Nicotinamide riboside (BioDeep_00000005108)
Secondary id: BioDeep_00001868436, BioDeep_00001892813
human metabolite PANOMIX_OTCML-2023 Endogenous Chemicals and Drugs natural product
代谢物信息卡片
化学式: C11H15N2O5+ (255.0981)
中文名称: 烟酰胺核糖
谱图信息:
最多检出来源 Homo sapiens(plant) 18.85%
分子结构信息
SMILES: C1=CC(=C[N+](=C1)C2C(C(C(O2)CO)O)O)C(=O)N
InChI: InChI=1S/C11H14N2O5/c12-10(17)6-2-1-3-13(4-6)11-9(16)8(15)7(5-14)18-11/h1-4,7-9,11,14-16H,5H2,(H-,12,17)/p+1/t7-,8-,9-,11-/m1/s1
描述信息
Nicotinamide riboside is involved in nicotinate and nicotinamide metabolism. Nicotinamide riboside was originally identified as a nutrient in milk. It is a useful compound for the elevation of NAD+ levels in humans. Nicotinamide riboside has recently been discovered to be an NAD(+) precursor that is converted into nicotinamide mononucleotide by specific nicotinamide riboside kinases, Nrk1 and Nrk2. It has been shown that exogenous nicotinamide riboside promotes Sir2-dependent repression of recombination, improves gene silencing, and extends the lifespan of certain animal models without calorie restriction (PMID: 17482543). Supplementation in mammalian cells and mouse tissues increases NAD(+) levels and activates SIRT1 and SIRT3, culminating in enhanced oxidative metabolism and protection against high-fat diet-induced metabolic abnormalities (PMID: 22682224). Recent data suggest that nicotinamide riboside may be the only vitamin precursor that supports neuronal NAD+ synthesis (PMID: 18429699). Nicotinamide riboside kinase has an essential role in the phosphorylation of nicotinamide riboside and the cancer drug tiazofurin (PMID: 15137942).
Nicotinamide riboside is involved in nicotinate and nicotinamide metabolism. Nicotinamide riboside has been identified as a nutrient in milk. It is a useful compound for elevation of NAD+ levels in humans. Recent data suggest that nicotinamide riboside may be the only vitamin precursor that supports neuronal NAD+ synthesis (PMID: 18429699). Nicotinamide riboside kinase has an essential role for phosphorylation of nicotinamide riboside and the cancer drug tiazofurin (PMID 15137942). [HMDB]
COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials, COVID-19 Disease Map
C26170 - Protective Agent > C275 - Antioxidant
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
同义名列表
23 个代谢物同义名
3-carbamoyl-1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1lambda5-pyridin-1-ylium; 3-(Aminocarbonyl)-1-beta-delta-ribofuranosyl-pyridinium; 3-(Aminocarbonyl)-1-beta-D-ribofuranosyl-pyridinium; 1-beta-delta-Ribosyl-3-pyridinecarboxamide; 1-beta-D-Ribosyl-3-pyridinecarboxamide; 1-(beta-D-Ribofuranosyl)nicotinamide; 1-b-D-Ribosyl-3-pyridinecarboxamide; 1-(b-D-Ribofuranosyl)nicotinamide; 1-(Β-D-ribofuranosyl)nicotinamide; beta-Nicotinamide D-riboside; Nicotinamide ribonucleoside; Nicotinamide-beta-riboside; b-Nicotinamide D-riboside; Β-nicotinamide D-riboside; Nicotinamide-β-riboside; Nicotinamide-b-riboside; N-Ribosylnicotinamide; Nicotinamide riboside; Ribosylnicotinamide; Nicotinamide ribose; SRT 647; SRT-647; Nicotinamide-beta-riboside
数据库引用编号
18 个数据库交叉引用编号
- ChEBI: CHEBI:15927
- KEGG: C03150
- PubChem: 439924
- HMDB: HMDB0000855
- DrugBank: DB14933
- ChEMBL: CHEMBL438497
- Wikipedia: Nicotinamide riboside
- MetaCyc: NICOTINAMIDE_RIBOSE
- foodb: FDB022281
- chemspider: 388956
- CAS: 1341-23-7
- PubChem: 6038
- PDB-CCD: NNR
- 3DMET: B01635
- NIKKAJI: J490.568G
- RefMet: Nicotinamide riboside
- KNApSAcK: 15927
- LOTUS: LTS0260519
分类词条
相关代谢途径
Reactome(10)
PlantCyc(0)
代谢反应
157 个相关的代谢反应过程信息。
Reactome(117)
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Nicotinate metabolism:
NAM + SAM ⟶ MNA + SAH
- Metabolism of vitamins and cofactors:
6x(PCCA:PCCB) + ATP + Btn ⟶ 6x(Btn-PCCA:PCCB) + AMP + PPi
- Metabolism of water-soluble vitamins and cofactors:
6x(PCCA:PCCB) + ATP + Btn ⟶ 6x(Btn-PCCA:PCCB) + AMP + PPi
- Nicotinate metabolism:
NAM + SAM ⟶ MNA + SAH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Nicotinate metabolism:
NAM + SAM ⟶ MNA + SAH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Nicotinate metabolism:
