Prunetin (BioDeep_00000003618)

 

Secondary id: BioDeep_00000270606

human metabolite PANOMIX_OTCML-2023 natural product


代谢物信息卡片


5-Hydroxy-3-(4-hydroxyphenyl)-7-methoxy-4H-1-benzopyran-4-one, 9CI

化学式: C16H12O5 (284.0685)
中文名称: 樱黄素, 普鲁汀
谱图信息: 最多检出来源 Homo sapiens(urine) 9.31%

分子结构信息

SMILES: c1(cc(c2c(c1)occ(c2=O)c1ccc(cc1)O)O)OC
InChI: InChI=1S/C16H12O5/c1-20-11-6-13(18)15-14(7-11)21-8-12(16(15)19)9-2-4-10(17)5-3-9/h2-8,17-18H,1H3

描述信息

Prunetin is a hydroxyisoflavone that is genistein in which the hydroxy group at position 7 is replaced by a methoxy group. It has a role as a metabolite, an EC 1.3.1.22 [3-oxo-5alpha-steroid 4-dehydrogenase (NADP(+))] inhibitor, an anti-inflammatory agent and an EC 1.2.1.3 [aldehyde dehydrogenase (NAD(+))] inhibitor. It is a hydroxyisoflavone and a member of 7-methoxyisoflavones. It is functionally related to a genistein. It is a conjugate acid of a prunetin-5-olate.
Prunetin is a natural product found in Iris milesii, Prunus leveilleana, and other organisms with data available.
Occurs in several Prunus subspecies and Glycyrrhiza glabra (licorice). Prunetin is found in tea, herbs and spices, and sour cherry.
Prunetin is found in herbs and spices. Prunetin occurs in several Prunus species and Glycyrrhiza glabra (licorice).
A hydroxyisoflavone that is genistein in which the hydroxy group at position 7 is replaced by a methoxy group.
Prunetin, an O-methylated isoflavone, possesses anti-inflammatory activity. Prunetin is a potent human aldehyde dehydrogenases inhibitor[1][2].
Prunetin, an O-methylated isoflavone, possesses anti-inflammatory activity. Prunetin is a potent human aldehyde dehydrogenases inhibitor[1][2].
Prunetin, an O-methylated isoflavone, possesses anti-inflammatory activity. Prunetin is a potent human aldehyde dehydrogenases inhibitor[1][2].

同义名列表

34 个代谢物同义名

5-Hydroxy-3-(4-hydroxyphenyl)-7-methoxy-4H-1-benzopyran-4-one, 9CI; 4H-1-Benzopyran-4-one, 5-hydroxy-3-(4-hydroxyphenyl)-7-methoxy-; 5-Hydroxy-3-(4-hydroxyphenyl)-7-methoxy-4H-1-benzopyran-4-one; 5-hydroxy-3-(4-hydroxyphenyl)-7-methoxy-4H-chromen-4-one; 5-Hydroxy-3-(4-hydroxyphenyl)-7-methoxy-4-benzopyrone; 5-hydroxy-3-(4-hydroxyphenyl)-7-methoxychromen-4-one; Isoflavone, 4,5-dihydroxy-7-methoxy- (7CI,8CI); 5-18-04-00595 (Beilstein Handbook Reference); Isoflavone, 4,5-dihydroxy-7-methoxy-; 4,5-dihydroxy-7-methoxyisoflavone; 5,4-dihydroxy-7-methoxyisoflavone; 4,5-dihydroxy-7-methoxygenistein; KQMVAGISDHMXJJ-UHFFFAOYSA-N; Prunetin, >=98.0\\% (TLC); 7-O-Methyl genistein; 7-O-methyl-genistein; Spectrum3_001402; Spectrum5_000486; Spectrum4_001723; UNII-1TG4H5H11J; PRUNETIN [MI]; DivK1c_006589; Oprea1_083784; KBio1_001533; KBio2_006643; Padmakastein; KBio3_002264; KBio2_004075; KBio2_001507; SMP1_000150; 1TG4H5H11J; Prunusetin; Prunetin; Prunetin



数据库引用编号

23 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(1)

PlantCyc(1)

代谢反应

61 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(4)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(57)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

