Quinolinic acid (BioDeep_00000001638)

 

Secondary id: BioDeep_00000400045, BioDeep_00000415823

natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019 Volatile Flavor Compounds


代谢物信息卡片


Pyridine-2,3-dicarboxylic acid

化学式: C7H5NO4 (167.021857)
中文名称: 吡啶-2,3-二羧酸, 2,3-吡啶二甲酸, 喹啉酸
谱图信息: 最多检出来源 Homo sapiens(blood) 0.29%

Reviewed

Last reviewed on 2024-07-09.

Cite this Page

Quinolinic acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/quinolinic_acid (retrieved 2024-11-22) (BioDeep RN: BioDeep_00000001638). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C1=CC(=C(N=C1)C(=O)O)C(=O)O
InChI: InChI=1S/C7H5NO4/c9-6(10)4-2-1-3-8-5(4)7(11)12/h1-3H,(H,9,10)(H,11,12)

描述信息

Quinolinic acid, also known as quinolinate, belongs to the class of organic compounds known as pyridinecarboxylic acids. Pyridinecarboxylic acids are compounds containing a pyridine ring bearing a carboxylic acid group. It is also classified as a pyridine-2,3-dicarboxylic acid, which is a dicarboxylic acid with a pyridine backbone. Quinolinic acid is a colorless solid. In plants, it is the biosynthetic precursor to nicotine. Quinolinic acid is found in all organisms, from microbes to plants to animals. Quinolinic acid can be biosynthesized via aspartic acid in plants. Oxidation of aspartate by the enzyme aspartate oxidase gives iminosuccinate, containing the two carboxylic acid groups that are found in quinolinic acid. Condensation of iminosuccinate with glyceraldehyde-3-phosphate, mediated by quinolinate synthase, affords quinolinic acid Quinolinic acid is also a downstream product of the kynurenine pathway, which metabolizes the amino acid tryptophan ((PMID: 22678511). The kynurenine/tryptophan degradation pathway is important for its production of the coenzyme nicotinamide adenine dinucleotide (NAD+) and produces several neuroactive intermediates including quinolinic acid, kynurenine (KYN), kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK), and 3-hydroxyanthranilic acid (3-HANA). In animals quinolinic acid acts as an NMDA receptor agonist and has a possible role in neurodegenerative disorders (PMID: 22678511). It also acts as a neurotoxin, gliotoxin, proinflammatory mediator, and pro-oxidant molecule (PMID: 22248144). Quinolinic acid can act as an endogenous brain excitotoxin when released by activated macrophages (PMID: 15013955). Within the brain, quinolinic acid is only produced by activated microglia and macrophages. Quinolinic acid is unable to pass through the blood-brain barrier (BBB) and must be produced within the brain by microglial cells or macrophages that have passed the BBB (PMID: 22248144). While quinolinic acid cannot pass through the BBB, kynurenic acid, tryptophan and 3-hydroxykynurenine can and can subsequently act as precursors to the production of quinolinic acid in the brain (PMID: 22248144). Quinolinic acid has potent neurotoxic effects. Studies have demonstrated that quinolinic acid may be involved in many psychiatric disorders and neurodegenerative diseases in the brain including ALS, Alzheimer’s disease, brain ischemia, Parkinson’s disease, Huntington’s disease and AIDS-dementia. Elevated CSF levels of quinolinic acid are correlated with the severity of neuropsychological deficits in patients who have AIDS. Indeed, levels of quinolinic acid in the CSF of AIDS patients suffering from AIDS-dementia can be up to twenty times higher than normal (PMID: 10936623). Quinolinic acid levels are increased in the brains of children infected with a range of bacterial infections of the central nervous system (CNS), of poliovirus patients, and of Lyme disease with CNS involvement patients. In addition, raised quinolinic acid levels have been found in traumatic CNS injury patients, patients suffering from cognitive decline with ageing, hyperammonaemia patients, hypoglycaemia patients, and systemic lupus erythematosus patients. Quinolinic acid has also been detected, but not quantified in, several different foods, such as Ceylon cinnamons, pitanga, Oregon yampahs, red bell peppers, and durians. This could make quinolinic acid a potential biomarker for the consumption of these foods.
Quinolinic acid, also known as pyridine-2,3-dicarboxylate or 2,3-pyridinedicarboxylic acid, is a member of the class of compounds known as pyridinecarboxylic acids. Pyridinecarboxylic acids are compounds containing a pyridine ring bearing a carboxylic acid group. Quinolinic acid is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Quinolinic acid can be found in a number of food items such as coconut, pistachio, chinese chives, and common bean, which makes quinolinic acid a potential biomarker for the consumption of these food products. Quinolinic acid can be found primarily in blood, cerebrospinal fluid (CSF), and urine, as well as throughout most human tissues. Quinolinic acid exists in all living species, ranging from bacteria to humans. In humans, quinolinic acid is involved in a couple of metabolic pathways, which include nicotinate and nicotinamide metabolism and tryptophan metabolism. Moreover, quinolinic acid is found to be associated with malaria, anemia, cNS tumors, and aIDS. Quinolinic acid has a potent neurotoxic effect. Studies have demonstrated that quinolinic acid may be involved in many psychiatric disorders, neurodegenerative processes in the brain, as well as other disorders. Within the brain, quinolinic acid is only produced by activated microglia and macrophages .

Quinolinic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=89-00-9 (retrieved 2024-07-09) (CAS RN: 89-00-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Quinolinic acid is an endogenous N-methyl-D-aspartate (NMDA) receptor agonist synthesized from L-tryptophan via the kynurenine pathway and thereby has the potential of mediating N-methyl-D-aspartate neuronal damage and dysfunction[1][2].
Quinolinic acid is an endogenous N-methyl-D-aspartate (NMDA) receptor agonist synthesized from L-tryptophan via the kynurenine pathway and thereby has the potential of mediating N-methyl-D-aspartate neuronal damage and dysfunction[1][2].

