Benzyl benzoate (BioDeep_00000003745)
Secondary id: BioDeep_00000406361, BioDeep_00000861942
human metabolite PANOMIX_OTCML-2023 blood metabolite natural product
代谢物信息卡片
化学式: C14H12O2 (212.0837)
中文名称: 苯甲酸苄酯
谱图信息:
最多检出来源 Homo sapiens(blood) 19.2%
分子结构信息
SMILES: C1=CC=C(C=C1)COC(=O)C2=CC=CC=C2
InChI: InChI=1S/C14H12O2/c15-14(13-9-5-2-6-10-13)16-11-12-7-3-1-4-8-12/h1-10H,11H2
描述信息
Benzyl benzoate, also known as benylate or benylic acid, belongs to the class of organic compounds known as benzoic acid esters. These are ester derivatives of benzoic acid. Benzyl benzoate is an extremely weak basic (essentially neutral) compound (based on its pKa). Benzyl benzoate is a faint, sweet, and almond tasting compound. Outside of the human body, benzyl benzoate is found, on average, in the highest concentration within Ceylon cinnamon. Benzyl benzoate has also been detected, but not quantified in, several different foods, such as fennels, garden tomato, annual wild rice, amaranths, and horseradish tree. This could make benzyl benzoate a potential biomarker for the consumption of these foods. Benzyl benzoate is one of the older preparations used to treat scabies. Scabies is a skin infection caused by the mite Sarcoptes scabiei. It is characterized by severe itching (particularly at night), red spots, and may lead to a secondary infection. Benzyl benzoate is lethal to this mite and is therefore useful in the treatment of scabies. It is also used to treat lice infestations of the head and body.
Benzyl benzoate is a benzoate ester obtained by the formal condensation of benzoic acid with benzyl alcohol. It has been isolated from the plant species of the genus Polyalthia. It has a role as a scabicide, an acaricide and a plant metabolite. It is a benzyl ester and a benzoate ester. It is functionally related to a benzoic acid.
Benzyl benzoate is one of the older preparations used to treat scabies. Scabies is a skin infection caused by the mite sarcoptes scabiei. It is characterised by severe itching (particularly at night), red spots, and may lead to a secondary infection. Benzyl benzoate is lethal to this mite and so is useful in the treatment of scabies. It is also used to treat lice infestation of the head and body. Benzyl benzoate is not the treatment of choice for scabies due to its irritant properties.
Benzyl benzoate is a natural product found in Lonicera japonica, Populus tremula, and other organisms with data available.
See also: ... View More ...
P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03A - Ectoparasiticides, incl. scabicides
A benzoate ester obtained by the formal condensation of benzoic acid with benzyl alcohol. It has been isolated from the plant species of the genus Polyalthia.
Contained in Peru balsam and Tolu balsam. Isolated from other plants e.g. Jasminum subspecies, ylang-ylang oil. It is used in food flavouring
C254 - Anti-Infective Agent > C276 - Antiparasitic Agent
D010575 - Pesticides > D007306 - Insecticides
D016573 - Agrochemicals
Same as: D01138
Benzyl benzoate (Benzoic acid benzyl ester) is a fragrance ingredient in cosmetic products. Benzyl benzoate can be used for the research of Scabies and Demodex-associated inflammatory skin conditions[1][2][3].
Benzyl benzoate (Phenylmethyl benzoate) is an orally active anti-scabies agent, acaricide (EC50= 0.06 g/m2) and fungicide. Benzyl benzoate is an angiotensin II (Ang II) inhibitor with antihypertensive effects. Benzyl benzoate can be used in perfumes, pharmaceuticals and the food industry[1][2][3][4][5].
Benzyl benzoate (Benzoic acid benzyl ester) is a fragrance ingredient in cosmetic products. Benzyl benzoate can be used for the research of Scabies and Demodex-associated inflammatory skin conditions[1][2][3].
同义名列表
125 个代谢物同义名
Benzyl benzoate, Pharmaceutical Secondary Standard; Certified Reference Material; InChI=1/C14H12O2/c15-14(13-9-5-2-6-10-13)16-11-12-7-3-1-4-8-12/h1-10H,11H; Benzyl benzoate, United States Pharmacopeia (USP) Reference Standard; Benzyl benzoate, certified reference material, TraceCERT(R); Benzoic acid benzyl ester; Benzoic acid phenylmethyl ester; Benzyl benzoate, meets USP testing specifications; Benzyl benzoate, Vetec(TM) reagent grade, 98\\%; 4-09-00-00307 (Beilstein Handbook Reference); Benzyl benzoate, SAJ special grade, >=99.0\\%; Benzyl benzoate, tested according to Ph.Eur.; Benzyl benzoate, SAJ first grade, >=98.0\\%; Benzyl benzoate, natural, >=99\\%, FCC, FG; Benzyl benzoate, ReagentPlus(R), >=99.0\\%; Benzyl benzoate, for synthesis, 99.0\\%; Benzylester kyseliny benzoove [Czech]; Benzyl benzoate, analytical standard; Benzyl benzoate, >=99\\%, FCC, FG; Benzoic acid, phenylmethyl ester; BENZYL BENZOATE [USP MONOGRAPH]; BENZYLIS BENZOAS [WHO-IP LATIN]; BENZYL BENZOATE (USP MONOGRAPH); BENZYL BENZOATE [EP MONOGRAPH]; BENZYL BENZOATE (USP IMPURITY); BENZYL BENZOATE (EP MONOGRAPH); BENZYL BENZOATE [USP IMPURITY]; BENZOIC ACID PHENYLMETHYLESTER; Benzylester kyseliny benzoove; BENZYL BENZOATE (EP IMPURITY); BENZYL BENZOATE [ORANGE BOOK]; BENZYL BENZOATE [EP IMPURITY]; Benzyl alcohol benzoic ester; Benzoate, phenylmethyl ester; Benzylbenzoaat Smeersel FNA; Benzyl benzoate (JP17/USP); Benzoic acid, benzyl ester; BENZOate phenylmethylester; Benzyl benzenecarboxylate; BENZOIC ACID,BENZYL ESTER; Phenylmethyl benzoic acid; Benzoic acid-benzyl ester; Benzoic acid benzyl ester; Benzyl benzoate (USP:JAN); Benzyl benzoate (natural); Benzyl benzoate [USP:JAN]; BENZYL BENZOATE [USP-RS]; BENZYL BENZOATE [WHO-DD]; BENZYL BENZOATE (USP-RS); Benzylbenzenecarboxylate; BENZYL BENZOATE [WHO-IP]; BENZYL BENZOATE (MART.); BENZYLOXY PHENYL KETONE; Benzyl benzoate, >=99\\%; BENZYL BENZOATE [MART.]; Benzoesaeurebenzylester; Benzoate, benzyl ester; BENZYL BENZOATE [HSDB]; Benzoesaurebenzylester; BENZYL BENZOATE [FHFI]; BENZYL BENZOATE [INCI]; Phenylmethyl benzoate; BENZYL BENZOATE [FCC]; BENZYL BENZOATE [JAN]; BENZYL BENZOATE [MI]; BENZYL BENZOATE [II]; Benzyl phenylformate; BENZYL BENZOATE (II); Benzoate de benzyle; Benzyl benzoic acid; BENZYL-D5 BENZOATE; Benzylum benzoicum; Spectrum4_000773; Benzylis benzoas; Spectrum3_001757; Spectrum5_001128; Spectrum2_000532; benzyl-benzoate; Benzyl Benzoate; benzylbenzoate; Benzyl benzoat; Tox21_111372_1; Antiscabiosum; DivK1c_000204; Benylate (TN); Benylic acid; KBio2_004288; Tox21_111372; KBio1_000204; Tox21_303418; KBio3_002714; Tox21_201337; KBio2_001720; KBio2_006856; IDI1_000204; Peruscabina; Acarobenzyl; Novoscabin; WLN: RVO1R; Peruscabin; Benzylets; Venzonate; Scabiozon; AI3-00523; Acarosan; Benzanil; Scabitox; Scabagen; Ascabiol; Colebenz; Benzemul; Benzevan; Scobenol; Venzoate; Scabanca; Vanzoate; Benylate; Scabide; Ascabin; Acaril; Bengal; Benzyl; Ansar; 1dzm; BZM; Benzyl benzoate; Benzyl Benzoate
