
- MoNA: KO009272
- MoNA: KO009273
- MoNA: KO004092
- MoNA: PS035501
- PMhub: MS000000865
- MetaboLights: MTBLC17748
- PDB-CCD: THM
- 3DMET: B01191
- NIKKAJI: J4.548I
- RefMet: Thymidine
- medchemexpress: HY-N1150
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-932
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-42
- CAS: 50-89-5
- PubChem: 3514
- KNApSAcK: 17748
- LOTUS: LTS0162810
分类词条
相关代谢途径
BioCyc(7)
- superpathway of ribose and deoxyribose phosphate degradation
- (deoxy)ribose phosphate degradation
- superpathway of pyrimidine deoxyribonucleoside salvage
- pyrimidine deoxyribonucleosides salvage
- salvage pathways of purine and pyrimidine nucleotides
- purine and pyrimidine metabolism
- superpathway of pyrimidine deoxyribonucleosides degradation
PlantCyc(0)
代谢反应
431 个相关的代谢反应过程信息。
Reactome(56)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Nucleotide salvage:
Ade + PRPP ⟶ AMP + PPi
- Pyrimidine salvage:
ATP + Thy-dRib ⟶ ADP + TMP
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Nucleotide salvage:
Ade + PRPP ⟶ AMP + PPi
- Pyrimidine salvage:
ATP + Thy-dRib ⟶ ADP + TMP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Nucleotide salvage:
Ade + PRPP ⟶ AMP + PPi
- Pyrimidine salvage:
ATP + dC, Thy-dRib, dU ⟶ ADP + dCMP, TMP, dUMP
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide salvage:
Ade + PRPP ⟶ AMP + PPi
- Pyrimidine salvage:
ATP + Thy-dRib ⟶ ADP + TMP
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide salvage:
Ade + PRPP ⟶ AMP + PPi
- Pyrimidine salvage:
ATP + Thy-dRib ⟶ ADP + TMP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide salvage:
Ade + PRPP ⟶ AMP + PPi
- Pyrimidine salvage:
ATP + Thy-dRib ⟶ ADP + TMP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide salvage:
Ade + PRPP ⟶ AMP + PPi
- Pyrimidine salvage:
ATP + Thy-dRib ⟶ ADP + TMP
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Nucleotide metabolism:
ATP + Thy-dRib ⟶ ADP + TMP
- Nucleotide salvage:
ATP + Thy-dRib ⟶ ADP + TMP
- Pyrimidine salvage:
ATP + Thy-dRib ⟶ ADP + TMP
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide salvage:
Ade + PRPP ⟶ AMP + PPi
- Pyrimidine salvage:
ATP + Thy-dRib ⟶ ADP + TMP
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide salvage:
Ade + PRPP ⟶ AMP + PPi
- Pyrimidine salvage:
ATP + Thy-dRib ⟶ ADP + TMP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide salvage:
Ade + PRPP ⟶ AMP + PPi
- Pyrimidine salvage:
ATP + Thy-dRib ⟶ ADP + TMP
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide salvage:
Ade + PRPP ⟶ AMP + PPi
- Pyrimidine salvage:
H2O + PURIDP ⟶ PURID + Pi
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide salvage:
Ade + PRPP ⟶ AMP + PPi
- Pyrimidine salvage:
ATP + Thy-dRib ⟶ ADP + TMP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Nucleotide metabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Nucleotide salvage:
Gua + R1P, dRibP ⟶ G, dG + Pi
- Pyrimidine salvage:
ATP + Thy-dRib ⟶ ADP + TMP
BioCyc(104)
- superpathway of pyrimidine deoxyribonucleoside salvage:
ATP + thymidine ⟶ ADP + H+ + dTMP
- pyrimidine deoxyribonucleosides salvage:
ATP + thymidine ⟶ ADP + H+ + dTMP
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- purine and pyrimidine metabolism:
AMP + diphosphate ⟶ 5-phospho-α-D-ribose 1-diphosphate + adenine
- (deoxy)ribose phosphate degradation:
H2O + deoxycytidine ⟶ ammonia + deoxyuridine
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- (deoxy)ribose phosphate degradation:
H2O + deoxycytidine ⟶ ammonia + deoxyuridine
- purine and pyrimidine metabolism:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- pyrimidine deoxyribonucleosides degradation:
H2O + deoxycytidine ⟶ ammonia + deoxyuridine
- salvage pathways of pyrimidine deoxyribonucleotides:
ATP + deoxyuridine ⟶ ADP + H+ + dUMP
- salvage pathways of pyrimidine deoxyribonucleotides:
H2O + deoxycytidine ⟶ ammonia + deoxyuridine
- pyrimidine deoxyribonucleosides degradation:
H2O + deoxycytidine ⟶ ammonia + deoxyuridine
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- salvage pathways of pyrimidine deoxyribonucleotides:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- salvage pathways of pyrimidine deoxyribonucleotides:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- purine and pyrimidine metabolism:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- purine and pyrimidine metabolism:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- salvage pathways of pyrimidine deoxyribonucleotides:
ATP + deoxyuridine ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides degradation:
deoxyuridine + phosphate ⟶ deoxyribose 1-phosphate + uracil
- purine and pyrimidine metabolism:
AMP + diphosphate ⟶ 5-phospho-α-D-ribose 1-diphosphate + adenine
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H2O ⟶ 2'-deoxyuridine + ammonia
- pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H2O ⟶ 2'-deoxyuridine + ammonia
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- salvage pathways of pyrimidine deoxyribonucleotides:
H2O + deoxycytidine ⟶ ammonia + deoxyuridine
- superpathway of ribose and deoxyribose phosphate degradation:
H2O + deoxycytidine ⟶ ammonia + deoxyuridine
- (deoxy)ribose phosphate degradation:
H2O + deoxycytidine ⟶ ammonia + deoxyuridine
- (deoxy)ribose phosphate degradation:
deoxyuridine + phosphate ⟶ deoxyribose 1-phosphate + uracil
- purine and pyrimidine metabolism:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- superpathway of ribose and deoxyribose phosphate degradation:
deoxyuridine + phosphate ⟶ deoxyribose 1-phosphate + uracil
- salvage pathways of pyrimidine deoxyribonucleotides:
ATP + deoxyuridine ⟶ ADP + H+ + dUMP
- salvage pathways of pyrimidine deoxyribonucleotides:
H2O + deoxycytidine ⟶ ammonia + deoxyuridine
- pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- salvage pathways of pyrimidine deoxyribonucleotides:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + a nucleoside triphosphate ⟶ H+ + a nucleoside diphosphate + dCMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + a nucleoside triphosphate ⟶ H+ + a nucleoside diphosphate + dCMP
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- salvage pathways of purine and pyrimidine nucleotides:
AMP + diphosphate ⟶ PRPP + adenine
- superpathway of ribose and deoxyribose phosphate degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- (deoxy)ribose phosphate degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- salvage pathways of pyrimidine deoxyribonucleotides:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- salvage pathways of pyrimidine deoxyribonucleotides:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- purine and pyrimidine metabolism:
AMP + diphosphate ⟶ PRPP + adenine
- salvage pathways of pyrimidine deoxyribonucleotides:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- pyrimidine deoxyribonucleosides degradation:
2'-deoxyuridine + phosphate ⟶ 2-deoxy-α-D-ribose 1-phosphate + uracil