同义名列表

12 个代谢物同义名

Pyridine-2,3-dicarboxylic acid; 2,3-Pyridinedicarboxylic acid; 3,4-Pyridinedicarboxylic acid; Pyridine-2,3-dicarboxylate; Pyridin-2,3-dicarbonsaeure; 2,3-Pyridinedicarboxylate; Pyridine-2,3-carboxylate; quinolinic acid; Quinolinate; Quinolinic Acid; Quinolinate; Quinolinic acid



数据库引用编号

42 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(2)

PlantCyc(0)

代谢反应

20 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(2)

WikiPathways(2)

Plant Reactome(0)

INOH(2)

PlantCyc(0)

COVID-19 Disease Map(1)

PathBank(13)

PharmGKB(0)

31 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Aurélie Hanin, Céline Chollet, Sophie Demeret, Lucas Di Meglio, Florence Castelli, Vincent Navarro. Metabolomic changes in adults with status epilepticus: A human case-control study. Epilepsia. 2024 Apr; 65(4):929-943. doi: 10.1111/epi.17899. [PMID: 38339978]
  • Roghayeh Rashidi, Maryam Akaberi, Aida Gholoobi, Hamed Ghazavi, Fatemeh Forouzanfar. Artemisia absinthium extract attenuates the quinolinic acid-induced cell injury in OLN-93 cells. Current drug discovery technologies. 2023 Mar; ?(?):. doi: 10.2174/1570163820666230330105331. [PMID: 36998142]
  • Xing Ge, Mingxuan Zheng, Minmin Hu, Xiaoli Fang, Deqin Geng, Sha Liu, Li Wang, Jun Zhang, Li Guan, Peng Zheng, Yuanyi Xie, Wei Pan, Menglu Zhou, Limian Zhou, Renxian Tang, Kuiyang Zheng, Yinghua Yu, Xu-Feng Huang. Butyrate ameliorates quinolinic acid-induced cognitive decline in obesity models. The Journal of clinical investigation. 2023 Feb; 133(4):. doi: 10.1172/jci154612. [PMID: 36787221]
  • Daniele Sanna, Angela Fadda. Role of the Hydroxyl Radical-Generating System in the Estimation of the Antioxidant Activity of Plant Extracts by Electron Paramagnetic Resonance (EPR). Molecules (Basel, Switzerland). 2022 Jul; 27(14):. doi: 10.3390/molecules27144560. [PMID: 35889433]
  • Karen Mei-Ling Tan, Mya-Thway Tint, Narasimhan Kothandaraman, Fabian Yap, Keith M Godfrey, Yung Seng Lee, Kok Hian Tan, Peter D Gluckman, Yap-Seng Chong, Mary F F Chong, Johan G Eriksson, David Cameron-Smith. Association of plasma kynurenine pathway metabolite concentrations with metabolic health risk in prepubertal Asian children. International journal of obesity (2005). 2022 06; 46(6):1128-1137. doi: 10.1038/s41366-022-01085-4. [PMID: 35173282]
  • Duygu Eryavuz Onmaz, Dilek Tezcan, Sedat Abusoglu, Abdullah Sivrikaya, Menekse Kuzu, Fatma Humeyra Yerlikaya, Sema Yilmaz, Ali Unlu. Elevated serum levels of kynurenine pathway metabolites in patients with Behçet disease. Amino acids. 2022 Jun; 54(6):877-887. doi: 10.1007/s00726-022-03170-4. [PMID: 35604497]
  • Mandeep Kumar Arora, Anish Ratra, Syed Mohammed Basheeruddin Asdaq, Ali A Alshamrani, Abdulkhaliq J Alsalman, Mehnaz Kamal, Ritu Tomar, Jagannath Sahoo, Jangra Ashok, Mohd Imran. Plumbagin Alleviates Intracerebroventricular-Quinolinic Acid Induced Depression-like Behavior and Memory Deficits in Wistar Rats. Molecules (Basel, Switzerland). 2022 Mar; 27(6):. doi: 10.3390/molecules27061834. [PMID: 35335195]
  • Lihui Guo, Bernadette Schurink, Eva Roos, Esther J Nossent, Jan Willem Duitman, Alexander Pj Vlaar, Paul van der Valk, Frédéric M Vaz, Syun-Ru Yeh, Zachary Geeraerts, Annemiek Dijkhuis, Lonneke van Vught, Marianna Bugiani, René Lutter. Indoleamine 2,3-dioxygenase (IDO)-1 and IDO-2 activity and severe course of COVID-19. The Journal of pathology. 2022 03; 256(3):256-261. doi: 10.1002/path.5842. [PMID: 34859884]
  • Murat Cihan, Özlem Doğan, Ceyhan Ceran Serdar, Arzu Altunçekiç Yıldırım, Celali Kurt, Muhittin A Serdar. Kynurenine pathway in Coronavirus disease (COVID-19): Potential role in prognosis. Journal of clinical laboratory analysis. 2022 Mar; 36(3):e24257. doi: 10.1002/jcla.24257. [PMID: 35092710]
  • Elisabeth R Paul, Lilly Schwieler, Sophie Erhardt, Sandra Boda, Ada Trepci, Robin Kämpe, Anna Asratian, Lovisa Holm, Adam Yngve, Robert Dantzer, Markus Heilig, J Paul Hamilton, Martin Samuelsson. Peripheral and central kynurenine pathway abnormalities in major depression. Brain, behavior, and immunity. 2022 03; 101(?):136-145. doi: 10.1016/j.bbi.2022.01.002. [PMID: 34999196]
  • Yohan Bignon, Anna Rinaldi, Zahia Nadour, Virginie Poindessous, Ivan Nemazanyy, Olivia Lenoir, Baptiste Fohlen, Pierre Weill-Raynal, Alexandre Hertig, Alexandre Karras, Pierre Galichon, Maarten Naesens, Dany Anglicheau, Pietro E Cippà, Nicolas Pallet. Cell stress response impairs de novo NAD+ biosynthesis in the kidney. JCI insight. 2022 01; 7(1):. doi: 10.1172/jci.insight.153019. [PMID: 34793337]
  • Pablo Eliasib Martínez-Gopar, Marian Jesabel Pérez-Rodríguez, Gabriela Rodríguez-Manzo, René Garduño-Gutierrez, Luis Tristán-López, Quetzalli Denisse Angeles-López, Claudia González-Espinosa, Francisca Pérez-Severiano. Mast cells and histamine are involved in the neuronal damage observed in a quinolinic acid-induced model of Huntington's disease. Journal of neurochemistry. 2022 01; 160(2):256-270. doi: 10.1111/jnc.15527. [PMID: 34665461]