数据库引用编号
24 个数据库交叉引用编号
- ChEBI: CHEBI:41237
- KEGG: C12537
- KEGGdrug: D01138
- PubChem: 2345
- HMDB: HMDB0014814
- Metlin: METLIN1295
- DrugBank: DB00676
- ChEMBL: CHEMBL1239
- Wikipedia: Benzyl_benzoate
- MeSH: benzyl benzoate
- ChemIDplus: 0000120514
- MetaCyc: CPD-6443
- KNApSAcK: C00019221
- foodb: FDB012844
- chemspider: 13856959
- CAS: 347840-01-1
- CAS: 120-51-4
- medchemexpress: HY-B0935
- PMhub: MS000011231
- MetaboLights: MTBLC41237
- PubChem: 582927
- PDB-CCD: BZM
- RefMet: Benzyl Benzoate
- LOTUS: LTS0097515
分类词条
相关代谢途径
Reactome(0)
BioCyc(4)
PlantCyc(0)
代谢反应
44 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(6)
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- salicortin biosynthesis:
benzylbenzoate ⟶ benzyl-6-hydroxy-2-cyclohexene-on-oyl
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
benzoyl-CoA + benzyl alcohol ⟶ benzylbenzoate + coenzyme A
- volatile esters biosynthesis (during fruit ripening):
acetyl-CoA + butan-1-ol ⟶ butyl acetate + coenzyme A
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(38)
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzoyl-CoA ⟶ H+ + benzoate + coenzyme A
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzoyl-CoA ⟶ H+ + benzoate + coenzyme A
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzoyl-CoA ⟶ H+ + benzoate + coenzyme A
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzoyl-CoA ⟶ H+ + benzoate + coenzyme A
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzoyl-CoA ⟶ H+ + benzoate + coenzyme A
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
ATP + benzoate + coenzyme A ⟶ AMP + benzoyl-CoA + diphosphate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
ATP + benzoate + coenzyme A ⟶ AMP + benzoyl-CoA + diphosphate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzoyl-CoA ⟶ H+ + benzoate + coenzyme A
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
ATP + benzoate + coenzyme A ⟶ AMP + benzoyl-CoA + diphosphate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
ATP + benzoate + coenzyme A ⟶ AMP + benzoyl-CoA + diphosphate
- volatile esters biosynthesis (during fruit ripening):
ethanol + propanoyl-CoA ⟶ coenzyme A + ethyl propanoate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
235 个相关的物种来源信息
- 3808 - Acacia: LTS0097515
- 260130 - Acca sellowiana: 10.3390/MOLECULES24112053
- 4668 - Amaryllidaceae: LTS0097515
- 4011 - Anacardiaceae: LTS0097515
- 128591 - Aniba:
- 128591 - Aniba: 10.1016/0031-9422(75)85358-1
- 128591 - Aniba: 10.1016/S0031-9422(97)00075-7
- 128591 - Aniba: LTS0097515
- 136106 - Aniba affinis: 10.1590/1809-43921977071041
- 136106 - Aniba affinis: LTS0097515
- 22140 - Annonaceae: 10.1016/S0031-9422(97)00283-5
- 22140 - Annonaceae: LTS0097515
- 283104 - Antidesma: LTS0097515
- 2708716 - Antidesma laciniatum: 10.1016/J.PHYTOCHEM.2003.08.004
- 2708716 - Antidesma laciniatum: LTS0097515
- 4056 - Apocynaceae: LTS0097515
- 4219 - Artemisia: LTS0097515
- 86312 - Artemisia ludoviciana: 10.1076/PHBI.40.4.263.8465
- 86312 - Artemisia ludoviciana: LTS0097515
- 4210 - Asteraceae: LTS0097515
- 41487 - Baccharis: LTS0097515
- 199392 - Baeckea frutescens: 10.1002/(SICI)1099-1026(1998070)13:4<245::AID-FFJ736>3.0.CO;2-J
- 255932 - Balantiopsidaceae: LTS0097515
- 255998 - Balantiopsis: LTS0097515
- 3700 - Brassicaceae: LTS0097515
- 13392 - Cananga: LTS0097515
- 13393 - Cananga odorata: 10.1021/JF00069A028
- 13393 - Cananga odorata: LTS0097515
- 4200 - Caprifoliaceae: LTS0097515
- 13426 - Cichorium: LTS0097515
- 114280 - Cichorium endivia: 10.1021/JF00068A014
- 114280 - Cichorium endivia: LTS0097515
- 13428 - Cinnamomum: LTS0097515
- 119260 - Cinnamomum aromaticum: 10.1055/S-0028-1097286
- 119260 - Cinnamomum aromaticum: LTS0097515
- 1155220 - Cinnamomum iners: 10.1055/S-0028-1097286
- 714455 - Cinnamomum parthenoxylon: 10.1080/10412905.1995.9698462
- 714455 - Cinnamomum parthenoxylon: LTS0097515
- 128608 - Cinnamomum verum:
- 128608 - Cinnamomum verum: 10.1021/JF60218A031
- 128608 - Cinnamomum verum: 10.1515/ZNC-2002-11-1206
- 128608 - Cinnamomum verum: LTS0097515
- 69450 - Cistaceae: LTS0097515
- 69451 - Cistus: LTS0097515
- 191224 - Cistus creticus: 10.1016/J.PHYTOCHEM.2009.06.013
- 191224 - Cistus creticus: LTS0097515
- 393199 - Cistus incanus: 10.1016/J.PHYTOCHEM.2009.06.013
- 393199 - Cistus incanus: LTS0097515
- 3781 - Crassulaceae: LTS0097515
- 3368 - Cryptomeria: LTS0097515
- 3369 - Cryptomeria japonica: 10.1080/10412905.1991.9697930
- 3369 - Cryptomeria japonica: LTS0097515
- 3367 - Cupressaceae: LTS0097515
- 51377 - Cynomoriaceae: LTS0097515
- 51502 - Cynomorium: LTS0097515
- 51503 - Cynomorium coccineum: LTS0097515
- 627609 - Cynomorium songaricum: 10.1016/J.JPBA.2009.01.038
- 627609 - Cynomorium songaricum: LTS0097515
- 66679 - Daphne: LTS0097515
- 329675 - Daphne odora: 10.1271/BBB1961.47.483
- 329675 - Daphne odora: LTS0097515
- 2715869 - Daphne papyracea: 10.1271/BBB1961.47.483
- 2715869 - Daphne papyracea: LTS0097515
- 984609 - Desmos: LTS0097515
- 1179221 - Desmos chinensis: 10.1016/J.TET.2011.05.070
- 1179221 - Desmos chinensis: LTS0097515