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides degradation:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
WikiPathways(2)
- Pyrimidine metabolism and related diseases:
2-Deoxyuridine ⟶ Uracil
- Biomarkers for pyrimidine metabolism disorders:
dUMP ⟶ 2-Deoxyuridine
Plant Reactome(0)
INOH(2)
- Pyrimidine Nucleotides and Nucleosides metabolism ( Pyrimidine Nucleotides and Nucleosides metabolism ):
Deoxy-cytidine + H2O ⟶ Deoxy-uridine + NH3
- Thymidine + Orthophosphate = 2-Deoxy-D-ribose 1-phosphate + Thymine ( Pyrimidine Nucleotides and Nucleosides metabolism ):
2-Deoxy-D-ribose 1-phosphate + Thymine ⟶ Orthophosphate + Thymidine
PlantCyc(246)
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + a nucleoside triphosphate ⟶ H+ + a nucleoside diphosphate + dCMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + a nucleoside triphosphate ⟶ H+ + a nucleoside diphosphate + dCMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- pyrimidine deoxyribonucleosides salvage:
2'-deoxyuridine + ATP ⟶ ADP + H+ + dUMP
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- pyrimidine deoxyribonucleosides salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
- superpathway of pyrimidine deoxyribonucleoside salvage:
2'-deoxycytidine + H+ + H2O ⟶ 2'-deoxyuridine + ammonium
COVID-19 Disease Map(0)
PathBank(21)
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- beta-Ureidopropionase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- UMP Synthase Deficiency (Orotic Aciduria):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Dihydropyrimidinase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- MNGIE (Mitochondrial Neurogastrointestinal Encephalopathy):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Salvage Pathways of Pyrimidine Deoxyribonucleotides:
Deoxycytidine + Hydrogen Ion + Water ⟶ Ammonium + Deoxyuridine
- Pyrimidine Deoxyribonucleosides Degradation:
Deoxycytidine + Hydrogen Ion + Water ⟶ Ammonium + Deoxyuridine
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- beta-Ureidopropionase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Dihydropyrimidinase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- UMP Synthase Deficiency (Orotic Aciduria):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- MNGIE (Mitochondrial Neurogastrointestinal Encephalopathy):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- beta-Ureidopropionase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Dihydropyrimidinase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- UMP Synthase Deficiency (Orotic Aciduria):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- MNGIE (Mitochondrial Neurogastrointestinal Encephalopathy):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Pyrimidine Deoxyribonucleosides Salvage:
Deoxycytidine + Hydrogen Ion + Water ⟶ Ammonium + Deoxyuridine
PharmGKB(0)
210 个相关的物种来源信息
- 133434 - Acanthaster planci: 10.1002/JLAC.198019800502
- 6653 - Acanthochitonidae: LTS0162810
- 14999 - Alisma: LTS0162810
- 15000 - Alisma plantago-aquatica: LTS0162810
- 262913 - Alisma plantago-aquatica subsp. orientale: 10.1248/CPB.41.1194
- 262913 - Alisma plantago-aquatica subsp. orientale: 10.1248/CPB.42.2430
- 262913 - Alisma plantago-aquatica subsp. orientale: LTS0162810
- 4449 - Alismataceae: LTS0162810
- 40921 - Anethum: LTS0162810
- 40922 - Anethum graveolens: 10.1248/CPB.50.501
- 40922 - Anethum graveolens: LTS0162810
- 6101 - Anthozoa: LTS0162810
- 4037 - Apiaceae: LTS0162810
- 7458 - Apidae: LTS0162810
- 7459 - Apis: LTS0162810
- 7461 - Apis cerana: 10.1371/JOURNAL.PONE.0175573
- 7461 - Apis cerana: LTS0162810
- 201956 - Aplidium: LTS0162810
- 6499 - Aplysia: LTS0162810
- 6501 - Aplysia kurodai: 10.1002/JLAC.198819880615
- 6501 - Aplysia kurodai: LTS0162810
- 6498 - Aplysiidae: LTS0162810
- 3701 - Arabidopsis: LTS0162810
- 3702 - Arabidopsis thaliana: 10.1074/JBC.RA118.003351
- 3702 - Arabidopsis thaliana: LTS0162810
- 4050 - Araliaceae: LTS0162810
- 6656 - Arthropoda: LTS0162810
- 7713 - Ascidiacea: LTS0162810
- 4890 - Ascomycota: LTS0162810
- 4210 - Asteraceae: LTS0162810
- 7601 - Asterias: LTS0162810
- 7603 - Asterias forbesi: 10.1021/NP50070A042
- 7603 - Asterias forbesi: LTS0162810
- 7600 - Asteriidae: LTS0162810
- 7588 - Asteroidea: LTS0162810
- 45118 - Axinellidae: LTS0162810
- 2 - Bacteria: LTS0162810
- 344323 - Biemna: LTS0162810
- 1820598 - Biemna ehrenbergi: 10.1016/J.PHYTOL.2015.04.024
- 1820598 - Biemna ehrenbergi: LTS0162810
- 1779171 - Biemnidae: LTS0162810
- 3708 - Brassica napus: 10.3389/FNUT.2022.822033
- 3700 - Brassicaceae: LTS0162810
- 4613 - Bromeliaceae: LTS0162810
- 27929 - Calcarea: LTS0162810
- 593583 - Carteriospongia: 10.1055/S-2006-960851
- 6056 - Chalinidae: LTS0162810
- 13778 - Chara: LTS0162810
- 69338 - Chara globularis: 10.1021/JO00380A042
- 69338 - Chara globularis: LTS0162810
- 3146 - Characeae: LTS0162810
- 304574 - Charophyceae: LTS0162810
- 7711 - Chordata: LTS0162810
- 1890464 - Chroococcaceae: LTS0162810
- 45128 - Clathrina: 10.1021/NP060462B.S001
- 45128 - Clathrina: LTS0162810
- 45127 - Clathrinidae: LTS0162810
- 6073 - Cnidaria: LTS0162810
- 52459 - Conioselinum: LTS0162810
- 6654 - Cryptochiton: LTS0162810
- 6655 - Cryptochiton stelleri: 10.1007/S10600-005-0092-0
- 6655 - Cryptochiton stelleri: LTS0162810
- 3028117 - Cyanophyceae: LTS0162810
- 6042 - Demospongiae: LTS0162810
- 641105 - Diazonidae: LTS0162810
- 107393 - Didemnidae: LTS0162810
- 7227 - Drosophila melanogaster: 10.1038/S41467-019-11933-Z
- 7586 - Echinodermata: LTS0162810
- 50304 - Eleutherococcus: LTS0162810
- 82096 - Eleutherococcus senticosus: 10.1055/S-2001-18352
- 82096 - Eleutherococcus senticosus: LTS0162810
- 543 - Enterobacteriaceae: LTS0162810
- 3256 - Equisetaceae: LTS0162810
- 3257 - Equisetum: LTS0162810
- 3259 - Equisetum giganteum: 10.1080/10286020.2011.596829
- 195849 - Equisetum ramosissimum: 10.1080/10286020.2011.596829
- 195849 - Equisetum ramosissimum: LTS0162810
- 232203 - Equisetum ramosissimum subsp. debile: 10.1080/10286020.2011.596829
- 232203 - Equisetum ramosissimum subsp. debile: LTS0162810
- 561 - Escherichia: LTS0162810
- 562 - Escherichia coli: LTS0162810
- 33682 - Euglenozoa: LTS0162810
- 2759 - Eukaryota: LTS0162810
- 458530 - Eurycoma: LTS0162810
- 458531 - Eurycoma longifolia: 10.1016/J.BMC.2003.11.017
- 458531 - Eurycoma longifolia: LTS0162810
- 48037 - Foeniculum: LTS0162810
- 48038 - Foeniculum vulgare: 10.1248/CPB.47.988
- 59070 - Fritillaria: LTS0162810
- 108543 - Fritillaria anhuiensis: 10.1080/00032719.2011.551856
- 108544 - Fritillaria cirrhosa D.Don: -
- 152092 - Fritillaria przewalskii: 10.1080/00032719.2011.551856
- 152092 - Fritillaria przewalskii Maxim, Fritillaria delavayi Franch.: -
- 152093 - Fritillaria taipaiensis P.Y.Li: -
- 108546 - Fritillaria thunbergii: 10.1002/JSSC.200900866
- 108546 - Fritillaria thunbergii: 10.1080/00032719.2011.551856
