Exact Mass: 208.0847882
Exact Mass Matches: 208.0847882
Found 500 metabolites which its exact mass value is equals to given mass value 208.0847882
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Sinapaldehyde
(E)-sinapaldehyde is a member of the class of cinnamaldehydes that is cinnamaldehyde substituted by a hydroxy group at position 4 and methoxy groups at positions 3 and 5. It has a role as an antifungal agent and a plant metabolite. It is a member of cinnamaldehydes, a dimethoxybenzene and a member of phenols. It is functionally related to an (E)-cinnamaldehyde. Sinapaldehyde is a natural product found in Stereospermum colais, Aralia bipinnata, and other organisms with data available. A member of the class of cinnamaldehydes that is cinnamaldehyde substituted by a hydroxy group at position 4 and methoxy groups at positions 3 and 5. D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors Sinapaldehyde, also known as (E)-3-(4-hydroxy-3,5-dimethoxyphenyl)-2-propenal or (E)-sinapoyl aldehyde, is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Sinapaldehyde is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Sinapaldehyde can be synthesized from cinnamaldehyde. Sinapaldehyde can also be synthesized into 4-acetoxy-3,5-dimethoxy-trans-cinnamaldehyde. Sinapaldehyde can be found in a number of food items such as angelica, saskatoon berry, rubus (blackberry, raspberry), and lemon verbena, which makes sinapaldehyde a potential biomarker for the consumption of these food products. In Arabidopsis thaliana, this compound is part of the lignin biosynthesis pathway. The enzyme dihydroflavonol 4-reductase uses sinapaldehyde and NADPH to produce sinapyl alcohol and NADP+ . Annotation level-2 Sinapaldehyde exhibits moderate antibacterial against Methicillin resistant S. aureus (MRSA) and E. coli with MIC values of 128 and 128 μg/mL[1]. Sinapaldehyde exhibits moderate antibacterial against Methicillin resistant S. aureus (MRSA) and E. coli with MIC values of 128 and 128 μg/mL[1].
Chalcone
Chalcone is a member of the class of chalcones that is acetophenone in which one of the methyl hydrogens has been replaced by a benzylidene group. It has a role as a plant metabolite. It is a member of styrenes and a member of chalcones. Chalcone is a natural product found in Tilia tomentosa, Alpinia hainanensis, and other organisms with data available. An aromatic KETONE that forms the core molecule of CHALCONES. A member of the class of chalcones that is acetophenone in which one of the methyl hydrogens has been replaced by a benzylidene group. Annotation level-1 Acquisition and generation of the data is financially supported in part by CREST/JST. Chalcone is isolated from Glycyrrhiza uralensis and used to synthesize chalcone derivatives. Chalcone derivatives possess varied biological and pharmacological activity, including anti-inflammatory, antioxidative, antibacterial, anticancer, and anti-parasitic activities[1]. Chalcone is isolated from Glycyrrhiza uralensis and used to synthesize chalcone derivatives. Chalcone derivatives possess varied biological and pharmacological activity, including anti-inflammatory, antioxidative, antibacterial, anticancer, and anti-parasitic activities[1]. trans-Chalcone, isolated from Aronia melanocarpa skin, is a biphenolic core structure of flavonoids precursor. trans-Chalcone is a potent fatty acid synthase (FAS) and α-amylase inhibitor. trans-Chalcone causes cellcycle arrest and induces apoptosis in the breastcancer cell line MCF-7. trans-Chalcone has antifungal and anticancer activity[1][2][3]. trans-Chalcone, isolated from Aronia melanocarpa skin, is a biphenolic core structure of flavonoids precursor. trans-Chalcone is a potent fatty acid synthase (FAS) and α-amylase inhibitor. trans-Chalcone causes cellcycle arrest and induces apoptosis in the breastcancer cell line MCF-7. trans-Chalcone has antifungal and anticancer activity[1][2][3]. Chalcone. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=94-41-7 (retrieved 2024-09-27) (CAS RN: 94-41-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