- 4345 - Ericaceae: LTS0097515
- 2759 - Eukaryota: LTS0097515
- 3803 - Fabaceae: LTS0097515
- 306958 - Friesodielsia: LTS0097515
- 13546 - Gerbera: LTS0097515
- 1898444 - Gerbera ambigua: 10.1016/S0031-9422(00)81146-2
- 1898444 - Gerbera ambigua: LTS0097515
- 42216 - Hamamelidaceae: LTS0097515
- 4395 - Hamamelis: LTS0097515
- 4397 - Hamamelis virginiana: 10.1055/S-2006-957420
- 4397 - Hamamelis virginiana: LTS0097515
- 59430 - Helichrysum: LTS0097515
- 261805 - Helichrysum stoechas: 10.1055/S-2006-957641
- 261805 - Helichrysum stoechas: LTS0097515
- 264417 - Hesperis: LTS0097515
- 264418 - Hesperis matronalis: 10.1016/J.PHYTOCHEM.2006.12.009
- 264418 - Hesperis matronalis: LTS0097515
- 9606 - Homo sapiens: -
- 629714 - Hypericaceae: LTS0097515
- 55962 - Hypericum: LTS0097515
- 673923 - Hypericum coris: 10.1016/S0367-326X(02)00171-5
- 673923 - Hypericum coris: LTS0097515
- 255933 - Isotachis: LTS0097515
- 588648 - Isotachis japonica:
- 588648 - Isotachis japonica: 10.1016/S0031-9422(00)81055-9
- 588648 - Isotachis japonica: 10.1016/S0031-9422(00)84505-7
- 588648 - Isotachis japonica: LTS0097515
- 186771 - Jungermanniopsida: LTS0097515
- 13100 - Juniperus: LTS0097515
- 50182 - Juniperus chinensis: 10.1002/JCCS.200100158
- 50182 - Juniperus chinensis: LTS0097515
- 97748 - Kaempferia: LTS0097515
- 97754 - Kaempferia rotunda: 10.1016/0031-9422(95)00454-8
- 97754 - Kaempferia rotunda: LTS0097515
- 3433 - Lauraceae: LTS0097515
- 4447 - Liliopsida: LTS0097515
- 49606 - Lonicera: LTS0097515
- 105884 - Lonicera japonica: 10.1021/JF950275B
- 105884 - Lonicera japonica: LTS0097515
- 105884 - Lonicera japonica Thunb.: -
- 3398 - Magnoliopsida: LTS0097515
- 3629 - Malvaceae: LTS0097515
- 24647 - Mandragora: LTS0097515
- 389206 - Mandragora autumnalis: 10.1016/J.PHYTOCHEM.2005.07.016
- 389206 - Mandragora autumnalis: LTS0097515
- 33117 - Mandragora officinarum: 10.1016/J.PHYTOCHEM.2005.07.016
- 33117 - Mandragora officinarum: LTS0097515
- 3195 - Marchantiophyta: LTS0097515
- 174965 - Melodorum: LTS0097515
- 174966 - Melodorum fruticosum: 10.1016/0031-9422(90)80142-4
- 174966 - Melodorum fruticosum: LTS0097515
- 2201384 - Micromeles: LTS0097515
- 1202417 - Monanthotaxis enghiana: 10.1016/S0031-9422(96)00527-4
- 3931 - Myrtaceae: LTS0097515
- 4697 - Narcissus: LTS0097515
- 54860 - Narcissus tazetta: 10.3109/13880209409083015
- 54860 - Narcissus tazetta: LTS0097515
- 4085 - Nicotiana: LTS0097515
- 4087 - Nicotiana alata: 10.1016/J.PHYTOCHEM.2006.05.038
- 4087 - Nicotiana alata: LTS0097515
- 118694 - Nicotiana bonariensis: 10.1016/J.PHYTOCHEM.2006.05.038
- 118694 - Nicotiana bonariensis: LTS0097515
- 118690 - Nicotiana cavicola: 10.1016/J.PHYTOCHEM.2006.05.038
- 118690 - Nicotiana cavicola: LTS0097515
- 118700 - Nicotiana langsdorffii: 10.1016/J.PHYTOCHEM.2006.05.038
- 118700 - Nicotiana langsdorffii: LTS0097515
- 13625 - Paeonia: LTS0097515
- 35924 - Paeonia lactiflora: 10.1016/S0031-9422(00)94541-2
- 35924 - Paeonia lactiflora: LTS0097515
- 24943 - Paeoniaceae: LTS0097515
- 46141 - Petiveria: LTS0097515
- 46142 - Petiveria alliacea: 10.1016/S0031-9422(01)00304-1
- 46142 - Petiveria alliacea: LTS0097515
- 441552 - Petiveriaceae: LTS0097515
- 4101 - Petunia: LTS0097515
- 33119 - Petunia axillaris: 10.1271/BBB.60507
- 33119 - Petunia axillaris: LTS0097515
- 233880 - Phyllanthaceae: LTS0097515
- 3525 - Phytolaccaceae: LTS0097515
- 58019 - Pinopsida: LTS0097515
- 13215 - Piper: LTS0097515
- 405322 - Piper cubeba: 10.1002/BIO.1209
- 405322 - Piper cubeba: LTS0097515
- 54803 - Piper kadsura: 10.3109/14756366.2010.496363
- 54803 - Piper kadsura: LTS0097515
- 16739 - Piperaceae: LTS0097515
- 33090 - Plants: -
- 52847 - Plumeria: LTS0097515
- 85246 - Plumeria obtusa: 10.1002/(SICI)1099-1026(199907/08)14:4<237::AID-FFJ817>3.0.CO;2-Y
- 85246 - Plumeria obtusa: LTS0097515
- 62097 - Plumeria rubra: 10.1002/FFJ.2730070108
- 62097 - Plumeria rubra: LTS0097515
- 4275 - Polygala: LTS0097515
- 174549 - Polygala senega: 10.1002/FFJ.2730100408
- 174549 - Polygala senega: LTS0097515
- 4274 - Polygalaceae: LTS0097515
- 3689 - Populus: LTS0097515
- 113636 - Populus tremula: 10.1111/J.1600-0536.1997.TB02476.X
- 113636 - Populus tremula: LTS0097515
- 3693 - Populus tremuloides: 10.1139/B91-288
- 3693 - Populus tremuloides: LTS0097515
- 202994 - Rhodiola: LTS0097515
- 203015 - Rhodiola rosea: 10.1016/S0031-9422(02)00004-3
- 203015 - Rhodiola rosea: LTS0097515
- 3745 - Rosaceae: LTS0097515
- 3688 - Salicaceae: LTS0097515
- 468156 - Senegalia: LTS0097515
- 138013 - Senegalia berlandieri: 10.1021/JF00120A008
- 138013 - Senegalia berlandieri: LTS0097515
- 4070 - Solanaceae: LTS0097515
- 4107 - Solanum: LTS0097515
- 265416 - Solanum stuckertii: 10.1080/10412905.1997.9700728
- 265416 - Solanum stuckertii: LTS0097515
- 43860 - Spondias: LTS0097515
- 80338 - Spondias mombin: 10.1021/JF00008A025
- 80338 - Spondias mombin: LTS0097515
- 35493 - Streptophyta: LTS0097515
- 178174 - Syzygium: LTS0097515
- 219868 - Syzygium aromaticum: 10.1271/BBB1961.49.1583
- 219868 - Syzygium aromaticum: LTS0097515
- 47097 - Tephrosia: LTS0097515
- 1835418 - Tephrosia sinapou: LTS0097515
- 2873989 - Thomsonaria ferruginea: 10.1016/0031-9422(85)80065-0
- 39987 - Thymelaeaceae: LTS0097515
- 64580 - Tilia: LTS0097515
- 210368 - Tilia mandshurica: 10.1080/10412905.1999.9701158
- 121718 - Tilia tomentosa: 10.1080/10412905.1999.9701158
- 121718 - Tilia tomentosa: LTS0097515
- 58023 - Tracheophyta: LTS0097515
- 41656 - Ursinia: LTS0097515
- 496652 - Ursinia speciosa: 10.1016/0031-9422(92)80176-F
- 496652 - Ursinia speciosa: LTS0097515
- 174969 - Uvaria: LTS0097515
- 672960 - Uvaria acuminata: 10.1248/CPB.52.138
- 672960 - Uvaria acuminata: LTS0097515
- 672961 - Uvaria angolensis: 10.1021/NP50040A009
- 672961 - Uvaria angolensis: LTS0097515
- 174970 - Uvaria chamae: 10.1055/S-2006-962016
- 174970 - Uvaria chamae: LTS0097515
- 174962 - Uvaria dulcis: 10.1016/S0031-9422(99)00477-X