- 108546 - Fritillaria thunbergii: LTS0162810
- 108546 - Fritillaria thunbergii Miq.: -
- 152095 - Fritillaria unibracteata Hsiao et K. C. Hsia var.wabuensis(S. Y. Tang et S. C. Yue)Z. D. LiU,S. Wanget S.C.Chen: -
- 152095 - Fritillaria unibracteata Hsiao et K. C. Hsia.: -
- 4751 - Fungi: LTS0162810
- 1236 - Gammaproteobacteria: LTS0162810
- 6448 - Gastropoda: LTS0162810
- 59323 - Gymnadenia: LTS0162810
- 59324 - Gymnadenia conopsea: 10.1248/CPB.54.506
- 59324 - Gymnadenia conopsea: LTS0162810
- 6057 - Haliclona: 10.1080/14786410701768246
- 6057 - Haliclona: LTS0162810
- 9604 - Hominidae: LTS0162810
- 9605 - Homo: LTS0162810
- 9606 - Homo sapiens:
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-012-0464-Y
- 9606 - Homo sapiens: 10.1038/NBT.2488
- 9606 - Homo sapiens: LTS0162810
- 23109 - Hydrangea: LTS0162810
- 23110 - Hydrangea macrophylla: 10.3987/COM-09-11886
- 23110 - Hydrangea macrophylla: LTS0162810
- 23097 - Hydrangeaceae: LTS0162810
- 50557 - Insecta: LTS0162810
- 5653 - Kinetoplastea: LTS0162810
- 43054 - Leptasterias: LTS0162810
- 59564 - Leptasterias polaris: 10.1007/BF00707067
- 59564 - Leptasterias polaris: LTS0162810
- 86012 - Leucosolenia:
- 86012 - Leucosolenia: 10.1021/NP060462B
- 86012 - Leucosolenia: 10.1021/NP060462B.S001
- 86012 - Leucosolenia: LTS0162810
- 257001 - Leucosoleniidae: LTS0162810
- 49551 - Ligusticum: LTS0162810
- 2689076 - Ligusticum chuanxiong: 10.1016/0031-9422(95)00524-2
- 2689076 - Ligusticum chuanxiong: LTS0162810
- 49555 - Ligusticum sinense: 10.1016/0031-9422(95)00524-2
- 49555 - Ligusticum sinense: LTS0162810
- 1508160 - Ligusticum striatum: 10.1016/0031-9422(95)00524-2
- 4677 - Liliaceae: LTS0162810
- 4447 - Liliopsida: LTS0162810
- 3398 - Magnoliopsida: LTS0162810
- 40674 - Mammalia: LTS0162810
- 33208 - Metazoa: LTS0162810
- 6447 - Mollusca: LTS0162810
- 34585 - Mopaliidae: LTS0162810
- 10066 - Muridae: LTS0162810
- 10088 - Mus: LTS0162810
- 10090 - Mus musculus: LTS0162810
- 10090 - Mus musculus: NA
- 86015 - Mycale: LTS0162810
- 86014 - Mycalidae: LTS0162810
- 474995 - Ophiocordyceps: LTS0162810
- 72228 - Ophiocordyceps sinensis: 10.1080/00032719.2000.10399495
- 72228 - Ophiocordyceps sinensis: LTS0162810
- 474942 - Ophiocordycipitaceae: LTS0162810
- 4747 - Orchidaceae: LTS0162810
- 36653 - Penicillium commune: 10.3390/MOLECULES15053270
- 49562 - Peucedanum: LTS0162810
- 49563 - Peucedanum japonicum: 10.1021/JF0262458
- 49563 - Peucedanum japonicum: LTS0162810
- 279624 - Phyllospongia: 10.1055/S-2006-960851
- 201955 - Polyclinidae: LTS0162810
- 6650 - Polyplacophora: LTS0162810
- 241806 - Polypodiopsida: LTS0162810
- 6040 - Porifera: LTS0162810
- 135621 - Pseudomonadaceae: LTS0162810
- 286 - Pseudomonas: LTS0162810
- 287 - Pseudomonas aeruginosa: LTS0162810
- 41629 - Saussurea: LTS0162810
- 137893 - Saussurea medusa: 10.1248/CPB.53.1416
- 137893 - Saussurea medusa: LTS0162810
- 3792 - Saxifragaceae: LTS0162810
- 1779177 - Scopalinidae: LTS0162810
- 23808 - Simaroubaceae: LTS0162810
- 147550 - Sordariomycetes: LTS0162810
- 1883 - Streptomyces: 10.1016/J.STEROIDS.2018.06.005
- 1883 - Streptomyces: 10.1038/JA.2012.81
- 1883 - Streptomyces: 10.1080/14786419.2019.1611812
- 1883 - Streptomyces: LTS0162810
- 285508 - Streptomyces piomogenus:
- 285508 - Streptomyces piomogenus: 10.1016/J.STEROIDS.2018.06.005
- 285508 - Streptomyces piomogenus: 10.1038/JA.2012.81
- 285508 - Streptomyces piomogenus: 10.1080/14786419.2019.1611812
- 285508 - Streptomyces piomogenus: LTS0162810
- 2062 - Streptomycetaceae: LTS0162810
- 35493 - Streptophyta: LTS0162810
- 237127 - Stylissa: LTS0162810
- 279589 - Stylissa massa: 10.1021/NP9606106
- 279589 - Stylissa massa: LTS0162810
- 328235 - Subergorgia: LTS0162810
- 767284 - Subergorgia suberosa:
- 767284 - Subergorgia suberosa: 10.1021/NP0705110
- 767284 - Subergorgia suberosa: 10.1248/CPB.56.993
- 767284 - Subergorgia suberosa: LTS0162810
- 328234 - Subergorgiidae: LTS0162810
- 1890426 - Synechococcaceae: LTS0162810
- 1129 - Synechococcus: LTS0162810
- 32046 - Synechococcus elongatus: 10.1111/1462-2920.12899
- 32046 - Synechococcus elongatus: LTS0162810
- 37504 - Theonella: 10.1007/BF00607566
- 37504 - Theonella: LTS0162810
- 45122 - Theonellidae: LTS0162810
- 121495 - Thorectidae: LTS0162810
- 15170 - Tillandsia: LTS0162810
- 49541 - Tillandsia usneoides: 10.1021/NP50122A023
- 49541 - Tillandsia usneoides: LTS0162810
- 58023 - Tracheophyta: LTS0162810
- 5690 - Trypanosoma: LTS0162810
- 5691 - Trypanosoma brucei: 10.1371/JOURNAL.PNTD.0001618
- 5691 - Trypanosoma brucei: LTS0162810
- 5654 - Trypanosomatidae: LTS0162810
- 33090 - Viridiplantae: LTS0162810
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Naoki Fukui, Takuya Fujiwara, Masakazu Furuta, Satoshi Takatori. [Detection of Gamma-Ray Irradiation History of Dried Plant-Based Foods via the Analysis of 5,6-Dihydrothymidine].
Shokuhin eiseigaku zasshi. Journal of the Food Hygienic Society of Japan.
2023; 64(6):206-213. doi:
10.3358/shokueishi.64.206
. [PMID: 38171890] - Fan Yang, Xiaoqiang Shi, Weidong Yang, Chao Gao, Zhenyu Cui, Wentao Wang. Pueraria montana (Kudzu vine) Ameliorate the Inflammation and Oxidative Stress against Fe-NTA Induced Renal Cancer.
Journal of oleo science.
2022 Sep; 71(10):1481-1492. doi:
10.5650/jos.ess22151
. [PMID: 36089399] - Markus Niehaus, Henryk Straube, André Specht, Chiara Baccolini, Claus-Peter Witte, Marco Herde. The nucleotide metabolome of germinating Arabidopsis thaliana seeds reveals a central role for thymidine phosphorylation in chloroplast development.
The Plant cell.
2022 09; 34(10):3790-3813. doi:
10.1093/plcell/koac207
. [PMID: 35861422] - Mohammed Anowar Hosen, Nasrin Sultana Munia, Mohammed Al-Ghorbani, Mohammed Baashen, Faisal A Almalki, Taibi Ben Hadda, Ferdausi Ali, Shafi Mahmud, Md Abu Saleh, Hamid Laaroussi, Sarkar M A Kawsar. Synthesis, antimicrobial, molecular docking and molecular dynamics studies of lauroyl thymidine analogs against SARS-CoV-2: POM study and identification of the pharmacophore sites.
Bioorganic chemistry.
2022 08; 125(?):105850. doi:
10.1016/j.bioorg.2022.105850
. [PMID: 35533581] - Chao Gao, Long Zhang, Enuo Chen, Wenzheng Zhang. Aqp2+ Progenitor Cells Maintain and Repair Distal Renal Segments.
Journal of the American Society of Nephrology : JASN.
2022 07; 33(7):1357-1376. doi:
10.1681/asn.2021081105
. [PMID: 35318267] - Christine K Iwahashi, Jonathan Kopel, Harrison Marsh, Ted W Reid. Effects of Dexamethasone on DNA Synthesis in Lens Epithelial Cells Are Dependent on Cell Type and Growth Factor.
Current eye research.
2022 07; 47(7):1009-1015. doi:
10.1080/02713683.2022.2052106
. [PMID: 35260019] - Julie Høgh, Malene Hove-Skovsgaard, Marco Gelpi, Anne Marie Reimer Jensen, Jan Gerstoft, Thomas Benfield, Heidi Storgaard, Susanne Dam Nielsen. Insulin resistance in people living with HIV is associated with exposure to thymidine analogues and/or didanosine and prior immunodeficiency.