  • Yuqing Liang, Shan Xie, Yanyun He, Manru Xu, Xi Qiao, Yue Zhu, Wenbin Wu. Kynurenine Pathway Metabolites as Biomarkers in Alzheimer's Disease. Disease markers. 2022; 2022(?):9484217. doi: 10.1155/2022/9484217. [PMID: 35096208]
  • Siyu Wang, Liangshan Mu, Chunmei Zhang, Xiaoyu Long, Yurong Zhang, Rong Li, Yue Zhao, Jie Qiao. Abnormal Activation of Tryptophan-Kynurenine Pathway in Women With Polycystic Ovary Syndrome. Frontiers in endocrinology. 2022; 13(?):877807. doi: 10.3389/fendo.2022.877807. [PMID: 35721725]
  • Rami Bou Khalil, Rhéa El Khoury. δEPCD: the electrophysiologic coefficient of depressiveness. Biomarkers : biochemical indicators of exposure, response, and susceptibility to chemicals. 2021 Dec; 26(8):752-759. doi: 10.1080/1354750x.2021.1995497. [PMID: 34664533]
  • W Kędzierski, I Sadok, S Kowalik, I Janczarek, M Staniszewska. Does the type of exercise affect tryptophan catabolism in horses?. Animal : an international journal of animal bioscience. 2021 Nov; 15(11):100377. doi: 10.1016/j.animal.2021.100377. [PMID: 34624767]
  • Ying Chen, Yi-Dong Zhou, Pablo Laborda, Hai-Lin Wang, Rui Wang, Xian Chen, Feng-Quan Liu, Dong-Jing Yang, Su-Yan Wang, Xin-Chi Shi, Pedro Laborda. Mode of action and efficacy of quinolinic acid for the control of Ceratocystis fimbriata on sweet potato. Pest management science. 2021 Oct; 77(10):4564-4571. doi: 10.1002/ps.6495. [PMID: 34086397]
  • Erik W Anderson, Joanna Fishbein, Joseph Hong, Julien Roeser, Richard A Furie, Cynthia Aranow, Bruce T Volpe, Betty Diamond, Meggan Mackay. Quinolinic acid, a kynurenine/tryptophan pathway metabolite, associates with impaired cognitive test performance in systemic lupus erythematosus. Lupus science & medicine. 2021 10; 8(1):. doi: 10.1136/lupus-2021-000559. [PMID: 34686589]
  • Francesca M Notarangelo, Robert Schwarcz. A single prenatal lipopolysaccharide injection has acute, but not long-lasting, effects on cerebral kynurenine pathway metabolism in mice. The European journal of neuroscience. 2021 09; 54(6):5968-5981. doi: 10.1111/ejn.15416. [PMID: 34363411]
  • A S M M R Chawdhury, Shahab A Shamsi, Andrew Miller, Aimin Liu. Capillary electrochromatography-mass spectrometry of kynurenine pathway metabolites. Journal of chromatography. A. 2021 Aug; 1651(?):462294. doi: 10.1016/j.chroma.2021.462294. [PMID: 34098249]
  • Li-Ming Chen, Chun-Hui Bao, Yu Wu, Shi-Hua Liang, Di Wang, Lu-Yi Wu, Yan Huang, Hui-Rong Liu, Huan-Gan Wu. Tryptophan-kynurenine metabolism: a link between the gut and brain for depression in inflammatory bowel disease. Journal of neuroinflammation. 2021 Jun; 18(1):135. doi: 10.1186/s12974-021-02175-2. [PMID: 34127024]
  • Flurin Cathomas, Karoline Guetter, Erich Seifritz, Federica Klaus, Stefan Kaiser. Quinolinic acid is associated with cognitive deficits in schizophrenia but not major depressive disorder. Scientific reports. 2021 05; 11(1):9992. doi: 10.1038/s41598-021-89335-9. [PMID: 33976271]
  • Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome. Cell reports. 2021 04; 35(4):109040. doi: 10.1016/j.celrep.2021.109040. [PMID: 33910017]
  • Masum Öztürk, Şermin Yalın Sapmaz, Hasan Kandemir, Fatma Taneli, Ömer Aydemir. The role of the kynurenine pathway and quinolinic acid in adolescent major depressive disorder. International journal of clinical practice. 2021 Apr; 75(4):e13739. doi: 10.1111/ijcp.13739. [PMID: 32997876]
  • Bing Cao, Yan Chen, Zhongyu Ren, Zihang Pan, Roger S McIntyre, Dongfang Wang. Dysregulation of kynurenine pathway and potential dynamic changes of kynurenine in schizophrenia: A systematic review and meta-analysis. Neuroscience and biobehavioral reviews. 2021 04; 123(?):203-214. doi: 10.1016/j.neubiorev.2021.01.018. [PMID: 33513412]
  • Karla Chavira-Ramos, Mario Orozco-Morales, Çimen Karasu, Alexey A Tinkov, Michael Aschner, Abel Santamaría, Ana Laura Colín-González. URB597 Prevents the Short-Term Excitotoxic Cell Damage in Rat Cortical Slices: Role of Cannabinoid 1 Receptors. Neurotoxicity research. 2021 Apr; 39(2):146-155. doi: 10.1007/s12640-020-00301-1. [PMID: 33141426]
  • Priyanka Saroj, Yashika Bansal, Raghunath Singh, Ansab Akhtar, Rupinder Kaur Sodhi, Mahendra Bishnoi, Sangeeta Pilkhwal Sah, Anurag Kuhad. Neuroprotective effects of roflumilast against quinolinic acid-induced rat model of Huntington's disease through inhibition of NF-κB mediated neuroinflammatory markers and activation of cAMP/CREB/BDNF signaling pathway. Inflammopharmacology. 2021 Apr; 29(2):499-511. doi: 10.1007/s10787-020-00787-3. [PMID: 33517508]
  • Junchao Huang, Jinghui Tong, Ping Zhang, Yanfang Zhou, Yimin Cui, Shuping Tan, Zhiren Wang, Fude Yang, Peter Kochunov, Joshua Chiappelli, Baopeng Tian, Li Tian, Yunlong Tan, L Elliot Hong. Effects of neuroactive metabolites of the tryptophan pathway on working memory and cortical thickness in schizophrenia. Translational psychiatry. 2021 04; 11(1):198. doi: 10.1038/s41398-021-01311-z. [PMID: 33795641]
  • Adrien Cogo, Gabrielle Mangin, Benjamin Maïer, Jacques Callebert, Mikael Mazighi, Hughes Chabriat, Jean-Marie Launay, Gilles Huberfeld, Nathalie Kubis. Increased serum QUIN/KYNA is a reliable biomarker of post-stroke cognitive decline. Molecular neurodegeneration. 2021 02; 16(1):7. doi: 10.1186/s13024-020-00421-4. [PMID: 33588894]