(ADP-D-ribosyl)(n)-acceptor + NAD ⟶ (ADP-D-ribosyl)(n+1)-acceptor + NAM
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Nicotinate metabolism:
H+ + Oxygen + dh-beta-NAD ⟶ H2O2 + NAD
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Nicotinate metabolism:
NAM + SAM ⟶ MNA + SAH
- Disease:
ADORA2B + Ade-Rib ⟶ ADORA2B:Ade-Rib
- Infectious disease:
ADORA2B + Ade-Rib ⟶ ADORA2B:Ade-Rib
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Nicotinate metabolism:
NAM + SAM ⟶ MNA + SAH
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Nicotinate metabolism:
NAM + SAM ⟶ MNA + SAH
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Nicotinate metabolism:
NAM + SAM ⟶ MNA + SAH
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Nicotinate metabolism:
ATP + H2O + L-Gln + NAAD ⟶ AMP + L-Glu + NAD + PPi
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Nicotinate metabolism:
NAM + SAM ⟶ MNA + SAH
- Disease:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Infectious disease:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Leishmania infection:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Cell recruitment (pro-inflammatory response):
H2O + NMN ⟶ NRNAM + Pi
- Purinergic signaling in leishmaniasis infection:
H2O + NMN ⟶ NRNAM + Pi
- Disease:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Infectious disease:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Leishmania infection:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Cell recruitment (pro-inflammatory response):
H2O + NMN ⟶ NRNAM + Pi
- Purinergic signaling in leishmaniasis infection:
H2O + NMN ⟶ NRNAM + Pi
- Disease:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Infectious disease:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Leishmania infection:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Cell recruitment (pro-inflammatory response):
H2O + NMN ⟶ NRNAM + Pi
- Purinergic signaling in leishmaniasis infection:
H2O + NMN ⟶ NRNAM + Pi
- Disease:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Infectious disease:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Leishmania infection:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Cell recruitment (pro-inflammatory response):
H2O + NMN ⟶ NRNAM + Pi
- Purinergic signaling in leishmaniasis infection:
H2O + NMN ⟶ NRNAM + Pi
- Disease:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Infectious disease:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Leishmania infection:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Cell recruitment (pro-inflammatory response):
H2O + NMN ⟶ NRNAM + Pi
- Purinergic signaling in leishmaniasis infection:
H2O + NMN ⟶ NRNAM + Pi
- Disease:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Infectious disease:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Leishmania infection:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Cell recruitment (pro-inflammatory response):
H2O + NMN ⟶ NRNAM + Pi
- Purinergic signaling in leishmaniasis infection:
H2O + NMN ⟶ NRNAM + Pi
- Disease:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Infectious disease:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Leishmania infection:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Cell recruitment (pro-inflammatory response):
H2O + NMN ⟶ NRNAM + Pi
- Purinergic signaling in leishmaniasis infection:
H2O + NMN ⟶ NRNAM + Pi
- Disease:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Infectious disease:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Leishmania infection:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Cell recruitment (pro-inflammatory response):
H2O + NMN ⟶ NRNAM + Pi
- Purinergic signaling in leishmaniasis infection:
H2O + NMN ⟶ NRNAM + Pi
- Disease:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Infectious disease:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Leishmania infection:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Cell recruitment (pro-inflammatory response):
H2O + NMN ⟶ NRNAM + Pi
- Purinergic signaling in leishmaniasis infection:
H2O + NMN ⟶ NRNAM + Pi
- Leishmania infection:
ADORA2B + Ade-Rib ⟶ ADORA2B:Ade-Rib
- Cell recruitment (pro-inflammatory response):
H2O + NMN ⟶ NRNAM + Pi
- Purinergic signaling in leishmaniasis infection:
H2O + NMN ⟶ NRNAM + Pi
- Parasitic Infection Pathways:
Adenylate cyclase (Mg2+ cofactor) + Gs:GTP ⟶ Gs-activated adenylate cyclase
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Nicotinate metabolism:
H+ + PRPP + QUIN ⟶ NAMN + PPi + carbon dioxide
BioCyc(16)
- pyridine nucleotide cycling (plants):
1-(β-D ribofuranosyl)nicotinamide + H2O ⟶ D-ribofuranose + H+ + nicotinamide
- nicotinamide riboside salvage pathway II:
1-(β-D ribofuranosyl)nicotinamide + H2O ⟶ D-ribofuranose + H+ + nicotinamide
- pyridine nucleotide cycling (plants):
1-(β-D ribofuranosyl)nicotinamide + H2O ⟶ D-ribofuranose + H+ + nicotinamide
- NAD salvage pathway IV (from nicotinamide riboside):
1-(β-D ribofuranosyl)nicotinamide + ATP ⟶ ADP + H+ + NMN
- superpathway of NAD biosynthesis in eukaryotes:
N-Formyl-L-kynurenine + H2O ⟶ H+ + L-kynurenine + formate
- NAD salvage pathway III (to nicotinamide riboside):
H2O + NMN ⟶ 1-(β-D ribofuranosyl)nicotinamide + phosphate
- NAD salvage pathway IV (from nicotinamide riboside):
1-(β-D ribofuranosyl)nicotinamide + ATP ⟶ ADP + H+ + NMN
- nicotinamide riboside salvage pathway I:
1-(β-D ribofuranosyl)nicotinamide + ATP ⟶ ADP + H+ + NMN
- NAD salvage pathway III (to nicotinamide riboside):
H2O + NMN ⟶ 1-(β-D ribofuranosyl)nicotinamide + phosphate
- NAD salvage pathway III (to nicotinamide riboside):
H2O + NMN ⟶ 1-(β-D ribofuranosyl)nicotinamide + phosphate
- NAD salvage pathway IV (from nicotinamide riboside):
1-(β-D ribofuranosyl)nicotinamide + ATP ⟶ ADP + H+ + NMN
- NAD salvage pathway III (to nicotinamide riboside):
H2O + NMN ⟶ 1-(β-D ribofuranosyl)nicotinamide + phosphate
- NAD salvage pathway III:
1-(β-D ribofuranosyl)nicotinamide + ATP ⟶ ADP + H+ + NMN
- NAD salvage pathway II:
1-(β-D ribofuranosyl)nicotinamide + ATP ⟶ ADP + H+ + NMN
- NAD salvage pathway III:
1-(β-D ribofuranosyl)nicotinamide + ATP ⟶ ADP + H+ + NMN
- nicotinamide riboside salvage pathway:
ATP + nicotinamide riboside ⟶ ADP + nicotinamide mononucleotide
WikiPathways(3)
- NAD metabolism, sirtuins and aging:
Nicotinamide riboside ⟶ NAD
- NAD salvage pathway II:
NADP ⟶ NAD
- NAD salvage pathway III:
Nicotinamide riboside ⟶ Nicotinamide ribotide
Plant Reactome(0)
INOH(2)
- Nicotinate and Nicotinamide metabolism ( Nicotinate and Nicotinamide metabolism ):
ATP + Deamido-NAD+ + H2O + L-Glutamine ⟶ AMP + L-Glutamic acid + NAD+ + Pyrophosphate
- N-Ribosyl-nicotinamide + Orthophosphate = Nicotinamide + D-Ribose 1-phosphate ( Nicotinate and Nicotinamide metabolism ):
N-Ribosyl-nicotinamide + Orthophosphate ⟶ D-Ribose 1-phosphate + Nicotinamide
PlantCyc(8)
- pyridine nucleotide cycling (plants):
D-ribulose 1-phosphate + H+ + nicotinate ⟶ β-D-ribosylnicotinate + phosphate
- pyridine nucleotide cycling (plants):
1-(β-D ribofuranosyl)nicotinamide + H2O ⟶ D-ribofuranose + H+ + nicotinamide
- pyridine nucleotide cycling (plants):
H2O + NMN ⟶ 1-(β-D ribofuranosyl)nicotinamide + phosphate
- pyridine nucleotide cycling (plants):
H2O + NMN ⟶ 1-(β-D ribofuranosyl)nicotinamide + phosphate
- pyridine nucleotide cycling (plants):
1-(β-D ribofuranosyl)nicotinamide + H2O ⟶ D-ribofuranose + H+ + nicotinamide
- pyridine nucleotide cycling (plants):
D-ribulose 1-phosphate + H+ + nicotinate ⟶ β-D-ribosylnicotinate + phosphate
- pyridine nucleotide cycling (plants):
H2O + NMN ⟶ 1-(β-D ribofuranosyl)nicotinamide + phosphate
- pyridine nucleotide cycling (plants):
H2O + NMN ⟶ 1-(β-D ribofuranosyl)nicotinamide + phosphate
COVID-19 Disease Map(2)
- @COVID-19 Disease
Map["name"]:
2-Methyl-3-acetoacetyl-CoA + Coenzyme A ⟶ Acetyl-CoA + Propanoyl-CoA
- @COVID-19 Disease
Map["name"]:
Adenosine + Pi ⟶ Adenine + _alpha_-D-Ribose 1-phosphate
PathBank(9)
- Nicotinate and Nicotinamide Metabolism:
NAD + Water ⟶ Adenosine monophosphate + Nicotinamide ribotide
