Chemical Formula: C3H7NO3

Chemical Formula C3H7NO3

Found 29 metabolite its formula value is C3H7NO3

serin

DL-Serine, BioReagent, suitable for cell culture, suitable for insect cell culture, >=98\\% (HPLC)

C3H7NO3 (105.0425912)


Serine is an alpha-amino acid that is alanine substituted at position 3 by a hydroxy group. It has a role as a fundamental metabolite. It is an alpha-amino acid and a polar amino acid. It contains a hydroxymethyl group. It is a conjugate base of a serinium. It is a conjugate acid of a serinate. It is a tautomer of a serine zwitterion. DL-Serine, a fundamental metabolite, is a mixture of D-Serine and L-Serine. DL-Serine has antiviral activity against the multiplication of tobacco mosaic virus (TMV)[1]. DL-Serine, a fundamental metabolite, is a mixture of D-Serine and L-Serine. DL-Serine has antiviral activity against the multiplication of tobacco mosaic virus (TMV)[1]. D-Serine ((R)-Serine), an endogenous amino acid involved in glia-synapse interactions that has unique neurotransmitter characteristics, is a potent co-agonist at the NMDA glutamate receptor. D-Serinee has a cardinal modulatory role in major NMDAR-dependent processes including NMDAR-mediated neurotransmission, neurotoxicity, synaptic plasticity, and cell migration[1][2]. D-Serine ((R)-Serine), an endogenous amino acid involved in glia-synapse interactions that has unique neurotransmitter characteristics, is a potent co-agonist at the NMDA glutamate receptor. D-Serinee has a cardinal modulatory role in major NMDAR-dependent processes including NMDAR-mediated neurotransmission, neurotoxicity, synaptic plasticity, and cell migration[1][2]. L-Serine ((-)-Serine; (S)-Serine), one of the so-called non-essential amino acids, plays a central role in cellular proliferation. L-Serine ((-)-Serine; (S)-Serine), one of the so-called non-essential amino acids, plays a central role in cellular proliferation.

   

L-Serine

(2S)-2-amino-3-hydroxypropanoic acid

C3H7NO3 (105.0425912)


Serine (Ser) or L-serine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-serine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Serine is found in all organisms ranging from bacteria to plants to animals. It is classified as a polar, uncharged (at physiological pH), aliphatic amino acid. In humans, serine is a nonessential amino acid that can be easily derived from glycine. A non-essential amino acid is an amino acid that can be synthesized from central metabolic pathway intermediates in humans and is not required in the diet. Like all the amino acid building blocks of protein and peptides, serine can become essential under certain conditions, and is thus important in maintaining health and preventing disease. L-Serine may be derived from four possible sources: dietary intake; biosynthesis from the glycolytic intermediate 3-phosphoglycerate; from glycine; and by protein and phospholipid degradation. Little data is available on the relative contributions of each of these four sources of l-serine to serine homoeostasis. It is very likely that the predominant source of l-serine will be very different in different tissues and during different stages of human development. In the biosynthetic pathway, the glycolytic intermediate 3-phosphoglycerate is converted into phosphohydroxypyruvate, in a reaction catalyzed by 3-phosphoglycerate dehydrogenase (3- PGDH; EC 1.1.1.95). Phosphohydroxypyruvate is metabolized to phosphoserine by phosphohydroxypyruvate aminotransferase (EC 2.6.1.52) and, finally, phosphoserine is converted into l-serine by phosphoserine phosphatase (PSP; EC 3.1.3.3). In liver tissue, the serine biosynthetic pathway is regulated in response to dietary and hormonal changes. Of the three synthetic enzymes, the properties of 3-PGDH and PSP are the best documented. Hormonal factors such as glucagon and corticosteroids also influence 3-PGDH and PSP activities in interactions dependent upon the diet. L-serine is the predominant source of one-carbon groups for the de novo synthesis of purine nucleotides and deoxythymidine monophosphate. It has long been recognized that, in cell cultures, L-serine is a conditional essential amino acid, because it cannot be synthesized in sufficient quantities to meet the cellular demands for its utilization. In recent years, L-serine and the products of its metabolism have been recognized not only to be essential for cell proliferation, but also to be necessary for specific functions in the central nervous system. The findings of altered levels of serine and glycine in patients with psychiatric disorders and the severe neurological abnormalities in patients with defects of L-serine synthesis underscore the importance of L-serine in brain development and function. (PMID 12534373). [Spectral] L-Serine (exact mass = 105.04259) and D-2-Aminobutyrate (exact mass = 103.06333) and 4-Aminobutanoate (exact mass = 103.06333) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Dietary supplement. L-Serine is found in many foods, some of which are cold cut, mammee apple, coho salmon, and carrot. L-Serine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=56-45-1 (retrieved 2024-07-01) (CAS RN: 56-45-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Serine ((-)-Serine; (S)-Serine), one of the so-called non-essential amino acids, plays a central role in cellular proliferation. L-Serine ((-)-Serine; (S)-Serine), one of the so-called non-essential amino acids, plays a central role in cellular proliferation.