BMC infectious diseases.
2022 May; 22(1):503. doi:
10.1186/s12879-022-07485-1
. [PMID: 35643429] - Dmitry I Maltsev, Kennelia A Mellanson, Vsevolod V Belousov, Grigori N Enikolopov, Oleg V Podgorny. The bioavailability time of commonly used thymidine analogues after intraperitoneal delivery in mice: labeling kinetics in vivo and clearance from blood serum.
Histochemistry and cell biology.
2022 Feb; 157(2):239-250. doi:
10.1007/s00418-021-02048-y
. [PMID: 34757474] - Ayesha Rahman Ahmed, Senty Vun-Sang, Mohammad Iqbal. Therapeutic role of nitroglycerin against copper-nitrilotriacetate induced hepatic and renal damage.
Human & experimental toxicology.
2022 Jan; 41(?):9603271221131312. doi:
10.1177/09603271221131312
. [PMID: 36305384] - Omar D Subedar, Loraine L Y Chiu, Stephen D Waldman. Cell Cycle Synchronization of Primary Articular Chondrocytes Enhances Chondrogenesis.
Cartilage.
2021 10; 12(4):526-535. doi:
10.1177/1947603519841677
. [PMID: 30971093] - Nurjannatul Naim Kamaruddin, Nor Azwin Hajri, Yosie Andriani, Aina Farahiyah Abdul Manan, Tengku Sifzizul Tengku Muhammad, Habsah Mohamad. Acanthaster planci Inhibits PCSK9 and Lowers Cholesterol Levels in Rats.
Molecules (Basel, Switzerland).
2021 Aug; 26(16):. doi:
10.3390/molecules26165094
. [PMID: 34443682] - Jessie W Yester, Honghai Liu, Frank Gyngard, Niyatie Ammanamanchi, Kathryn C Little, Dawn Thomas, Mara L G Sullivan, Sean Lal, Matthew L Steinhauser, Bernhard Kühn. Use of stable isotope-tagged thymidine and multi-isotope imaging mass spectrometry (MIMS) for quantification of human cardiomyocyte division.
Nature protocols.
2021 04; 16(4):1995-2022. doi:
10.1038/s41596-020-00477-y
. [PMID: 33627842] - Antonio Mancini, Francesco Guidi, Carmine Bruno, Flavia Angelini, Edoardo Vergani, Paola Lanza, Alvaro Mordente, Elisabetta Meucci, Andrea Silvestrini. Can plasma antioxidants prevent DNA damage in oxidative stress condition induced by growth hormone deficiency? A pilot study.
PloS one.
2021; 16(4):e0248971. doi:
10.1371/journal.pone.0248971
. [PMID: 33793606] - Leila Darki, Arash Jalali-Sohi, Said R Beydoun. Polyneuropathy Reveals Origins of Decade-long Gastrointestinal Symptoms in a Patient With Undiagnosed Mitochondrial Neurogastrointestinal Encephalopathy Caused by a Novel Mutation.
Journal of clinical neuromuscular disease.
2020 Dec; 22(2):97-102. doi:
10.1097/cnd.0000000000000326
. [PMID: 33214395] - Natsumi Nagano, Yoshiyuki Kawakami, Takehisa Matsumoto, Koichi Tanimoto, Masami Kashihara, Megumi Nagata, Hideyasu Honjyo, Konosuke Yamamoto, Atsuaki Takada, Tetsuro Sugiura. Isolation of thymidine-dependent and extended-spectrum-β-lactamase-producing Escherichia coli small-colony variant from urine of a septuagenarian female patient with recurrent cystitis: A case report with genetic investigation.
Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy.
2020 Oct; 26(10):1066-1069. doi:
10.1016/j.jiac.2020.05.013
. [PMID: 32571646] - Brandon J Eudy, Caitlin E McDermott, Gabriel Fernandez, Clayton E Mathews, Jinping Lai, Robin P da Silva. Disruption of hepatic one-carbon metabolism impairs mitochondrial function and enhances macrophage activity in methionine-choline-deficient mice.
The Journal of nutritional biochemistry.
2020 07; 81(?):108381. doi:
10.1016/j.jnutbio.2020.108381
. [PMID: 32422424] - Cancan Yang, Jing Li, Zhenling Huang, Xuefa Zhang, Xiaolei Gao, Chunyuang Zhu, Paul F Morris, XiuGuo Zhang. Structural and catalytic analysis of two diverse uridine phosphorylases in Phytophthora capsici.
Scientific reports.
2020 06; 10(1):9051. doi:
10.1038/s41598-020-65935-9
. [PMID: 32493959] - KimberlyA Kripps, Warapan Nakayuenyongsuk, Brian J Shayota, William Berquist, Natalia Gomez-Ospina, Carlos O Esquivel, Waldo Concepcion, Jacinda B Sampson, David J Cristin, Whitney E Jackson, Samuel Gilliland, Elizabeth A Pomfret, Michael L Kueht, Rowland W Pettit, Youmna A Sherif, Lisa T Emrick, Sarah H Elsea, Ryan Himes, Michio Hirano, Johan L K Van Hove, Fernando Scaglia, Gregory M Enns, Austin A Larson. Successful liver transplantation in mitochondrial neurogastrointestinal encephalomyopathy (MNGIE).
Molecular genetics and metabolism.
2020 05; 130(1):58-64. doi:
10.1016/j.ymgme.2020.03.001
. [PMID: 32173240] - Wei Guo, Xia Wu, Yi Li, Jixue Gao, Feng Wang, Yongsheng Jin, Tie Chong, Anshoo Malhotra. Evaluation of biophysical as well as biochemical potential of curcumin and resveratrol during prostate cancer.
Journal of drug targeting.
2020 01; 28(1):41-45. doi:
10.1080/1061186x.2019.1601199
. [PMID: 30943812] - Fanglin Ming, Jingzhou Hou, Changjun Hou, Mei Yang, Xianfeng Wang, Jiawei Li, Danqun Huo, Qiang He. One-step synthesized fluorescent nitrogen doped carbon dots from thymidine for Cr (VI) detection in water.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
2019 Nov; 222(?):117165. doi:
10.1016/j.saa.2019.117165
. [PMID: 31185440] - Tobie D Lee, Olivia W Lee, Kyle R Brimacombe, Lu Chen, Rajarshi Guha, Sabrina Lusvarghi, Bethilehem G Tebase, Carleen Klumpp-Thomas, Robert W Robey, Suresh V Ambudkar, Min Shen, Michael M Gottesman, Matthew D Hall. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Molecular pharmacology.
2019 11; 96(5):629-640. doi:
10.1124/mol.119.115964
. [PMID: 31515284] - Marco Gelpi, Andreas Dehlbæk Knudsen, Karoline Brostrup Larsen, Amanda Mocroft, Anne-Mette Lebech, Birgitte Lindegaard, Jens Lundgren, Klaus Fuglsang Kofoed, Susanne Dam Nielsen. Long-lasting alterations in adipose tissue density and adiponectin production in people living with HIV after thymidine analogues exposure.
BMC infectious diseases.
2019 Aug; 19(1):708. doi:
10.1186/s12879-019-4347-y
. [PMID: 31399063] - Christelle Guillermier, Sean P Doherty, Adam G Whitney, Vladimir R Babaev, MacRae F Linton, Matthew L Steinhauser, Jonathan D Brown. Imaging mass spectrometry reveals heterogeneity of proliferation and metabolism in atherosclerosis.
JCI insight.
2019 06; 4(11):. doi:
10.1172/jci.insight.128528
. [PMID: 31167964] - A V Kara, Y Yıldırım, F Ozcicek, M N Aldemir, Y Arslan, K Bayan, M K Çelen. Effects of entecavir, tenofovir and telbivudine treatment on renal functions in chronic hepatitis B patients.
Acta gastro-enterologica Belgica.
2019 Apr; 82(2):273-277. doi:
. [PMID: 31314188]
- Yi Ning, Jue Hu, Ke Wei, Guliang He, Tao Wu, Fangguo Lu. Fluorometric determination of mercury(II) via a graphene oxide-based assay using exonuclease III-assisted signal amplification and thymidine-Hg(II)-thymidine interaction.
Mikrochimica acta.
