Paclitaxel (BioDeep_00000001632)

 

Secondary id: BioDeep_00000411036

human metabolite PANOMIX_OTCML-2023 blood metabolite Chemicals and Drugs


代谢物信息卡片


Benzenepropanoic acid, beta-(benzoylamino)-alpha-hydroxy-, 6,12b-bis(acetyloxy)-12-(benzoyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-4,11-dihydroxy-4a,8,13,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca(3,4)benz(1,2-b)oxet-9-yl ester, (2aR-(2a-alpha,4-beta,4a-beta,6-beta,9-alpha(alpha-R*,beta-S*),11-alpha,12-alpha,12a-alpha, 12b-alpha))-

化学式: C47H51NO14 (853.3309386)
中文名称: 紫杉醇
谱图信息: 最多检出来源 Homo sapiens(urine) 0.18%

Reviewed

Last reviewed on 2024-08-09.

Cite this Page

Paclitaxel. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/paclitaxel (retrieved 2024-09-17) (BioDeep RN: BioDeep_00000001632). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C(O7)[C@]([C@@H]57)(C([C@@H]4OC(c(c6)cccc6)=O)[C@]([C@H](C5)O)(C)C(=O)[C@@H](C(C(C)(C)3)=C(C)[C@H](C[C@](O)34)OC([C@H](O)[C@@H](NC(=O)c(c2)cccc2)c(c1)cccc1)=O)OC(C)=O)OC(C)=O
InChI: InChI=1S/C47H51NO14/c1-25-31(60-43(56)36(52)35(28-16-10-7-11-17-28)48-41(54)29-18-12-8-13-19-29)23-47(57)40(61-42(55)30-20-14-9-15-21-30)38-45(6,32(51)22-33-46(38,24-58-33)62-27(3)50)39(53)37(59-26(2)49)34(25)44(47,4)5/h7-21,31-33,35-38,40,51-52,57H,22-24H2,1-6H3,(H,48,54)/t31-,32-,33+,35-,36+,37+,38-,40-,45+,46-,47+/m0/s1

描述信息

Taxol appears as needles (from aqueous methanol) or fine white powder. An anti-cancer drug.
Paclitaxel is a tetracyclic diterpenoid isolated originally from the bark of the Pacific yew tree, Taxus brevifolia. It is a mitotic inhibitor used in cancer chemotherapy. Note that the use of the former generic name taxol is now limited, as Taxol is a registered trade mark. It has a role as a microtubule-stabilising agent, a metabolite, a human metabolite and an antineoplastic agent. It is a tetracyclic diterpenoid and a taxane diterpenoid. It is functionally related to a baccatin III.
Paclitaxel is a chemotherapeutic agent marketed under the brand name Taxol among others. Used as a treatment for various cancers, paclitaxel is a mitotic inhibitor that was first isolated in 1971 from the bark of the Pacific yew tree which contains endophytic fungi that synthesize paclitaxel. It is available as an intravenous solution for injection and the newer formulation contains albumin-bound paclitaxel marketed under the brand name Abraxane.
Paclitaxel is a Microtubule Inhibitor. The physiologic effect of paclitaxel is by means of Microtubule Inhibition.
Paclitaxel is an antineoplastic agent which acts by inhibitor of cellular mitosis and which currently plays a central role in the therapy of ovarian, breast, and lung cancer. Therapy with paclitaxel has been associated with a low rate of serum enzyme elevations, but has not been clearly linked to cases of clinically apparent acute liver injury.
Paclitaxel is a natural product found in Taxomyces andreanae, Penicillium aurantiacobrunneum, and other organisms with data available.
Paclitaxel is a compound extracted from the Pacific yew tree Taxus brevifolia with antineoplastic activity. Paclitaxel binds to tubulin and inhibits the disassembly of microtubules, thereby resulting in the inhibition of cell division. This agent also induces apoptosis by binding to and blocking the function of the apoptosis inhibitor protein Bcl-2 (B-cell Leukemia 2). (NCI04)
A cyclodecane isolated from the bark of the Pacific yew tree, TAXUS brevifolia. It stabilizes microtubules in their polymerized form leading to cell death. ABI-007 (Abraxane) is the latest attempt to improve upon paclitaxel, one of the leading chemotherapy treatments. Both drugs contain the same active agent, but Abraxane is delivered by a nanoparticle technology that binds to albumin, a natural protein, rather than the toxic solvent known as Cremophor. It is thought that delivering paclitaxel with this technology will cause fewer hypersensitivity reactions and possibly lead to greater drug uptake in tumors. Paclitaxel is a mitotic inhibitor used in cancer chemotherapy. It was discovered in a US National Cancer Institute program at the Research Triangle Institute in 1967 when Monroe E. Wall and Mansukh C. Wani isolated it from the bark of the Pacific yew tree, Taxus brevifolia and named it taxol. Later it was discovered that endophytic fungi in the bark synthesize paclitaxel.
See also: Paclitaxel Poliglumex (is active moiety of).
A cyclodecane isolated from the bark of the Pacific yew tree, TAXUS brevifolia. It stabilizes microtubules in their polymerized form leading to cell death. [PubChem] ABI-007 (Abraxane) is the latest attempt to improve upon paclitaxel, one of the leading chemotherapy treatments. Both drugs contain the same active agent, but Abraxane is delivered by a nanoparticle technology that binds to albumin, a natural protein, rather than the toxic solvent known as Cremophor. It is thought that delivering paclitaxel with this technology will cause fewer hypersensitivity reactions and possibly lead to greater drug uptake in tumors.
A tetracyclic diterpenoid isolated originally from the bark of the Pacific yew tree, Taxus brevifolia. It is a mitotic inhibitor used in cancer chemotherapy. Note that the use of the former generic name taxol is now limited, as Taxol is a registered trade mark.
L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01C - Plant alkaloids and other natural products > L01CD - Taxanes
C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent
[Raw Data] CB246_Paclitaxel_pos_20eV_CB000085.txt
[Raw Data] CB246_Paclitaxel_pos_10eV_CB000085.txt
[Raw Data] CB246_Paclitaxel_pos_30eV_CB000085.txt
[Raw Data] CB246_Paclitaxel_pos_40eV_CB000085.txt
[Raw Data] CB246_Paclitaxel_pos_50eV_CB000085.txt
Paclitaxel is a naturally occurring antineoplastic agent and stabilizes tubulin polymerization. Paclitaxel can cause both mitotic arrest and apoptotic cell death. Paclitaxel also induces autophagy[1][2].
Paclitaxel is a naturally occurring antineoplastic agent and stabilizes tubulin polymerization. Paclitaxel can cause both mitotic arrest and apoptotic cell death. Paclitaxel also induces autophagy[1][2].