- 174962 - Uvaria dulcis: LTS0097515
- 174964 - Uvaria ferruginea:
- 174964 - Uvaria ferruginea: 10.1016/0031-9422(85)80065-0
- 174964 - Uvaria ferruginea: 10.1016/S0031-9422(00)80643-3
- 174964 - Uvaria ferruginea: LTS0097515
- 174973 - Uvaria grandiflora: 10.1016/0031-9422(84)83114-3
- 174973 - Uvaria grandiflora: LTS0097515
- 2588161 - Uvaria kirkii: 10.1021/NP50042A028
- 2588161 - Uvaria kirkii: LTS0097515
- 174980 - Uvaria rufa: 10.1007/S10600-011-9970-9
- 174980 - Uvaria rufa: LTS0097515
- 2588162 - Uvaria scheffleri:
- 2588162 - Uvaria scheffleri: 10.1007/S11418-009-0358-0
- 2588162 - Uvaria scheffleri: 10.1016/0031-9422(90)85438-L
- 2588162 - Uvaria scheffleri: LTS0097515
- 174968 - Uvaria siamensis: 10.1016/0031-9422(90)80142-4
- 673196 - Uvaria versicolor: 10.1002/PTR.1158
- 673196 - Uvaria versicolor: LTS0097515
- 13749 - Vaccinium: LTS0097515
- 13750 - Vaccinium macrocarpon: 10.3891/ACTA.CHEM.SCAND.21-2076
- 13750 - Vaccinium macrocarpon: LTS0097515
- 19952 - Valeriana: LTS0097515
- 19953 - Valeriana officinalis: 10.1016/0031-9422(95)00492-P
- 19953 - Valeriana officinalis: LTS0097515
- 19944 - Valerianaceae: LTS0097515
- 33090 - Viridiplantae: LTS0097515
- 4642 - Zingiberaceae: LTS0097515
- 33090 - 安息香: -
- 33090 - 枇杷叶: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Zheng Chen, Mei-Zhu Wu, Ting Zheng, Ya-Lin Chen, Chen Sun, Yong-Hao Lou, Xue-Ming Zhou. [Two new benzyl-benzoate glucosides from Plumeria rubra].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2024 Mar; 49(5):1255-1259. doi:
10.19540/j.cnki.cjcmm.20231209.202
. [PMID: 38621972] - Ty Viet Pham, Nguyen Xuan Ha, Nguyen Dinh Luyen, Thao Hoang Xuan, Thang Le Quoc, Nguyen Huy Hung, Ninh The Son. Chemical Composition, Mosquito Larvicidal and Antimicrobial Activities, and Molecular Docking Study of Essential Oils of Cinnamomum melastomaceum , Neolitsea buisanensis and Uvaria microcarpa from Vietnam.
Chemistry & biodiversity.
2023 Aug; ?(?):e202300652. doi:
10.1002/cbdv.202300652
. [PMID: 37531297] - Young Sang Kwon, Chang-Beom Park, Seung-Min Lee, Seonggeun Zee, Go-Eun Kim, Yeong-Jin Kim, Hee-Jung Sim, Jong-Hwan Kim, Jong-Su Seo. Proteomic analysis of zebrafish (Danio rerio) embryos exposed to benzyl benzoate.
Environmental science and pollution research international.
2022 Nov; ?(?):. doi:
10.1007/s11356-022-24081-7
. [PMID: 36367642] - Aysun Kılıç Süloğlu, Evrim A Koçkaya, Güldeniz Selmanoğlu. Toxicity of benzyl benzoate as a food additive and pharmaceutical agent.
Toxicology and industrial health.
2022 Apr; 38(4):221-233. doi:
10.1177/07482337221086133
. [PMID: 35332820] - Joannna Igielska-Kalwat, Slawa Połoczańska-Godek, Ewa Kilian-Pięta. The use of Dalmatian pyrethrum daisy and an excipient in the treatment of seborrheic dermatitis.
Acta biochimica Polonica.
2022 Feb; 69(1):123-129. doi:
10.18388/abp.2020_5770
. [PMID: 35225498] - Seon-Mi Seo, Jae-Woo Lee, Jonghyun Shin, Jun-Hyung Tak, Jinho Hyun, Il-Kwon Park. Development of cellulose nanocrystal-stabilized Pickering emulsions of massoia and nutmeg essential oils for the control of Aedes albopictus.
Scientific reports.
2021 06; 11(1):12038. doi:
10.1038/s41598-021-91442-6
. [PMID: 34103581] - Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
Cell reports.
2021 04; 35(4):109040. doi:
10.1016/j.celrep.2021.109040
. [PMID: 33910017] - Gasper Maeda, Jelle van der Wal, Arvind Kumar Gupta, Joan J E Munissi, Andreas Orthaber, Per Sunnerhagen, Stephen S Nyandoro, Máté Erdélyi. Oxygenated Cyclohexene Derivatives and Other Constituents from the Roots of Monanthotaxis trichocarpa.
Journal of natural products.
2020 02; 83(2):210-215. doi:
10.1021/acs.jnatprod.9b00363
. [PMID: 31986029] - Tobie D Lee, Olivia W Lee, Kyle R Brimacombe, Lu Chen, Rajarshi Guha, Sabrina Lusvarghi, Bethilehem G Tebase, Carleen Klumpp-Thomas, Robert W Robey, Suresh V Ambudkar, Min Shen, Michael M Gottesman, Matthew D Hall. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Molecular pharmacology.
2019 11; 96(5):629-640. doi:
10.1124/mol.119.115964
. [PMID: 31515284] - Liang Xu, Haiping Liu, Yucui Ma, Cui Wu, Ruiqi Li, Zhimao Chao. Comparative study of volatile components from male and female flower buds of Populus × tomentosa by HS-SPME-GC-MS.
Natural product research.
2019 Jul; 33(14):2105-2108. doi:
10.1080/14786419.2018.1483929
. [PMID: 29897251] - Stephen Boulton, Rajeevan Selvaratnam, Rashik Ahmed, Katherine Van, Xiaodong Cheng, Giuseppe Melacini. Mechanisms of Specific versus Nonspecific Interactions of Aggregation-Prone Inhibitors and Attenuators.
Journal of medicinal chemistry.
2019 05; 62(10):5063-5079. doi:
10.1021/acs.jmedchem.9b00258
. [PMID: 31074269] - J C Vidal-Quist, F Ortego, B N Lambrecht, P Castañera, P Hernández-Crespo. Effects of domestic chemical stressors on expression of allergen genes in the European house dust mite.
Medical and veterinary entomology.
2017 03; 31(1):97-101. doi:
10.1111/mve.12200
. [PMID: 27753116] - Nan Zhang, Lei Zhang, Linyin Feng, Lei Yao. The anxiolytic effect of essential oil of Cananga odorata exposure on mice and determination of its major active constituents.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2016 Dec; 23(14):1727-1734. doi:
10.1016/j.phymed.2016.10.017
. [PMID: 27912874] - Gajanand Sharma, Geeta Dhankar, Kanika Thakur, Kaisar Raza, O P Katare. Benzyl Benzoate-Loaded Microemulsion for Topical Applications: Enhanced Dermatokinetic Profile and Better Delivery Promises.
AAPS PharmSciTech.
2016 Oct; 17(5):1221-31. doi:
10.1208/s12249-015-0464-0
. [PMID: 26669889] - Juliana Maria de Mello Andrade, Carolina Dos Santos Passos, Maria Angélica Kieling Rubio, Jacqueline Nakau Mendonça, Norberto Peporine Lopes, Amélia Teresinha Henriques. Combining in vitro and in silico approaches to evaluate the multifunctional profile of rosmarinic acid from Blechnum brasiliense on targets related to neurodegeneration.