2019 03; 186(4):216. doi:
10.1007/s00604-019-3332-x
. [PMID: 30838468] - José-Antonio Pedroza-García, Manuela Nájera-Martínez, Christelle Mazubert, Paulina Aguilera-Alvarado, Jeannine Drouin-Wahbi, Sobeida Sánchez-Nieto, José M Gualberto, Cécile Raynaud, Javier Plasencia. Role of pyrimidine salvage pathway in the maintenance of organellar and nuclear genome integrity.
The Plant journal : for cell and molecular biology.
2019 02; 97(3):430-446. doi:
10.1111/tpj.14128
. [PMID: 30317699] - Ravi Patel, Lucia Lee Coulter, Joanna Rimmer, Miles Parkes, Patrick Francis Chinnery, Oscar Swift. Mitochondrial neurogastrointestinal encephalopathy: a clinicopathological mimic of Crohn's disease.
BMC gastroenterology.
2019 Jan; 19(1):11. doi:
10.1186/s12876-018-0925-5
. [PMID: 30646848] - Toshinori Suzuki, Masashi Kumagai, Masahiro Furusawa. Effects of Urea on the Reactions of Nucleosides with Hypobromous Acid.
Chemical & pharmaceutical bulletin.
2019; 67(7):707-712. doi:
10.1248/cpb.c18-01009
. [PMID: 31257326] - Xiangzhong Zhao, Jingru Lu, Yanxia Gao, Xiaoling Wang, Yanhua Lang, Leping Shao. Novel compound heterozygous ATP6V1B1 mutations in a Chinese child patient with primary distal renal tubular acidosis: a case report.
BMC nephrology.
2018 12; 19(1):364. doi:
10.1186/s12882-018-1173-1
. [PMID: 30558562] - Zhaoping Yan, Bing Qiao, Haifeng Zhang, Yanling Wang, Wei Gou. Effectiveness of telbivudine antiviral treatment in patients with hepatitis B virus-associated glomerulonephritis: A 104-week pilot study.
Medicine.
2018 Aug; 97(31):e11716. doi:
10.1097/md.0000000000011716
. [PMID: 30075577] - Xianghua Guo, Jushan Wu, Feili Wei, Yabo Ouyang, Qing Li, Kai Liu, Yanjun Wang, Yulin Zhang, Dexi Chen. Trends in hepatitis B virus resistance to nucleoside/nucleotide analogues in North China from 2009-2016: A retrospective study.
International journal of antimicrobial agents.
2018 Aug; 52(2):201-209. doi:
10.1016/j.ijantimicag.2018.04.002
. [PMID: 29654894] - Haw-En Wang, Chih-Lang Lin, Tai-Long Pan, Chau-Ting Yeh. Increase of Serum Kallikrein-8 Level After Long-term Telbivudine Treatment.
In vivo (Athens, Greece).
2018 Jul; 32(4):955-960. doi:
10.21873/invivo.11334
. [PMID: 29936485] - Alejandro A Edera, Carolina L Gandini, M Virginia Sanchez-Puerta. Towards a comprehensive picture of C-to-U RNA editing sites in angiosperm mitochondria.
Plant molecular biology.
2018 Jun; 97(3):215-231. doi:
10.1007/s11103-018-0734-9
. [PMID: 29761268] - Qiu-Ju Sheng, Sui-Jing Wang, Yu-Yu Wu, Xiao-Guang Dou, Yang Ding. Hepatitis B virus serosurvey and awareness of mother-to-child transmission among pregnant women in Shenyang, China: An observational study.
Medicine.
2018 Jun; 97(22):e10931. doi:
10.1097/md.0000000000010931
. [PMID: 29851831] - Yue Ying, Yue-Kai Hu, Jia-Lin Jin, Ji-Ming Zhang, Wen-Hong Zhang, Yu-Xian Huang. Case report: lactic acidosis and rhabdomyolysis during telbivudine and tenofovir treatment for chronic hepatitis B.
BMC gastroenterology.
2018 Apr; 18(1):45. doi:
10.1186/s12876-018-0773-3
. [PMID: 29625557] - Bicui Chen, Li Chen, Cai Cheng, Mingkang Zhong, Xiaojin Shi, Jiming Zhang, Bin Wang. Determination of telbivudine in the plasma of chronic hepatitis B patients in long-term treatment by high-performance liquid chromatographic-tandem mass spectrometry.
Biomedical chromatography : BMC.
2018 Apr; 32(4):. doi:
10.1002/bmc.4140
. [PMID: 29148589] - Jie Chen, Detian Li. Telbivudine attenuates UUO-induced renal fibrosis via TGF-β/Smad and NF-κB signaling.
International immunopharmacology.
2018 Feb; 55(?):1-8. doi:
10.1016/j.intimp.2017.11.043
. [PMID: 29207359] - Li Lin, Lou Ge-Er, Yin Fang-Zhou, Cai Bao-Chang, Mao Chunqin, Lu Tu-Lin, Ji De. Metabolomic profiling of the effects of Curcumae rhizoma and Sparganii rhizome on stress-led blood stasis.
Pakistan journal of pharmaceutical sciences.
2018 Jan; 31(1(Suppl.)):333-339. doi:
"
. [PMID: 29386162] - I F Usynin, A N Dudarev, A Yu Gorodetskaya, S M Miroshnichenko, T A Tkachenko, V I Tkachenko. Apolipoprotein A-I Stimulates Cell Proliferation in Bone Marrow Cell Culture.
Bulletin of experimental biology and medicine.
2018 Jan; 164(3):308-311. doi:
10.1007/s10517-018-3978-0
. [PMID: 29313227] - Michelle Levene, Francisco J Enguita, Bridget E Bax. Discovery profiling and bioinformatics analysis of serum microRNA in Mitochondrial NeuroGastroIntestinal Encephalomyopathy (MNGIE).
Nucleosides, nucleotides & nucleic acids.
2018; 37(11):618-629. doi:
10.1080/15257770.2018.1492138
. [PMID: 30587073] - Long Jianfei, Wang Min, Ma Chunlai, Chen Bicui, Zhang Jiming, Wang Bin. The Ca2+/CaMKK2 axis mediates the telbivudine induced upregulation of creatine kinase: Implications for mechanism of antiviral nucleoside analogs' side effect.
Biochemical pharmacology.
2017 12; 146(?):224-232. doi:
10.1016/j.bcp.2017.10.005
. [PMID: 29038020] - I F Usynin, A N Dudarev, S M Miroshnichenko, T A Tkachenko, A Yu Gorodetskaya. Effect of Native and Modified Apolipoprotein A-I on DNA Synthesis in Cultures of Different Cells.
Bulletin of experimental biology and medicine.
2017 Dec; 164(2):247-251. doi:
10.1007/s10517-017-3967-8
. [PMID: 29177902] - Hong Shi, Zongping Han, Jian Liu, Jinfang Xue, Shuya Zhang, Zhe Zhu, Jinyu Xia, Mingxing Huang. Comparing Efficacy of Lamivudine, Adefovir Dipivoxil, Telbivudine, and Entecavir in Treating Nucleoside Analogues Naïve for HBeAg-Negative Hepatitis B with Medium Hepatitis B Virus (HBV) DNA Levels.
Medical science monitor : international medical journal of experimental and clinical research.
2017 Nov; 23(?):5230-5236. doi:
10.12659/msm.903382
. [PMID: 29095799] - H-Y Pan, H-Y Pan, W-Y Song, W Zheng, Y-X Tong, D-H Yang, Y-N Dai, M-J Chen, M-S Wang, Y-C Huang, J-J Zhang, H-J Huang. Long-term outcome of telbivudine versus entecavir in treating higher viral load chronic hepatitis B patients without cirrhosis.
Journal of viral hepatitis.
2017 11; 24 Suppl 1(?):29-35. doi:
10.1111/jvh.12794
. [PMID: 29082652] - J Liu, N Yao, Y Zhao. Improvement of telbivudine on renal function and massive proteinuria: A case report.
Journal of viral hepatitis.
2017 11; 24 Suppl 1(?):75-77. doi:
10.1111/jvh.12789
. [PMID: 29082647] - Puping Liang, Hongwei Sun, Ying Sun, Xiya Zhang, Xiaowei Xie, Jinran Zhang, Zhen Zhang, Yuxi Chen, Chenhui Ding, Yuanyan Xiong, Wenbin Ma, Dan Liu, Junjiu Huang, Zhou Songyang. Effective gene editing by high-fidelity base editor 2 in mouse zygotes.