- Nicotinate and Nicotinamide Metabolism:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Nicotinate and Nicotinamide Metabolism:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Nicotinate and Nicotinamide Metabolism:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Nicotinate and Nicotinamide Metabolism:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- NAD Metabolism:
N'-Formylkynurenine + Water ⟶ Formic acid + Hydrogen Ion + L-Kynurenine
- Nicotinate and Nicotinamide Metabolism:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- NAD Salvage:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + Hydrogen Ion + L-Glutamic acid + NAD + Pyrophosphate
- NAD Salvage:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + Hydrogen Ion + L-Glutamic acid + NAD + Pyrophosphate
PharmGKB(0)
22 个相关的物种来源信息
- 7711 - Chordata: LTS0260519
- 7227 - Drosophila melanogaster: 10.1038/S41467-019-11933-Z
- 33682 - Euglenozoa: LTS0260519
- 2759 - Eukaryota: LTS0260519
- 9604 - Hominidae: LTS0260519
- 9605 - Homo: LTS0260519
- 9606 - Homo sapiens:
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1038/NBT.2488
- 9606 - Homo sapiens: LTS0260519
- 5653 - Kinetoplastea: LTS0260519
- 40674 - Mammalia: LTS0260519
- 33208 - Metazoa: LTS0260519
- 10066 - Muridae: LTS0260519
- 10088 - Mus: LTS0260519
- 10090 - Mus musculus: LTS0260519
- 10090 - Mus musculus: NA
- 5690 - Trypanosoma: LTS0260519
- 5691 - Trypanosoma brucei: 10.1371/JOURNAL.PNTD.0001618
- 5691 - Trypanosoma brucei: LTS0260519
- 5654 - Trypanosomatidae: LTS0260519
- 29760 - Vitis vinifera: 10.1016/J.DIB.2020.106469
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Mohammad Hasan Maleki, Morvarid Siri, Amirhossein Jafarabadi, Mahsa Rajabi, Seyed Amirhossein Mazhari, Zahra Noori, Farhad Koohpeyma, Amirreza Dehghanian, Nafiseh Esmaeili, Zeinab Aryanian, Sanaz Dastghaib. Boosting wound healing in diabetic rats: The role of nicotinamide riboside and resveratrol in UPR modulation and pyroptosis inhibition.
International immunopharmacology.
2024 May; 132(?):112013. doi:
10.1016/j.intimp.2024.112013
. [PMID: 38583241] - Qiuyan Li, Xuye Jiang, Yujia Zhou, Yingying Gu, Yijie Ding, Jing Luo, Nengzhi Pang, Yan Sun, Lei Pei, Jie Pan, Mengqi Gao, Sixi Ma, Ying Xiao, De Hu, Feilong Wu, Lili Yang. Improving Mitochondrial Function in Skeletal Muscle Contributes to the Amelioration of Insulin Resistance by Nicotinamide Riboside.
International journal of molecular sciences.
2023 Jun; 24(12):. doi:
10.3390/ijms241210015
. [PMID: 37373163] - Armin Ahmadi, Gwenaelle Begue, Ana P Valencia, Jennifer E Norman, Benjamin Lidgard, Brian J Bennett, Matthew P Van Doren, David J Marcinek, Sili Fan, David K Prince, Jorge L Gamboa, Jonathan Himmelfarb, Ian H de Boer, Bryan R Kestenbaum, Baback Roshanravan. Randomized crossover clinical trial of coenzyme Q10 and nicotinamide ribosome in chronic kidney disease.
JCI insight.
2023 May; ?(?):. doi:
10.1172/jci.insight.167274
. [PMID: 37159264] - Hui Zhao, Yingjie Tian, Yuwei Zuo, Xiaoqi Zhang, Yijun Gao, Peng Wang, Lirui Sun, Huaqi Zhang, Hui Liang. Nicotinamide riboside ameliorates high-fructose-induced lipid metabolism disorder in mice via improving FGF21 resistance in the liver and white adipose tissue.
Food & function.
2022 Nov; 13(23):12400-12411. doi:
10.1039/d2fo01934e
. [PMID: 36373585] - Ryan W Dellinger, Holly E Holmes, Tina Hu-Seliger, Rodney W Butt, Stephen A Harrison, Dariush Mozaffarian, Oliver Chen, Leonard Guarente. Nicotinamide riboside and pterostilbene reduces markers of hepatic inflammation in NAFLD: A double-blind, placebo-controlled clinical trial.
Hepatology (Baltimore, Md.).
2022 Sep; ?(?):. doi:
10.1002/hep.32778
. [PMID: 36082508] - Jia Fang, Hongmin Wu, Jianning Zhang, Song Mao, Haosong Shi, Dongzhen Yu, Zhengnong Chen, Kaiming Su, Yazhi Xing, Hongjun Dong, Haibo Shi. A reduced form of nicotinamide riboside protects the cochlea against aminoglycoside-induced ototoxicity by SIRT1 activation.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2022 Jun; 150(?):113071. doi:
10.1016/j.biopha.2022.113071
. [PMID: 35658237] - Alba Serrano, Andreu Palou, M Luisa Bonet, Joan Ribot. Nicotinamide Riboside Supplementation to Suckling Male Mice Improves Lipid and Energy Metabolism in Skeletal Muscle and Liver in Adulthood.