L-Kynurenine
Kynurenine is a metabolite of the amino acid tryptophan used in the production of niacin. L-Kynurenine is a central compound of the tryptophan metabolism pathway since it can change into the neuroprotective agent kynurenic acid or to the neurotoxic agent quinolinic acid. The break-up of these endogenous compounds balance can be observable in many disorders such as stroke, epilepsy, multiple sclerosis, and amyotrophic lateral sclerosis. It can also occur in neurodegenerative disorders such as Parkinsons disease, Huntingtons, and Alzheimers disease; and in mental disorders such as schizophrenia and depression. Kynurenine is a metabolite of the amino acid tryptophan used in the production of niacin. [Raw Data] CBA10_Kynurenine_pos_10eV_1-2_01_666.txt [Raw Data] CBA10_Kynurenine_pos_30eV_1-2_01_668.txt [Raw Data] CBA10_Kynurenine_pos_40eV_1-2_01_669.txt [Raw Data] CBA10_Kynurenine_pos_20eV_1-2_01_667.txt [Raw Data] CBA10_Kynurenine_pos_50eV_1-2_01_670.txt L-Kynurenine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2922-83-0 (retrieved 2024-07-01) (CAS RN: 2922-83-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 2-Amino-4-(2-aminophenyl)-4-oxobutanoic acid is an endogenous metabolite. L-Kynurenine is a metabolite of the amino acid L-tryptophan. L-Kynurenine is an aryl hydrocarbon receptor agonist.
Epibatidine
D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics
(R)-2-Benzylsuccinate
(R)-2-Benzylsuccinate is an aromatic compounds that is an intermediate in Benzoate degradation via CoA ligation. Biodegradation of aromatic compounds is a common process in anoxic environments. The many natural and synthetic aromatic compounds found in the environment are usually degraded by anaerobic microorganisms into only few central intermediates, prior to ring cleavage. Benzoyl-CoA is the most important of these intermediates since a large number of compounds, including chloro-, nitro-, and aminobenzoates, aromatic hydrocarbons, and phenolic compounds, are initially converted to benzoyl-CoA prior to ring reduction and cleavage. (R)-2-Benzylsuccinate can be generated from toluene via the enzyme benzylsuccinate synthase (EC 4.1.99.11). It is then converted to Benzylsuccinyl-CoA via the enzyme benzylsuccinate CoA-transferase BbsE subunit (EC 2.8.3.15). [HMDB] (R)-2-Benzylsuccinate is an aromatic compounds that is an intermediate in Benzoate degradation via CoA ligation. Biodegradation of aromatic compounds is a common process in anoxic environments. The many natural and synthetic aromatic compounds found in the environment are usually degraded by anaerobic microorganisms into only few central intermediates, prior to ring cleavage. Benzoyl-CoA is the most important of these intermediates since a large number of compounds, including chloro-, nitro-, and aminobenzoates, aromatic hydrocarbons, and phenolic compounds, are initially converted to benzoyl-CoA prior to ring reduction and cleavage. (R)-2-Benzylsuccinate can be generated from toluene via the enzyme benzylsuccinate synthase (EC 4.1.99.11). It is then converted to Benzylsuccinyl-CoA via the enzyme benzylsuccinate CoA-transferase BbsE subunit (EC 2.8.3.15). KEIO_ID B005
6-Methoxymellein
Isolated from Aspergillus caespitosus, Aspergillus variecolor and Sporormia bipartis. Reaches fungitoxic levels in stored infected carrot. Shows broad antimicrobial action. 6-Methoxymellein is found in wild carrot, root vegetables, and carrot. 6-Methoxymellein is found in carrot. 6-Methoxymellein is isolated from Aspergillus caespitosus, Aspergillus variecolor and Sporormia bipartis. Reaches fungitoxic levels in stored infected carrot. Shows broad antimicrobial action.