145 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 12 AIMP2, ANG, BCL2, CASP3, GPER1, MAPK8, MTOR, PTGS2, RIPK3, RUNX2, TLR4, TNK1
Peripheral membrane protein 3 MTOR, PTGS2, TNK1
Endosome membrane 1 TLR4
Endoplasmic reticulum membrane 8 BCL2, GPER1, MTOR, PTGS2, UGT1A1, UGT1A10, UGT1A8, UGT1A9
Mitochondrion membrane 1 GPER1
Nucleus 9 AIMP2, ANG, BCL2, CASP3, GPER1, MAPK8, MTOR, RIPK3, RUNX2
cytosol 9 AIMP2, ANG, BCL2, CASP3, GPER1, MAPK8, MTOR, RIPK3, RUNX2
dendrite 2 GPER1, MTOR
mitochondrial membrane 1 GPER1
phagocytic vesicle 1 MTOR
trans-Golgi network 1 GPER1
nucleoplasm 5 CASP3, GPER1, MAPK8, MTOR, RUNX2
Cell membrane 3 GPRC5A, TLR4, TNF
Cytoplasmic side 1 MTOR
Cell projection, axon 1 GPER1
Multi-pass membrane protein 2 GPER1, GPRC5A
Golgi apparatus membrane 2 GPER1, MTOR
Synapse 1 MAPK8
cell surface 2 TLR4, TNF
dendritic shaft 1 GPER1
glutamatergic synapse 1 CASP3
Golgi apparatus 1 GPER1
Golgi membrane 2 GPER1, MTOR
growth cone 1 ANG
lysosomal membrane 1 MTOR
neuronal cell body 3 ANG, CASP3, TNF
presynaptic membrane 1 GPER1
Cytoplasm, cytosol 2 AIMP2, RIPK3
Lysosome 1 MTOR
plasma membrane 7 GPER1, GPRC5A, MUC5AC, TLR4, TNF, TNK1, UGT1A1
presynaptic active zone 1 GPER1
Membrane 10 AIMP2, BCL2, GPER1, MTOR, TLR4, TNK1, UGT1A1, UGT1A10, UGT1A8, UGT1A9
axon 2 GPER1, MAPK8
caveola 1 PTGS2
extracellular exosome 2 GPRC5A, MUC5AC
Lysosome membrane 1 MTOR
endoplasmic reticulum 7 BCL2, GPER1, PTGS2, UGT1A1, UGT1A10, UGT1A8, UGT1A9
extracellular space 4 ANG, IL6, MUC5AC, TNF
perinuclear region of cytoplasm 3 GPER1, TLR4, UGT1A1
mitochondrion 1 BCL2
protein-containing complex 3 BCL2, PTGS2, RIPK3
intracellular membrane-bounded organelle 2 GPER1, GPRC5A
Microsome membrane 2 MTOR, PTGS2
postsynaptic density 2 CASP3, GPER1
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Single-pass type I membrane protein 1 TLR4
Secreted 3 ANG, IL6, MUC5AC
extracellular region 4 ANG, IL6, MUC5AC, TNF
Mitochondrion outer membrane 2 BCL2, MTOR
Single-pass membrane protein 5 BCL2, UGT1A1, UGT1A10, UGT1A8, UGT1A9
mitochondrial outer membrane 2 BCL2, MTOR
hippocampal mossy fiber to CA3 synapse 1 GPER1
transcription regulator complex 1 RUNX2
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 2 TLR4, TNF
actin cytoskeleton 1 ANG
nucleolus 3 ANG, GPER1, GPRC5A
Early endosome 2 GPER1, TLR4
recycling endosome 2 GPER1, TNF
Single-pass type II membrane protein 1 TNF
vesicle 1 GPRC5A
Cytoplasm, perinuclear region 1 UGT1A1
Membrane raft 1 TNF
pore complex 1 BCL2
extracellular matrix 1 MUC5AC
basement membrane 1 ANG
Nucleus, PML body 1 MTOR
PML body 1 MTOR
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
Cell projection, ruffle 1 TLR4
ruffle 1 TLR4
receptor complex 2 GPRC5A, TLR4
neuron projection 1 PTGS2
chromatin 1 RUNX2
phagocytic cup 2 TLR4, TNF
Chromosome 1 ANG
Nucleus, nucleolus 1 ANG
nuclear envelope 2 GPER1, MTOR
Endomembrane system 1 MTOR
Cytoplasmic vesicle membrane 2 GPER1, GPRC5A
Cell projection, dendrite 1 GPER1
Cytoplasm, Stress granule 1 ANG
cytoplasmic stress granule 1 ANG
myelin sheath 1 BCL2
lipopolysaccharide receptor complex 1 TLR4
Golgi lumen 1 MUC5AC
endoplasmic reticulum lumen 2 IL6, PTGS2
axon terminus 1 GPER1
endocytic vesicle 1 ANG
basal dendrite 1 MAPK8
death-inducing signaling complex 1 CASP3
aminoacyl-tRNA synthetase multienzyme complex 1 AIMP2
keratin filament 1 GPER1
Cytoplasmic vesicle, phagosome 1 MTOR
mucus layer 1 MUC5AC
dendritic spine head 1 GPER1
Cell projection, dendritic spine membrane 1 GPER1
dendritic spine membrane 1 GPER1
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