Protein & cell.
2017 Aug; 8(8):601-611. doi:
10.1007/s13238-017-0418-2
. [PMID: 28585179] - Benjamin Röeben, Justus Marquetand, Benjamin Bender, Heiko Billing, Tobias B Haack, Iciar Sanchez-Albisua, Ludger Schöls, Henk J Blom, Matthis Synofzik. Hemodialysis in MNGIE transiently reduces serum and urine levels of thymidine and deoxyuridine, but not CSF levels and neurological function.
Orphanet journal of rare diseases.
2017 08; 12(1):135. doi:
10.1186/s13023-017-0687-0
. [PMID: 28764801] - Jun Wu, Pengcheng Wang, Lin Li, Nicole L Williams, Debin Ji, Walter J Zahurancik, Changjun You, Jianshuang Wang, Zucai Suo, Yinsheng Wang. Replication studies of carboxymethylated DNA lesions in human cells.
Nucleic acids research.
2017 Jul; 45(12):7276-7284. doi:
10.1093/nar/gkx442
. [PMID: 28531304] - Ming-Chao Tsai, Chien-Hung Chen, Tsung-Hui Hu, Sheng-Nan Lu, Chuan-Mo Lee, Jing-Houng Wang, Chao-Hung Hung. Long-term outcomes of hepatitis B virus-related cirrhosis treated with nucleos(t)ide analogs.
Journal of the Formosan Medical Association = Taiwan yi zhi.
2017 Jul; 116(7):512-521. doi:
10.1016/j.jfma.2016.08.006
. [PMID: 27720344] - Xiaoling Yang, Jia Li, Jie Liu, Min Gao, Li Zhou, Wei Lu. Relationship of Treg/Th17 balance with HBeAg change in HBeAg-positive chronic hepatitis B patients receiving telbivudine antiviral treatment: A longitudinal observational study.
Medicine.
2017 Jun; 96(23):e7064. doi:
10.1097/md.0000000000007064
. [PMID: 28591041] - Cigdem Kader, Mustafa Sunbul, Yavuz Kursad Das, Murat Yarim, Abdulkerim Bedir, Efe Karaca, Mehmet Celikbilek, Resat Ozaras. Telbivudine attenuates gentamicin-induced kidney injury in rats.
International journal of antimicrobial agents.
2017 May; 49(5):595-602. doi:
10.1016/j.ijantimicag.2017.01.015
. [PMID: 28373116] - X X Xu, B Wang, X F Wang, H X Wen, F Zhang, Z Q Yang, H Y Hao, T Wang, X H Shi, Z D Fu, B Wang, S P Wang. [Effect of telbivudine on infants born to HBsAg-positive mothers with non-/hypo-response to hepatitis B vaccine during their second and third trimesters of pregnancy].
Zhonghua liu xing bing xue za zhi = Zhonghua liuxingbingxue zazhi.
2017 Feb; 38(2):168-172. doi:
10.3760/cma.j.issn.0254-6450.2017.02.007
. [PMID: 28231660] - Ching-Lung Lai, Danny Wong, Philip Ip, Malgorzata Kopaniszen, Wai-Kay Seto, James Fung, Fung-Yu Huang, Brian Lee, Giuseppe Cullaro, Chun Kong Chong, Ringo Wu, Charles Cheng, John Yuen, Vincent Ngai, Man-Fung Yuen. Reduction of covalently closed circular DNA with long-term nucleos(t)ide analogue treatment in chronic hepatitis B.
Journal of hepatology.
2017 02; 66(2):275-281. doi:
10.1016/j.jhep.2016.08.022
. [PMID: 27639844] - Kuo-Hua Lin, Yao-Li Chen, Ping-Yi Lin, Chia-En Hsieh, Chih-Jan Ko, Chia-Cheng Lin, Ying-Zi Ming. A Follow-Up Study on the Renal Protective Efficacy of Telbivudine for Hepatitis B Virus-Infected Taiwanese Patients After Living Donor Liver Transplant.
Experimental and clinical transplantation : official journal of the Middle East Society for Organ Transplantation.
2017 Feb; 15(1):65-68. doi:
10.6002/ect.2015.0362
. [PMID: 28004999] - Yang-Sheng Lin, Shou-Chuan Shih, Horng-Yuan Wang, Ching-Chung Lin, Chen-Wang Chang, Ming-Jen Chen. Comparison of telbivudine and entecavir on the change of off- treatment eGFR after 3 years of treatment in non-cirrhotic chronic hepatitis B patients.
BMC gastroenterology.
2017 Jan; 17(1):22. doi:
10.1186/s12876-017-0582-0
. [PMID: 28137301] - Jihyun An, Young-Suk Lim, Gi-Ae Kim, Seong-Bong Han, Wonhee Jeong, Danbi Lee, Ju Hyun Shim, Han Chu Lee, Yung Sang Lee. Telbivudine versus entecavir in patients with undetectable hepatitis B virus DNA: a randomized trial.
BMC gastroenterology.
2017 Jan; 17(1):15. doi:
10.1186/s12876-017-0572-2
. [PMID: 28103819] - Wei-Chen Lee, Tsung-Han Wu, Yu-Chao Wang, Chih-Hsien Cheng, Chen-Fang Lee, Ting-Jung Wu, Hong-Shiue Chou, Kun-Ming Chan, Ching-Song Lee. Renal Function Improvement by Telbivudine in Liver Transplant Recipients with Chronic Kidney Disease.
BioMed research international.
2017; 2017(?):9324310. doi:
10.1155/2017/9324310
. [PMID: 28884132] - Santosh K Karade, Smita S Kulkarni, Manisha V Ghate, Ajit A Patil, Rajkumar Londhe, Sonali P Salvi, Dileep B Kadam, Rajneesh K Joshi, Bharat B Rewari, Raman R Gangakhedkar. Antiretroviral resistance following immunological monitoring in a resource-limited setting of western India: A cross-sectional study.
PloS one.
2017; 12(8):e0181889. doi:
10.1371/journal.pone.0181889
. [PMID: 28763465] - Hui Dong, Bin Zhou, Hui Kang, Weirong Jin, Yongqiang Zhu, Yan Shen, Jian Sun, Shengyue Wang, Guoping Zhao, Jinlin Hou, Yungang He. Small surface antigen variants of HBV associated with responses to telbivudine treatment in chronic hepatitis B patients.
Antiviral therapy.
2017; 22(1):43-51. doi:
10.3851/imp3078
. [PMID: 27583985] - Natalia Grañé-Boladeras, Christopher M Spring, W J Brad Hanna, Marçal Pastor-Anglada, Imogen R Coe. Novel nuclear hENT2 isoforms regulate cell cycle progression via controlling nucleoside transport and nuclear reservoir.
Cellular and molecular life sciences : CMLS.
2016 12; 73(23):4559-4575. doi:
10.1007/s00018-016-2288-9
. [PMID: 27271752] - Jun Wu, Lin Li, Pengcheng Wang, Changjun You, Nicole L Williams, Yinsheng Wang. Translesion synthesis of O4-alkylthymidine lesions in human cells.
Nucleic acids research.
2016 Nov; 44(19):9256-9265. doi:
10.1093/nar/gkw662
. [PMID: 27466394] - Zhangmin Tan, Yuzhu Yin, Jin Zhou, Lingling Wu, Chengfang Xu, Hongying Hou. Telbivudine treatment of hepatitis B virus-infected pregnant women at different gestational stages for the prevention of mother-to-child transmission: Outcomes of telbivudine treatment during pregnancy.
Medicine.
2016 Oct; 95(40):e4847. doi:
10.1097/md.0000000000004847
. [PMID: 27749537] - Ana Paola G Lombardi, Raisa Pisolato, Carolina M Vicente, Maria Fatima M Lazari, Thaís F G Lucas, Catarina S Porto. Estrogen receptor beta (ERβ) mediates expression of β-catenin and proliferation in prostate cancer cell line PC-3.
Molecular and cellular endocrinology.
2016 07; 430(?):12-24. doi:
10.1016/j.mce.2016.04.012
. [PMID: 27107935] - Hong-Juan Wang, Yan-Fang Jiang, Xin-Rui Wang, Man-Li Zhang, Pu-Jun Gao. Elevated serum interleukin-38 level at baseline predicts virological response in telbivudine-treated patients with chronic hepatitis B.