Chemico-biological interactions.
2016 Jul; 254(?):135-45. doi:
10.1016/j.cbi.2016.06.005
. [PMID: 27270453] - Jun-Ran Kim, Haribalan Perumalsamy, Min Jung Kwon, Se Um Chae, Young-Joon Ahn. Toxicity of hiba oil constituents and spray formulations to American house dust mites and copra mites.
Pest management science.
2015 May; 71(5):737-43. doi:
10.1002/ps.3843
. [PMID: 24916027] - Russell J Chedgy, Tobias G Köllner, C Peter Constabel. Functional characterization of two acyltransferases from Populus trichocarpa capable of synthesizing benzyl benzoate and salicyl benzoate, potential intermediates in salicinoid phenolic glycoside biosynthesis.
Phytochemistry.
2015 May; 113(?):149-59. doi:
10.1016/j.phytochem.2014.10.018
. [PMID: 25561400] - Shanmugam Krishnamoorthy, Manivachagam Chandrasekaran, Gnanaprakasam Adaikala Raj, Mahalingam Jayaraman, Venugopalan Venkatesalu. Identification of chemical constituents and larvicidal activity of essential oil from Murraya exotica L. (Rutaceae) against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus (Diptera: Culicidae).
Parasitology research.
2015 May; 114(5):1839-45. doi:
10.1007/s00436-015-4370-x
. [PMID: 25697880] - Haribalan Perumalsamy, Jae Yeon Kim, Jun-Ran Kim, Kum Na Ra Hwang, Young-Joon Ahn. Toxicity of basil oil constituents and related compounds and the efficacy of spray formulations to Dermatophagoides farinae (Acari: Pyroglyphidae).
Journal of medical entomology.
2014 May; 51(3):650-7. doi:
10.1603/me13235
. [PMID: 24897858] - Kedar Rokade, Gajanan Mali. Biodegradation of benzyl benzoate by Pseudomonas desmolyticum NCIM 2112.
World journal of microbiology & biotechnology.
2014 Mar; 30(3):827-33. doi:
10.1007/s11274-013-1484-0
. [PMID: 24146308] - E Arzu Koçkaya, Aysun Kılıç. Developmental toxicity of benzyl benzoate in rats after maternal exposure throughout pregnancy.
Environmental toxicology.
2014 Jan; 29(1):40-53. doi:
10.1002/tox.20771
. [PMID: 21922633] - Le D Hieu, Tran D Thang, Tran M Hoi, Isiaka A Ogunwande. Chemical composition of essential oils from four Vietnamese species of piper (piperaceae).
Journal of oleo science.
2014; 63(3):211-7. doi:
10.5650/jos.ess13175
. [PMID: 24712088] - Namki Cho, Heejung Yang, Mina Lee, Jungmoo Huh, Hyeon-Woo Kim, Hong-Pyo Kim, Sang-Hyun Sung. Neuroprotective benzyl benzoate glycosides from Disporum viridescens roots in HT22 hippocampal neuronal cells.
Journal of natural products.
2013 Dec; 76(12):2291-7. doi:
10.1021/np400676b
. [PMID: 24246008] - Jeong-Oh Yang, Naoya Nakayama, Kyohei Toda, Shinichi Tebayashi, Chul-Sa Kim. Elicitor(s) in Sogatella furcifera (Horváth) causing the Japanese rice plant (Oryza sativa L.) to induce the ovicidal substance, benzyl benzoate.
Bioscience, biotechnology, and biochemistry.
2013; 77(6):1258-61. doi:
10.1271/bbb.130055
. [PMID: 23748769] - Lei Liu, Yuan-hui Guo, Hai-liang Xin, Yan Nie, Ting Han, Lu-ping Qin, Qiao-yan Zhang. Antiosteoporotic effects of benzyl benzoate glucosides from Curculigo orchioides in ovariectomized rats.
Zhong xi yi jie he xue bao = Journal of Chinese integrative medicine.
2012 Dec; 10(12):1419-26. doi:
10.3736/jcim20121214
. [PMID: 23257136] - Sarah Miesner, Holly Frosch, Kelly Kindscher, Shane Tichy, Kirk P Manfredi. Benzyl benzoate glycosides from Oligoneuron rigidum.
Journal of natural products.
2012 Nov; 75(11):1903-8. doi:
10.1021/np300379h
. [PMID: 23121124] - Haiqiang Wu, Jing Li, Fang Zhang, Li Li, Zhigang Liu, Zhendan He. Essential oil components from Asarum sieboldii Miquel are toxic to the house dust mite Dermatophagoides farinae.
Parasitology research.
2012 Nov; 111(5):1895-9. doi:
10.1007/s00436-012-3032-5
. [PMID: 22833176] - Ju-Hyun Jeon, Ji-Yeon Yang, Hoi-Seon Lee. Acaricidal activities of materials derived from Pyrus ussuriensis fruits against stored food mites.
Journal of food protection.
2012 Jul; 75(7):1258-62. doi:
10.4315/0362-028x.jfp-12-040
. [PMID: 22980009] - Yeon-Kyeong Yun, Hyun-Kyung Kim, Jun-Ran Kim, Kumnara Hwang, Young-Joon Ahn. Contact and fumigant toxicity of Armoracia rusticana essential oil, allyl isothiocyanate and related compounds to Dermatophagoides farinae.
Pest management science.
2012 May; 68(5):788-94. doi:
10.1002/ps.2327
. [PMID: 22102526] - Min Seok Oh, Ji-Yeon Yang, Hoi Seon Lee. Acaricidal toxicity of 2'-hydroxy-4'-methylacetophenone isolated from Angelicae koreana roots and structure-activity relationships of its derivatives.
Journal of agricultural and food chemistry.
2012 Apr; 60(14):3606-11. doi:
10.1021/jf205379u
. [PMID: 22429095] - Ken Shiraiwa, Shen Yuan, Ayako Fujiyama, Yosuke Matsuo, Takashi Tanaka, Zhi-Hong Jiang, Isao Kouno. Benzyl benzoate glycoside and 3-deoxy-D-manno-2-octulosonic acid derivatives from Solidago decurrens.
Journal of natural products.
2012 Jan; 75(1):88-92. doi:
10.1021/np2007582
. [PMID: 22185651] - Mayanka Walia, Tavleen S Mann, Dharmesh Kumar, Vijai K Agnihotri, Bikram Singh. Chemical Composition and In Vitro Cytotoxic Activity of Essential Oil of Leaves of Malus domestica Growing in Western Himalaya (India).
Evidence-based complementary and alternative medicine : eCAM.
2012; 2012(?):649727. doi:
10.1155/2012/649727
. [PMID: 22619691] - Eun-Young Jeong, Kyoung-Shik Cho, Hoi-Seon Lee. Food protective effects of Periploca sepium oil and its active component against stored food mites.
Journal of food protection.
2012 Jan; 75(1):118-22. doi:
10.4315/0362-028x.jfp-11-315
. [PMID: 22221363] - Yu Ling, Chunyu Zhang, Tong Chen, Huaiqing Hao, Peng Liu, Ray A Bressan, Paul M Hasegawa, Jing Bo Jin, Jinxing Lin. Mutation in SUMO E3 ligase, SIZ1, disrupts the mature female gametophyte in Arabidopsis.
PloS one.
2012; 7(1):e29470. doi:
10.1371/journal.pone.0029470
. [PMID: 22253727] - Bruce C Campbell, Kathleen L Chan, Jong H Kim. Chemosensitization as a means to augment commercial antifungal agents.
Frontiers in microbiology.
2012; 3(?):79. doi:
10.3389/fmicb.2012.00079
. [PMID: 22393330] - Carolina Santiago, Chris Fitchett, Murray H G Munro, Juriyati Jalil, Jacinta Santhanam. Cytotoxic and Antifungal Activities of 5-Hydroxyramulosin, a Compound Produced by an Endophytic Fungus Isolated from Cinnamomum mollisimum.
