LysoPC(18:0/0:0) (BioDeep_00000018633)

   

human metabolite Endogenous blood metabolite LipidSearch


代谢物信息卡片


(2-{[(2R)-2-hydroxy-3-(octadecanoyloxy)propyl phosphono]oxy}ethyl)trimethylazanium

化学式: C26H54NO7P (523.3637704)
中文名称: 1-硬脂酰-sn-甘油-3-磷酰胆碱
谱图信息: 最多检出来源 Homo sapiens(lipidomics) 0.02%

分子结构信息

SMILES: CCCCCCCCCCCCCCCCCC(=O)OCC(COP(=O)([O-])OCC[N+](C)(C)C)O
InChI: InChI=1S/C26H54NO7P/c1-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-26(29)32-23-25(28)24-34-35(30,31)33-22-21-27(2,3)4/h25,28H,5-24H2,1-4H3

描述信息

LysoPC(18:0) is a lysophospholipid (LyP). It is a monoglycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. Lysophosphatidylcholines can have different combinations of fatty acids of varying lengths and saturation attached at the C-1 (sn-1) position. Fatty acids containing 16, 18 and 20 carbons are the most common. LysoPC(18:0), in particular, consists of one chain of stearic acid at the C-1 position. The stearic acid moiety is derived from animal fats, coco butter and sesame oil. Lysophosphatidylcholine is found in small amounts in most tissues. It is formed by hydrolysis of phosphatidylcholine by the enzyme phospholipase A2, as part of the de-acylation/re-acylation cycle that controls its overall molecular species composition. It can also be formed inadvertently during extraction of lipids from tissues if the phospholipase is activated by careless handling. In blood plasma significant amounts of lysophosphatidylcholine are formed by a specific enzyme system, lecithin:cholesterol acyltransferase (LCAT), which is secreted from the liver. The enzyme catalyzes the transfer of the fatty acids of position sn-2 of phosphatidylcholine to the free cholesterol in plasma, with formation of cholesterol esters and lysophosphatidylcholine. Lysophospholipids have a role in lipid signaling by acting on lysophospholipid receptors (LPL-R). LPL-Rs are members of the G protein-coupled receptor family of integral membrane proteins. [HMDB]
LysoPC(18:0) is a lysophospholipid (LyP). It is a monoglycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. Lysophosphatidylcholines can have different combinations of fatty acids of varying lengths and saturation attached at the C-1 (sn-1) position. Fatty acids containing 16, 18 and 20 carbons are the most common. LysoPC(18:0), in particular, consists of one chain of stearic acid at the C-1 position. The stearic acid moiety is derived from animal fats, coco butter and sesame oil. Lysophosphatidylcholine is found in small amounts in most tissues. It is formed by hydrolysis of phosphatidylcholine by the enzyme phospholipase A2, as part of the de-acylation/re-acylation cycle that controls its overall molecular species composition. It can also be formed inadvertently during extraction of lipids from tissues if the phospholipase is activated by careless handling. In blood plasma significant amounts of lysophosphatidylcholine are formed by a specific enzyme system, lecithin:cholesterol acyltransferase (LCAT), which is secreted from the liver. The enzyme catalyzes the transfer of the fatty acids of position sn-2 of phosphatidylcholine to the free cholesterol in plasma, with formation of cholesterol esters and lysophosphatidylcholine. Lysophospholipids have a role in lipid signaling by acting on lysophospholipid receptors (LPL-R). LPL-Rs are members of the G protein-coupled receptor family of integral membrane proteins.