Nutrients.
2022 May; 14(11):. doi:
10.3390/nu14112259
. [PMID: 35684059] - Xiao Zhang, Bing Tian, Qin Deng, Jian Cao, Xionghui Ding, Qingshuang Liu, Yunfei Zhang, Cuilian Ye, Chun Deng, Lin Qiu, Chunbao Guo. Nicotinamide riboside relieves the severity of experimental necrotizing enterocolitis by regulating endothelial function via eNOS deacetylation.
Free radical biology & medicine.
2022 05; 184(?):218-229. doi:
10.1016/j.freeradbiomed.2022.04.008
. [PMID: 35430341] - Linfeng Zou, Bing Liang, YuanZhen Gao, Ting Ye, MengJiao Li, Yukun Zhang, Qi Lu, Xiaokun Hu, Huanting Li, Yang Yuan, Dongming Xing. Nicotinic Acid Riboside Regulates Nrf-2/P62-Related Oxidative Stress and Autophagy to Attenuate Doxorubicin-Induced Cardiomyocyte Injury.
BioMed research international.
2022; 2022(?):6293329. doi:
10.1155/2022/6293329
. [PMID: 35242876] - Stefanie J G Veenhuis, Nienke J H van Os, Anjo J W M Janssen, Marjo H J C van Gerven, Karlien L M Coene, Udo F H Engelke, Ron A Wevers, Gerjen H Tinnevelt, Rob Ter Heine, Bart P C van de Warrenburg, Corry M R Weemaes, Nel Roeleveld, Michèl A A P Willemsen. Nicotinamide Riboside Improves Ataxia Scores and Immunoglobulin Levels in Ataxia Telangiectasia.
Movement disorders : official journal of the Movement Disorder Society.
2021 12; 36(12):2951-2957. doi:
10.1002/mds.28788
. [PMID: 34515380] - David M Cartwright, Lucy A Oakey, Rachel S Fletcher, Craig L Doig, Silke Heising, Dean P Larner, Daniela Nasteska, Caitlin E Berry, Sam R Heaselgrave, Christian Ludwig, David J Hodson, Gareth G Lavery, Antje Garten. Nicotinamide riboside has minimal impact on energy metabolism in mouse models of mild obesity.
The Journal of endocrinology.
2021 09; 251(1):111-123. doi:
10.1530/joe-21-0123
. [PMID: 34370682] - Anna Faivre, Elena Katsyuba, Thomas Verissimo, Maja Lindenmeyer, Renuga Devi Rajaram, Maarten Naesens, Carolyn Heckenmeyer, Adrienne Mottis, Eric Feraille, Pietro Cippà, Clemens Cohen, Alban Longchamp, Florent Allagnat, Joseph M Rutkowski, David Legouis, Johan Auwerx, Sophie de Seigneux. Differential role of nicotinamide adenine dinucleotide deficiency in acute and chronic kidney disease.
Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.
2021 01; 36(1):60-68. doi:
10.1093/ndt/gfaa124
. [PMID: 33099633] - Marya Morevati, Søren Egstrand, Anders Nordholm, Maria L Mace, Claus B Andersen, Rouzbeh Salmani, Klaus Olgaard, Ewa Lewin. Effect of NAD+ boosting on kidney ischemia-reperfusion injury.
PloS one.
2021; 16(6):e0252554. doi:
10.1371/journal.pone.0252554
. [PMID: 34061900] - Collin D Heer, Daniel J Sanderson, Lynden S Voth, Yousef M O Alhammad, Mark S Schmidt, Samuel A J Trammell, Stanley Perlman, Michael S Cohen, Anthony R Fehr, Charles Brenner. Coronavirus infection and PARP expression dysregulate the NAD metabolome: An actionable component of innate immunity.
The Journal of biological chemistry.
2020 12; 295(52):17986-17996. doi:
10.1074/jbc.ra120.015138
. [PMID: 33051211] - Ki-Hoon Park, Seok-Hyung Kim. Adult zebrafish as an in vivo drug testing model for ethanol induced acute hepatic injury.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2020 Dec; 132(?):110836. doi:
10.1016/j.biopha.2020.110836
. [PMID: 33035832] - Arkadiy A Bazhin, Riccardo Sinisi, Umberto De Marchi, Aurélie Hermant, Nicolas Sambiagio, Tamara Maric, Ghyslain Budin, Elena A Goun. A bioluminescent probe for longitudinal monitoring of mitochondrial membrane potential.
Nature chemical biology.
2020 12; 16(12):1385-1393. doi:
10.1038/s41589-020-0602-1
. [PMID: 32778841] - Petra Simic, Xavier Fernando Vela Parada, Samir M Parikh, Ryan Dellinger, Leonard P Guarente, Eugene P Rhee. Nicotinamide riboside with pterostilbene (NRPT) increases NAD+ in patients with acute kidney injury (AKI): a randomized, double-blind, placebo-controlled, stepwise safety study of escalating doses of NRPT in patients with AKI.