World journal of gastroenterology.
2016 May; 22(18):4529-37. doi:
10.3748/wjg.v22.i18.4529
. [PMID: 27182162] - Desmond Y H Yap, Tak Mao Chan. Use of telbivudine in kidney transplant recipients with chronic hepatitis B virus infection: A preliminary experience.
Nephrology (Carlton, Vic.).
2016 May; 21(5):438-41. doi:
10.1111/nep.12651
. [PMID: 26484932] - Henry L Y Chan, Javed Shaikh, Subhajit Gupta, Kamal Hamed. Renal Function in Nucleos(t)ide Analog-Treated Patients With Chronic Hepatitis B: A Systematic Literature Review and Network Meta-Analysis.
Advances in therapy.
2016 05; 33(5):862-75. doi:
10.1007/s12325-016-0337-2
. [PMID: 27146675] - Zhong Hua, Wei Xu, De-cai Fu, Yi-guang Li, Xiao-ye Guo, Kang-wan Tu, Ya-ping Dai. [Effect of Telbivudine Tablet Combined Jianpi Bushen Recipe on HBV Specific Cytotoxic T Lymphocyte and HBeAg Seroconversion in Patients with HBeAg Positive Chronic Hepatitis B].
Zhongguo Zhong xi yi jie he za zhi Zhongguo Zhongxiyi jiehe zazhi = Chinese journal of integrated traditional and Western medicine.
2016 May; 36(5):530-4. doi:
NULL
. [PMID: 27386641] - Siu-Tong Law, Ming Kai Lee, Ann Shing Lee, Yuk Tung, Kin Kong Li. Comparison of clinical efficacy and renal safety of telbivudine and entecavir in chronic hepatitis B patients receiving cytotoxic chemotherapy.
Journal of digestive diseases.
2016 May; 17(5):325-33. doi:
10.1111/1751-2980.12349
. [PMID: 27085094] - Xiaolu Wu, Shaohang Cai, Zhandong Li, Caixia Zheng, Xiulan Xue, Jianyong Zeng, Jie Peng. Potential effects of telbivudine and entecavir on renal function: a systematic review and meta-analysis.
Virology journal.
2016 Apr; 13(?):64. doi:
10.1186/s12985-016-0522-6
. [PMID: 27062520] - Manuela Petaccia, Patrizia Gentili, Neva Bešker, Marco D'Abramo, Luisa Giansanti, Francesca Leonelli, Angela La Bella, Denise Gradella Villalva, Giovanna Mancini. Kinetics and mechanistic study of competitive inhibition of thymidine phosphorylase by 5-fluoruracil derivatives.
Colloids and surfaces. B, Biointerfaces.
2016 Apr; 140(?):121-127. doi:
10.1016/j.colsurfb.2015.12.020
. [PMID: 26752208] - Jinjin Tong, Dongdong Sun, Chao Yang, Yingxue Wang, Sichao Sun, Qing Li, Jun Bao, Yun Liu. Serum starvation and thymidine double blocking achieved efficient cell cycle synchronization and altered the expression of p27, p53, bcl-2 in canine breast cancer cells.
Research in veterinary science.
2016 Apr; 105(?):10-4. doi:
10.1016/j.rvsc.2016.01.008
. [PMID: 27033900] - Sandra L Pfister, Peter G Klimko, Raymond E Conrow. (5Z,11Z,15R)-15-Hydroxyeicosa-5,11-dien-13-ynoic acid: A stable isomer of 15(S)-HETE that retains key vasoconstrictive and antiproliferative activity.
Prostaglandins & other lipid mediators.
2016 03; 123(?):33-9. doi:
10.1016/j.prostaglandins.2016.04.001
. [PMID: 27117058] - Y Zhang, P Hu, X Qi, H Ren, R-C Mao, J-M Zhang. A comparison of telbivudine and entecavir in the treatment of hepatitis B e antigen-positive patients: a prospective cohort study in China.
Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.
2016 Mar; 22(3):287.e1-9. doi:
10.1016/j.cmi.2015.10.024
. [PMID: 26548508] - Ryogo Minamimoto, Noboru Nakaigawa, Yoji Nagashima, Jun Toyohara, Daiki Ueno, Kazuhiro Namura, Kazuhiko Nakajima, Masahiro Yao, Kazuo Kubota. Comparison of 11C-4DST and 18F-FDG PET/CT imaging for advanced renal cell carcinoma: preliminary study.
Abdominal radiology (New York).
2016 Mar; 41(3):521-30. doi:
10.1007/s00261-015-0601-y
. [PMID: 27039323] - Chia-Chi Wang, Chih-Lin Lin, Tsai-Yuan Hsieh, Kuo-Chih Tseng, Cheng-Yuan Peng, Tung-Hung Su, Sheng-Shun Yang, Yu-Chun Hsu, Tsung-Ming Chen, Jia-Horng Kao. Efficacy and resistance to telbivudine treatment in chronic hepatitis B patients with favorable predictors: a multicenter study in Taiwan.
Hepatology international.
2016 Mar; 10(2):294-301. doi:
10.1007/s12072-015-9662-9
. [PMID: 26399763] - Siu-Tong Law, Ming Kai Lee, Kin Kong Li, Chun Keung Mok. Comparison of efficacy and renal safety of telbivudine and entecavir in treatment-naive elderly patients with chronic hepatitis B.
European journal of gastroenterology & hepatology.
2016 Feb; 28(2):193-8. doi:
10.1097/meg.0000000000000519
. [PMID: 26587867] - Ching-Chung Lin, Ming-Jong Bair, Chih-Jen Chen, Keng-Han Lee, Ming-Jen Chen, Chia-Yuan Liu, Chen-Wang Chang, Kuang-Chun Hu, Tai-Cherng Liou, Shee-Chan Lin, Horng-Yuan Wang, Cheng-Hsin Chu, Shou-Chuan Shih, Tsang-En Wang. Off-treatment efficacy of 3-year nucleos(t)ide analogues in chronic hepatitis B patients.
The Kaohsiung journal of medical sciences.
2016 Jan; 32(1):10-5. doi:
10.1016/j.kjms.2015.11.005
. [PMID: 26853169] - Tomica Ambang, Joo-San Tan, Sheila Ong, Kum-Thong Wong, Khean-Jin Goh. Clinicopathological Features of Telbivudine-Associated Myopathy.
PloS one.
2016; 11(9):e0162760. doi:
10.1371/journal.pone.0162760
. [PMID: 27611456] - Samir K Gupta, Grace A McComsey, John Lombaard, Juan Echevarría, Catherine Orrell, Anchalee Avihingsanon, Olayemi Osiyemi, Mario Santoscoy, Neelanjana Ray, David A Stock, Samit R Joshi, George J Hanna, Max Lataillade. Efficacy, safety, bone and metabolic effects of HIV nucleoside reverse transcriptase inhibitor BMS-986001 (AI467003): a phase 2b randomised, controlled, partly blinded trial.
The lancet. HIV.
2016 Jan; 3(1):e13-22. doi:
10.1016/s2352-3018(15)00231-3
. [PMID: 26762988] - M-C Tsai, C-H Chen, P-L Tseng, C-H Hung, K-W Chiu, J-H Wang, S-N Lu, C-M Lee, K-C Chang, Y-H Yen, M-T Lin, Y-P Chou, T-H Hu. Comparison of renal safety and efficacy of telbivudine, entecavir and tenofovir treatment in chronic hepatitis B patients: real world experience.
Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.
2016 Jan; 22(1):95.e1-95.e7. doi:
10.1016/j.cmi.2015.05.035
. [PMID: 26055419] - Ming-Tsung Lin, Yi-Hao Yen, Ming-Chao Tsai, Po-Lin Tseng, Kuo-Chin Chang, Cheng-Kun Wu, Tsung-Hui Hu. Comparison of the Efficacies and Safety of Combined Therapy between Telbivudine Plus Adefovir and Lamivudine Plus Adefovir in Patients with Hepatitis B Virus Infection in Real-World Practice.
PloS one.
2016; 11(11):e0165416. doi:
10.1371/journal.pone.0165416
. [PMID: 27806120] - Huajiang Shen, Feng Ding, Zhiwei Wang, Fang Sun, Yafeng Yu, Jiankang Zhou, Wenfang Xu, Jianchao Ni, Jiangang Wang, Yida Yang. Comparison of Telbivudine and Entecavir Therapy on Nephritic Function and Drug Resistance in Patients with Hepatitis B Virus-Related Compensated Cirrhosis.
Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology.
2016; 40(1-2):370-378. doi:
10.1159/000452552
. [PMID: 27866195] - Aung Myint Thu, Kittiyod Poovorawan, Chatporn Kittitrakul, Apichart Nontprasert, Natthida Sriboonvorakul, Weerapong Phumratanaprapin, Pisit Tangkijvanich, Wattana Leowattana, Polrat Wilairatana. Nephrotoxicity caused by oral antiviral agents in patients with chronic hepatitis B treated in a hospital for tropical diseases in Thailand.
BMC pharmacology & toxicology.
2015 Dec; 16(?):38. doi:
10.1186/s40360-015-0037-6
. [PMID: 26651337] - Bin Zhou, Hui Dong, Yungang He, Jian Sun, Weirong Jin, Qing Xie, Rong Fan, Minxian Wang, Ran Li, Yangyi Chen, Shaoqing Xie, Yan Shen, Xin Huang, Shengyue Wang, Fengming Lu, Jidong Jia, Hui Zhuang, Stephen Locarnini, Guo-Ping Zhao, Li Jin, Jinlin Hou. Composition and Interactions of Hepatitis B Virus Quasispecies Defined the Virological Response During Telbivudine Therapy.
Scientific reports.
2015 Nov; 5(?):17123. doi:
10.1038/srep17123
. [PMID: 26599443] - Feifei Yin, Zeguang Wu, Wei Fang, Chunchen Wu, Simon Rayner, Meifang Han, Fei Deng, Ruikun Du, Jinliang Liu, Manli Wang, Hualin Wang, Qin Ning, Zhihong Hu. Resistant mutations and quasispecies complexity of hepatitis B virus during telbivudine treatment.
The Journal of general virology.
2015 Nov; 96(11):3302-3312. doi:
10.1099/jgv.0.000285
. [PMID: 26382925] - Junji Furukawa, Katsuhisa Inoue, Junya Maeda, Tomoya Yasujima, Kinya Ohta, Yoshikatsu Kanai, Tappei Takada, Hirotaka Matsuo, Hiroaki Yuasa. Functional identification of SLC43A3 as an equilibrative nucleobase transporter involved in purine salvage in mammals.
Scientific reports.
2015 Oct; 5(?):15057. doi:
10.1038/srep15057
. [PMID: 26455426] - Amedeo De Nicolò, Marco Simiele, Debora Pensi, Lucio Boglione, Sarah Allegra, Giovanni Di Perri, Antonio D'Avolio. UPLC-MS/MS method for the simultaneous quantification of anti-HBV nucleos(t)ides analogs: Entecavir, lamivudine, telbivudine and tenofovir in plasma of HBV infected patients.
Journal of pharmaceutical and biomedical analysis.
2015 Oct; 114(?):127-32. doi:
10.1016/j.jpba.2015.05.016
. [PMID: 26037161] - Long Yuan, Alan Schuster, Jim X Shen, Pamela Garrison-Borowski, Anne-Françoise Aubry. Dried blood spot analysis without dilution: Application to the LC-MS/MS determination of BMS-986001 in rat dried blood spot.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2015 Oct; 1002(?):201-9. doi:
10.1016/j.jchromb.2015.08.029
. [PMID: 26340763] - Miguel Sanchez-Alvarez, Qifeng Zhang, Fabian Finger, Michael J O Wakelam, Chris Bakal. Cell cycle progression is an essential regulatory component of phospholipid metabolism and membrane homeostasis.
Open biology.
2015 Sep; 5(9):150093. doi:
10.1098/rsob.150093
. [PMID: 26333836] - Shanshan Zhu, Yan Zhuo, Hong Miao, Dan Zhong, Xiaoming Yang. Detection of mercury(II) by DNA templated gold nanoclusters based on forming thymidine-Hg(2+)-thymidine duplexes.
Luminescence : the journal of biological and chemical luminescence.
2015 Aug; 30(5):631-6. doi:
10.1002/bio.2797
. [PMID: 25339365] - Ilker Turan, Suna Yapali, Fikret Bademkiran, Timur Kose, Soner Duman, Murat Sozbilen, Fulya Gunsar, Galip Ersoz, Ulus Salih Akarca, Omer Ozutemiz, Zeki Karasu. Telbivudine in liver transplant recipients: Renal protection does not overcome the risk of polyneuropathy and myopathy.
Liver transplantation : official publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society.
2015 Aug; 21(8):1066-75. doi:
10.1002/lt.24131
. [PMID: 25845464] - Jin-Lin Hou, Daozheng Xu, Guangfeng Shi, Mobin Wan, Zachary Goodman, Deming Tan, Qing Xie, Chengwei Chen, Lai Wei, Junqi Niu, Qinhuan Wang, Hong Ren, Yuming Wang, Jidong Jia, Weibin Bao, Yuhong Dong, Aldo Trylesinski, Nikolai V Naoumov. Long-Term Telbivudine Treatment Results in Resolution of Liver Inflammation and Fibrosis in Patients with Chronic Hepatitis B.
Advances in therapy.
2015 Aug; 32(8):727-41. doi:
10.1007/s12325-015-0232-2
. [PMID: 26329749] - E Cholongitas, T Vasiliadis, I Goulis, I Fouzas, N Antoniadis, V Papanikolaou, E Akriviadis. Telbivudine is associated with improvement of renal function in patients transplanted for HBV liver disease.
Journal of viral hepatitis.
2015 Jul; 22(7):574-80. doi:
10.1111/jvh.12362
. [PMID: 25385239] - Zuxiong Huang, Jun Ge, Jinke Pang, Hongyan Liu, Jinjun Chen, Baolin Liao, Xuan Huang, Daming Zuo, Jian Sun, Mengji Lu, Xiaoyong Zhang, Jinlin Hou. Aberrant expression and dysfunction of TLR2 and its soluble form in chronic HBV infection and its regulation by antiviral therapy.
Antiviral research.
2015 Jun; 118(?):10-9. doi:
10.1016/j.antiviral.2015.03.004
. [PMID: 25771704] - Wei Li, Dazhi Zhang. [Influence of monotherapy with telbivudine or entecavir on renal function in patients with chronic hepatitis B].
Zhonghua gan zang bing za zhi = Zhonghua ganzangbing zazhi = Chinese journal of hepatology.
2015 Jun; 23(6):407-11. doi:
10.3760/cma.j.issn.1007-3418.2015.06.003
. [PMID: 26236924] - Wenhao Hua, Guanbin Zhang, Shujun Guo, Weijie Li, Lanhua Sun, Guangxin Xiang. Microarray-based genotyping and detection of drug-resistant HBV mutations from 620 Chinese patients with chronic HBV infection.
The Brazilian journal of infectious diseases : an official publication of the Brazilian Society of Infectious Diseases.
2015 May; 19(3):291-5. doi:
10.1016/j.bjid.2015.03.012
. [PMID: 25982306] - Lucia Martiniova, Martha S Field, Julia L Finkelstein, Cheryll A Perry, Patrick J Stover. Maternal dietary uridine causes, and deoxyuridine prevents, neural tube closure defects in a mouse model of folate-responsive neural tube defects.
The American journal of clinical nutrition.
2015 Apr; 101(4):860-9. doi:
10.3945/ajcn.114.097279
. [PMID: 25833982] - Min Dai, Ge-Min Xiao, Feng-Lin Wang, Jiong-Shan Zhang, Yang-Mei Li, Hong-Zhi Yang. Changes in serum alanine aminotransferase levels in telbivudine versus lamivudine treatment for chronic hepatitis B: a meta-analysis.
The Journal of international medical research.
2015 Apr; 43(2):161-72. doi:
10.1177/0300060514556664
. [PMID: 25687498] - Nan Meng, Xiao Gao, Wei Yan, Mi Wang, Ping Liu, Xiao-Dan Lu, Shu-Juan Zhang, Ya-Qi Lu, Wang-Xian Tang. Efficacy of telbivudine in the treatment of chronic hepatitis b and liver cirrhosis and its effect on immunological responses.
Journal of Huazhong University of Science and Technology. Medical sciences = Hua zhong ke ji da xue xue bao. Yi xue Ying De wen ban = Huazhong keji daxue xuebao. Yixue Yingdewen ban.
2015 Apr; 35(2):230-234. doi:
10.1007/s11596-015-1416-3
. [PMID: 25877357]