  • William H Hoffman, Stephen A Whelan, Norman Lee. Tryptophan, kynurenine pathway, and diabetic ketoacidosis in type 1 diabetes. PloS one. 2021; 16(7):e0254116. doi: 10.1371/journal.pone.0254116. [PMID: 34280211]
  • Timothy B Meier, Lezlie España, Morgan E Nitta, T Kent Teague, Benjamin L Brett, Lindsay D Nelson, Michael A McCrea, Jonathan Savitz. Positive association between serum quinolinic acid and functional connectivity following concussion. Brain, behavior, and immunity. 2021 01; 91(?):531-540. doi: 10.1016/j.bbi.2020.11.011. [PMID: 33176183]
  • Yufeng Jiang, Ziyin Huang, Lijie Mi, Yafeng Zhou. The potential role of inflammation reaction in COVID-19 related posttraumatic stress disorder. Asian journal of psychiatry. 2020 Dec; 54(?):102405. doi: 10.1016/j.ajp.2020.102405. [PMID: 33271701]
  • Mandeep Kumar Arora, Anglina Kisku, Ashok Jangra. Mangiferin ameliorates intracerebroventricular-quinolinic acid-induced cognitive deficits, oxidative stress, and neuroinflammation in Wistar rats. Indian journal of pharmacology. 2020 Jul; 52(4):296-305. doi: 10.4103/ijp.ijp_699_19. [PMID: 33078731]
  • Pingping Li, Jimin Zheng, Yun Bai, Dingxin Wang, Zijin Cui, Yueqin Li, Jian Zhang, Yuzhen Wang. Characterization of kynurenine pathway in patients with diarrhea-predominant irritable bowel syndrome. European journal of histochemistry : EJH. 2020 Jun; 64(s2):. doi: 10.4081/ejh.2020.3132. [PMID: 32705857]
  • Erman Popowski, Benjamin Kohl, Tobias Schneider, Joachim Jankowski, Gundula Schulze-Tanzil. Uremic Toxins and Ciprofloxacin Affect Human Tenocytes In Vitro. International journal of molecular sciences. 2020 Jun; 21(12):. doi: 10.3390/ijms21124241. [PMID: 32545914]
  • Ferenc Tömösi, Gábor Kecskeméti, Edina Katalin Cseh, Elza Szabó, Cecília Rajda, Róbert Kormány, Zoltán Szabó, László Vécsei, Tamás Janáky. A validated UHPLC-MS method for tryptophan metabolites: Application in the diagnosis of multiple sclerosis. Journal of pharmaceutical and biomedical analysis. 2020 Jun; 185(?):113246. doi: 10.1016/j.jpba.2020.113246. [PMID: 32182446]
  • Feiby L Nassan, Joshua A Gunn, Melissa M Hill, Paige L Williams, Russ Hauser. Association of urinary concentrations of phthalate metabolites with quinolinic acid among women: A potential link to neurological disorders. Environment international. 2020 05; 138(?):105643. doi: 10.1016/j.envint.2020.105643. [PMID: 32179323]
  • Hirofumi Inoue, Takeshi Matsushige, Takashi Ichiyama, Alato Okuno, Osamu Takikawa, Shozo Tomonaga, Banu Anlar, Deniz Yüksel, Yasushi Otsuka, Fumitaka Kohno, Madoka Hoshide, Shouichi Ohga, Shunji Hasegawa. Elevated quinolinic acid levels in cerebrospinal fluid in subacute sclerosing panencephalitis. Journal of neuroimmunology. 2020 02; 339(?):577088. doi: 10.1016/j.jneuroim.2019.577088. [PMID: 31733567]
  • Marco Gelpi, Per Magne Ueland, Marius Trøseid, Amanda Mocroft, Anne-Mette Lebech, Henrik Ullum, Øivind Midttun, Jens Lundgren, Susanne D Nielsen. Abdominal Adipose Tissue Is Associated With Alterations in Tryptophan-Kynurenine Metabolism and Markers of Systemic Inflammation in People With Human Immunodeficiency Virus. The Journal of infectious diseases. 2020 01; 221(3):419-427. doi: 10.1093/infdis/jiz465. [PMID: 31538186]
  • Marisol Maya-López, Leonardo C Rubio-López, Ivana V Rodríguez-Alvarez, Julián Orduño-Piceno, Yuliza Flores-Valdivia, Aline Colonnello, Edgar Rangel-López, Isaac Túnez, Oscar Prospéro-García, Abel Santamaría. A Cannabinoid Receptor-Mediated Mechanism Participates in the Neuroprotective Effects of Oleamide Against Excitotoxic Damage in Rat Brain Synaptosomes and Cortical Slices. Neurotoxicity research. 2020 Jan; 37(1):126-135. doi: 10.1007/s12640-019-00083-1. [PMID: 31286434]
  • Niklas Joisten, Felix Kummerhoff, Christina Koliamitra, Alexander Schenk, David Walzik, Luca Hardt, Andre Knoop, Mario Thevis, David Kiesl, Alan J Metcalfe, Wilhelm Bloch, Philipp Zimmer. Exercise and the Kynurenine pathway: Current state of knowledge and results from a randomized cross-over study comparing acute effects of endurance and resistance training. Exercise immunology review. 2020; 26(?):24-42. doi: . [PMID: 32139353]
  • Karen M Ryan, Kelly A Allers, Declan M McLoughlin, Andrew Harkin. Tryptophan metabolite concentrations in depressed patients before and after electroconvulsive therapy. Brain, behavior, and immunity. 2020 01; 83(?):153-162. doi: 10.1016/j.bbi.2019.10.005. [PMID: 31606477]
  • Jennifer L Kruse, Joshua Hyong-Jin Cho, Richard Olmstead, Lin Hwang, Kym Faull, Naomi I Eisenberger, Michael R Irwin. Kynurenine metabolism and inflammation-induced depressed mood: A human experimental study. Psychoneuroendocrinology. 2019 11; 109(?):104371. doi: 10.1016/j.psyneuen.2019.104371. [PMID: 31325802]