BMC nephrology.
2020 08; 21(1):342. doi:
10.1186/s12882-020-02006-1
. [PMID: 32791973] - Carlijn M E Remie, Kay H M Roumans, Michiel P B Moonen, Niels J Connell, Bas Havekes, Julian Mevenkamp, Lucas Lindeboom, Vera H W de Wit, Tineke van de Weijer, Suzanne A B M Aarts, Esther Lutgens, Bauke V Schomakers, Hyung L Elfrink, Rubén Zapata-Pérez, Riekelt H Houtkooper, Johan Auwerx, Joris Hoeks, Vera B Schrauwen-Hinderling, Esther Phielix, Patrick Schrauwen. Nicotinamide riboside supplementation alters body composition and skeletal muscle acetylcarnitine concentrations in healthy obese humans.
The American journal of clinical nutrition.
2020 08; 112(2):413-426. doi:
10.1093/ajcn/nqaa072
. [PMID: 32320006] - Utsav Joshi, James E Evans, Andrew Pearson, Nicole Saltiel, Adam Cseresznye, Teresa Darcey, Joseph Ojo, Andrew P Keegan, Sarah Oberlin, Benoit Mouzon, Daniel Paris, Nancy Klimas, Kimberly Sullivan, Michael Mullan, Fiona Crawford, Laila Abdullah. Targeting sirtuin activity with nicotinamide riboside reduces neuroinflammation in a GWI mouse model.
Neurotoxicology.
2020 07; 79(?):84-94. doi:
10.1016/j.neuro.2020.04.006
. [PMID: 32343995] - Mario Mehmel, Nina Jovanović, Urs Spitz. Nicotinamide Riboside-The Current State of Research and Therapeutic Uses.
Nutrients.
2020 May; 12(6):. doi:
10.3390/nu12061616
. [PMID: 32486488] - Cheng Zhang, Elias Bjornson, Muhammad Arif, Abdellah Tebani, Alen Lovric, Rui Benfeitas, Mehmet Ozcan, Kajetan Juszczak, Woonghee Kim, Jung Tae Kim, Gholamreza Bidkhori, Marcus Ståhlman, Per-Olof Bergh, Martin Adiels, Hasan Turkez, Marja-Riitta Taskinen, Jim Bosley, Hanns-Ulrich Marschall, Jens Nielsen, Mathias Uhlén, Jan Borén, Adil Mardinoglu. The acute effect of metabolic cofactor supplementation: a potential therapeutic strategy against non-alcoholic fatty liver disease.
Molecular systems biology.
2020 04; 16(4):e9495. doi:
10.15252/msb.209495
. [PMID: 32337855] - C F Dolopikou, I A Kourtzidis, N V Margaritelis, I S Vrabas, I Koidou, A Kyparos, A A Theodorou, V Paschalis, Michalis G Nikolaidis. Acute nicotinamide riboside supplementation improves redox homeostasis and exercise performance in old individuals: a double-blind cross-over study.
European journal of nutrition.
2020 Mar; 59(2):505-515. doi:
10.1007/s00394-019-01919-4
. [PMID: 30725213] - Judith Giroud-Gerbetant, Magali Joffraud, Maria Pilar Giner, Angelique Cercillieux, Simona Bartova, Mikhail V Makarov, Rubén Zapata-Pérez, José L Sánchez-García, Riekelt H Houtkooper, Marie E Migaud, Sofia Moco, Carles Canto. A reduced form of nicotinamide riboside defines a new path for NAD+ biosynthesis and acts as an orally bioavailable NAD+ precursor.
Molecular metabolism.
2019 12; 30(?):192-202. doi:
10.1016/j.molmet.2019.09.013
. [PMID: 31767171] - Ole L Dollerup, Samuel A J Trammell, Bolette Hartmann, Jens J Holst, Britt Christensen, Niels Møller, Matthew P Gillum, Jonas T Treebak, Niels Jessen. Effects of Nicotinamide Riboside on Endocrine Pancreatic Function and Incretin Hormones in Nondiabetic Men With Obesity.
The Journal of clinical endocrinology and metabolism.
2019 11; 104(11):5703-5714. doi:
10.1210/jc.2019-01081
. [PMID: 31390002] - Audrey Sambeat, Joanna Ratajczak, Magali Joffraud, José L Sanchez-Garcia, Maria P Giner, Armand Valsesia, Judith Giroud-Gerbetant, Miriam Valera-Alberni, Angelique Cercillieux, Marie Boutant, Sameer S Kulkarni, Sofia Moco, Carles Canto. Endogenous nicotinamide riboside metabolism protects against diet-induced liver damage.
Nature communications.