angiogenin-PRI complex 1 ANG
interleukin-6 receptor complex 1 IL6
endoplasmic reticulum chaperone complex 1 UGT1A1
BAD-BCL-2 complex 1 BCL2
cytochrome complex 1 UGT1A1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Jing Li, Yang Sun, Xinyu Xiong, Minda Wang, Lugen Zuo, Yueyue Wang, Zhijun Geng. [Prunetin inhibits TLR4/MyD88 pathway to attenuate intestinal epithelial inflammatory response and ameliorate mouse Crohn's disease-like colitis]. Xi bao yu fen zi mian yi xue za zhi = Chinese journal of cellular and molecular immunology. 2024 Mar; 40(3):199-206. doi: ". [PMID: 38512029]
  • Jing Wu, Jiali Chen, Xijing Yu, Yujuan You. The potential pharmacological mechanism of prunetin against osteoporosis: transcriptome analysis, molecular docking, and experimental approaches. Toxicology mechanisms and methods. 2023 Aug; ?(?):1-14. doi: 10.1080/15376516.2023.2253305. [PMID: 37642288]
  • Gonzalo R Malca Garcia, J Brent Friesen, Yang Liu, Dejan Nikolić, David C Lankin, James B McAlpine, Shao-Nong Chen, Guido F Pauli. Preparation of DESIGNER extracts of red clover (Trifolium pratense L.) by centrifugal partition chromatography. Journal of chromatography. A. 2019 Nov; 1605(?):360277. doi: 10.1016/j.chroma.2019.05.057. [PMID: 31307793]
  • Jung-Ho Lee, Matthew Dean, Julia R Austin, Joanna E Burdette, Brian T Murphy. Irilone from Red Clover ( Trifolium pratense) Potentiates Progesterone Signaling. Journal of natural products. 2018 09; 81(9):1962-1967. doi: 10.1021/acs.jnatprod.8b00131. [PMID: 30199256]
  • Stefanie Piegholdt, Gerald Rimbach, Anika E Wagner. The phytoestrogen prunetin affects body composition and improves fitness and lifespan in male Drosophila melanogaster. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2016 Feb; 30(2):948-58. doi: 10.1096/fj.15-282061. [PMID: 26538555]
  • Stefanie Piegholdt, Kathrin Pallauf, Tuba Esatbeyoglu, Nancy Speck, Karina Reiss, Lars Ruddigkeit, Achim Stocker, Patricia Huebbe, Gerald Rimbach. Biochanin A and prunetin improve epithelial barrier function in intestinal CaCo-2 cells via downregulation of ERK, NF-κB, and tyrosine phosphorylation. Free radical biology & medicine. 2014 May; 70(?):255-64. doi: 10.1016/j.freeradbiomed.2014.02.025. [PMID: 24631489]
  • Tae-Gue Ahn, Gabsik Yang, Heon-Myung Lee, Myung-Dong Kim, Ho-Young Choi, Kyoung-Sik Park, Sun-Dong Lee, Yoon-Bum Kook, Hyo-Jin An. Molecular mechanisms underlying the anti-obesity potential of prunetin, an O-methylated isoflavone. Biochemical pharmacology. 2013 May; 85(10):1525-33. doi: 10.1016/j.bcp.2013.02.020. [PMID: 23438470]
  • Liangliang Liu, Yongjian Ma, Xiaoqing Chen, Xiang Xiong, Shuyun Shi. Screening and identification of BSA bound ligands from Puerariae lobata flower by BSA functionalized Fe₃O₄ magnetic nanoparticles coupled with HPLC-MS/MS. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2012 Mar; 887-888(?):55-60. doi: 10.1016/j.jchromb.2012.01.008. [PMID: 22305973]
  • Sadaf Naeem, Peter Hylands, David Barlow. Construction of an Indonesian herbal constituents database and its use in Random Forest modelling in a search for inhibitors of aldose reductase. Bioorganic & medicinal chemistry. 2012 Feb; 20(3):1251-8. doi: 10.1016/j.bmc.2011.12.033. [PMID: 22261024]
  • Su-Ling Wong, Hsun-Shuo Chang, Guei-Jane Wang, Michael Y Chiang, Hung-Yi Huang, Chu-Huang Chen, Shiow-Chwen Tsai, Chu-Hung Lin, Ih-Sheng Chen. Secondary metabolites from the roots of Neolitsea daibuensis and their anti-inflammatory activity. Journal of natural products. 2011 Dec; 74(12):2489-96. doi: 10.1021/np100874f. [PMID: 22148193]