同义名列表

184 个代谢物同义名

Benzenepropanoic acid, beta-(benzoylamino)-alpha-hydroxy-, 6,12b-bis(acetyloxy)-12-(benzoyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-4,11-dihydroxy-4a,8,13,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca(3,4)benz(1,2-b)oxet-9-yl ester, (2aR-(2a-alpha,4-beta,4a-beta,6-beta,9-alpha(alpha-R*,beta-S*),11-alpha,12-alpha,12a-alpha, 12b-alpha))-; Benzenepropanoic acid, beta-(benzoylamino)-alpha-hydroxy-, 6,12b-bis(acetyloxy)-12-(benzoyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-4,11-dihydroxy-4a,8,13,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca(3,4)benz(1,2-b)oxet-9-yl ester, (2aR-(2aalpha,4beta,4abeta,6beta,9alpha(alphaR*,betaS*),11alpha,12alpha,12aalpha,12balpha))-; Benzenepropanoic acid, beta-(benzoylamino)-alpha-hydroxy-, 4,6,12b-tris(acetyloxy)-12-(benzoyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-11-hydroxy-4a,8,13,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca[3,4]benz[1,2-b]oxet-9-yl ester, [2aR-[2aalpha,4beta,4abeta,6beta,9alpha(alphaR*,betaS*),11alpha,12alpha,12aalpha,12balpha]]-; Benzenepropanoic acid, 6,12b-bis(acetyl oxy)-12-(benzoyloxy)- 2a,3,4,4a,5,6,9,10,11,12,12a,12b,- dodecahydro-4,11- dihydroxy-4a,8,13,13-tetramethyl-5-oxo- 7,11-methano- 1H-cyclodeca[3,4]benz[1,2-b]oxet-9-yl ester, [2aR- [2a.alpha.,4.beta.,4a.beta.,6.beta.,9.alpha.(alpha. R*,.beta.S*),11.alpha.,12.alpha.,12a.alpha.,12b.alpha.]]-; (2aR-(2aalpha,4beta,4abeta,6beta,9alpha(alpha R*,betaS*),11alpha,12alpha,12balpha))-beta-(Benzoylamino)-alpha-hydroxybenzenepropanoic acid 6,12b-bis(acetyloxy)-12-(benzoyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-4,11-dihydroxy-4a,8,13,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca(3,4)benz(1,2-b)oxet-9-yl ester; (2AR-(2aalpha,4beta,4abeta,6beta,9alpha(alpha r*,betas*),11alpha,12alpha,12balpha))-beta-(benzoylamino)-alpha-hydroxybenzenepropanoate 6,12b-bis(acetyloxy)-12-(benzoyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-4,11-dihydroxy-4a,8,13,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca(3,4)benz(1,2-b)oxet-9-yl ester; BENZENEPROPANOIC ACID, .BETA.-(BENZOYLAMINO)-.ALPHA.-HYDROXY-, (2AR,4S,4AS,6R,9S,11S,12S,12AR,12BS)-6,12B-BIS(ACETYLOXY)-12-(BENZOYLOXY)-2A,3,4,4A,5,6,9,10,11,12,12A,12B-DODECAHYDRO-4,11-DIHYDROXY-4A,8,13,13-TETRAMETHYL-5-OXO-7,11-METHANO-1H-CYCLODECA(3,4)BENZ(1,2-B)OXET-9-YL ESTER, (.ALPHA.R,.BETA.S)-; Benzenepropanoic acid, beta-(benzoylamino)-alpha-hydroxy-, (2aR,4S,4aS,6R,9S,11S,12S,12aR,12bS)-6,12b-bis(acetyloxy)-12-(benzoyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-4,11-dihydroxy-4a,8,13,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca(3,4)benz(1,2-b)oxet-9-yl ester, (alphaR,betaS)-; Benzenepropanoic acid, beta-(benzoylamino)-alpha-hydroxy-, (2aR,4S,4aS,6R,9S,11S,12S,12aR,12bS)-4,6,12b-tris(acetyloxy)-12-(benzoyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-11-hydroxy-4a,8,13,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca[3,4]benz[1,2-b]oxet-9-yl ester, (alphaR,betaS)-; (2AR-(2aalpha,4b,4abeta,6b,9a(a r*,betas*),11a,12a,12balpha))-b-(benzoylamino)-a-hydroxybenzenepropanoic acid 6,12b-bis(acetyloxy)-12-(benzoyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-4,11-dihydroxy-4a,8,13,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca(3,4)benz(1,2-b)oxet-9-yl ester; (2AR-(2aalpha,4β,4abeta,6β,9α(α r*,betas*),11α,12α,12balpha))-β-(benzoylamino)-α-hydroxybenzenepropanoic acid 6,12b-bis(acetyloxy)-12-(benzoyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-4,11-dihydroxy-4a,8,13,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca(3,4)benz(1,2-b)oxet-9-yl ester; (2AR-(2aalpha,4b,4abeta,6b,9a(a r*,betas*),11a,12a,12balpha))-b-(benzoylamino)-a-hydroxybenzenepropanoate 6,12b-bis(acetyloxy)-12-(benzoyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-4,11-dihydroxy-4a,8,13,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca(3,4)benz(1,2-b)oxet-9-yl ester; (2AR-(2aalpha,4β,4abeta,6β,9α(α r*,betas*),11α,12α,12balpha))-β-(benzoylamino)-α-hydroxybenzenepropanoate 6,12b-bis(acetyloxy)-12-(benzoyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-4,11-dihydroxy-4a,8,13,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca(3,4)benz(1,2-b)oxet-9-yl ester; Benzenepropanoic acid, b-(benzoylamino)-.alpha.-hydroxy-, (2aR,4S,4aS,6R,9S,11S,12S,12aR,12bS)-6,12b-bis(acetyloxy)-12-(benzoyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-4,11-dihydroxy-4a,8,13,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca[3,4]benz[1,2-b]oxet-9-yl ester, (aR,bS)-; (2aR,4S,4aS,6R,9S,11S,12S,12aR,12bS)-4,6,12b-Tris(acetyloxy)-12-(benzoyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-11-hydroxy-4a,8,13,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca[3,4]benz[1,2-b]oxet-9-yl (alphaR,betaS)-beta-(benzoylamino)-alpha-hydroxybenzenepropanoate; (2aR,4S,4aS,6R,9S,11S,12S,12aR,12bS)-9-(((2R,3S)-3-benzamido-2-hydroxy-3-phenylpropanoyl)oxy)-12-(benzoyloxy)-4,11-dihydroxy-4a,8,13,13-tetramethyl-5-oxo-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-1H-7,11-methanocyclodeca[3,4]benzo[1,2-b]oxete-6,12b-diyl diacetate; (2aR,4S,4aS,6R,9S,11S,12S,12aR,12bS)-6,12b-bis(acetyloxy)-12-(benzoyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-4,11-dihydroxy-4a,8,13,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca[3,4]benz[1,2-b]oxet-9-yl (aR,bS)-b-(benzoylamino)-a-hydroxybenzenepropanoate; (2aR,4S,4aS,6R,9S,11S,12S,12aR,12bS)-1,2a,3,4,4a,6,9,10,11,12,12a,12b-Dodecahydro-4,6,9,11,12,12b-hexahydroxy-4a,8,13,13-tetramethyl-7,11-methano-5H-cyclodeca(3,4)benz(1,2-b)oxet-5-one 6,12b-diacetate, 12-benzoate, 9-ester with (2R,3S)-N-benzoyl-3-phenylisoserine; (2aR,4S,4aS,6R,9S,11S,12S,12aR,12bS)-9-(((2R,3S)-3-benzamido-2-hydroxy-3-phenylpropanoyl)oxy)-12-(benzoyloxy)-4,11-dihydroxy-4a,8,13,13-tetramethyl-5-oxo-3,4,4a,5,6,9,10,11,12,12a-decahydro-1H-7,11-methanocyclodeca[3,4]benzo[1,2-b]oxete-6,12b(2aH)-diyl diacetate; Paclitaxel; 5beta,20-Epoxy-1,7beta-dihydroxy-9-oxotax-11-ene-2alpha,4,10beta,13alpha-tetrayl 4,10-diacetate 2-benzoate 13-[(2R,3S)-3-(benzoylamino)-2-hydroxy-3-phenylpropanoate]; Taxol; Docetaxel Anhydrous Impurity F; Docetaxel Impurity F; (1S,2S,3R,4S,7R,9S,10S,12R,15S)-4,12-bis(acetyloxy)-1,9-dihydroxy-15-{[(2R,3S)-2-hydroxy-3-phenyl-3-(phenylformamido)propanoyl]oxy}-10,14,17,17-tetramethyl-11-oxo-6-oxatetracyclo[11.3.1.0^{3,10}.0^{4,7}]heptadec-13-en-2-yl benzoate; (1S,2S,3R,4S,7R,9S,10S,12R,15S)-4,12-bis(acetyloxy)-1,9-dihydroxy-15-{[(2R,3S)-2-hydroxy-3-phenyl-3-(phenylformamido)propanoyl]oxy}-10,14,17,17-tetramethyl-11-oxo-6-oxatetracyclo[11.3.1.0³,¹⁰.0⁴,⁷]heptadec-13-en-2-yl benzoate; [(1S,2S,3R,4S,7R,9S,10S,12R,15S)-4,12-diacetyloxy-15-[(2R,3S)-3-benzamido-2-hydroxy-3-phenylpropanoyl]oxy-1,9-dihydroxy-10,14,17,17-tetramethyl-11-oxo-6-oxatetracyclo[11.3.1.03,10.04,7]heptadec-13-en-2-yl] benzoate; [(1S,2S,3R,4S,7R,9S,10S,12R,15S)-4,12-diacetyloxy-15-[(2R,3S)-3-benzamido-2-hydroxy-3-phenylpropanoyl]oxy-1,9-dihydroxy-10,14,17,17-tetramethyl-11-oxo-6-oxatetracyclo[11.3.1.03,10.04,7]heptadec-13-en-2-yl]benzoate; (2aR,4S,4aS,6R,9S,11S,12S,12aR,12bS)-1,2a,3,4,4a,6,9,10,11,12,12a,12b-Dodecahydro 4,6,9,11,12,12b-hexahydroxy-4a,8,13,13-tetramethyl-7,11-methano 5Hcyclodeca(3,4)benz(1,2-b)oxet-5-one 