2019 09; 10(1):4291. doi:
10.1038/s41467-019-12262-x
. [PMID: 31541116] - Kanita Salic, Eveline Gart, Florine Seidel, Lars Verschuren, Martien Caspers, Wim van Duyvenvoorde, Kari E Wong, Jaap Keijer, Ivana Bobeldijk-Pastorova, Peter Y Wielinga, Robert Kleemann. Combined Treatment with L-Carnitine and Nicotinamide Riboside Improves Hepatic Metabolism and Attenuates Obesity and Liver Steatosis.
International journal of molecular sciences.
2019 Sep; 20(18):. doi:
10.3390/ijms20184359
. [PMID: 31491949] - Dietrich Conze, Charles Brenner, Claire L Kruger. Safety and Metabolism of Long-term Administration of NIAGEN (Nicotinamide Riboside Chloride) in a Randomized, Double-Blind, Placebo-controlled Clinical Trial of Healthy Overweight Adults.
Scientific reports.
2019 07; 9(1):9772. doi:
10.1038/s41598-019-46120-z
. [PMID: 31278280] - Xian Xie, Yi Gao, Min Zeng, Yi Wang, Tao-Feng Wei, Yun-Bi Lu, Wei-Ping Zhang. Nicotinamide ribose ameliorates cognitive impairment of aged and Alzheimer's disease model mice.
Metabolic brain disease.
2019 02; 34(1):353-366. doi:
10.1007/s11011-018-0346-8
. [PMID: 30523581] - Qinghai Zhang, Xun Liu, Na Li, Jihong Zhang, Jianmin Yang, Peili Bu. Sirtuin 3 deficiency aggravates contrast-induced acute kidney injury.
Journal of translational medicine.
2018 11; 16(1):313. doi:
10.1186/s12967-018-1690-5
. [PMID: 30445987] - Alba Serrano, Madhu Asnani-Kishnani, Ana María Rodríguez, Andreu Palou, Joan Ribot, María Luisa Bonet. Programming of the Beige Phenotype in White Adipose Tissue of Adult Mice by Mild Resveratrol and Nicotinamide Riboside Supplementations in Early Postnatal Life.
Molecular nutrition & food research.
2018 11; 62(21):e1800463. doi:
10.1002/mnfr.201800463
. [PMID: 30095217] - Barbara M Crisol, Camilla B Veiga, Luciene Lenhare, Renata R Braga, Vagner R R Silva, Adelino S R da Silva, Dennys E Cintra, Leandro P Moura, José R Pauli, Eduardo R Ropelle. Nicotinamide riboside induces a thermogenic response in lean mice.
Life sciences.
2018 Oct; 211(?):1-7. doi:
10.1016/j.lfs.2018.09.015
. [PMID: 30195617] - I A Kourtzidis, C F Dolopikou, A N Tsiftsis, N V Margaritelis, A A Theodorou, I A Zervos, M P Tsantarliotou, A S Veskoukis, I S Vrabas, V Paschalis, A Kyparos, M G Nikolaidis. Nicotinamide riboside supplementation dysregulates redox and energy metabolism in rats: Implications for exercise performance.
Experimental physiology.
2018 10; 103(10):1357-1366. doi:
10.1113/ep086964
. [PMID: 30007015] - Guangliang Hong, Dong Zheng, Lulu Zhang, Rui Ni, Grace Wang, Guo-Chang Fan, Zhongqiu Lu, Tianqing Peng. Administration of nicotinamide riboside prevents oxidative stress and organ injury in sepsis.
Free radical biology & medicine.
2018 08; 123(?):125-137. doi:
10.1016/j.freeradbiomed.2018.05.073
. [PMID: 29803807] - Ole L Dollerup, Britt Christensen, Mads Svart, Mark S Schmidt, Karolina Sulek, Steffen Ringgaard, Hans Stødkilde-Jørgensen, Niels Møller, Charles Brenner, Jonas T Treebak, Niels Jessen. A randomized placebo-controlled clinical trial of nicotinamide riboside in obese men: safety, insulin-sensitivity, and lipid-mobilizing effects.
The American journal of clinical nutrition.
2018 08; 108(2):343-353. doi:
10.1093/ajcn/nqy132
. [PMID: 29992272] - Sufan Wang, Ting Wan, Mingtong Ye, Yun Qiu, Lei Pei, Rui Jiang, Nengzhi Pang, Yuanling Huang, Baoxia Liang, Wenhua Ling, Xiaojun Lin, Zhenfeng Zhang, Lili Yang. Nicotinamide riboside attenuates alcohol induced liver injuries via activation of SirT1/PGC-1α/mitochondrial biosynthesis pathway.
Redox biology.
2018 07; 17(?):89-98. doi:
10.1016/j.redox.2018.04.006
. [PMID: 29679894] - Rui Fan, Jing Cui, Feng Ren, Qingzhi Wang, Yanmei Huang, Bin Zhao, Lai Wei, Xinlai Qian, Xiwen Xiong. Overexpression of NRK1 ameliorates diet- and age-induced hepatic steatosis and insulin resistance.
Biochemical and biophysical research communications.