  • Rani K Powers, Rachel Culp-Hill, Michael P Ludwig, Keith P Smith, Katherine A Waugh, Ross Minter, Kathryn D Tuttle, Hannah C Lewis, Angela L Rachubinski, Ross E Granrath, María Carmona-Iragui, Rebecca B Wilkerson, Darcy E Kahn, Molishree Joshi, Alberto Lleó, Rafael Blesa, Juan Fortea, Angelo D'Alessandro, James C Costello, Kelly D Sullivan, Joaquin M Espinosa. Trisomy 21 activates the kynurenine pathway via increased dosage of interferon receptors. Nature communications. 2019 10; 10(1):4766. doi: 10.1038/s41467-019-12739-9. [PMID: 31628327]
  • Agnieszka Leszczyńska, Tomasz Misztal, Natalia Marcińczyk, Tomasz Kamiński, Karol Kramkowski, Ewa Chabielska, Dariusz Pawlak. Effect of quinolinic acid - A uremic toxin from tryptophan metabolism - On hemostatic profile in rat and mouse thrombosis models. Advances in medical sciences. 2019 Sep; 64(2):370-380. doi: 10.1016/j.advms.2019.05.003. [PMID: 31176868]
  • Samina Bano, Iffat Ara, Warda Naseem. Increase In Hepatic Quinolinic Acid Concentrations In Alcohol Withdrawn Rats. Journal of Ayub Medical College, Abbottabad : JAMC. 2019 Jul; 31(3):346-350. doi: . [PMID: 31535503]
  • Jana Vondroušová, Miloš Mikoška, Kamila Syslová, Adéla Böhmová, Hana Tejkalová, Lukáš Vacek, Petr Kodym, Daniel Krsek, Jiří Horáček. Monitoring of kynurenine pathway metabolites, neurotransmitters and their metabolites in blood plasma and brain tissue of individuals with latent toxoplasmosis. Journal of pharmaceutical and biomedical analysis. 2019 Jun; 170(?):139-152. doi: 10.1016/j.jpba.2019.03.039. [PMID: 30925271]
  • Mohaddeseh Sadat Alavi, Sahar Fanoudi, Ameneh Veisi Fard, Mohammad Soukhtanloo, Mahmoud Hosseini, Hanif Barzegar, Hamid R Sadeghnia. Safranal Attenuates Excitotoxin-Induced Oxidative OLN-93 Cells Injury. Drug research. 2019 Jun; 69(6):323-329. doi: 10.1055/a-0790-8200. [PMID: 30463091]
  • Martina Curto, Luana Lionetto, Francesco Fazio, Valentina Corigliano, Anna Comparelli, Stefano Ferracuti, Maurizio Simmaco, Ferdinando Nicoletti, Ross J Baldessarini. Serum xanthurenic acid levels: Reduced in subjects at ultra high risk for psychosis. Schizophrenia research. 2019 06; 208(?):465-466. doi: 10.1016/j.schres.2019.02.020. [PMID: 30837204]
  • Feiby L Nassan, Joshua A Gunn, Melissa M Hill, Brent A Coull, Russ Hauser. High phthalate exposure increased urinary concentrations of quinolinic acid, implicated in the pathogenesis of neurological disorders: Is this a potential missing link?. Environmental research. 2019 05; 172(?):430-436. doi: 10.1016/j.envres.2019.02.034. [PMID: 30826665]
  • Yanling Zhou, Wei Zheng, Weijian Liu, Chengyu Wang, Yanni Zhan, Hanqiu Li, Lijian Chen, Yuping Ning. Cross-sectional relationship between kynurenine pathway metabolites and cognitive function in major depressive disorder. Psychoneuroendocrinology. 2019 03; 101(?):72-79. doi: 10.1016/j.psyneuen.2018.11.001. [PMID: 30419374]
  • Gabriela Aguilera-Portillo, Edgar Rangel-López, Juana Villeda-Hernández, Anahí Chavarría, Pilar Castellanos, Zubeyir Elmazoglu, Çimen Karasu, Isaac Túnez, Gibrán Pedraza, Mina Königsberg, Abel Santamaría. The Pharmacological Inhibition of Fatty Acid Amide Hydrolase Prevents Excitotoxic Damage in the Rat Striatum: Possible Involvement of CB1 Receptors Regulation. Molecular neurobiology. 2019 Feb; 56(2):844-856. doi: 10.1007/s12035-018-1129-2. [PMID: 29802570]
  • C Gerónimo-Olvera, L Tristán-López, J C Martínez-Lazcano, L García-Lara, A Sánchez-Mendoza, A Morales-Martínez, M A Hernández-Melesio, L Arregui, C Ríos, F Pérez-Severiano. Striatal Protection in nNOS Knock-Out Mice After Quinolinic Acid-Induced Oxidative Damage. Neurochemical research. 2019 Feb; 44(2):421-427. doi: 10.1007/s11064-018-2688-3. [PMID: 30523577]
  • Livia De Picker, Erik Fransen, Violette Coppens, Maarten Timmers, Peter de Boer, Herbert Oberacher, Dietmar Fuchs, Robert Verkerk, Bernard Sabbe, Manuel Morrens. Immune and Neuroendocrine Trait and State Markers in Psychotic Illness: Decreased Kynurenines Marking Psychotic Exacerbations. Frontiers in immunology. 2019; 10(?):2971. doi: 10.3389/fimmu.2019.02971. [PMID: 32010121]
  • David Martín-Hernández, Hiram Tendilla-Beltrán, José L M Madrigal, Borja García-Bueno, Juan C Leza, Javier R Caso. Chronic Mild Stress Alters Kynurenine Pathways Changing the Glutamate Neurotransmission in Frontal Cortex of Rats. Molecular neurobiology. 2019 Jan; 56(1):490-501. doi: 10.1007/s12035-018-1096-7. [PMID: 29725904]
  • Yanrong Zhang, Chengde Liao, Haibo Qu, Siqin Huang, Hong Jiang, Haiyan Zhou, Emily Abrams, Frezghi G Habte, Li Yuan, Edward H Bertram, Kevin S Lee, Kim Butts Pauly, Paul S Buckmaster, Max Wintermark. Testing Different Combinations of Acoustic Pressure and Doses of Quinolinic Acid for Induction of Focal Neuron Loss in Mice Using Transcranial Low-Intensity Focused Ultrasound. Ultrasound in medicine & biology. 2019 01; 45(1):129-136. doi: 10.1016/j.ultrasmedbio.2018.08.023. [PMID: 30309748]
  • Juanjuan Chen, Qi Wang, Anqi Wang, Zhanglin Lin. Structural and Functional Characterization of the Gut Microbiota in Elderly Women With Migraine. Frontiers in cellular and infection microbiology. 2019; 9(?):470. doi: 10.3389/fcimb.2019.00470. [PMID: 32083024]