6,12b-diacetate,; (2aR-(2aalpha,4beta,4abeta,6beta,9alpha(alpha R*,betaS*),11alpha,12alpha,12balpha))-beta-(Benzoylamino)-alpha-hydroxybenzenepropanoic acid 6,12b-bis(acetyloxy)-12-(benzoyloxy)-2a,3,4,4a,5,6,9,10,11,12; Benzenepropanoic acid, beta-(benzoylamino)-alpha-hydroxy-, (2aR,4S,4aS,6R,9S,11S,12S,12aR,12bS)-6,12b-bis(acetyloxy)-12-(benzoyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-4,11-dihydroxy-4a,8,13; Benzenepropanoic acid, beta-(benzoylamino)-alpha-hydroxy-, 6,12b-bis(acetyloxy)-12-(benzoyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-4,11-dihydroxy-4a,8,13,13-tetramethyl-5-oxo-7,11-methano-1H; (2beta,5beta,7alpha,8alpha,10alpha,13alpha)-4,10-bis(acetyloxy)-1,7-dihydroxy-13-({(2R,3S)-2-hydroxy-3-phenyl-3-[(phenylcarbonyl)amino]propanoyl}oxy)-9-oxo-5,20-epoxytax-11-en-2-yl benzoate; (2alpha,5beta,7beta,10beta,13alpha)-4,10-bis(acetyloxy)-1,7-dihydroxy-13-({(2R,3S)-2-hydroxy-3-phenyl-3-[(phenylcarbonyl)amino]propanoyl}oxy)-9-oxo-5,20-epoxytax-11-en-2-yl benzoate; Tax-11-en-9-one, 5beta,20-epoxy-1,2alpha,4,7beta,10beta,13alpha-hexahydroxy-, 4,10-diacetate 2-benzoate 13-ester with (2R,3S)-N-benzoyl-3-phenylisoserine (8CI); TAX-11-EN-9-ONE, 5-BETA,20-EPOXY-1,2-ALPHA,4,7-BETA,10-BETA,13-ALPHA-HEXA-HYDROXY-, 4,10-DIACETATE 2-BENZOATE 13-ESTER WITH (2R,3S)-N-BENZOYL-3-PHENYLISOSERINE; 5beta,20-Epoxy-1,2-alpha,4,7beta,10beta,13alpha-hexahydroxytax-11-en-9-one 4,10-diacetic acid 2-benzoic acid 13-ester with (2R,3S)-N-benzoyl-3-phenylisoserine; Tax-11-en-9-one,20-epoxy-1,2.alpha.,4,7.beta., 10.beta.,13.alpha.- hexahydroxy-, 4,10-diacetate 2- benzoate,13-ester with (2R,3S)-N-benzoyl-3-phenylisoserine; (1S,2S,3R,4S,5R,7S,8S,10R,13S)-4,10-Diacetoxy-2-benzoyloxy-5,20-epoxy-1,7-dihydroxy-9-oxotax-11-en-13-yl (2R,3S)-3-benzoylamino-2-hydroxy-3-phenylpropionate; 5-BETA,20-EPOXY-1,2-ALPHA,4,7-BETA,10-BETA,13-ALPHA-HEXAHYDROXY-TAX-11-EN-9-ONE 4,10-DIACETATE 2-BENZOATE 13-ESTER WITH (2R,3S)-N-BENZOYL-3-PHENYL-ISOSERINE; 4alpha,10beta-bis(acetyloxy)-13alpha-((2S,3S)-3-benzamido-2-hydroxy-3-phenylpropanoyloxy)-1,7beta-dihydroxy-9-oxo-5beta,20-epoxytax-11-en-2alpha-yl benzoate; 4alpha,10beta-bis(acetyloxy)-13alpha-[(2S,3S)-3-benzamido-2-hydroxy-3-phenylpropanoyloxy]-1,7beta-dihydroxy-9-oxo-5beta,20-epoxytax-11-en-2alpha-yl benzoate; Tax-11-en-9-one, 5beta,20-epoxy-1,2alpha,4,7beta,10beta,13alpha- hexahydroxy-, 4,10-diacetate 2-benzoate, 13-ester with (2R,3S)-N-benzoyl-3-phenylisoserine; 5beta,20-Epoxy-1,2 alpha, 4,7beta, 10beta, 13alpha-hexahydroxy tax-11-en-9-one 4,10-diacetate 2-benzoate 13-ester with (2R, 3S)-N-benzoyl-3-phenylisoserine; Tax-11-en-9-one, 5beta,20-epoxy-1,2alpha,4,7beta,10beta,13alpha-hexahydroxy-, 4,10-diacetate 2-benzoate, 13-ester with (2R,3S)-N-benzoyl-3-phenylisoserine; TAX-11-EN-9-ONE, 5BETA,20-EPOXY-1,2ALPHA,4,7BETA,10BETA,13ALPHA-HEXAHYDROXY-, 4,10-DIACETATE 2-BENZOATE 13-ESTER WITH (2R,3S)-N-BENZOYL-3-PHENYLISOSERINE; 4,7beta,10beta-tris(acetyloxy)-13alpha-[[(2R,3S)-3-benzamido-2-hydroxy-3-phenylpropanoyl]oxy]-1-hydroxy-9-oxo-5beta,20-epoxytax-11-en-2alpha-yl benzoate; 5beta,20-Epoxy-1,2-alpha,4,7beta,10beta,13alpha-hexahydroxytax-11-en-9-one 4,10-diacetate 2-benzoate 13-ester with (2R,3S)-N-benzoyl-3-phenylisoserine; 5Β,20-epoxy-1,2-α,4,7β,10β,13α-hexahydroxytax-11-en-9-one 4,10-diacetic acid 2-benzoic acid 13-ester with (2R,3S)-N-benzoyl-3-phenylisoserine; 5b,20-Epoxy-1,2-a,4,7b,10b,13a-hexahydroxytax-11-en-9-one 4,10-diacetic acid 2-benzoic acid 13-ester with (2R,3S)-N-benzoyl-3-phenylisoserine; 5b,20-Epoxy-1,2-a,4,7b,10b,13a-hexahydroxytax-11-en-9-one 4,10-diacetate 2-benzoate 13-ester with (2R,3S)-N-benzoyl-3-phenylisoserine; 5Β,20-epoxy-1,2-α,4,7β,10β,13α-hexahydroxytax-11-en-9-one 4,10-diacetate 2-benzoate 13-ester with (2R,3S)-N-benzoyl-3-phenylisoserine; -cyclodeca[3,4]benz[1,2-b]oxet-9-yl ester, [2aR-[2aalpha,4beta,4abeta,6beta,9alpha(aR*,betaS*),11alpha,12alpha,12aalpha,12balpha]]-; ,12a,12b-dodecahydro-4,11-dihydroxy-4a,8,13,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca(3,4)benz(1,2-b)oxet-9-yl ester; [diacetoxy-[(2R,3S)-3-benzamido-2-hydroxy-3-phenyl-propanoyl]oxy-dihydroxy-tetramethyl-oxo-[?]yl] benzoate; ,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca[3,4]benz[1,2-b]oxet-9-yl ester, (alphaR,betaS)- (9CI); Paclitaxel semi-synthetic for peak identification, European Pharmacopoeia (EP) Reference Standard; Paclitaxel semi-synthetic for system suitability, European Pharmacopoeia (EP) Reference Standard; Paclitaxel natural for peak identification, European Pharmacopoeia (EP) Reference Standard; 7,11-Methano-1H-cyclodeca[3,4]benz[1,2-b]oxete, benzenepropanoic acid deriv.; Paclitaxel protein-bound particles for injectable suspension (albumin-bound); Paclitaxel, Pharmaceutical Secondary Standard; Certified Reference Material; Paclitaxel, United States Pharmacopeia (USP) Reference Standard; 12-benzoate, 9-ester with (2R,3S)-N-benzoyl-3-phenylisoserine; Paclitaxel, European Pharmacopoeia (EP) Reference Standard; Paclitaxel, from Taxus brevifolia, >=95\\% (HPLC), powder; Paclitaxel, from semisynthetic (from Taxus sp.), >=97\\%; 7,4]benz[1,2-b]oxete,benzenepropanoic acid deriv.; Paclitaxel, Antibiotic for Culture Media Use Only; Paclitaxel, from Taxus yannanensis, powder; Liposome-entrapped paclitaxel easy-to-use; Paclitaxel, From Taxus brevifolia, 95\\%; Abraxane (albumin-bound suspension); NAB-PACLITAXEL COMPONENT PACLITAXEL; PACLITAXEL IMPURITY L [EP IMPURITY]; Paclitaxel (USAN:USP:INN:BAN); Paclitaxel [USAN:USP:INN:BAN]; ABRAXANE COMPONENT PACLITAXEL; Paclitaxel (taxus canadensis); Paclitaxel, (4 alpha)-Isomer; Paclitaxel, Taxus brevifolia; RCINICONZNJXQF-MZXODVADSA-N; Taxol (TN) (Bristol Meyers); ORAXOL COMPONENT PACLITAXEL; PACLITAXEL (USP MONOGRAPH); PACLITAXEL [USP MONOGRAPH]; PACLITAXEL (USP IMPURITY); PACLITAXEL (EP MONOGRAPH); PACLITAXEL [EP MONOGRAPH]; PACLITAXEL [USP IMPURITY]; Abraxane I.V. Suspension; PACLITAXEL [ORANGE BOOK]; Paclitaxel (JAN/USP/INN); PACLITAXEL [GREEN BOOK]; PACLITAXEL [EMA EPAR]; PACLITAXELPACLITAXEL; Paclitaxel-SSMM-VIP; PACLITAXEL [WHO-DD]; PACLITAXEL (USP-RS); PACLITAXEL [USP-RS]; Taxol (Paclitaxel); Tocosol Paclitaxel; PACLITAXEL (MART.); Paclitaxel (Taxol); PACLITAXEL [MART.]; PACLITAXEL [VANDF]; PACLITAXEL [HSDB]; Prestwick3_000155; PACLITAXEL [USAN]; (NAB)-Paclitaxel; PACLITAXEL [JAN]; 7-epi-Paclitaxel; PACLITAXEL [INN]; Coroflex Please; PACLITAXEL [MI]; 7-Epipaclitaxel; UNII-P88XT4IS4D; Paclitaxel,(S); nab-paclitaxel; (-)-Paclitaxel; Abraxane (TN); BPBio1_000320; MEGxp0_001940; Cypher select; Taxus Express; Taxus Liberte; ACon1_002231; KBio2_005077; KBio3_002987; Tox21_112107; KBio2_007645; paclitaxelum; NCI60_000601; KBio2_002509; 7-epi-Taxol; 7 epi Taxol; Taxol, Bris; Taxus stent; TAXOL (TN); 3PPC5TL76P; P88XT4IS4D; Paclitaxel; 7-Epitaxol; Genexol-PM; P-SSMM-VIP; Paclitaxol; Bris Taxol; Infinnium; Nanotaxel; EndoTAG 1; Genetaxyl; EndoTAG-1; Cyclopax; Abraxane; Paclical; Sindaxel; Yewtaxan; Cynviloq; Ebetaxel; TaxAlbin; Plaxicel; Pacligel; LEP-ETU; Genaxol; Intaxel; Paxoral; LipoPac; Paxceed; Mitotax; Pacliex; ABI-007; Genexol; Anzatax; OncoGel; Nanoxel; Taxol A; L01CD01; Padexol; Praxel; Xorane; Capxol; Paxene; Taxus; Onxol; Onxal; Taxol; EmPAC; Zisu