Formyl-5-hydroxykynurenamine
Formyl-5-hydroxykynurenamine belongs to the class of organic compounds known as alkyl-phenylketones. These are aromatic compounds containing a ketone substituted by one alkyl group and a phenyl group. Formyl-5-hydroxykynurenamine is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Formyl-5-hydroxykynurenamine can be biosynthesized from serotonin; which is mediated by the enzyme indoleamine 2,3-dioxygenase 1 [EC 1.13.11.52]. In humans, formyl-5-hydroxykynurenamine is involved in the tryptophan metabolism pathway. Formyl-5-hydroxykynurenamine is found in the tryptophan metabolism pathway. It is produced from serotonin through the action of indoleamine 2,3-dioxygenase [EC:1.13.11.52]. [HMDB]
1-Methoxyphenanthrene
This compound belongs to the family of Phenanthrenes and Derivatives. These are polycyclic compounds containing a phenanthrene moiety, which is a tricyclic aromatic compound with three non-linearly fused benzene.
Chalcone
Chalcone is an aromatic ketone that forms the central core for a variety of important biological compounds, which are known collectively as chalcones. They show antibacterial, antifungal, antitumor and anti-inflammatory properties. They are also intermediates in the biosynthesis of flavonoids, which are substances widespread in plants and with an array of biological activities. Chalcones are also intermediates in the Auwers synthesis of flavones.Chalcones can be prepared by an aldol condensation between a benzaldehyde and an acetophenone in the presence of sodium hydroxide as a catalyst. This reaction has been found to work in without any solvent at all - a solid-state reaction. The reaction between substituted benzaldehydes and acetophenones has been used to demonstrate green chemistry in undergraduate chemistry education. In a study investigating green chemistry synthesis, chalcones were also synthesized from the same starting materials in high temperature water (200 to 350 degree centigrade). Chalcone is an aromatic ketone that forms the central core for a variety of important biological compounds, which are known collectively as chalcones. They show antibacterial, antifungal, antitumor and anti-inflammatory properties. They are also intermediates in the biosynthesis of flavonoids, which are substances widespread in plants and with an array of biological activities. Chalcones are also intermediates in the Auwers synthesis of flavones.Chalcones can be prepared by an aldol condensation between a benzaldehyde and an acetophenone in the presence of sodium hydroxide as a catalyst. Chalcone is isolated from Glycyrrhiza uralensis and used to synthesize chalcone derivatives. Chalcone derivatives possess varied biological and pharmacological activity, including anti-inflammatory, antioxidative, antibacterial, anticancer, and anti-parasitic activities[1]. Chalcone is isolated from Glycyrrhiza uralensis and used to synthesize chalcone derivatives. Chalcone derivatives possess varied biological and pharmacological activity, including anti-inflammatory, antioxidative, antibacterial, anticancer, and anti-parasitic activities[1].
D-Kynurenine
Kynurenine, also known as 3-anthraniloylalanine, is a member of the class of compounds known as alkyl-phenylketones. Alkyl-phenylketones are aromatic compounds containing a ketone substituted by one alkyl group, and a phenyl group. Kynurenine is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Kynurenine can be found in a number of food items such as yellow zucchini, carrot, spinach, and broccoli, which makes kynurenine a potential biomarker for the consumption of these food products. Kynurenine is synthesized by the enzyme tryptophan dioxygenase, which is made primarily but not exclusively in the liver, and indoleamine 2,3-dioxygenase, which is made in many tissues in response to immune activation. Kynurenine and its further breakdown products carry out diverse biological functions, including dilating blood vessels during inflammation and regulating the immune response. Some cancers increase kynurenine production, which increases tumor growth . 2-Amino-4-(2-aminophenyl)-4-oxobutanoic acid is an endogenous metabolite.