同义名列表

57 个代谢物同义名

(2-{[(2R)-2-hydroxy-3-(octadecanoyloxy)propyl phosphono]oxy}ethyl)trimethylazanium; (2R)-2-Hydroxy-3-(stearoyloxy)propyl 2-(trimethylazaniumyl)ethyl phosphoric acid; (2R)-2-Hydroxy-3-(stearoyloxy)propyl 2-(trimethylazaniumyl)ethyl phosphate; 1-Stearoyl-2-hydroxy-sn-glycero-3-phosphocholine; 1-O-Stearoyl-2-lyso-sn-glycero-3-phosphocholine; 1-Octadecanoyl-sn-glycerol-3-phosphorylcholine; 1-Stearoyl-sn-glycerol-3-phosphatidylcholine; 1-Stearoyl-sn-glycerol-3-phosphorylcholine; 1-octadecanoyl-sn-glycero-3-phosphocholine; 1-Stearoyl-sn-glycero-3-phosphorylcholine; 1-Octadecanoyl-3-glycerophosphorylcholine; 1-O-Stearoyl-sn-glycero-3-phosphocholine; Stearoyl alpha-lysolecithin, (+-)-isomer; Stearoyl alpha-lysolecithin, (R)-isomer; 1-Octadecanoyl-glycero-3-phosphocholine; 1-Stearoyl-sn-glycero-3-phosphocholine; 1-Stearoyl-3-glycerylphosphorylcholine; 1-Stearoylglycerophosphocholine (18:0); 1-Stearoylglycero-3-phosphorylcholine; 1-Stearoylglycerophosphocholine(18:0); 1-Stearoyl-2-lysophosphatidylcholine; 1-Octadecyl-glycero-3-phosphocholine; 1-Octadecanoylglycerophosphocholine; 1-Stearoyl-glycero-3-phosphocholine; 1-Stearoyl-lysophosphatidylcholine; Lysophosphatidylcholine (18:0/0:0); 1-Stearoyllysophosphatidylcholine; Lysophosphatidylcholine(18:0/0:0); Stearoyl lysophosphatidylcholine; 1-Octadecylglycerophosphocholine; Stearoyllysophosphatidylcholine; 1-Stearoylglycerophosphocholine; Lysophosphatidylcholine(18:0); Lysophosphatidylcholine C18:0; Stearoyl L-alpha-lysolecithin; Stearoyl alpha-lysolecithin; 1-Octadecanoyllysolecithin; 2-Lysophosphatidylcholine; Stearoyl L-α-lysolecithin; Stearoyl lysolecithin; LysoPC(18:0/0:0); GPCho(18:0/0:0); LysoPC 18:0/0:0; LysoPC a C18:0; 1-Stearoyl-GPC; GPCho 18:0/0:0; LyPC(18:0/0:0); LPC(18:0/0:0); GPC(18:0/0:0); LPC 18:0/0:0; LysoPC(18:0); 18:0 LYSO-PC; PC(18:0/0:0); PC 18:0/0:0; LyPC(18:0); GPC(18:0); LPC(18:0)



数据库引用编号

14 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

2 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(2)

PharmGKB(0)