数据库引用编号

29 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(5)

BioCyc(1)

PlantCyc(1)

代谢反应

53 个相关的代谢反应过程信息。

Reactome(50)

BioCyc(1)

  • taxol biosynthesis: acetyl-CoA + taxa-4(20),11-dien-5α-ol ⟶ coenzyme A + taxa-4(20),11-dien-5-α-yl acetate

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(1)

  • taxol biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + taxa-4(20),11-dien-5α-ol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + taxa-4(20),11-dien-5α,13α-diol

COVID-19 Disease Map(0)

PathBank(1)

PharmGKB(0)

67 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Keshava Prasad, Akash Saggam, Kanive Parashiva Guruprasad, Girish Tillu, Bhushan Patwardhan, Kapaettu Satyamoorthy. Molecular mechanisms of Asparagus racemosus willd. and Withania somnifera (L.) Dunal as chemotherapeutic adjuvants for breast cancer treatment. Journal of ethnopharmacology. 2024 Sep; 331(?):118261. doi: 10.1016/j.jep.2024.118261. [PMID: 38685363]
  • Liwei Zhu, Yiming Wang, Jiayi Song, Zonghai Sheng, Ji Qi, Ying Li, Guoxin Li, Ben Zhong Tang. Two-Photon Absorption Aggregation-Induced Emission Luminogen/Paclitaxel Nanoparticles for Cancer Theranostics. ACS applied materials & interfaces. 2024 May; 16(21):27075-27086. doi: 10.1021/acsami.4c02442. [PMID: 38752796]
  • Masaya Yamamoto, Hisao Hara, Shuji Kubota, Yukio Hiroi. Predictors of late lumen enlargement after drug-coated balloon angioplasty for de novo coronary lesions. EuroIntervention : journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology. 2024 May; 20(9):602-612. doi: 10.4244/eij-d-23-00849. [PMID: 38726721]
  • Kensaku Nishihira, Yuya Asano, Yoshisato Shibata. Efficacy of paclitaxel-coated balloon angioplasty combined with intensive lipid-lowering therapy for ST-segment elevation myocardial infarction: insights from near-infrared spectroscopy. European heart journal. 2024 May; 45(17):1576. doi: 10.1093/eurheartj/ehae073. [PMID: 38366009]
  • Manish Kumar, Abhishek Jha, Kanchan Bharti, Manjit Manjit, Pradnya Kumbhar, Vividha Dhapte-Pawar, Brahmeshwar Mishra. Lipid-coated nanocrystals of paclitaxel as dry powder for inhalation: Characterization, in-vitro performance, and pharmacokinetic assessment. Colloids and surfaces. B, Biointerfaces. 2024 May; 237(?):113865. doi: 10.1016/j.colsurfb.2024.113865. [PMID: 38520950]
  • Eun-Jeong Nam, Inyoung Cho, Hyeji Park, Seung R Paik. Multifactorial drug carrier system bringing both chemical and physical therapeutics to the treatment of tumor heterogeneity. Journal of controlled release : official journal of the Controlled Release Society. 2024 May; 369(?):101-113. doi: 10.1016/j.jconrel.2024.03.033. [PMID: 38508524]
  • Yongfei Liu, Yuhong Lin, Han Xiao, Zhangcheng Fu, Xiaohui Zhu, Xiaoyong Chen, Chunsen Li, Chenyu Ding, Chunhua Lu. mRNA-responsive two-in-one nanodrug for enhanced anti-tumor chemo-gene therapy. Journal of controlled release : official journal of the Controlled Release Society. 2024 May; 369(?):765-774. doi: 10.1016/j.jconrel.2024.04.007. [PMID: 38593976]
  • Yunhui Xu, Lijuan Yao, Yuhan Guo, Chenfeng Shi, Jing Zhou, Moli Hua. The Potential Antinociceptive Effect and Mechanism of Cannabis sativa L. Extract on Paclitaxel-Induced Neuropathic Pain in Rats Uncovered by Multi-Omics Analysis. Molecules (Basel, Switzerland). 2024 Apr; 29(9):. doi: 10.3390/molecules29091958. [PMID: 38731449]
  • Qingyu Lu, Wenhao Gao, Zhenzhen Chen, Zhihong Liu, Jie Wang, Lingjun Zeng, Xiaomu Hu, Enqin Zheng, Qian Zhang, Hongtao Song. Co-delivery of Paclitaxel/Atovaquone/Quercetin to regulate energy metabolism to reverse multidrug resistance in ovarian cancer by PLGA-PEG nanoparticles. International journal of pharmaceutics. 2024 Apr; 655(?):124028. doi: 10.1016/j.ijpharm.2024.124028. [PMID: 38518871]
  • Di Wei, Yingshu Dai, Jing Cao, Nanyan Fu. A novel fluorescent probe for visualizing viscosity changes in lipid droplets during chemotherapy-induced ferroptosis. Analytica chimica acta. 2024 Apr; 1299(?):342422. doi: 10.1016/j.aca.2024.342422. [PMID: 38499425]
  • Wenliang Sun, Chao Han, Ruirui Ge, Xiaotong Jiang, Yu Wang, Yingchao Han, Ning Wang, Yanzhi Song, Mingshi Yang, Guoliang Chen, Yihui Deng. Sialic Acid Conjugate-Modified Cationic Liposomal Paclitaxel for Targeted Therapy of Lung Metastasis in Breast Cancer: What a Difference the Cation Content Makes. Molecular pharmaceutics. 2024 Apr; 21(4):1625-1638. doi: 10.1021/acs.molpharmaceut.3c00767. [PMID: 38403951]
  • Yuefeng Fu, Xinyue Li, Xiaohan Yuan, Zhihui Zhang, Wei Wei, Cheng Xu, Jinfeng Song, Chengbo Gu. Alternaria alternata F3, a Novel Taxol-Producing Endophytic Fungus Isolated from the Fruits of Taxus cuspidata: Isolation, Characterization, Taxol Yield Improvement, and Antitumor Activity. Applied biochemistry and biotechnology. 2024 Apr; 196(4):2246-2269. doi: 10.1007/s12010-023-04661-0. [PMID: 37498379]
  • Sujeong Lee, Hye Jin Kim, Jin-Ho Choi, Hye Jung Jang, Hui Bang Cho, Hye-Ryoung Kim, Ji-In Park, Kyung-Soon Park, Keun-Hong Park. Light emitting diode (LED) irradiation of liposomes enhances drug encapsulation and delivery for improved cancer eradication. Journal of controlled release : official journal of the Controlled Release Society. 2024 Apr; 368(?):756-767. doi: 10.1016/j.jconrel.2024.03.027. [PMID: 38499090]
  • Yiwei Zhang, Wei Xiao, Siqin He, Xue Xia, Wenqin Yang, Zhihang Yang, Haili Hu, Yushan Wang, Xiaorong Wang, Hanmei Li, Yuan Huang, Huile Gao. Lipid-mediated protein corona regulation with increased apolipoprotein A-I recruitment for glioma targeting. Journal of controlled release : official journal of the Controlled Release Society. 2024 Apr; 368(?):42-51. doi: 10.1016/j.jconrel.2024.02.020. [PMID: 38365180]
  • Donghuan Xu, Zhong Wang, Weibing Zhuang, Fan Zhang, Yinfeng Xie, Tao Wang. Genome-Wide Identification and Expression Pattern Analysis of BAHD Acyltransferase Family in Taxus mairei. International journal of molecular sciences. 2024 Mar; 25(7):. doi: 10.3390/ijms25073777. [PMID: 38612586]
  • Chengshuai Yang, Yan Wang, Zhen Su, Lunyi Xiong, Pingping Wang, Wen Lei, Xing Yan, Dawei Ma, Guoping Zhao, Zhihua Zhou. Biosynthesis of the highly oxygenated tetracyclic core skeleton of Taxol. Nature communications. 2024 Mar; 15(1):2339. doi: 10.1038/s41467-024-46583-3. [PMID: 38490987]
  • Asmaa Gamal, Eman Fikry, Nora Tawfeek, Azza M El-Shafae, Ashraf S A El-Sayed, Maher M El-Domiaty. Production and bioprocessing of Taxol from Aspergillus niger, an endophyte of Encephalartos whitelockii, with a plausible biosynthetic stability: antiproliferative activity and cell cycle analysis. Microbial cell factories. 2024 Mar; 23(1):78. doi: 10.1186/s12934-024-02356-7. [PMID: 38475853]
  • Zhenlu Xu, Yaohua Zhai, Huimin Chang, Da Yan, Pengliang Ge, Guangming Ren, Lijun Zhang, Ye Yuan, Ruoyan Wang, Wentao Li, Fuguang Li, Maozhi Ren, Huijuan Mo. Heterologous expression of taxane genes confers resistance to fall armyworm in Nicotiana benthamiana. Plant cell reports. 2024 Mar; 43(4):94. doi: 10.1007/s00299-024-03169-z. [PMID: 38472660]