Caffeic acid ethyl ester
Caffeic acid ethyl ester, also known as (E)-ethyl 3,4-dihydroxycinnamate or (E)-ethyl caffeate, belongs to coumaric acids and derivatives class of compounds. Those are aromatic compounds containing Aromatic compounds containing a cinnamic acid moiety (or a derivative thereof) hydroxylated at the C2 (ortho-), C3 (meta-), or C4 (para-) carbon atom of the benzene ring. Caffeic acid ethyl ester is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Caffeic acid ethyl ester can be found in eggplant and vinegar, which makes caffeic acid ethyl ester a potential biomarker for the consumption of these food products. Ethyl caffeate is an ester of an hydroxycinnamic acid, a naturally occurring organic compound . Ethyl trans-caffeate is an ethyl ester resulting from the formal condensation of the carboxy group of trans-caffeic acid with ethanol. It has a role as an anti-inflammatory agent and an antineoplastic agent. It is an alkyl caffeate ester and an ethyl ester. It is functionally related to a trans-caffeic acid. Ethyl caffeate is a natural product found in Cichorium endivia, Cichorium pumilum, and other organisms with data available. Ethyl Caffeate is a natural phenolic compound isolated from Bidens pilosa. Ethyl caffeate suppresses NF-κB activation and its downstream inflammatory mediators, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and prostaglandin E2 (PGE2) in vitro or in mouse skin[1]. Ethyl Caffeate is a natural phenolic compound isolated from Bidens pilosa. Ethyl caffeate suppresses NF-κB activation and its downstream inflammatory mediators, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and prostaglandin E2 (PGE2) in vitro or in mouse skin[1].
Anthriscinol
Anthriscinol is found in herbs and spices. Anthriscinol is a constituent of Myristica fragrans (nutmeg). Constituent of Myristica fragrans (nutmeg). Anthriscinol is found in herbs and spices. Anthriscinol is a member of benzodioxoles.
3-(3,4-Dimethoxyphenyl)-2-propenoic acid
3,4-dimethoxycinnamic acid is a methoxycinnamic acid that is trans-cinnamic acid substituted by methoxy groups at positions 3 and 4 respectively. It is functionally related to a trans-cinnamic acid. 3,4-Dimethoxycinnamic acid is a natural product found in Sibiraea angustata, Verbesina gigantea, and other organisms with data available. 3-(3,4-Dimethoxyphenyl)-2-propenoic acid is found in beverages. 3-(3,4-Dimethoxyphenyl)-2-propenoic acid is found in kava (Piper methysticum). FDA advises against use of kava in food due to potential risk of severe liver damage (2002 Found in kava (Piper methysticum). FDA advises against use of kava in food due to potential risk of severe liver damage (2002) (E)-3,4-Dimethoxycinnamic acid is the less active isomer of 3,4-Dimethoxycinnamic acid. 3,4-Dimethoxycinnamic acid exerts anti-apoptotic effects on L-02 cells via the ROS-mediated signaling pathway[1]. Anti-apoptotic effects[1]. (E)-3,4-Dimethoxycinnamic acid is the less active isomer of 3,4-Dimethoxycinnamic acid. 3,4-Dimethoxycinnamic acid exerts anti-apoptotic effects on L-02 cells via the ROS-mediated signaling pathway[1]. Anti-apoptotic effects[1]. 3,4-Dimethoxycinnamic acid (O-Methylferulic acid) is a monomer extracted and purified from Securidaca inappendiculata Hassk. 3,4-Dimethoxycinnamic acid exerts anti-apoptotic effects on L-02 cells via the ROS-mediated signaling pathway[1]. Anti-apoptotic effects[1]. 3,4-Dimethoxycinnamic acid (O-Methylferulic acid) is a monomer extracted and purified from Securidaca inappendiculata Hassk. 3,4-Dimethoxycinnamic acid exerts anti-apoptotic effects on L-02 cells via the ROS-mediated signaling pathway[1]. Anti-apoptotic effects[1].
Dambonitol
Latex used for manufacture of chewing gum. Latex used for manuf. of chewing gum.
Ethyl alpha-glucopyranoside
Ethyl beta-D-glucopyranoside is a constituent of Citrus peels, the fresh root cortex of Manihot esculenta (cassava), and other plant subspecies. Ethyl beta-D-glucopyranoside is found in many foods, some of which are root vegetables, citrus, alcoholic beverages, and fruits. Constituent of Citrus peels, the fresh root cortex of Manihot esculenta (cassava) and other plant subspecies Ethyl beta-D-glucopyranoside is found in many foods, some of which are root vegetables, citrus, alcoholic beverages, and fruits.