Evidence-based complementary and alternative medicine : eCAM.
2012; 2012(?):689310. doi:
10.1155/2012/689310
. [PMID: 22454674] - Koffi A Muriel, Tonzibo Z Félix, Gilles Figueredo, Pierre Chalard, Yao T N'guessan. Essential oil of three Uvaria species from Ivory Coast.
Natural product communications.
2011 Nov; 6(11):1715-8. doi:
. [PMID: 22224295]
- Gajanan B Zore, Archana D Thakre, Sitaram Jadhav, S Mohan Karuppayil. Terpenoids inhibit Candida albicans growth by affecting membrane integrity and arrest of cell cycle.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2011 Oct; 18(13):1181-90. doi:
10.1016/j.phymed.2011.03.008
. [PMID: 21596542] - Maria Graça Miguel, Maria Dulce Antunes. Is propolis safe as an alternative medicine?.
Journal of pharmacy & bioallied sciences.
2011 Oct; 3(4):479-95. doi:
10.4103/0975-7406.90101
. [PMID: 22219581] - Ha Yun Song, Ji Yeon Yang, Joo Won Suh, Hoi Seon Lee. Acaricidal activities of apiol and its derivatives from Petroselinum sativum seeds against Dermatophagoides pteronyssinus, Dermatophagoides farinae, and Tyrophagus putrescentiae.
Journal of agricultural and food chemistry.
2011 Jul; 59(14):7759-64. doi:
10.1021/jf201945y
. [PMID: 21688847] - Kofi Annan, Nora Jackson, Rita A Dickson, George H Sam, Gustav Komlaga. Acaricidal effect of an isolate from Hoslundia opposita vahl against Amblyomma variegatum (Acari: Ixodidae).
Pharmacognosy research.
2011 Jul; 3(3):185-8. doi:
10.4103/0974-8490.85004
. [PMID: 22022167] - Ilaria D'Acquarica, Antonella Cerreto, Giuliano Delle Monache, Fabiana Subrizi, Alberto Boffi, Andrea Tafi, Stefano Forli, Bruno Botta. N-linked peptidoresorc[4]arene-based receptors as noncompetitive inhibitors for α-chymotrypsin.
The Journal of organic chemistry.
2011 Jun; 76(11):4396-407. doi:
10.1021/jo102592f
. [PMID: 21534559] - Karina Caballero-Gallardo, Jesús Olivero-Verbel, Elena E Stashenko. Repellent activity of essential oils and some of their individual constituents against Tribolium castaneum herbst.
Journal of agricultural and food chemistry.
2011 Mar; 59(5):1690-6. doi:
10.1021/jf103937p
. [PMID: 21291237] - Zhangqian Wang, Hyun-Kyung Kim, Wenqi Tao, Mo Wang, Young-Joon Ahn. Contact and fumigant toxicity of cinnamaldehyde and cinnamic acid and related compounds to Dermatophagoides farinae and Dermatophagoides pteronyssinus (Acari: Pyroglyphidae).
Journal of medical entomology.
2011 Mar; 48(2):366-71. doi:
10.1603/me10127
. [PMID: 21485375] - Rachel Berry, Louise Harewood, Liming Pei, Malcolm Fisher, David Brownstein, Allyson Ross, William A Alaynick, Julie Moss, Nicholas D Hastie, Peter Hohenstein, Jamie A Davies, Ronald M Evans, David R FitzPatrick. Esrrg functions in early branch generation of the ureteric bud and is essential for normal development of the renal papilla.
Human molecular genetics.
2011 Mar; 20(5):917-26. doi:
10.1093/hmg/ddq530
. [PMID: 21138943] - Santosh Singh Bhadoriya, Aditya Ganeshpurkar, Jitendra Narwaria, Gopal Rai, Alok Pal Jain. Tamarindus indica: Extent of explored potential.
Pharmacognosy reviews.
2011 Jan; 5(9):73-81. doi:
10.4103/0973-7847.79102
. [PMID: 22096321] - Helen L Rose, Caroline A Dewey, Morgan S Ely, Sarah L Willoughby, Tanya M Parsons, Victoria Cox, Phillippa M Spencer, Simon A Weller. Comparison of eight methods for the extraction of Bacillus atrophaeus spore DNA from eleven common interferents and a common swab.
PloS one.
2011; 6(7):e22668. doi:
10.1371/journal.pone.0022668
. [PMID: 21818364] - Xiaobo Gu, Sari Izenwasser, Dean Wade, Amy Housman, Gerard Gulasey, Jill B Rhoden, Christopher D Savoie, David L Mobley, Stacey A Lomenzo, Mark L Trudell. Synthesis and structure-activity studies of benzyl ester meperidine and normeperidine derivatives as selective serotonin transporter ligands.
Bioorganic & medicinal chemistry.
2010 Dec; 18(23):8356-64. doi:
10.1016/j.bmc.2010.09.060
. [PMID: 20980153] - Michiel van Wijk, Paulien J A de Bruijn, Maurice W Sabelis. The predatory mite Phytoseiulus persimilis does not perceive odor mixtures as strictly elemental objects.
Journal of chemical ecology.
2010 Nov; 36(11):1211-25. doi:
10.1007/s10886-010-9858-3
. [PMID: 20872172] - Cielo Pasay, Kate Mounsey, Graeme Stevenson, Rohan Davis, Larry Arlian, Marjorie Morgan, Diann Vyszenski-Moher, Kathy Andrews, James McCarthy. Acaricidal activity of eugenol based compounds against scabies mites.
PloS one.
2010 Aug; 5(8):e12079. doi:
10.1371/journal.pone.0012079
. [PMID: 20711455] - Yinebeb Tariku, Ariaya Hymete, Asrat Hailu, Jens Rohloff. Constituents, antileishmanial activity and toxicity profile of volatile oil from berries of Croton macrostachyus.
Natural product communications.
2010 Jun; 5(6):975-80. doi:
. [PMID: 20614838]
- Ben Spitzer-Rimon, Elena Marhevka, Oren Barkai, Ira Marton, Orit Edelbaum, Tania Masci, Naveen-Kumar Prathapani, Elena Shklarman, Marianna Ovadis, Alexander Vainstein. EOBII, a gene encoding a flower-specific regulator of phenylpropanoid volatiles' biosynthesis in petunia.
The Plant cell.
2010 Jun; 22(6):1961-76. doi:
10.1105/tpc.109.067280
. [PMID: 20543029] - Hai-Qiang Wu, Jing Li, Zhen-Dan He, Zhi-Gang Liu. Acaricidal activities of traditional Chinese medicine against the house dust mite, Dermatophagoides farinae.
Parasitology.
2010 May; 137(6):975-83. doi:
10.1017/s0031182009991879
. [PMID: 20109248] - Aurélie Urbain, Pierre Corbeiller, Nektarios Aligiannis, Maria Halabalaki, Alexios-Leandros Skaltsounis. Hydrostatic countercurrent chromatography and ultra high pressure LC: Two fast complementary separation methods for the preparative isolation and the analysis of the fragrant massoia lactones.
Journal of separation science.
2010 May; 33(9):1198-203. doi:
10.1002/jssc.200900818
. [PMID: 20235136] - Amy E Trunkfield, Sudagar S Gurcha, Gurdyal S Besra, Timothy D H Bugg. Inhibition of Escherichia coli glycosyltransferase MurG and Mycobacterium tuberculosis Gal transferase by uridine-linked transition state mimics.
Bioorganic & medicinal chemistry.
2010 Apr; 18(7):2651-63. doi:
10.1016/j.bmc.2010.02.026
. [PMID: 20226679] - Sanju Dhawan, Rishi Kapil, Deepak N Kapoor, Manoj Kumar. Development and evaluation of in situ gel forming system for sustained delivery of cyclosporine.