  • Siqi He, Ingy I Abdallah, Ronald van Merkerk, Wim J Quax. Insights into taxadiene synthase catalysis and promiscuity facilitated by mutability landscape and molecular dynamics. Planta. 2024 Mar; 259(4):87. doi: 10.1007/s00425-024-04363-9. [PMID: 38460012]
  • Xiaonan Liu, Xiaoxi Zhu, Jian Cheng, Huifeng Jiang. A new era for paclitaxel biosynthesis is coming. Molecular plant. 2024 03; 17(3):370-371. doi: 10.1016/j.molp.2024.01.005. [PMID: 38243592]
  • Paromita Islam, Sabrina Schaly, Ahmed Kh Abosalha, Jacqueline Boyajian, Rahul Thareja, Waqar Ahmad, Dominique Shum-Tim, Satya Prakash. Nanotechnology in development of next generation of stent and related medical devices: Current and future aspects. Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology. 2024 Mar; 16(2):e1941. doi: 10.1002/wnan.1941. [PMID: 38528392]
  • Priyanka Joshi, Saraswati Patel, Ajita Paliwal, Smita Jain, Kanika Verma, Jaya Dwivedi, Swapnil Sharma. Tinospora cordifolia ameliorates paclitaxel-induced neuropathic pain in albino rats. Journal of ethnopharmacology. 2024 Mar; 321(?):117559. doi: 10.1016/j.jep.2023.117559. [PMID: 38072294]
  • Kai Sun, Shichong Liao, Xinrui Yao, Feng Yao. USP30 promotes the progression of breast cancer by stabilising Snail. Cancer gene therapy. 2024 Mar; 31(3):472-483. doi: 10.1038/s41417-023-00718-8. [PMID: 38146008]
  • Lei Huang, Yao Lv, Shasha Guan, Huan Yan, Lu Han, Zhikuan Wang, Quanli Han, Guanghai Dai, Yan Shi. High somatic mutations in circulating tumor DNA predict response of metastatic pancreatic ductal adenocarcinoma to first-line nab-paclitaxel plus S-1: prospective study. Journal of translational medicine. 2024 Feb; 22(1):184. doi: 10.1186/s12967-024-04989-z. [PMID: 38378604]
  • Na Song, Zhe Sun, Bo Wang, Xin Liu, Binbin Hu, Ninglin Chen, Sihe Zhang, Zhilin Yu. Suicide gene delivery by morphology-adaptable enantiomeric peptide assemblies for combined ovarian cancer therapy. Acta biomaterialia. 2024 Feb; 175(?):250-261. doi: 10.1016/j.actbio.2023.12.020. [PMID: 38122884]
  • Priyanka Sati, Eshita Sharma, Praveen Dhyani, Dharam Chand Attri, Rohit Rana, Lashyn Kiyekbayeva, Dietrich Büsselberg, Samson Mathews Samuel, Javad Sharifi-Rad. Paclitaxel and its semi-synthetic derivatives: comprehensive insights into chemical structure, mechanisms of action, and anticancer properties. European journal of medical research. 2024 Jan; 29(1):90. doi: 10.1186/s40001-024-01657-2. [PMID: 38291541]
  • Jieyu Long, Wanshan Hu, Tao Ren, Xuewen Wang, Chao Lu, Xin Pan, Chuanbin Wu, Tingting Peng. Combating multidrug resistance of breast cancer with ginsenoside Rh2-irrigated nano-in-thermogel. International journal of pharmaceutics. 2024 Jan; 650(?):123718. doi: 10.1016/j.ijpharm.2023.123718. [PMID: 38104849]
  • Bin Jiang, Lei Gao, Haijun Wang, Yaping Sun, Xiaolin Zhang, Han Ke, Shengchao Liu, Pengchen Ma, Qinggang Liao, Yue Wang, Huan Wang, Yugeng Liu, Ran Du, Torben Rogge, Wei Li, Yi Shang, K N Houk, Xingyao Xiong, Daoxin Xie, Sanwen Huang, Xiaoguang Lei, Jianbin Yan. Characterization and heterologous reconstitution of Taxus biosynthetic enzymes leading to baccatin III. Science (New York, N.Y.). 2024 Jan; ?(?):eadj3484. doi: 10.1126/science.adj3484. [PMID: 38271490]
  • İbrahim Aktaş, Fatih Mehmet Gur, Sedat Bilgiç. Protective effect of misoprostol against paclitaxel-induced cardiac damage in rats. Prostaglandins & other lipid mediators. 2024 Jan; 171(?):106813. doi: 10.1016/j.prostaglandins.2024.106813. [PMID: 38253234]
  • Yunfeng Hu, Jiahui Zou, Qianqian Wang, Yang Chen, Hui Wang, Jin Li. Lipoprotein-mimicking nanotherapeutics reconstituted with chenodeoxycholic acid modified protein for efficient tumor?targeting. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V. 2024 Jan; ?(?):114184. doi: 10.1016/j.ejpb.2024.114184. [PMID: 38244896]
  • Yong Zhao, Feiyan Liang, Yuman Xie, Yao-Tao Duan, Aggeliki Andeadelli, Irini Pateraki, Antonios M Makris, Thomas G Pomorski, Dan Staerk, Sotirios C Kampranis. Oxetane Ring Formation in Taxol Biosynthesis Is Catalyzed by a Bifunctional Cytochrome P450 Enzyme. Journal of the American Chemical Society. 2024 Jan; 146(1):801-810. doi: 10.1021/jacs.3c10864. [PMID: 38129385]
  • Chao Hong, Anni Wang, Jiaxuan Xia, Jianming Liang, Ying Zhu, Dan Wang, Huaxing Zhan, Chunbo Feng, Xinnan Jiang, Junjie Pan, Jianxin Wang. Ginsenoside Rh2-Based Multifunctional Liposomes for Advanced Breast Cancer Therapy. International journal of nanomedicine. 2024; 19(?):2879-2888. doi: 10.2147/ijn.s437733. [PMID: 38525007]
  • Na Qi, Xiantai Zhou, Ningzhu Ma, Jianguo Zhang, Zhenlin Wang, Xin Zhang, Aimin Li. Integrin αvβ3 and LHRH Receptor Double Directed Nano-Analogue Effective Against Ovarian Cancer in Mice Model. International journal of nanomedicine. 2024; 19(?):3071-3086. doi: 10.2147/ijn.s442921. [PMID: 38562611]
  • Guangyi Gao, Wenhang Zhou, Xuan Jiang, Jun Ma. Bovine serum albumin and folic acid-modified aurum nanoparticles loaded with paclitaxel and curcumin enhance radiotherapy sensitization for esophageal cancer. International journal of radiation biology. 2024; 100(3):411-419. doi: 10.1080/09553002.2023.2281524. [PMID: 37934908]
  • Karan Mediratta, Sara El-Sahli, Marie Marotel, Muhammad Z Awan, Melanie Kirkby, Ammar Salkini, Reem Kurdieh, Salman Abdisalam, Amit Shrestha, Chiara Di Censo, Andrew Sulaiman, Sarah McGarry, Jessie R Lavoie, Zhen Liu, Seung-Hwan Lee, Xuguang Li, Giuseppe Sciumè, Vanessa M D'Costa, Michele Ardolino, Lisheng Wang. Targeting CD73 with flavonoids inhibits cancer stem cells and increases lymphocyte infiltration in a triple-negative breast cancer mouse model. Frontiers in immunology. 2024; 15(?):1366197. doi: 10.3389/fimmu.2024.1366197. [PMID: 38601156]
  • Yameng Zhu, Mengxuan Wu, Xinxin Miao, Boyao Wang, Jun He, Xilong Qiu. Delivery of paclitaxel by carboxymethyl chitosan-functionalized dendritic fibrous nano-silica: Fabrication, characterization, controlled release performance and pharmacokinetics. International journal of biological macromolecules. 2024 Jan; 256(Pt 1):128431. doi: 10.1016/j.ijbiomac.2023.128431. [PMID: 38029896]
  • Ying Wang, Xiumei Luo, Haotian Su, Ge Guan, Shuang Liu, Maozhi Ren. Technology Invention and Mechanism Analysis of Rapid Rooting of Taxus × media Rehder Branches Induced by Agrobacterium rhizogenes. International journal of molecular sciences. 2023 Dec; 25(1):. doi: 10.3390/ijms25010375. [PMID: 38203546]
  • Negar Nasri, Shaghayegh Saharkhiz, Ghasem Dini, Saghar Yousefnia. Thermo- and pH-responsive targeted lipid-coated mesoporous nano silica platform for dual delivery of paclitaxel and gemcitabine to overcome HER2-positive breast cancer. International journal of pharmaceutics. 2023 Dec; 648(?):123606. doi: 10.1016/j.ijpharm.2023.123606. [PMID: 37972671]