3-(3-Methoxy-4,5-methylenedioxyphenyl)-2-propen-1-ol
3-(3-Methoxy-4,5-methylenedioxyphenyl)-2-propen-1-ol is found in herbs and spices. 3-(3-Methoxy-4,5-methylenedioxyphenyl)-2-propen-1-ol is a constituent of Myristica fragrans (nutmeg). Constituent of Myristica fragrans (nutmeg). 3-(3-Methoxy-4,5-methylenedioxyphenyl)-2-propen-1-ol is found in herbs and spices.
5-(3',4'-Dihydroxyphenyl)-gamma-valerolactone
5-(3,4-Dihydroxyphenyl)-gamma-valerolactone (CAS: 21618-92-8) is a cocoa metabolite from gut microflora. It is found in urine. 5-(3,4-Dihydroxyphenyl)-gamma-valerolactone is a flavonoid metabolite.
Furapiole
Furapiole is found in herbs and spices. Furapiole is a constituent of Anethum sowa (Indian dill) Constituent of Anethum sowa (Indian dill). Furapiole is found in herbs and spices.
1-(2-Methoxy-3,4-methylenedioxyphenyl)-1-propanone
1-(2-Methoxy-3,4-methylenedioxyphenyl)-1-propanone is found in herbs and spices. 1-(2-Methoxy-3,4-methylenedioxyphenyl)-1-propanone is a constituent of Anethum sowa (Indian dill). Constituent of Anethum sowa (Indian dill). 1-(2-Methoxy-3,4-methylenedioxyphenyl)-1-propanone is found in herbs and spices.
5-(3',5'-Dihydroxyphenyl)-gamma-valerolactone
5-(3,5-Dihydroxyphenyl)-gamma-valerolactone is a polyphenol metabolite detected in biological fluids (PMID: 20428313). A polyphenol metabolite detected in biological fluids [PhenolExplorer]
4-Aminobenzoyl-(beta)-alanine
4-Aminobenzoyl-(beta)-alanine is a metabolite of balsalazide. Balsalazide is an anti-inflammatory drug used in the treatment of inflammatory bowel disease. It is sold under the name Colazal in the US and Colazide in the UK. It is also sold in generic form in the US by several generic manufacturers. It is usually administered as the disodium salt. Balsalazide releases mesalazine, also known as 5-aminosalicylic acid, or 5-ASA, in the large intestine. (Wikipedia)
5-(3',4'-Dihydroxyphenyl)-γ-valerolactone
A polyphenol metabolite detected in biological fluids [PhenolExplorer]
Ethyl glucoside
Constituent of Citrus peels, the fresh root cortex of Manihot esculenta (cassava) and other plant subspecies Ethyl beta-D-glucopyranoside is found in many foods, some of which are root vegetables, citrus, alcoholic beverages, and fruits.
(+)-Epibatidine
D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics
Allobarbital
N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CA - Barbiturates, plain C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C67084 - Barbiturate
2',6'-O-Diacetyloninin
2,6-o-diacetyloninin belongs to pteridines and derivatives class of compounds. Those are polycyclic aromatic compounds containing a pteridine moiety, which consists of a pyrimidine fused to a pyrazine ring to form pyrimido(4,5-b)pyrazine. 2,6-o-diacetyloninin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 2,6-o-diacetyloninin can be found in soy bean, which makes 2,6-o-diacetyloninin a potential biomarker for the consumption of this food product.