  • K Parasram. Phytochemical treatments target kynurenine pathway induced oxidative stress. Redox report : communications in free radical research. 2018 Dec; 23(1):25-28. doi: 10.1080/13510002.2017.1343223. [PMID: 28651456]
  • Fernanda Silva Ferreira, Helena Biasibetti-Brendler, Paula Pierozan, Felipe Schmitz, Carolina Gessinger Bertó, Caroline Acauan Prezzi, Vanusa Manfredini, Angela T S Wyse. Kynurenic Acid Restores Nrf2 Levels and Prevents Quinolinic Acid-Induced Toxicity in Rat Striatal Slices. Molecular neurobiology. 2018 Nov; 55(11):8538-8549. doi: 10.1007/s12035-018-1003-2. [PMID: 29564809]
  • Thangarajan Sumathi, Aishwariya Vedagiri, Surekha Ramachandran, Bhagyalakshmi Purushothaman. Quinolinic Acid-Induced Huntington Disease-Like Symptoms Mitigated by Potent Free Radical Scavenger Edaravone-a Pilot Study on Neurobehavioral, Biochemical, and Histological Approach in Male Wistar Rats. Journal of molecular neuroscience : MN. 2018 Nov; 66(3):322-341. doi: 10.1007/s12031-018-1168-1. [PMID: 30284227]
  • Aline Colonnello, Ilan Kotlar, María Eduarda de Lima, Alma Ortíz-Plata, Rodolfo García-Contreras, Félix Alexandre Antunes Soares, Michael Aschner, Abel Santamaría. Comparing the Effects of Ferulic Acid and Sugarcane Aqueous Extract in In Vitro and In Vivo Neurotoxic Models. Neurotoxicity research. 2018 Oct; 34(3):640-648. doi: 10.1007/s12640-018-9926-y. [PMID: 29949107]
  • Veronika Boczonadi, Martin S King, Anthony C Smith, Monika Olahova, Boglarka Bansagi, Andreas Roos, Filmon Eyassu, Christoph Borchers, Venkateswaran Ramesh, Hanns Lochmüller, Tuomo Polvikoski, Roger G Whittaker, Angela Pyle, Helen Griffin, Robert W Taylor, Patrick F Chinnery, Alan J Robinson, Edmund R S Kunji, Rita Horvath. Mitochondrial oxodicarboxylate carrier deficiency is associated with mitochondrial DNA depletion and spinal muscular atrophy-like disease. Genetics in medicine : official journal of the American College of Medical Genetics. 2018 10; 20(10):1224-1235. doi: 10.1038/gim.2017.251. [PMID: 29517768]
  • Abdulla A-B Badawy. Hypothesis kynurenic and quinolinic acids: The main players of the kynurenine pathway and opponents in inflammatory disease. Medical hypotheses. 2018 Sep; 118(?):129-138. doi: 10.1016/j.mehy.2018.06.021. [PMID: 30037600]
  • Maya S, Prakash T, Divakar Goli. Effect of wedelolactone and gallic acid on quinolinic acid-induced neurotoxicity and impaired motor function: significance to sporadic amyotrophic lateral sclerosis. Neurotoxicology. 2018 09; 68(?):1-12. doi: 10.1016/j.neuro.2018.06.015. [PMID: 29981346]
  • Kelly Doolin, Kelly A Allers, Sina Pleiner, Andre Liesener, Chloe Farrell, Leonardo Tozzi, Erik O'Hanlon, Darren Roddy, Thomas Frodl, Andrew Harkin, Veronica O'Keane. Altered tryptophan catabolite concentrations in major depressive disorder and associated changes in hippocampal subfield volumes. Psychoneuroendocrinology. 2018 09; 95(?):8-17. doi: 10.1016/j.psyneuen.2018.05.019. [PMID: 29787958]
  • Ali Poyan Mehr, Mei T Tran, Kenneth M Ralto, David E Leaf, Vaughan Washco, Joseph Messmer, Adam Lerner, Ajay Kher, Steven H Kim, Charbel C Khoury, Shoshana J Herzig, Mary E Trovato, Noemie Simon-Tillaux, Matthew R Lynch, Ravi I Thadhani, Clary B Clish, Kamal R Khabbaz, Eugene P Rhee, Sushrut S Waikar, Anders H Berg, Samir M Parikh. De novo NAD+ biosynthetic impairment in acute kidney injury in humans. Nature medicine. 2018 09; 24(9):1351-1359. doi: 10.1038/s41591-018-0138-z. [PMID: 30127395]
  • Saiying Wang, Chengxuan Quan, Yingjie Tan, Shaohua Wen, Jitao Zhang, Kaiming Duan. [Correlation between kynurenine metabolites and postpartum depression]. Zhong nan da xue xue bao. Yi xue ban = Journal of Central South University. Medical sciences. 2018 Jul; 43(7):725-731. doi: 10.11817/j.issn.1672-7347.2018.07.005. [PMID: 30124207]
  • Paula Pierozan, Helena Biasibetti-Brendler, Felipe Schmitz, Fernanda Ferreira, Carlos Alexandre Netto, Angela T S Wyse. Synergistic Toxicity of the Neurometabolites Quinolinic Acid and Homocysteine in Cortical Neurons and Astrocytes: Implications in Alzheimer's Disease. Neurotoxicity research. 2018 07; 34(1):147-163. doi: 10.1007/s12640-017-9834-6. [PMID: 29124681]
  • Mahip K Verma, Rajan Goel, Krishnadas Nandakumar, Kumar V S Nemmani. Bilateral quinolinic acid-induced lipid peroxidation, decreased striatal monoamine levels and neurobehavioral deficits are ameliorated by GIP receptor agonist D-Ala2GIP in rat model of Huntington's disease. European journal of pharmacology. 2018 Jun; 828(?):31-41. doi: 10.1016/j.ejphar.2018.03.034. [PMID: 29577894]
  • Kathrin Arnhard, Florian Pitterl, Barbara Sperner-Unterweger, Dietmar Fuchs, Therese Koal, Herbert Oberacher. A validated liquid chromatography-high resolution-tandem mass spectrometry method for the simultaneous quantitation of tryptophan, kynurenine, kynurenic acid, and quinolinic acid in human plasma. Electrophoresis. 2018 05; 39(9-10):1171-1180. doi: 10.1002/elps.201700400. [PMID: 29327354]