  • Victoria Steffes, Scott MacDonald, John Crowe, Meena Murali, Kai K Ewert, Youli Li, Cyrus R Safinya. Lipids with negative spontaneous curvature decrease the solubility of the cancer drug paclitaxel in liposomes. The European physical journal. E, Soft matter. 2023 Dec; 46(12):128. doi: 10.1140/epje/s10189-023-00388-2. [PMID: 38099960]
  • Ying-Jie Cui, Yi Zhou, Xi-Wu Zhang, Bao-Kai Dou, Chen-Chen Ma, Jing Zhang. The discovery of water-soluble indazole derivatives as potent microtubule polymerization inhibitors. European journal of medicinal chemistry. 2023 Dec; 262(?):115870. doi: 10.1016/j.ejmech.2023.115870. [PMID: 37890199]
  • Julia Sapienza Passos, Luciana B Lopes, Alyssa Panitch. Collagen-Binding Nanoparticles for Paclitaxel Encapsulation and Breast Cancer Treatment. ACS biomaterials science & engineering. 2023 Dec; 9(12):6805-6820. doi: 10.1021/acsbiomaterials.3c01332. [PMID: 37982792]
  • Eman Jaradat, Edward Weaver, Adam Meziane, Dimitrios A Lamprou. Synthesis and Characterization of Paclitaxel-Loaded PEGylated Liposomes by the Microfluidics Method. Molecular pharmaceutics. 2023 Dec; 20(12):6184-6196. doi: 10.1021/acs.molpharmaceut.3c00596. [PMID: 37931072]
  • Chunjing Guo, Wei Zhang, Qiaoyun Zhang, Yanguo Su, Xiaoya Hou, Qiang Chen, Huimin Guo, Ming Kong, Daquan Chen. Novel dual CAFs and tumour cell targeting pH and ROS dual sensitive micelles for targeting delivery of paclitaxel to liver cancer. Artificial cells, nanomedicine, and biotechnology. 2023 Dec; 51(1):170-179. doi: 10.1080/21691401.2023.2193221. [PMID: 37014123]
  • Mengnan Zhao, Tao Lu, Guoshu Bi, Zhengyang Hu, Jiaqi Liang, Yunyi Bian, Mingxiang Feng, Cheng Zhan. PLK1 regulating chemoradiotherapy sensitivity of esophageal squamous cell carcinoma through pentose phosphate pathway/ferroptosis. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2023 Dec; 168(?):115711. doi: 10.1016/j.biopha.2023.115711. [PMID: 37879213]
  • Qinsiyu Ma, Zhan'ao Liu, Tengyu Wang, Pengfei Zhao, Mingrui Liu, Yifang Wang, Weitong Zhao, Ying Yuan, Shuo Li. Resensitizing Paclitaxel-Resistant Ovarian Cancer via Targeting Lipid Metabolism Key Enzymes CPT1A, SCD and FASN. International journal of molecular sciences. 2023 Nov; 24(22):. doi: 10.3390/ijms242216503. [PMID: 38003694]
  • Julia S Passos, Alexsandra C Apolinario, Kelly Ishida, Tereza S Martins, Luciana B Lopes. Nanostructured lipid carriers loaded into in situ gels for breast cancer local treatment. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. 2023 Nov; ?(?):106638. doi: 10.1016/j.ejps.2023.106638. [PMID: 37967657]
  • Emine Toraman, Büşra Budak, Cemil Bayram, Selma Sezen, Behzad Mokhtare, Ahmet Hacımüftüoğlu. Role of parthenolide in paclitaxel-induced oxidative stress injury and impaired reproductive function in rat testicular tissue. Chemico-biological interactions. 2023 Nov; ?(?):110793. doi: 10.1016/j.cbi.2023.110793. [PMID: 37949423]
  • Ahmad A Altarifi, Kareem Sawali, Karem H Alzoubi, Tareq Saleh, Malik Abu Al-Rub, Omar Khabour. Effect of vitamin E on doxorubicin and paclitaxel-induced memory impairments in male rats. Cancer chemotherapy and pharmacology. 2023 Nov; ?(?):. doi: 10.1007/s00280-023-04602-y. [PMID: 37926754]
  • S Pushpa Ragini, Jacinta White, Nigel Kirby, Rajkumar Banerjee, Surendar Reddy Bathula, Calum J Drummond, Charlotte E Conn. Novel bioactive cationic cubosomes enhance the cytotoxic effect of paclitaxel against a paclitaxel resistant prostate cancer cell-line. Journal of colloid and interface science. 2023 Nov; 649(?):966-976. doi: 10.1016/j.jcis.2023.06.122. [PMID: 37392686]
  • Kiran Kumar Bellapu, Ramesh Joga, Bharthi R Kannan, Sravani Yerram, Priya Varpe, Tejaswini Mergu, Pavan Y Vasu, Saurabh Srivastava, Sandeep Kumar. Lipid-based mesoporous silica nanoparticles: a paradigm shift in management of pancreatic cancer. Pharmaceutical patent analyst. 2023 Nov; 12(6):261-273. doi: 10.4155/ppa-2023-0024. [PMID: 38214201]
  • Zhuoting Lu, Jingyu Li, Baohong Chen, Jiayu Feng, Qinglian Hu, Yuanxiang Jin, Zhengwei Fu. Mitochondria Targeted Nanoparticles Potentiate Tumor Chemo-Phototherapy by Toxic Oxidative Stress Mediated Oxeiptosis. Macromolecular bioscience. 2023 11; 23(11):e2300151. doi: 10.1002/mabi.202300151. [PMID: 37295777]
  • Zihan Zhang, Longhao Huang, Zhi-Jun Zhang, Jian-He Xu, Hui-Lei Yu. Rational Design of Taxadiene Hydroxylase by Ancestral Enzyme Construction and the Elucidation of Key Amino Acids. Biochemistry. 2023 Oct; ?(?):. doi: 10.1021/acs.biochem.3c00411. [PMID: 37902563]
  • Youjun Zhang, Lorenz Wiese, Hao Fang, Saleh Alseekh, Leonardo Perez de Souza, Federico Scossa, John Molloy, Mathias Christmann, Alisdair R Fernie. Synthetic biology identifies the minimal gene set required for Paclitaxel biosynthesis in a plant chassis. Molecular plant. 2023 Oct; ?(?):. doi: 10.1016/j.molp.2023.10.016. [PMID: 37897038]
  • Edgar Perez-Matas, Diego Hidalgo-Martinez, Elisabeth Moyano, Javier Palazon, Mercedes Bonfill. Overexpression of BAPT and DBTNBT genes in Taxus baccata in vitro cultures to enhance the biotechnological production of paclitaxel. Plant biotechnology journal. 2023 Sep; ?(?):. doi: 10.1111/pbi.14182. [PMID: 37772738]
  • Saeed Arshad, Mengli Wei, Qurban Ali, Ghulam Mustafa, Zhengqiang Ma, Yuanxin Yan. Paclitaxel and Caffeine-Taurine, New Colchicine Alternatives for Chromosomes Doubling in Maize Haploid Breeding. International journal of molecular sciences. 2023 Sep; 24(19):. doi: 10.3390/ijms241914659. [PMID: 37834106]
  • Wasundara Fernando, Rikki F Clark, H P Vasantha Rupasinghe, David W Hoskin, Melanie R Power Coombs. Phloridzin Docosahexaenoate Inhibits Spheroid Formation by Breast Cancer Stem Cells and Exhibits Cytotoxic Effects against Paclitaxel-Resistant Triple Negative Breast Cancer Cells. International journal of molecular sciences. 2023 Sep; 24(19):. doi: 10.3390/ijms241914577. [PMID: 37834020]
  • Epiphane K Silli, Mengfei Li, Yuting Shao, Yiran Zhang, Guilin Hou, Jiaqian Du, Jingdan Liang, Ying Wang. Liposomal Nanostructures for Gemcitabine and Paclitaxel Delivery in Pancreatic Cancer. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V. 2023 Sep; ?(?):. doi: 10.1016/j.ejpb.2023.09.014. [PMID: 37758121]
  • Xiaori Zhan, Tian Qiu, Hongshan Zhang, Kailin Hou, Xueshuang Liang, Cheng Chen, Zhijing Wang, Qicong Wu, Xiaojia Wang, Xiao-Lin Li, Mingshuang Wang, Shangguo Feng, Houqing Zeng, Chunna Yu, Huizhong Wang, Chenjia Shen. Mass spectrometry imaging and single-cell transcriptional profiling reveal the tissue-specific regulation of bioactive ingredient biosynthesis in Taxus leaves. Plant communications. 2023 09; 4(5):100630. doi: 10.1016/j.xplc.2023.100630. [PMID: 37231648]
  • Chunna Yu, Kailin Hou, Hongshan Zhang, Xueshuang Liang, Cheng Chen, Zhijing Wang, Qicong Wu, Ganlin Chen, Jiaxu He, Enhui Bai, Xinfen Li, Tingrui Du, Yifan Wang, Mingshuang Wang, Shangguo Feng, Huizhong Wang, Chenjia Shen. Integrated mass spectrometry imaging and single-cell transcriptome atlas strategies provide novel insights into taxoid biosynthesis and transport in Taxus mairei stems. The Plant journal : for cell and molecular biology. 2023 09; 115(5):1243-1260. doi: 10.1111/tpj.16315. [PMID: 37219365]