Methyl ferulate
Methyl ferulate, also known as methyl ferulic acid, belongs to coumaric acids and derivatives class of compounds. Those are aromatic compounds containing Aromatic compounds containing a cinnamic acid moiety (or a derivative thereof) hydroxylated at the C2 (ortho-), C3 (meta-), or C4 (para-) carbon atom of the benzene ring. Methyl ferulate is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Methyl ferulate can be found in garden onion, which makes methyl ferulate a potential biomarker for the consumption of this food product. Ferulic acid methyl ester (Methyl ferulate) is a derivative of ferulic acid, isolated from Stemona tuberosa, with anti-inflammatory and antioxidant properties[1][2]. Ferulic acid methyl ester is a cell membrane and brain permeable compound, shows free radical scavenging ability, used in the research of neurodegenerative disorders[1]. Ferulic acid methyl ester inhibits COX-2 expression, blocks p-p38 and p-JNK in primary bone marrow derived-macrophages[2]. Ferulic acid methyl ester (Methyl ferulate) is a derivative of ferulic acid, isolated from Stemona tuberosa, with anti-inflammatory and antioxidant properties[1][2]. Ferulic acid methyl ester is a cell membrane and brain permeable compound, shows free radical scavenging ability, used in the research of neurodegenerative disorders[1]. Ferulic acid methyl ester inhibits COX-2 expression, blocks p-p38 and p-JNK in primary bone marrow derived-macrophages[2].
Ethyl beta-D-fructofuranoside
Ethyl beta-d-fructofuranoside is a member of the class of compounds known as C-glycosyl compounds. C-glycosyl compounds are glycoside in which a sugar group is bonded through one carbon to another group via a C-glycosidic bond. Ethyl beta-d-fructofuranoside is soluble (in water) and a very weakly acidic compound (based on its pKa). Ethyl beta-d-fructofuranoside can be found in common wheat, which makes ethyl beta-d-fructofuranoside a potential biomarker for the consumption of this food product.
Kynurenine
L-Kynurenine is a metabolite of the amino acid L-tryptophan. L-Kynurenine is an aryl hydrocarbon receptor agonist.
Eleutheroside C
Eleutheroside C is a natural product found in Justicia adhatoda, Rubus niveus, and Agave amica with data available.
Methyl
Trans-methylferulate is a cinnamate ester that is the methyl ester of ferulic acid. It has been isolated from Pisonia aculeata. It has a role as a plant metabolite. It is a cinnamate ester, a methyl ester and a member of guaiacols. It is functionally related to a ferulic acid. Methyl ferulate is a natural product found in Iris milesii, Coreopsis grandiflora, and other organisms with data available. See also: Black Cohosh (part of). A cinnamate ester that is the methyl ester of ferulic acid. It has been isolated from Pisonia aculeata. Ferulic acid methyl ester (Methyl ferulate) is a derivative of ferulic acid, isolated from Stemona tuberosa, with anti-inflammatory and antioxidant properties[1][2]. Ferulic acid methyl ester is a cell membrane and brain permeable compound, shows free radical scavenging ability, used in the research of neurodegenerative disorders[1]. Ferulic acid methyl ester inhibits COX-2 expression, blocks p-p38 and p-JNK in primary bone marrow derived-macrophages[2]. Ferulic acid methyl ester (Methyl ferulate) is a derivative of ferulic acid, isolated from Stemona tuberosa, with anti-inflammatory and antioxidant properties[1][2]. Ferulic acid methyl ester is a cell membrane and brain permeable compound, shows free radical scavenging ability, used in the research of neurodegenerative disorders[1]. Ferulic acid methyl ester inhibits COX-2 expression, blocks p-p38 and p-JNK in primary bone marrow derived-macrophages[2].
Methyl ferulate
Ferulic acid methyl ester (Methyl ferulate) is a derivative of ferulic acid, isolated from Stemona tuberosa, with anti-inflammatory and antioxidant properties[1][2]. Ferulic acid methyl ester is a cell membrane and brain permeable compound, shows free radical scavenging ability, used in the research of neurodegenerative disorders[1]. Ferulic acid methyl ester inhibits COX-2 expression, blocks p-p38 and p-JNK in primary bone marrow derived-macrophages[2]. Ferulic acid methyl ester (Methyl ferulate) is a derivative of ferulic acid, isolated from Stemona tuberosa, with anti-inflammatory and antioxidant properties[1][2]. Ferulic acid methyl ester is a cell membrane and brain permeable compound, shows free radical scavenging ability, used in the research of neurodegenerative disorders[1]. Ferulic acid methyl ester inhibits COX-2 expression, blocks p-p38 and p-JNK in primary bone marrow derived-macrophages[2].