   

D-Serine

(2R)-2-Amino-3-hydroxypropanoic acid

C3H7NO3 (105.0425912)


D-serine is a stereo-isomer of the common amino acid, L-serine. D-serine was only thought to exist in bacteria until relatively recently. D-serine was the second D amino acid discovered to naturally exist in humans. The first one was D-aspartate. D-serine is synthesized from L-serine by serine racemase (SRR), and it is degraded by D-amino acid oxidase (DAO). It is found in high abundance in the brain. D-serine acts on the glycine binding site of the N-methyl-D-aspartate receptor (NMDAR) and modulates glutamate-mediated receptor activation. For the receptor to open, glutamate and either glycine or D-serine must bind to it. In fact, D-serine is a more potent agonist at the glycine site on the NMDAR than glycine itself. The importance of D-serine in mammalian brain function is apparent from extensive investigations reported and reviewed over the past decade, including roles in synaptic plasticity and memory. D-serine is also implicated in the pathophysiology and therapy of several psychiatric and neurological conditions including schizophrenia and glioma. In schizophrenia, there is evidence that D-serine levels are decreased, a deficiency that may contribute to the proposed NMDAR hypofunction of the disorder and that has led to D-serine replenishment as a novel therapeutic strategy. A non-essential amino acid occurring in natural form as the L-isomer. It is synthesized from glycine or threonine. It is involved in the biosynthesis of purines, pyrimidines, and other amino acids. D-Serine ((R)-Serine), an endogenous amino acid involved in glia-synapse interactions that has unique neurotransmitter characteristics, is a potent co-agonist at the NMDA glutamate receptor. D-Serinee has a cardinal modulatory role in major NMDAR-dependent processes including NMDAR-mediated neurotransmission, neurotoxicity, synaptic plasticity, and cell migration[1][2]. D-Serine ((R)-Serine), an endogenous amino acid involved in glia-synapse interactions that has unique neurotransmitter characteristics, is a potent co-agonist at the NMDA glutamate receptor. D-Serinee has a cardinal modulatory role in major NMDAR-dependent processes including NMDAR-mediated neurotransmission, neurotoxicity, synaptic plasticity, and cell migration[1][2].

   

2,3-Dihydroxypropanamide

2,3-Dihydroxypropanimidate

C3H7NO3 (105.0425912)


   

3-Nitropropanol

3-Nitro-1-propanol, ion (1-)

C3H7NO3 (105.0425912)


   
   

2-(HYDROXYAMINO)PROPANOIC ACID

2-(HYDROXYAMINO)PROPANOIC ACID

C3H7NO3 (105.0425912)


   

2,3-dihydroxypropanamide

2,3-dihydroxypropanamide

C3H7NO3 (105.0425912)


   

1,3-Dihydroxyacetone Oxime

1,3-Dihydroxyacetone Oxime

C3H7NO3 (105.0425912)


   

methyl 2-amino-2-hydroxyacetate

methyl 2-amino-2-hydroxyacetate

C3H7NO3 (105.0425912)


   

SERINE

L-Serine

C3H7NO3 (105.0425912)


An alpha-amino acid that is alanine substituted at position 3 by a hydroxy group. COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Acquisition and generation of the data is financially supported by the Max-Planck-Society L-Serine ((-)-Serine; (S)-Serine), one of the so-called non-essential amino acids, plays a central role in cellular proliferation. L-Serine ((-)-Serine; (S)-Serine), one of the so-called non-essential amino acids, plays a central role in cellular proliferation.