  • Tayyab A Mansoor, Rita M Ramalho, Xuan Luo, Cátia Ramalhete, Cecília M P Rodrigues, Maria-José U Ferreira. Isoflavones as apoptosis inducers in human hepatoma HuH-7 cells. Phytotherapy research : PTR. 2011 Dec; 25(12):1819-24. doi: 10.1002/ptr.3498. [PMID: 21495101]
  • Harminder, V Singh, A K Chaudhary. A Review on the Taxonomy, Ethnobotany, Chemistry and Pharmacology of Oroxylum indicum Vent. Indian journal of pharmaceutical sciences. 2011 Sep; 73(5):483-90. doi: 10.4103/0250-474x.98981. [PMID: 22923859]
  • Hong Wang, Yina Liu, Zuping Zeng, Wei He. [Study on HPLC chromatographic fingerprint of anti-tumor active site SSCE of Caulis spatholobi]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2011 Sep; 36(18):2525-9. doi: . [PMID: 22256759]
  • Maurice Ducret Awouafack, Peter Spiteller, Marc Lamshöft, Souvik Kusari, Bojidarka Ivanova, Pierre Tane, Michael Spiteller. Antimicrobial isopropenyl-dihydrofuranoisoflavones from Crotalaria lachnophora. Journal of natural products. 2011 Feb; 74(2):272-8. doi: 10.1021/np1005218. [PMID: 21265557]
  • Victor Kuete, Eric C N Nono, Pierre Mkounga, Kirk Marat, Philip G Hultin, Augustin E Nkengfack. Antimicrobial activities of the CH2Cl2-CH3OH (1:1) extracts and compounds from the roots and fruits of Pycnanthus angolensis (Myristicaceae). Natural product research. 2011 Feb; 25(4):432-43. doi: 10.1080/14786419.2010.522577. [PMID: 21328137]
  • P Sunita, S P Pattanayak. Phytoestrogens in postmenopausal indications: A theoretical perspective. Pharmacognosy reviews. 2011 Jan; 5(9):41-7. doi: 10.4103/0973-7847.79098. [PMID: 22096317]
  • A Brandli, J S Simpson, S Ventura. Isoflavones isolated from red clover (Trifolium pratense) inhibit smooth muscle contraction of the isolated rat prostate gland. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2010 Sep; 17(11):895-901. doi: 10.1016/j.phymed.2010.05.006. [PMID: 20638256]
  • Li-Wen Chen, Ming-Jen Cheng, Chien-Fang Peng, Ih-Sheng Chen. Secondary metabolites and antimycobacterial activities from the roots of Ficus nervosa. Chemistry & biodiversity. 2010 Jul; 7(7):1814-21. doi: 10.1002/cbdv.200900227. [PMID: 20658670]
  • Ronald Maul, Sabine E Kulling. Absorption of red clover isoflavones in human subjects: results from a pilot study. The British journal of nutrition. 2010 Jun; 103(11):1569-72. doi: 10.1017/s0007114509993564. [PMID: 20067656]
  • Imma Ferrer, Larry B Barber, E Michael Thurman. Gas chromatographic-mass spectrometric fragmentation study of phytoestrogens as their trimethylsilyl derivatives: identification in soy milk and wastewater samples. Journal of chromatography. A. 2009 Aug; 1216(32):6024-32. doi: 10.1016/j.chroma.2009.06.042. [PMID: 19577238]
  • José Gustavo L de Almeida, Edilberto R Silveira, Otília Deusdênia L Pessoa. NMR spectral assignments of a new [C--O--C] isoflavone dimer from Andira surinamensis. Magnetic resonance in chemistry : MRC. 2008 Jan; 46(1):103-6. doi: 10.1002/mrc.2138. [PMID: 18098226]
  • Teng Peng, Yong-qin Tu, Yun Deng, Xu Zhang. [Studies on chemical constituents of Primula sikkmensis]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2008 Jan; 31(1):44-6. doi: . [PMID: 18589747]
  • B Klejdus, J Vacek, L Benesová, J Kopecký, O Lapcík, V Kubán. Rapid-resolution HPLC with spectrometric detection for the determination and identification of isoflavones in soy preparations and plant extracts. Analytical and bioanalytical chemistry. 2007 Dec; 389(7-8):2277-85. doi: 10.1007/s00216-007-1606-3. [PMID: 17899029]