Methylferulic acid
3,4-Dimethoxycinnamic acid (O-Methylferulic acid) is a monomer extracted and purified from Securidaca inappendiculata Hassk. 3,4-Dimethoxycinnamic acid exerts anti-apoptotic effects on L-02 cells via the ROS-mediated signaling pathway[1]. Anti-apoptotic effects[1]. 3,4-Dimethoxycinnamic acid (O-Methylferulic acid) is a monomer extracted and purified from Securidaca inappendiculata Hassk. 3,4-Dimethoxycinnamic acid exerts anti-apoptotic effects on L-02 cells via the ROS-mediated signaling pathway[1]. Anti-apoptotic effects[1].
8-Hydroxy-6-methoxy-3-methyl-3,4-dihydroisocoumarin
2,3-Dihydro-7-methoxy-2-methyl-5,6-methylenedioxybenzofuran
5,5-Diallylbarbituric acid
N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CA - Barbiturates, plain C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C67084 - Barbiturate
3-Methyl-6-hydroxy-8-methoxy-3,4-dihydroisocoumarin
7-Me ether-2,3-Dihydro-5,7-dihydroxy-2-methyl-4H-1-benzopyran-4-one
3,4-Dihydro-3,4,8-trihydroxy-3-methyl-1(2H)-naphthalenone
D-gluco-3,4,5-Trihydroxy-2,6-dimethoxy-hexanal|O2,O6-dimethyl-D-glucose
3,6-Anhydro-L-galactose-dimethylacetal|3,6-Anhydro-L-galaktose-dimethylacetal
2,3-Di-O-methyl-D-mannopyranose|2,3-di-O-methyl-D-mannose|2,3-di-O-methylmannopyranose|O2,O3-dimethyl-D-mannose
(1E)-3-methyl-6-(1-methyl-2-methoxycarbonylvinyl)-alpha-pyrone
3-allyl-3a,5,6,6a-tetrahydro-2,3a-dihydroxypentalene-1,4-dione|xialenon E
3,4-Dihydro-6,8-dihydroxy-3,5-dimethyl-1H-2-benzopyran-1-one
methyl (E)-3-(4-hydroxy-2-methoxyphenyl)propenoate|Methylisoferulat
1-Chloro-3-(2-chloropropan-2-yl)-1-methylcyclohexane
C10H18Cl2 (208.07854880000002)
1-(2,4-dihydroxy-6-methoxy-phenyl)-but-2(E)-en-1-one
2,3-di-O-methyl-D-glucose|2.3-Di-O-methyl-beta-D-glucose|2.3-Di-O-methyl-D-glucose|2.3-Dimethyl-d-glucose|D-gluco-4,5,6-Trihydroxy-2,3-dimethoxy-hexanal|O2,O3-dimethyl-D-glucose
(3S,4R)-4,8-dihydroxy-3-methoxy-3,4-dihydro-1(2H)-naphthalenone
Methyl kakuol
1-(6-Methoxy-2H-1,3-benzodioxol-5-yl)propan-1-one is a natural product found in Piper marginatum with data available.
nigerapyrone E
A member of the class of 2-pyranones that is 2H-pyran-2-one substituted by a methoxy group at position 4, a methyl group at position 3 and a 3-oxobut-1-en-1-yl group at position 6. It has been isolated from an endophytic fungus Aspergillus niger.