   

L-Serine

L-Serine

C3H7NO3 (105.0425912)


The L-enantiomer of serine. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; MTCFGRXMJLQNBG_STSL_0098_Serine_8000fmol_180430_S2_LC02_MS02_174; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. L-Serine ((-)-Serine; (S)-Serine), one of the so-called non-essential amino acids, plays a central role in cellular proliferation. L-Serine ((-)-Serine; (S)-Serine), one of the so-called non-essential amino acids, plays a central role in cellular proliferation.

   

D-serine

D-serine

C3H7NO3 (105.0425912)


The R-enantiomer of serine. D-Serine ((R)-Serine), an endogenous amino acid involved in glia-synapse interactions that has unique neurotransmitter characteristics, is a potent co-agonist at the NMDA glutamate receptor. D-Serinee has a cardinal modulatory role in major NMDAR-dependent processes including NMDAR-mediated neurotransmission, neurotoxicity, synaptic plasticity, and cell migration[1][2]. D-Serine ((R)-Serine), an endogenous amino acid involved in glia-synapse interactions that has unique neurotransmitter characteristics, is a potent co-agonist at the NMDA glutamate receptor. D-Serinee has a cardinal modulatory role in major NMDAR-dependent processes including NMDAR-mediated neurotransmission, neurotoxicity, synaptic plasticity, and cell migration[1][2].

   

DL-Serine

Protein serine

C3H7NO3 (105.0425912)


DL-Serine, a fundamental metabolite, is a mixture of D-Serine and L-Serine. DL-Serine has antiviral activity against the multiplication of tobacco mosaic virus (TMV)[1]. DL-Serine, a fundamental metabolite, is a mixture of D-Serine and L-Serine. DL-Serine has antiviral activity against the multiplication of tobacco mosaic virus (TMV)[1].

   

(2S)-3-Amino-2-hydroxypropanoic acid

(2S)-3-Amino-2-hydroxypropanoic acid

C3H7NO3 (105.0425912)


   

2-nitropropan-1-ol

2-nitropropan-1-ol

C3H7NO3 (105.0425912)


   

Isopropyl nitrate

Isopropyl nitrate

C3H7NO3 (105.0425912)


   
   

N-Propyl nitrate

N-Propyl nitrate

C3H7NO3 (105.0425912)


   

2-hydroxyiminopropane-1,3-diol

2-hydroxyiminopropane-1,3-diol

C3H7NO3 (105.0425912)


   

Ethyl hydroxycarbamate

Ethyl hydroxycarbamate

C3H7NO3 (105.0425912)


   
   

(2R)-2-ammonio-3-hydroxypropanoate

(2R)-2-ammonio-3-hydroxypropanoate

C3H7NO3 (105.0425912)


   
   

2-Ammonio-3-hydroxypropanoate

2-Ammonio-3-hydroxypropanoate

C3H7NO3 (105.0425912)


   

D-serine zwitterion

D-serine zwitterion

C3H7NO3 (105.0425912)


A serine zwitterion obtained by transfer of a proton from the carboxy to the amino group of D-serine.

   

serine zwitterion

serine zwitterion

C3H7NO3 (105.0425912)


An amino acid zwitterion obtained by transfer of a proton from the carboxy to the amino group of serine.

   

L-serine zwitterion

L-serine zwitterion

C3H7NO3 (105.0425912)


A serine zwitterion obtained by transfer of a proton from the carboxy to the amino group of L-serine.

   

3-Nitropropanol

3-nitropropan-1-ol

C3H7NO3 (105.0425912)