  • Jiajia Wang, Xiaofang Li, Shugui He, Lijun Hu, Jiewen Guo, Xiangning Huang, Jinqing Hu, Yaoqun Qi, Bin Chen, Dewei Shang, Yuguan Wen. Regulation of the kynurenine metabolism pathway by Xiaoyao San and the underlying effect in the hippocampus of the depressed rat. Journal of ethnopharmacology. 2018 Mar; 214(?):13-21. doi: 10.1016/j.jep.2017.11.037. [PMID: 29217494]
  • Ranjana Singh, Sunayana Kashayap, Vimal Singh, Arvind M Kayastha, Hirdyesh Mishra, Preeti Suman Saxena, Anchal Srivastava, Ranjan K Singh. QPRTase modified N-doped carbon quantum dots: A fluorescent bioprobe for selective detection of neurotoxin quinolinic acid in human serum. Biosensors & bioelectronics. 2018 Mar; 101(?):103-109. doi: 10.1016/j.bios.2017.10.017. [PMID: 29054021]
  • Shozo Tomonaga, Hirofumi Okuyama, Tetsuya Tachibana, Ryosuke Makino. Effects of high ambient temperature on plasma metabolomic profiles in chicks. Animal science journal = Nihon chikusan Gakkaiho. 2018 Feb; 89(2):448-455. doi: 10.1111/asj.12951. [PMID: 29154397]
  • Angela Fadda, Antonio Barberis, Daniele Sanna. Influence of pH, buffers and role of quinolinic acid, a novel iron chelating agent, in the determination of hydroxyl radical scavenging activity of plant extracts by Electron Paramagnetic Resonance (EPR). Food chemistry. 2018 Feb; 240(?):174-182. doi: 10.1016/j.foodchem.2017.07.076. [PMID: 28946259]
  • Chitra Loganathan, Palvannan Thayumanavan. Asiatic acid prevents the quinolinic acid-induced oxidative stress and cognitive impairment. Metabolic brain disease. 2018 02; 33(1):151-159. doi: 10.1007/s11011-017-0143-9. [PMID: 29086235]
  • Katsumi Shibata. Organ Co-Relationship in Tryptophan Metabolism and Factors That Govern the Biosynthesis of Nicotinamide from Tryptophan. Journal of nutritional science and vitaminology. 2018; 64(2):90-98. doi: 10.3177/jnsv.64.90. [PMID: 29710037]
  • Dénes Zádori, Gábor Veres, Levente Szalárdy, Péter Klivényi, László Vécsei. Alzheimer's Disease: Recent Concepts on the Relation of Mitochondrial Disturbances, Excitotoxicity, Neuroinflammation, and Kynurenines. Journal of Alzheimer's disease : JAD. 2018; 62(2):523-547. doi: 10.3233/jad-170929. [PMID: 29480191]
  • L A Ramos-Chávez, G Roldán-Roldán, B García-Juárez, D González-Esquivel, G Pérez de la Cruz, B Pineda, D Ramírez-Ortega, I García Muñoz, B Jiménez Herrera, C Ríos, S Gómez-Manzo, J Marcial-Quino, L Sánchez Chapul, P Carrillo Mora, V Pérez de la Cruz. Low Serum Tryptophan Levels as an Indicator of Global Cognitive Performance in Nondemented Women over 50 Years of Age. Oxidative medicine and cellular longevity. 2018; 2018(?):8604718. doi: 10.1155/2018/8604718. [PMID: 30584466]
  • Heidi Ormstad, Vesna Bryn, Robert Verkerk, Ola H Skjeldal, Bente Halvorsen, Ola Didrik Saugstad, Jorn Isaksen, Michael Maes. Serum Tryptophan, Tryptophan Catabolites and Brain-derived Neurotrophic Factor in Subgroups of Youngsters with Autism Spectrum Disorders. CNS & neurological disorders drug targets. 2018; 17(8):626-639. doi: 10.2174/1871527317666180720163221. [PMID: 30033880]
  • Susanna Nikolaus, Berenice Schulte, Natalie Al-Massad, Florian Thieme, Dominik M Schulte, Johannes Bethge, Ateequr Rehman, Florian Tran, Konrad Aden, Robert Häsler, Natalie Moll, Gregor Schütze, Markus J Schwarz, Georg H Waetzig, Philip Rosenstiel, Michael Krawczak, Silke Szymczak, Stefan Schreiber. Increased Tryptophan Metabolism Is Associated With Activity of Inflammatory Bowel Diseases. Gastroenterology. 2017 12; 153(6):1504-1516.e2. doi: 10.1053/j.gastro.2017.08.028. [PMID: 28827067]
  • Adriana Morales-Martínez, Alicia Sánchez-Mendoza, Juan Carlos Martínez-Lazcano, Jorge Baruch Pineda-Farías, Sergio Montes, Mohammed El-Hafidi, Pablo Eliasib Martínez-Gopar, Luis Tristán-López, Iván Pérez-Neri, Absalom Zamorano-Carrillo, Nelly Castro, Camilo Ríos, Francisca Pérez-Severiano. Essential fatty acid-rich diets protect against striatal oxidative damage induced by quinolinic acid in rats. Nutritional neuroscience. 2017 Sep; 20(7):388-395. doi: 10.1080/1028415x.2016.1147683. [PMID: 26928375]
  • Amanda Eskelund, Yan Li, David P Budac, Heidi K Müller, Maria Gulinello, Connie Sanchez, Gregers Wegener. Drugs with antidepressant properties affect tryptophan metabolites differently in rodent models with depression-like behavior. Journal of neurochemistry. 2017 07; 142(1):118-131. doi: 10.1111/jnc.14043. [PMID: 28407315]
  • B E Wurfel, W C Drevets, S A Bliss, J R McMillin, H Suzuki, B N Ford, H M Morris, T K Teague, R Dantzer, J B Savitz. Serum kynurenic acid is reduced in affective psychosis. Translational psychiatry. 2017 05; 7(5):e1115. doi: 10.1038/tp.2017.88. [PMID: 28463241]
  • Hamid R Sadeghnia, Roya Jamshidi, Amir R Afshari, Hamid Mollazadeh, Fatemeh Forouzanfar, Hasan Rakhshandeh. Terminalia chebula attenuates quinolinate-induced oxidative PC12 and OLN-93 cell death. Multiple sclerosis and related disorders. 2017 May; 14(?):60-67. doi: 10.1016/j.msard.2017.03.012. [PMID: 28619434]