  • Hippolyte K Wabo, Simplice N Tatsimo, Pierre Tane, Joseph D Connolly. Pycnanthuquinone C: a new terpenoid-quinone from Pycnanthus angolensis. Planta medica. 2007 Feb; 73(2):187-9. doi: 10.1055/s-2007-967103. [PMID: 17295184]
  • Rong Tsao, Yousef Papadopoulos, Raymond Yang, J Chris Young, Ken McRae. Isoflavone profiles of red clovers and their distribution in different parts harvested at different growing stages. Journal of agricultural and food chemistry. 2006 Aug; 54(16):5797-805. doi: 10.1021/jf0614589. [PMID: 16881680]
  • O Lapcik, D Honys, R Koblovska, Z Mackova, M Vitkova, B Klejdus. Isoflavonoids are present in Arabidopsis thaliana despite the absence of any homologue to known isoflavonoid synthases. Plant physiology and biochemistry : PPB. 2006 Feb; 44(2-3):106-14. doi: 10.1016/j.plaphy.2005.11.006. [PMID: 16650770]
  • Manar M Salem, Karl A Werbovetz. Isoflavonoids and other compounds from Psorothamnus arborescens with antiprotozoal activities. Journal of natural products. 2006 Jan; 69(1):43-9. doi: 10.1021/np0502600. [PMID: 16441066]
  • Oldrich Lapcík, Michaela Vítková, Borivoj Klejdus, Nawaf Al-Maharik, Herman Adlercreutz. Immunoassay for biochanin A. Journal of immunological methods. 2004 Nov; 294(1-2):155-63. doi: 10.1016/j.jim.2004.09.004. [PMID: 15604024]
  • Oldrich Lapcík, Borivoj Klejdus, Michaela Davidová, Ladislav Kokoska, Vlastimil Kubán, Jitka Moravcová. Isoflavonoids in the Rutaceae family: 1. Fortunella obovata, Murraya paniculata and four Citrus species. Phytochemical analysis : PCA. 2004 Sep; 15(5):293-9. doi: 10.1002/pca.781. [PMID: 15508833]
  • Harshadrai M Rawel, Holger Ranters, Sascha Rohn, Jürgen Kroll. Assessment of the reactivity of selected isoflavones against proteins in comparison to quercetin. Journal of agricultural and food chemistry. 2004 Aug; 52(16):5263-71. doi: 10.1021/jf0354850. [PMID: 15291506]
  • Qingli Wu, Mingfu Wang, James E Simon. Determination of isoflavones in red clover and related species by high-performance liquid chromatography combined with ultraviolet and mass spectrometric detection. Journal of chromatography. A. 2003 Oct; 1016(2):195-209. doi: 10.1016/j.chroma.2003.08.001. [PMID: 14601839]
  • Takeki Tsutsui, Yukiko Tamura, Eiichi Yagi, Hitomi Someya, Itsuro Hori, Manfred Metzler, J Carl Barrett. Cell-transforming activity and mutagenicity of 5 phytoestrogens in cultured mammalian cells. International journal of cancer. 2003 Jun; 105(3):312-20. doi: 10.1002/ijc.11046. [PMID: 12704663]
  • Jean-Philippe Antignac, Ronan Cariou, Bruno Le Bizec, Jean-Pierre Cravedi, François Andre. Identification of phytoestrogens in bovine milk using liquid chromatography/electrospray tandem mass spectrometry. Rapid communications in mass spectrometry : RCM. 2003; 17(12):1256-1264. doi: 10.1002/rcm.1052. [PMID: 12811748]
  • Hyun Ah Jung, Ae Ra Kim, Hae Young Chung, Jae Sue Choi. In vitro antioxidant activity of some selected Prunus species in Korea. Archives of pharmacal research. 2002 Dec; 25(6):865-72. doi: 10.1007/bf02977006. [PMID: 12510840]
  • Yu-Ping Tang, Jie Hu, Jing-Hua Wang, Feng-Chang Lou. A new coumaronochromone from Sophora japonica. Journal of Asian natural products research. 2002 Mar; 4(1):1-5. doi: 10.1080/10286020290019622. [PMID: 11991186]
  • Bernard Blaise Messanga, Samuel Fon Kimbu, Beibam Luc Sondengam, Bernard Bodo. Triflavonoids of Ochna calodendron. Phytochemistry. 2002 Feb; 59(4):435-8. doi: 10.1016/s0031-9422(01)00414-9. [PMID: 11830163]
  • . . . . doi: . [PMID: 20534735]