  • Chen Ying, Zhang Meng, Zhang Wenli, Wang Yamin, Zhang Hua, Yang Liu, Yu Longjiang, Fu Chunhua. miR5298b regulated taxol biosynthesis by acting on TcNPR3, resulting in an alleviation of the strong inhibition of the TcNPR3-TcTGA6 complex in Taxus chinensis. International journal of biological macromolecules. 2023 Sep; 248(?):125909. doi: 10.1016/j.ijbiomac.2023.125909. [PMID: 37482165]
  • Chao Liu, Hao Wu, Hongxia Duan, Yan Hou, Shuangqing Wang, Yanhong Liu, Xintong Zhang, Heming Zhao, Liming Gong, Hongshuang Wan, Bowen Zeng, Xiuquan Quan, Minhu Cui, Liqing Chen, Mingji Jin, Qiming Wang, Zhonggao Gao, Wei Huang. An EGCG-mediated self-assembled micellar complex acts as a bioactive drug carrier. Food chemistry. 2023 Aug; 418(?):135939. doi: 10.1016/j.foodchem.2023.135939. [PMID: 36948024]
  • Roghayyeh Hazrati, Nasser Zare, Rasool Asghari-Zakaria, Parisa Sheikhzadeh. Green synthesized Ag nanoparticles stimulate gene expression and paclitaxel production in Corylus avellana cells. Applied microbiology and biotechnology. 2023 Aug; ?(?):. doi: 10.1007/s00253-023-12683-1. [PMID: 37552251]
  • Marcelo L Occhiutto, Thais H M Passos, Fatima R Freitas, Raul C Maranhão, Vital P Costa. Intraoperative paclitaxel associated with lipid nanoparticles in trabeculectomy. Clinical & experimental ophthalmology. 2023 08; 51(6):644-646. doi: 10.1111/ceo.14265. [PMID: 37272229]
  • Jorge H Santoyo-Garcia, Laura E Walls, Marissa Valdivia-Cabrera, Koray Malcı, Nestor Jonguitud-Borrego, Karen J Halliday, Leonardo Rios-Solis. The synergetic effect from the combination of different adsorption resins in batch and semi-continuous cultivations of S. Cerevisiae cell factories to produce acetylated Taxanes precursors of the anticancer drug Taxol. Biotechnology and bioengineering. 2023 08; 120(8):2160-2174. doi: 10.1002/bit.28487. [PMID: 37428616]
  • Juan Zhang, Hong-Xi Xu, Yu-Lin Wu, William Chi Shing Cho, Yan-Fang Xian, Zhi-Xiu Lin. Synergistic Anti-Tumor Effect of Toosendanin and Paclitaxel on Triple-Negative Breast Cancer via Regulating ADORA2A-EMT Related Signaling. Advanced biology. 2023 08; 7(8):e2300062. doi: 10.1002/adbi.202300062. [PMID: 37401656]
  • Urara Idei, Tsuyoshi Ohta, Hizuru Yamatani, Manabu Seino, Satoru Nagase. Mechanism of Cell Death by Combined Treatment with an xCT Inhibitor and Paclitaxel: An Alternative Therapeutic Strategy for Patients with Ovarian Clear Cell Carcinoma. International journal of molecular sciences. 2023 Jul; 24(14):. doi: 10.3390/ijms241411781. [PMID: 37511540]
  • Shimaa S Khaled, Hanan A Soliman, Mohammed Abdel-Gabbar, Noha A Ahmed, El-Shaymaa El-Nahass, Osama M Ahmed. Naringin and naringenin counteract taxol-induced liver injury in Wistar rats via suppression of oxidative stress, apoptosis and inflammation. Environmental science and pollution research international. 2023 Jul; ?(?):. doi: 10.1007/s11356-023-28454-4. [PMID: 37466839]
  • Nadja B Cech, Nicholas H Oberlies. From plant to cancer drug: lessons learned from the discovery of taxol. Natural product reports. 2023 Jul; ?(?):. doi: 10.1039/d3np00017f. [PMID: 37449327]
  • Qian Wan, Jie Xu, Chengjing Zhu, Xingxing Liu, Yijun Tu, Jiachuan Lei, Jianqing Yu. Alkaloids from Piper longum Exhibit Anti-inflammatory Activity and Synergistic Effects with Chemotherapeutic Agents against Cervical Cancer Cells. Journal of agricultural and food chemistry. 2023 Jul; 71(27):10349-10360. doi: 10.1021/acs.jafc.3c01667. [PMID: 37392181]
  • Likang Lu, Hui Ao, Jingxin Fu, Manzhen Li, Yaoyao Guo, Yifei Guo, Meihua Han, Rongxing Shi, Xiangtao Wang. Ginsenoside Rb1 stabilized and paclitaxel / protopanaxadiol co-loaded nanoparticles for synergistic treatment of breast tumor. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2023 Jul; 163(?):114870. doi: 10.1016/j.biopha.2023.114870. [PMID: 37187019]
  • Xin Zhang, Jiandong Wang, Yali Fan, Ziyi Zhao, Sarah E Paraghamian, Gabrielle M Hawkins, Lindsey Buckingham, Jillian O'Donnell, Tianran Hao, Hongyan Suo, Yajie Yin, Wenchuan Sun, Weimin Kong, Delin Sun, Luyu Zhao, Chunxiao Zhou, Victoria L Bae-Jump. Asparagus officinalis combined with paclitaxel exhibited synergistic anti-tumor activity in paclitaxel-sensitive and -resistant ovarian cancer cells. Journal of cancer research and clinical oncology. 2023 Jul; 149(7):3871-3883. doi: 10.1007/s00432-022-04276-8. [PMID: 36006482]
  • Hua Liu, Yi Liu, Na Li, Guo-Qin Zhang, Meng Wang. [Ginsenoside Rg_3 based liposomes target delivery of dihydroartemisinin and paclitaxel for treatment of triple-negative breast cancer]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2023 Jul; 48(13):3472-3484. doi: 10.19540/j.cnki.cjcmm.20230410.301. [PMID: 37474984]
  • Nabil Z Mohamed, Lamis Shaban, Samia Safan, Ashraf S A El-Sayed. Physiological and metabolic traits of Taxol biosynthesis of endophytic fungi inhabiting plants: Plant-microbial crosstalk, and epigenetic regulators. Microbiological research. 2023 Jul; 272(?):127385. doi: 10.1016/j.micres.2023.127385. [PMID: 37141853]
  • Saskia Wedel, Lisa Hahnefeld, Yannick Schreiber, Christian Namendorf, Tim Heymann, Manfred Uhr, Mathias V Schmidt, Natasja de Bruin, Felix Hausch, Dominique Thomas, Gerd Geisslinger, Marco Sisignano. SAFit2 ameliorates paclitaxel-induced neuropathic pain by reducing spinal gliosis and elevating pro-resolving lipid mediators. Journal of neuroinflammation. 2023 Jun; 20(1):149. doi: 10.1186/s12974-023-02835-5. [PMID: 37355700]
  • Na Ying, Sisi Liu, Mengmeng Zhang, Jing Cheng, Linghuan Luo, Jiayi Jiang, Gaofan Shi, Shu Wu, Jun Ji, Haoyuan Su, Hongzhi Pan, Dongdong Zeng. Nano delivery system for paclitaxel: Recent advances in cancer theranostics. Colloids and surfaces. B, Biointerfaces. 2023 Jun; 228(?):113419. doi: 10.1016/j.colsurfb.2023.113419. [PMID: 37393700]
  • Bolin Du, Xiaoxia Liu, Xin Luan, Weidong Zhang, Chunlin Zhuang. Structure optimization of an F-indole-chalcone (FC116) on 4-methoxyphenyl group and therapeutic potential against colorectal cancers with low cytotoxicity. Bioorganic chemistry. 2023 06; 135(?):106531. doi: 10.1016/j.bioorg.2023.106531. [PMID: 37043882]
  • Kaipei Luo, Lu Yang, Chunmei Yan, Yuxin Zhao, Qiuxia Li, Xing Liu, Long Xie, Qiang Sun, Xiaofang Li. A Dual-Targeting Liposome Enhances Triple-Negative Breast Cancer Chemoimmunotherapy through Inducing Immunogenic Cell Death and Inhibiting STAT3 Activation. Small (Weinheim an der Bergstrasse, Germany). 2023 Jun; ?(?):e2302834. doi: 10.1002/smll.202302834. [PMID: 37264710]
  • Elvira Ngoufack Azanze, Marius Mbiantcha, Kouam Yacine Karelle Madjo, Nana Willaim Yousseu, Zenab Linda Fagni Njoya, Carine Flore Adjouzem, Vanessa Mba Matah Marthe, Gilbert Ateufack. Markhamia lutea leaves aqueous and ethanolic extract with curative anti-inflammatory activity attenuates paclitaxel toxicity in rat's intestine. Journal of complementary & integrative medicine. 2023 May; ?(?):. doi: 10.1515/jcim-2023-0017. [PMID: 37207283]