2018 06; 500(2):476-483. doi:
10.1016/j.bbrc.2018.04.107
. [PMID: 29678570] - Nicolas Diguet, Samuel A J Trammell, Cynthia Tannous, Robin Deloux, Jérôme Piquereau, Nathalie Mougenot, Anne Gouge, Mélanie Gressette, Boris Manoury, Jocelyne Blanc, Marie Breton, Jean-François Decaux, Gareth G Lavery, István Baczkó, Joffrey Zoll, Anne Garnier, Zhenlin Li, Charles Brenner, Mathias Mericskay. Nicotinamide Riboside Preserves Cardiac Function in a Mouse Model of Dilated Cardiomyopathy.
Circulation.
2018 05; 137(21):2256-2273. doi:
10.1161/circulationaha.116.026099
. [PMID: 29217642] - Samuel A J Trammell, Mark S Schmidt, Benjamin J Weidemann, Philip Redpath, Frank Jaksch, Ryan W Dellinger, Zhonggang Li, E Dale Abel, Marie E Migaud, Charles Brenner. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans.
Nature communications.
2016 10; 7(?):12948. doi:
10.1038/ncomms12948
. [PMID: 27721479] - Karim Gariani, Keir J Menzies, Dongryeol Ryu, Casey J Wegner, Xu Wang, Eduardo R Ropelle, Norman Moullan, Hongbo Zhang, Alessia Perino, Vera Lemos, Bohkyung Kim, Young-Ki Park, Alessandra Piersigilli, Tho X Pham, Yue Yang, Chai Siah Ku, Sung I Koo, Anna Fomitchova, Carlos Cantó, Kristina Schoonjans, Anthony A Sauve, Ji-Young Lee, Johan Auwerx. Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice.
Hepatology (Baltimore, Md.).
2016 Apr; 63(4):1190-204. doi:
10.1002/hep.28245
. [PMID: 26404765] - Hee Jae Lee, Young-Shick Hong, Woojin Jun, Soo Jin Yang. Nicotinamide Riboside Ameliorates Hepatic Metaflammation by Modulating NLRP3 Inflammasome in a Rodent Model of Type 2 Diabetes.
Journal of medicinal food.
2015 Nov; 18(11):1207-13. doi:
10.1089/jmf.2015.3439
. [PMID: 25974041] - Nahid A Khan, Mari Auranen, Ilse Paetau, Eija Pirinen, Liliya Euro, Saara Forsström, Lotta Pasila, Vidya Velagapudi, Christopher J Carroll, Johan Auwerx, Anu Suomalainen. Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3.
EMBO molecular medicine.
2014 Jun; 6(6):721-31. doi:
10.1002/emmm.201403943
. [PMID: 24711540] - Sirisha Ghanta, Ruth E Grossmann, Charles Brenner. Mitochondrial protein acetylation as a cell-intrinsic, evolutionary driver of fat storage: chemical and metabolic logic of acetyl-lysine modifications.
Critical reviews in biochemistry and molecular biology.
2013 Nov; 48(6):561-74. doi:
10.3109/10409238.2013.838204
. [PMID: 24050258] - K L Kavanagh, H Jörnvall, B Persson, U Oppermann. Medium- and short-chain dehydrogenase/reductase gene and protein families : the SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes.
Cellular and molecular life sciences : CMLS.
2008 Dec; 65(24):3895-906. doi:
10.1007/s00018-008-8588-y
. [PMID: 19011750] - Ida Autiero, Susan Costantini, Giovanni Colonna. Human sirt-1: molecular modeling and structure-function relationships of an unordered protein.
PloS one.
2008 Oct; 4(10):e7350. doi:
10.1371/journal.pone.0007350
. [PMID: 19806227] - Gordon V Louie, Thomas J Baiga, Marianne E Bowman, Takao Koeduka, John H Taylor, Snejina M Spassova, Eran Pichersky, Joseph P Noel. Structure and reaction mechanism of basil eugenol synthase.
PloS one.
2007 Oct; 2(10):e993. doi:
10.1371/journal.pone.0000993
. [PMID: 17912370] - Stephen P Muench, Sean T Prigge, Rima McLeod, John B Rafferty, Michael J Kirisits, Craig W Roberts, Ernest J Mui, David W Rice. Studies of Toxoplasma gondii and Plasmodium falciparum enoyl acyl carrier protein reductase and implications for the development of antiparasitic agents.
Acta crystallographica. Section D, Biological crystallography.
2007 Mar; 63(Pt 3):328-38. doi:
10.1107/s0907444906053625
. [PMID: 17327670] - F Friedlos, P J Biggs, J A Abrahamson, R J Knox. Potentiation of CB 1954 cytotoxicity by reduced pyridine nucleotides in human tumour cells by stimulation of DT diaphorase activity.
Biochemical pharmacology.
1992 Nov; 44(9):1739-43. doi:
10.1016/0006-2952(92)90067-s
. [PMID: 1449531]