Current drug delivery.
2009 Oct; 6(5):495-504. doi:
10.2174/156720109789941669
. [PMID: 19863490] - O A Oyelami, A Onayemi, O A Oyedeji, L A Adeyemi. Preliminary study of effectiveness of aloe vera in scabies treatment.
Phytotherapy research : PTR.
2009 Oct; 23(10):1482-4. doi:
10.1002/ptr.2614
. [PMID: 19274696] - Norbert A Braun, Birgit Kohlenberg, Sherina Sim, Manfred Meier, Franz-Josef Hammerschmidt. Jasminum flexile flower absolute from India--a detailed comparison with three other jasmine absolutes.
Natural product communications.
2009 Sep; 4(9):1239-50. doi:
"
. [PMID: 19831037] - J H Jeon, C H Lee, H S Lee. Food protective effect of geraniol and its congeners against stored food mites.
Journal of food protection.
2009 Jul; 72(7):1468-71. doi:
10.4315/0362-028x-72.7.1468
. [PMID: 19681271] - Eun-Young Jeong, Min-Gi Kim, Hoi-Seon Lee. Acaricidal activity of triketone analogues derived from Leptospermum scoparium oil against house-dust and stored-food mites.
Pest management science.
2009 Mar; 65(3):327-31. doi:
10.1002/ps.1684
. [PMID: 19051215] - Jeong-Hyeon Lim, Hyung-Wook Kim, Ju-Hyun Jeon, Hoi-Seon Lee. Acaricidal constituents isolated from Sinapis alba L. seeds and structure-activity relationships.
Journal of agricultural and food chemistry.
2008 Nov; 56(21):9962-6. doi:
10.1021/jf8022244
. [PMID: 18844359] - Ju-Hyun Jeon, Hyung-Wook Kim, Min-Gi Kim, Hoi-Seon Lee. Mite-control activities of active constituents isolated from Pelargonium graveolens against house dust mites.
Journal of microbiology and biotechnology.
2008 Oct; 18(10):1666-71. doi:
"
. [PMID: 18955817] - Osamu Ohno, Mao Ye, Tomoyuki Koyama, Kazunaga Yazawa, Emi Mura, Hiroshi Matsumoto, Takao Ichino, Kaoru Yamada, Kazuhiko Nakamura, Tomohiro Ohno, Kohji Yamaguchi, Junji Ishida, Akiyoshi Fukamizu, Daisuke Uemura. Inhibitory effects of benzyl benzoate and its derivatives on angiotensin II-induced hypertension.
Bioorganic & medicinal chemistry.
2008 Aug; 16(16):7843-52. doi:
10.1016/j.bmc.2008.03.056
. [PMID: 18672373] - Michiel van Wijk, Paulien J A De Bruijn, Maurice W Sabelis. Predatory mite attraction to herbivore-induced plant odors is not a consequence of attraction to individual herbivore-induced plant volatiles.
Journal of chemical ecology.
2008 Jun; 34(6):791-803. doi:
10.1007/s10886-008-9492-5
. [PMID: 18521678] - Chi-Hoon Lee, Hoi-Seon Lee. Acaricidal activity and function of mite indicator using plumbagin and its derivatives isolated from Diospyros kaki Thunb. roots (Ebenaceae).
Journal of microbiology and biotechnology.
2008 Feb; 18(2):314-21. doi:
. [PMID: 18309277]
- E Y Jeong, J H Lim, H G Kim, H S Lee. Acaricidal activity of Thymus vulgaris oil and its main components against Tyrophagus putrescentiae, a stored food mite.
Journal of food protection.
2008 Feb; 71(2):351-5. doi:
10.4315/0362-028x-71.2.351
. [PMID: 18326186] - Richard J Dexter, Julian C Verdonk, Beverly A Underwood, Kenichi Shibuya, Eric A Schmelz, David G Clark. Tissue-specific PhBPBT expression is differentially regulated in response to endogenous ethylene.
Journal of experimental botany.
2008; 59(3):609-18. doi:
10.1093/jxb/erm337
. [PMID: 18256048] - Hyun-Kyung Kim, Yeon-Kyeong Yun, Young-Joon Ahn. Fumigant toxicity of cassia bark and cassia and cinnamon oil compounds to Dermatophagoides farinae and Dermatophagoides pteronyssinus (Acari: Pyroglyphidae).
Experimental & applied acarology.
2008 Jan; 44(1):1-9. doi:
10.1007/s10493-008-9129-y
. [PMID: 18247142] - D Saïdana, M A Mahjoub, O Boussaada, J Chriaa, I Chéraif, M Daami, Z Mighri, A N Helal. Chemical composition and antimicrobial activity of volatile compounds of Tamarix boveana (Tamaricaceae).
Microbiological research.
2008; 163(4):445-55. doi:
10.1016/j.micres.2006.07.009
. [PMID: 17223327] - Susanna Roeder, Anna-Maria Hartmann, Uta Effmert, Birgit Piechulla. Regulation of simultaneous synthesis of floral scent terpenoids by the 1,8-cineole synthase of Nicotiana suaveolens.
Plant molecular biology.
2007 Sep; 65(1-2):107-24. doi:
10.1007/s11103-007-9202-7
. [PMID: 17611797] - Cosam C Joseph, Joseph J Magadula, Mayunga H H Nkunya. A novel antiplasmodial 3',5'-diformylchalcone and other constituents of Friesodielsia obovata.
Natural product research.
2007 Sep; 21(11):1009-15. doi:
10.1080/14786410701194310
. [PMID: 17691050] - Hoi-Seon Lee. Acaricidal effects of quinone and its congeners and color alteration of Dermatophagoides spp. with quinone.
Journal of microbiology and biotechnology.
2007 Aug; 17(8):1394-8. doi:
"
. [PMID: 18051611] - Topul Rali, Stewart W Wossa, David N Leach. Comparative chemical analysis of the essential oil constituents in the bark, heartwood and fruits of Cryptocarya massoy (Oken) Kosterm. (Lauraceae) from Papua New Guinea.
Molecules (Basel, Switzerland).
2007 Feb; 12(2):149-54. doi:
10.3390/12020149
. [PMID: 17846564] - Somnath Singh, Jagdish Singh. Phase-sensitive polymer-based controlled delivery systems of leuprolide acetate: in vitro release, biocompatibility, and in vivo absorption in rabbits.
International journal of pharmaceutics.
2007 Jan; 328(1):42-8. doi:
10.1016/j.ijpharm.2006.07.051
. [PMID: 16959451] - Aksam A Yassin, Mohamed Haffejee. Testosterone depot injection in male hypogonadism: a critical appraisal.
Clinical interventions in aging.
2007; 2(4):577-90. doi:
NULL
. [PMID: 18225458] - Soon-Ii Kim, Hyun-Kyung Kim, Young-Yull Koh, J Marshall Clark, Young-Joon Ahn. Toxicity of spray and fumigant products containing cassia oil to Dermatophagoides farinae and Dermatophagoides pteronyssinus (Acari: Pyroglyphidae).
Pest management science.
2006 Aug; 62(8):768-74. doi:
10.1002/ps.1243
. [PMID: 16786540] - B K Sung, J H Lim, H S Lee. Food protective and color alteration effects of acaricidal aldehydes on Tyrophagus putrescentiae (Schrank).
Journal of food protection.
2006 Jul; 69(7):1728-31. doi:
10.4315/0362-028x-69.7.1728
. [PMID: 16865912] - Feng Cao, Jian-xin Guo, Qi-neng Ping, Yun Shao, Jing Liang. [Ester prodrug of scutellarin: synthesis, physicochemical property and degradation].
Yao xue xue bao = Acta pharmaceutica Sinica.