  • Karthyayani Rajamani, Jen-Wei Liu, Cheng-Han Wu, I-Tsang Chiang, Deng-Huwei You, Si-Yin Lin, Dean-Kuo Hsieh, Shinn-Zong Lin, Horng-Jyh Harn, Tzyy-Wen Chiou. n-Butylidenephthalide exhibits protection against neurotoxicity through regulation of tryptophan 2, 3 dioxygenase in spinocerebellar ataxia type 3. Neuropharmacology. 2017 05; 117(?):434-446. doi: 10.1016/j.neuropharm.2017.02.014. [PMID: 28223212]
  • Ranjana Singh, Sunayana Kashyap, Suveen Kumar, Shiju Abraham, Tejendra K Gupta, Arvind M Kayastha, Bansi D Malhotra, Preeti Suman Saxena, Anchal Srivastava, Ranjan K Singh. Excellent storage stability and sensitive detection of neurotoxin quinolinic acid. Biosensors & bioelectronics. 2017 Apr; 90(?):224-229. doi: 10.1016/j.bios.2016.11.053. [PMID: 27907873]
  • Jaskamal Singh Gill, Sumit Jamwal, Puneet Kumar, Rahul Deshmukh. Sertraline and venlafaxine improves motor performance and neurobehavioral deficit in quinolinic acid induced Huntington's like symptoms in rats: Possible neurotransmitters modulation. Pharmacological reports : PR. 2017 Apr; 69(2):306-313. doi: 10.1016/j.pharep.2016.11.008. [PMID: 28178592]
  • Timothy B Meier, Melissa A Lancaster, Andrew R Mayer, T Kent Teague, Jonathan Savitz. Abnormalities in Functional Connectivity in Collegiate Football Athletes with and without a Concussion History: Implications and Role of Neuroactive Kynurenine Pathway Metabolites. Journal of neurotrauma. 2017 02; 34(4):824-837. doi: 10.1089/neu.2016.4599. [PMID: 27618518]
  • Nan Li, Zilin Yu, Truc Thuy Pham, Philip J Blower, Ran Yan. A generic 89Zr labeling method to quantify the in vivo pharmacokinetics of liposomal nanoparticles with positron emission tomography. International journal of nanomedicine. 2017; 12(?):3281-3294. doi: 10.2147/ijn.s134379. [PMID: 28458546]
  • Vesna Bryn, Robert Verkerk, Ola H Skjeldal, Ola Didrik Saugstad, Heidi Ormstad. Kynurenine Pathway in Autism Spectrum Disorders in Children. Neuropsychobiology. 2017; 76(2):82-88. doi: 10.1159/000488157. [PMID: 29694960]
  • Lasse Melvaer Giil, Øivind Midttun, Helga Refsum, Arve Ulvik, Rajiv Advani, A David Smith, Per Magne Ueland. Kynurenine Pathway Metabolites in Alzheimer's Disease. Journal of Alzheimer's disease : JAD. 2017; 60(2):495-504. doi: 10.3233/jad-170485. [PMID: 28869479]
  • Bartlomiej Kalaska, Michal Ciborowski, Tomasz Domaniewski, Urszula Czyzewska, Joanna Godzien, Wojciech Miltyk, Adam Kretowski, Dariusz Pawlak. Serum metabolic fingerprinting after exposure of rats to quinolinic acid. Journal of pharmaceutical and biomedical analysis. 2016 Nov; 131(?):175-182. doi: 10.1016/j.jpba.2016.08.024. [PMID: 27596829]
  • Bianca Seminotti, Alexandre Umpierrez Amaral, Rafael Teixeira Ribeiro, Marília Danyelle Nunes Rodrigues, Ana Laura Colín-González, Guilhian Leipnitz, Abel Santamaría, Moacir Wajner. Oxidative Stress, Disrupted Energy Metabolism, and Altered Signaling Pathways in Glutaryl-CoA Dehydrogenase Knockout Mice: Potential Implications of Quinolinic Acid Toxicity in the Neuropathology of Glutaric Acidemia Type I. Molecular neurobiology. 2016 11; 53(9):6459-6475. doi: 10.1007/s12035-015-9548-9. [PMID: 26607633]
  • Emil F Coccaro, Royce Lee, Jennifer R Fanning, Dietmar Fuchs, Michel Goiny, Sophie Erhardt, Kyle Christensen, Lena Brundin, Mary Coussons-Read. Tryptophan, kynurenine, and kynurenine metabolites: Relationship to lifetime aggression and inflammatory markers in human subjects. Psychoneuroendocrinology. 2016 09; 71(?):189-96. doi: 10.1016/j.psyneuen.2016.04.024. [PMID: 27318828]
  • René Fuertig, Angelo Ceci, Sandrine M Camus, Erwan Bezard, Andreas H Luippold, Bastian Hengerer. LC-MS/MS-based quantification of kynurenine metabolites, tryptophan, monoamines and neopterin in plasma, cerebrospinal fluid and brain. Bioanalysis. 2016 Sep; 8(18):1903-17. doi: 10.4155/bio-2016-0111. [PMID: 27524289]
  • M K Larsson, A Faka, M Bhat, S Imbeault, M Goiny, F Orhan, A Oliveros, S Ståhl, X C Liu, D S Choi, K Sandberg, G Engberg, L Schwieler, S Erhardt. Repeated LPS Injection Induces Distinct Changes in the Kynurenine Pathway in Mice. Neurochemical research. 2016 Sep; 41(9):2243-55. doi: 10.1007/s11064-016-1939-4. [PMID: 27165635]
  • Amanda Eskelund, David P Budac, Connie Sanchez, Betina Elfving, Gregers Wegener. Female Flinders Sensitive Line rats show estrous cycle-independent depression-like behavior and altered tryptophan metabolism. Neuroscience. 2016 08; 329(?):337-48. doi: 10.1016/j.neuroscience.2016.05.024. [PMID: 27210075]
  • L Brundin, C M Sellgren, C K Lim, J Grit, E Pålsson, M Landén, M Samuelsson, K Lundgren, P Brundin, D Fuchs, T T Postolache, L Traskman-Bendz, G J Guillemin, S Erhardt. An enzyme in the kynurenine pathway that governs vulnerability to suicidal behavior by regulating excitotoxicity and neuroinflammation. Translational psychiatry. 2016 08; 6(8):e865. doi: 10.1038/tp.2016.133. [PMID: 27483383]
  • Timothy B Meier, Jonathan Savitz, Rashmi Singh, T Kent Teague, Patrick S F Bellgowan. Smaller Dentate Gyrus and CA2 and CA3 Volumes Are Associated with Kynurenine Metabolites in Collegiate Football Athletes. Journal of neurotrauma. 2016 07; 33(14):1349-57. doi: 10.1089/neu.2015.4118. [PMID: 26493952]