  • Pengfei Su, Shuangshuang Ding, Dacheng Wang, Wenjie Kan, Meng Yuan, Xue Chen, Caiguo Tang, Jinyan Hou, Lifang Wu. Plant morphology, secondary metabolites and chlorophyll fluorescence of Artemisia argyi under different LED environments. Photosynthesis research. 2023 May; ?(?):. doi: 10.1007/s11120-023-01026-w. [PMID: 37204684]
  • Zhihua Kong, Qi Han, Bisheng Zhu, Long Wan, Enrong Feng. Circ_0069094 regulates malignant phenotype and paclitaxel resistance in breast cancer cells via targeting the miR-136-5p/YWHAZ axis. Thoracic cancer. 2023 May; ?(?):. doi: 10.1111/1759-7714.14928. [PMID: 37192740]
  • Qinhang Wu, Xuelin Ma, Zhuolin Jin, Ruijun Ni, Yang Pan, Guangming Yang. Zhuidu Formula suppresses the migratory and invasive properties of triple-negative breast cancer cells via dual signaling pathways of RhoA/ROCK and CDC42/MRCK. Journal of ethnopharmacology. 2023 May; ?(?):116644. doi: 10.1016/j.jep.2023.116644. [PMID: 37196814]
  • Xuan He, Tao Deng, Jiaxin Li, Rong Guo, Yashi Wang, Ting Li, Shuya Zang, Jiaxin Li, Ling Zhang, Man Li, Qin He. A core-satellite micellar system against primary tumors and their lymphatic metastasis through modulation of fatty acid metabolism blockade and tumor-associated macrophages. Nanoscale. 2023 May; 15(18):8320-8336. doi: 10.1039/d2nr04693h. [PMID: 37083874]
  • Jun Ma, Cuixia Wen, Meng Chen, Wei Zhang, Lifeng Wang, Haitao Yin. Ce6/PTX2-NP/G@NHs Confer Radiosensitivity in Non-Small Cell Lung Cancer via Promotion of Apoptotic Body-Mediated Neighboring Effects. ACS biomaterials science & engineering. 2023 05; 9(5):2793-2805. doi: 10.1021/acsbiomaterials.2c01549. [PMID: 37066871]
  • Jin Sil Lee, Eunyoung Park, Hyeryeon Oh, Won Il Choi, Heebeom Koo. Levan nanoparticles with intrinsic CD44-targeting ability for tumor-targeted drug delivery. International journal of biological macromolecules. 2023 Apr; 234(?):123634. doi: 10.1016/j.ijbiomac.2023.123634. [PMID: 36773871]
  • Changhai Wang, Yuwen Jiao, Lifang Wang, Xinyu Zhang, Qiannian Yang, Mingxue Guo, Qing Zhang, Wenjun Hu, Shuang Dong, Tangthianchaichana Jakkree, Yang Lu, Jinling Wang. A paclitaxel prodrug nanoparticles with glutathion/reactive oxygen species dual-responsive and CD206 targeting to improve the anti-tumour effect. IET nanobiotechnology. 2023 Apr; ?(?):. doi: 10.1049/nbt2.12119. [PMID: 37055350]
  • Hao Zhang, Ren Wang, Chao Wu, Wei Feng, Qixin Zhong, Xianfu Chen, Tao Wang, Chuanbin Mao. Diffusion-mediated carving of interior topologies of all-natural protein nanoparticles to tailor sustained drug release for effective breast cancer therapy. Biomaterials. 2023 04; 295(?):122027. doi: 10.1016/j.biomaterials.2023.122027. [PMID: 36805237]
  • Yanlin Liu, Wenqiong Ma, Ping Zhou, Qian Wen, Qinglian Wen, Yun Lu, Ling Zhao, Huan Shi, Jie Dai, Jianmei Li, Shaozhi Fu. In situ administration of temperature-sensitive hydrogel composite loading paclitaxel microspheres and cisplatin for the treatment of melanoma. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2023 Apr; 160(?):114380. doi: 10.1016/j.biopha.2023.114380. [PMID: 36774723]
  • Xiangmin Deng, Xiaoqin Huang, Xiaoyan Dong, Genxiang Mao, Wenmin Xing. Efficacy and safety of nanopaclitaxel formulation for cancer treatment: evidence from randomized clinical trials. Nanomedicine (London, England). 2023 04; 18(10):833-843. doi: 10.2217/nnm-2023-0080. [PMID: 37222128]
  • Mi Wang, Mo Zhang, Xiaoxiao Hu, Wenli Wang, Yao Zhang, Lina Zhang, Jing Wang. Lipid-functionalized gold nanorods with plug-to-direct mitochondria targeting ligand for synergetic photothermal-chemotherapy of tumor therapy. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V. 2023 Apr; 185(?):71-81. doi: 10.1016/j.ejpb.2023.02.010. [PMID: 36828240]
  • Han Zheng, Xueqing Fu, Jin Shao, Yueli Tang, Muyao Yu, Ling Li, Luqi Huang, Kexuan Tang. Transcriptional regulatory network of high-value active ingredients in medicinal plants. Trends in plant science. 2023 04; 28(4):429-446. doi: 10.1016/j.tplants.2022.12.007. [PMID: 36621413]
  • Saili Jagdale, Mahavir Narwade, Afsana Sheikh, Shadab Md, Rajesh Salve, Virendra Gajbhiye, Prashant Kesharwani, Kavita R Gajbhiye. GLUT1 transporter-facilitated solid lipid nanoparticles loaded with anti-cancer therapeutics for ovarian cancer targeting. International journal of pharmaceutics. 2023 Mar; 637(?):122894. doi: 10.1016/j.ijpharm.2023.122894. [PMID: 36990168]
  • Yuka Matsuura-Sawada, Masatoshi Maeki, Shuya Uno, Koichi Wada, Manabu Tokeshi. Controlling lamellarity and physicochemical properties of liposomes prepared using a microfluidic device. Biomaterials science. 2023 Mar; 11(7):2419-2426. doi: 10.1039/d2bm01703b. [PMID: 36752548]
  • Yagang Mu, Jian Wang, Guang Li. Sphingosine kinase-2 silencing modulates sensitivity of HT-29 human colorectal cancer cells to paclitaxel-induced cell death through altering apoptosis-related proteins. Chemical biology & drug design. 2023 Mar; ?(?):. doi: 10.1111/cbdd.14232. [PMID: 36929215]
  • Yi-Fan Miao, Qing Ye, Ming-Yang Zhang, Lin Gao, Xi-Yan Wang, Wen-Xin Zhong, Zi-Xuan Wang, Zhong-Gui He, Chu-Tong Tian, Jin Sun. Enhancing Oral Performance of Paclitaxel Lipid-Mimic Prodrug via Modulating Type of Fatty Acids. Advanced healthcare materials. 2023 Mar; ?(?):e2203118. doi: 10.1002/adhm.202203118. [PMID: 36929289]
  • Toshiyuki Matsunaga, Misato Horinouchi, Haruhi Saito, Aki Hisamatsu, Kazuhiro Iguchi, Yuta Yoshino, Satoshi Endo, Akira Ikari. Availability of aldo-keto reductase 1C3 and ATP-binding cassette B1 as therapeutic targets for alleviating paclitaxel resistance in breast cancer MCF7 cells. Journal of biochemistry. 2023 Mar; 173(3):167-175. doi: 10.1093/jb/mvac098. [PMID: 36413758]
  • Shu-Rong Chen, Yih-Fung Chen, Jue-Jun Lin, Tzu-Yi Ke, Yun-Sheng Lin, Yuan-Bin Cheng. 2,6-Disubstituted Piperidine Alkaloids with Neuroprotective Activity from Hippobroma longiflora. Planta medica. 2023 Mar; 89(3):308-315. doi: 10.1055/a-1903-2663. [PMID: 36482147]
  • Yongmei Jin, Lin Qiu, Wenqing Bao, Minhao Lu, Feng Cao, Hanchen Ni, Bin Zhao. High expression of IGHG1 promotes breast cancer malignant development by activating the AKT pathway. Cell cycle (Georgetown, Tex.). 2023 Mar; 22(6):718-731. doi: 10.1080/15384101.2022.2147141. [PMID: 36404682]
  • Rani Mata, Jayachandra Reddy Nakkala, Sudha Rani Sadras. Therapeutic role of biogenic silver and gold nanoparticles against a DMH-induced colon cancer model. Biomaterials advances. 2023 Mar; 146(?):213279. doi: 10.1016/j.bioadv.2023.213279. [PMID: 36708685]
  • Yanhui Yu, Yabin Meng, Xi Xu, Tong Tong, Chong He, Liying Wang, Kaitao Wang, Minyi Zhao, Xinru You, Wenwen Zhang, Linjia Jiang, Jun Wu, Meng Zhao. A Ferroptosis-Inducing and Leukemic Cell-Targeting Drug Nanocarrier Formed by Redox-Responsive Cysteine Polymer for Acute Myeloid Leukemia Therapy. ACS nano. 2023 02; 17(4):3334-3345. doi: 10.1021/acsnano.2c06313. [PMID: 36752654]