2006 Jul; 41(7):595-602. doi:
NULL
. [PMID: 17007349] - Jun-Hyung Tak, Hyun-Kyung Kim, Seung-Hwan Lee, Young-Joon Ahn. Acaricidal activities of paeonol and benzoic acid from Paeonia suffruticosa root bark and monoterpenoids against Tyrophagus putrescentiae (Acari: Acaridae).
Pest management science.
2006 Jun; 62(6):551-7. doi:
10.1002/ps.1212
. [PMID: 16602084] - Jörg Heukelbach, Hermann Feldmeier. Scabies.
Lancet (London, England).
2006 May; 367(9524):1767-74. doi:
10.1016/s0140-6736(06)68772-2
. [PMID: 16731272] - Suk-Woo Kang, Hyun-Kyung Kim, Won-Ja Lee, Young-Joon Ahn. Toxicity of bisabolangelone from Ostericum koreanum roots to Dermatophagoides farinae and Dermatophagoides pteronyssinus (Acari: Pyroglyphidae).
Journal of agricultural and food chemistry.
2006 May; 54(10):3547-50. doi:
10.1021/jf060140d
. [PMID: 19127723] - C Giordano, V Sanginario, L Ambrosio, L Di Silvio, M Santin. Chemical-physical characterization and in vitro preliminary biological assessment of hyaluronic acid benzyl ester-hydroxyapatite composite.
Journal of biomaterials applications.
2006 Jan; 20(3):237-52. doi:
10.1177/0885328206051811
. [PMID: 16364964] - Cristina Rota, Lino Liverani, Franco Spelta, Giuseppe Mascellani, Aldo Tomasi, Anna Iannone, Elena Vismara. Free radical generation during chemical depolymerization of heparin.
Analytical biochemistry.
2005 Sep; 344(2):193-203. doi:
10.1016/j.ab.2005.06.043
. [PMID: 16098471] - Hoi-Seon Lee. Food protective effect of acaricidal components isolated from anise seeds against the stored food mite, Tyrophagus putrescentiae (Schrank).
Journal of food protection.
2005 Jun; 68(6):1208-10. doi:
10.4315/0362-028x-68.6.1208
. [PMID: 15954709] - Young-Su Jang, Chi-Hoon Lee, Moo-Key Kim, Jeong-Hak Kim, Sang-Hyun Lee, Hoi-Seon Lee. Acaricidal activity of active constituent isolated in Chamaecyparis obtusa leaves against Dermatophagoides spp.
Journal of agricultural and food chemistry.
2005 Mar; 53(6):1934-7. doi:
10.1021/jf048472a
. [PMID: 15769116] - Sang Zin Choi, Sang Un Choi, Seong Yun Bae, Suhk neung Pyo, Kang Ro Lee. Immunobiological [correction of Immunobioloical] activity of a new benzyl benzoate from the aerial parts of Solidago virga-aurea var. gigantea.
Archives of pharmacal research.
2005 Jan; 28(1):49-54. doi:
10.1007/bf02975135
. [PMID: 15742808] - Uta Effmert, Jana Große, Ursula S R Röse, Fred Ehrig, Ralf Kägi, Birgit Piechulla. Volatile composition, emission pattern, and localization of floral scent emission in Mirabilis jalapa (Nyctaginaceae).
American journal of botany.
2005 Jan; 92(1):2-12. doi:
10.3732/ajb.92.1.2
. [PMID: 21652378] - Hyun-Kyung Kim, Jun-Hyung Tak, Young-Joon Ahn. Acaricidal activity of Paeonia suffruticosa root bark-derived compounds against Dermatophagoides farinae and Dermatophagoides pteronyssinus (Acari: Pyroglyphidae).
Journal of agricultural and food chemistry.
2004 Dec; 52(26):7857-61. doi:
10.1021/jf048708a
. [PMID: 15612767] - Shafii Khamis, Michael C Bibby, John E Brown, Patricia A Cooper, Ian Scowen, Colin W Wright. Phytochemistry and preliminary biological evaluation of Cyathostemma argenteum, a malaysian plant used traditionally for the treatment of breast cancer.
Phytotherapy research : PTR.
2004 Jul; 18(7):507-10. doi:
10.1002/ptr.1318
. [PMID: 15305306] - Hoi-Seon Lee. Acaricidal activity of constituents identified in Foeniculum vulgare fruit oil against Dermatophagoides spp. (Acari: Pyroglyphidae).
Journal of agricultural and food chemistry.
2004 May; 52(10):2887-9. doi:
10.1021/jf049631t
. [PMID: 15137830] - N Kupfermann, A Schmoldt, H Steinhart. Rapid and sensitive quantitative analysis of alkyl phosphates in urine after organophosphate poisoning.
Journal of analytical toxicology.
2004 May; 28(4):242-8. doi:
10.1093/jat/28.4.242
. [PMID: 15189674] - John H Grabber, John Ralph, Catherine Lapierre, Yves Barrière. Genetic and molecular basis of grass cell-wall degradability. I. Lignin-cell wall matrix interactions.
Comptes rendus biologies.
2004 May; 327(5):455-65. doi:
10.1016/j.crvi.2004.02.009
. [PMID: 15255476] - U Dimri, M C Sharma. Effects of sarcoptic mange and its control with oil of Cedrus deodara, Pongamia glabra, Jatropha curcas and benzyl benzoate, both with and without ascorbic acid on growing sheep: epidemiology; assessment of clinical, haematological, cell-mediated humoral immune responses and pathology.
Journal of veterinary medicine. A, Physiology, pathology, clinical medicine.
2004 Mar; 51(2):71-8. doi:
10.1111/j.1439-0442.2004.00601.x
. [PMID: 15153076] - U Dimri, M C Sharma. Effects of sarcoptic mange and its control with oil of Cedrus deodara, Pongamia glabra, Jatropha curcas and benzyl benzoate, both with and without ascorbic acid on growing sheep: assessment of weight gain, liver function, nutrient digestibility, wool production and meat quality.
Journal of veterinary medicine. A, Physiology, pathology, clinical medicine.
2004 Mar; 51(2):79-84. doi:
10.1111/j.1439-0442.2004.00602.x
. [PMID: 15153077] - Hoi-Seon Lee. p-Anisaldehyde: acaricidal component of Pimpinella anisum seed oil against the house dust mites Dermatophagoides farinae and Dermatophagoides pteronyssinus.
Planta medica.
2004 Mar; 70(3):279-81. doi:
10.1055/s-2004-818925
. [PMID: 15114512] - Noah Scheinfeld. Controlling scabies in institutional settings: a review of medications, treatment models, and implementation.
American journal of clinical dermatology.
2004; 5(1):31-7. doi:
10.2165/00128071-200405010-00005
. [PMID: 14979741] - Dae Sik Jang, Eun Jung Park, Young-Hwa Kang, Michael E Hawthorne, Jose Schunke Vigo, James G Graham, Fernando Cabieses, Harry H S Fong, Rajendra G Mehta, John M Pezzuto, A Douglas Kinghorn. Potential cncer chemopreventive flavonoids from the stems of Tephrosia toxicaria.
Journal of natural products.
2003 Sep; 66(9):1166-70. doi:
10.1021/np0302100
. [PMID: 14510590] - M Ricking, J Schwarzbauer, S Franke. Molecular markers of anthropogenic activity in sediments of the Havel and Spree Rivers (Germany).
Water research.
2003 Jun; 37(11):2607-17. doi:
10.1016/s0043-1354(03)00078-2
. [PMID: 12753838] - B Akendengue, E Ngou-Milama, H Bourobou-Bourobou, J Essouma, F Roblot, C Gleye, A Laurens, R Hocquemiller, P Loiseau, C Bories. Acaricidal activity of Uvaria versicolor and Uvaria Klaineana (Annonaceae).
Phytotherapy research : PTR.
2003 Apr; 17(4):364-7. doi:
10.1002/ptr.1158
. [PMID: 12722141]