13 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Dorottya Nagy-Szakal, Dinesh K Barupal, Bohyun Lee, Xiaoyu Che, Brent L Williams, Ellie J R Kahn, Joy E Ukaigwe, Lucinda Bateman, Nancy G Klimas, Anthony L Komaroff, Susan Levine, Jose G Montoya, Daniel L Peterson, Bruce Levin, Mady Hornig, Oliver Fiehn, W Ian Lipkin. Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics. Scientific reports. 2018 07; 8(1):10056. doi: 10.1038/s41598-018-28477-9. [PMID: 29968805]
  • Yanbo Yang, Takashi Kuwano, William R Lagor, Carolyn J Albert, Siobhan Brenton, Daniel J Rader, David A Ford, Robert J Brown. Lipidomic analyses of female mice lacking hepatic lipase and endothelial lipase indicate selective modulation of plasma lipid species. Lipids. 2014 Jun; 49(6):505-15. doi: 10.1007/s11745-014-3907-6. [PMID: 24777581]
  • Xin Zhang, Paul F Luckham, Alun D Hughes, Simon Thom, Xiao Yun Xu. Towards an understanding of the release behavior of temperature-sensitive liposomes: a possible explanation of the 'pseudoequilibrium' release behavior at the phase transition temperature. Journal of liposome research. 2013 Sep; 23(3):167-73. doi: 10.3109/08982104.2013.779702. [PMID: 23510297]
  • Michał Flasiński, Marcin Broniatowski, Paweł Wydro, Patrycja Dynarowicz-Łątka. Comparative characteristics of membrane-active single-chained ether phospholipids: PAF and lyso-PAF in Langmuir monolayers. The journal of physical chemistry. B. 2012 Mar; 116(10):3155-63. doi: 10.1021/jp2121092. [PMID: 22316066]
  • Jongwon Shim, Mi Jin Kim, Han-Kon Kim, Do-Hoon Kim, Seong Geun Oh, Seung Yong Ko, Ho Gyeom Jang, Jin-Woong Kim. Morphological effect of lipid carriers on permeation of lidocaine hydrochloride through lipid membranes. International journal of pharmaceutics. 2010 Mar; 388(1-2):251-6. doi: 10.1016/j.ijpharm.2009.12.049. [PMID: 20060459]
  • David F Schaeffer, Maziar Riazy, Kuljit S Parhar, Johnny H Chen, Vincent Duronio, Tatsuya Sawamura, Urs P Steinbrecher. LOX-1 augments oxLDL uptake by lysoPC-stimulated murine macrophages but is not required for oxLDL clearance from plasma. Journal of lipid research. 2009 Aug; 50(8):1676-84. doi: 10.1194/jlr.m900167-jlr200. [PMID: 19359704]
  • Guoqian Chen, Jianhua Li, Xiaoling Qiang, Christopher J Czura, Mahendar Ochani, Kanta Ochani, Luis Ulloa, Huan Yang, Kevin J Tracey, Ping Wang, Andrew E Sama, Haichao Wang. Suppression of HMGB1 release by stearoyl lysophosphatidylcholine:an additional mechanism for its therapeutic effects in experimental sepsis. Journal of lipid research. 2005 Apr; 46(4):623-7. doi: 10.1194/jlr.c400018-jlr200. [PMID: 15687351]
  • Takatoshi Soga, Takahide Ohishi, Tetsuo Matsui, Tetsu Saito, Mitsuyuki Matsumoto, Jun Takasaki, Shun-Ichiro Matsumoto, Masazumi Kamohara, Hideki Hiyama, Shigeru Yoshida, Kazuhiro Momose, Yoshitaka Ueda, Hitoshi Matsushime, Masato Kobori, Kiyoshi Furuichi. Lysophosphatidylcholine enhances glucose-dependent insulin secretion via an orphan G-protein-coupled receptor. Biochemical and biophysical research communications. 2005 Jan; 326(4):744-51. doi: 10.1016/j.bbrc.2004.11.120. [PMID: 15607732]
  • Pamela J Mansfield, Vania Hinkovska-Galcheva, Shannon S Carey, James A Shayman, Laurence A Boxer. Regulation of polymorphonuclear leukocyte degranulation and oxidant production by ceramide through inhibition of phospholipase D. Blood. 2002 Feb; 99(4):1434-41. doi: 10.1182/blood.v99.4.1434. [PMID: 11830497]
  • M Yoshinari, A H Shi, H Yoshizumi, M Wakisaka, M Iwase, M Fujishima. Probucol reduces lysophosphatidylcholines in low-density lipoprotein. European journal of clinical pharmacology. 2000 Feb; 55(11-12):787-92. doi: 10.1007/s002280050698. [PMID: 10805055]
  • A H Shi, M Yoshinari, M Wakisaka, M Iwase, M Fujishima. Lysophosphatidylcholine molecular species in low density lipoprotein of type 2 diabetes. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme. 1999 Apr; 31(4):283-6. doi: 10.1055/s-2007-978734. [PMID: 10333086]
  • A Shi, M Yoshinari, K Iino, M Wakisaka, M Iwase, M Fujishima. Lysophosphatidylcholine molecular species in low density lipoprotein and high density lipoprotein in alloxan-induced diabetic rats: effect of probucol. Experimental and clinical endocrinology & diabetes : official journal, German Society of Endocrinology [and] German Diabetes Association. 1999; 107(6):337-42. doi: 10.1055/s-0029-1212123. [PMID: 10543409]
  • S Günther-Ausborn, T Stegmann. How lysophosphatidylcholine inhibits cell-cell fusion mediated by the envelope glycoprotein of human immunodeficiency virus. Virology. 1997 Sep; 235(2):201-8. doi: 10.1006/viro.1997.8699. [PMID: 9281499]
  • D Zakim, M Cantor, H Eibl. Phospholipids and UDP-glucuronosyltransferase. Structure/function relationships. The Journal of biological chemistry. 1988 Apr; 263(11):5164-9. doi: 10.1016/s0021-9258(18)60694-5. [PMID: 3128536]
  • S W Hui, C H Huang. X-ray diffraction evidence for fully interdigitated bilayers of 1-stearoyllysophosphatidylcholine. Biochemistry. 1986 Mar; 25(6):1330-5. doi: 10.1021/bi00354a021. [PMID: 3964679]
  • W E Berdel, H Schlehe, U Fink, B Emmerich, P A Maubach, H P Emslander, S Daum, J Rastetter. Early tumor and leukemia response to alkyllysophospholipids in a phase I study. Cancer. 1982 Nov; 50(10):2011-5. doi: 10.1002/1097-0142(19821115)50:10<2011::aid-cncr2820501006>3.0.co;2-k. [PMID: 7127246]