2-Propenoic acid, 3-(3,4-dihydroxyphenyl)-, ethyl ester
3-Ethyl-6-methoxy-7-hydroxyisobenzofuran-1(3H)-one
D-galacto-3,5,6-Trihydroxy-2,4-dimethoxy-hexanal|O2,O4-dimethyl-D-galactose
3-methyl-5-methoxy-8-hydroxy-3,4-dihydroisocoumarin
3-allyl-3a,5,6,6a-tetrahydro-2,6a-dihydroxypentalene-1,4-dione|xialenon D
AI3-23713
Trans-methylferulate is a cinnamate ester that is the methyl ester of ferulic acid. It has been isolated from Pisonia aculeata. It has a role as a plant metabolite. It is a cinnamate ester, a methyl ester and a member of guaiacols. It is functionally related to a ferulic acid. Methyl ferulate is a natural product found in Iris milesii, Coreopsis grandiflora, and other organisms with data available. See also: Black Cohosh (part of). Ferulic acid methyl ester (Methyl ferulate) is a derivative of ferulic acid, isolated from Stemona tuberosa, with anti-inflammatory and antioxidant properties[1][2]. Ferulic acid methyl ester is a cell membrane and brain permeable compound, shows free radical scavenging ability, used in the research of neurodegenerative disorders[1]. Ferulic acid methyl ester inhibits COX-2 expression, blocks p-p38 and p-JNK in primary bone marrow derived-macrophages[2]. Ferulic acid methyl ester (Methyl ferulate) is a derivative of ferulic acid, isolated from Stemona tuberosa, with anti-inflammatory and antioxidant properties[1][2]. Ferulic acid methyl ester is a cell membrane and brain permeable compound, shows free radical scavenging ability, used in the research of neurodegenerative disorders[1]. Ferulic acid methyl ester inhibits COX-2 expression, blocks p-p38 and p-JNK in primary bone marrow derived-macrophages[2].
3,4-Dimethoxycinnamic acid
Annotation level-1 Acquisition and generation of the data is financially supported in part by CREST/JST. (E)-3,4-Dimethoxycinnamic acid is the less active isomer of 3,4-Dimethoxycinnamic acid. 3,4-Dimethoxycinnamic acid exerts anti-apoptotic effects on L-02 cells via the ROS-mediated signaling pathway[1]. Anti-apoptotic effects[1]. (E)-3,4-Dimethoxycinnamic acid is the less active isomer of 3,4-Dimethoxycinnamic acid. 3,4-Dimethoxycinnamic acid exerts anti-apoptotic effects on L-02 cells via the ROS-mediated signaling pathway[1]. Anti-apoptotic effects[1]. 3,4-Dimethoxycinnamic acid (O-Methylferulic acid) is a monomer extracted and purified from Securidaca inappendiculata Hassk. 3,4-Dimethoxycinnamic acid exerts anti-apoptotic effects on L-02 cells via the ROS-mediated signaling pathway[1]. Anti-apoptotic effects[1]. 3,4-Dimethoxycinnamic acid (O-Methylferulic acid) is a monomer extracted and purified from Securidaca inappendiculata Hassk. 3,4-Dimethoxycinnamic acid exerts anti-apoptotic effects on L-02 cells via the ROS-mediated signaling pathway[1]. Anti-apoptotic effects[1].
3,5-Dimethoxycinnamic acid
Annotation level-1 Acquisition and generation of the data is financially supported in part by CREST/JST.
Kynurenine
A ketone that is alanine in which one of the methyl hydrogens is substituted by a 2-aminobenzoyl group. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.061 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.060 2-Amino-4-(2-aminophenyl)-4-oxobutanoic acid is an endogenous metabolite. L-Kynurenine is a metabolite of the amino acid L-tryptophan. L-Kynurenine is an aryl hydrocarbon receptor agonist.
(E)-3-(3,4-dimethoxyphenyl)prop-2-enoic acid
Dimethoxycinnamic acid
3,4-Dimethoxycinnamic acid (O-Methylferulic acid) is a monomer extracted and purified from Securidaca inappendiculata Hassk. 3,4-Dimethoxycinnamic acid exerts anti-apoptotic effects on L-02 cells via the ROS-mediated signaling pathway[1]. Anti-apoptotic effects[1]. 3,4-Dimethoxycinnamic acid (O-Methylferulic acid) is a monomer extracted and purified from Securidaca inappendiculata Hassk. 3,4-Dimethoxycinnamic acid exerts anti-apoptotic effects on L-02 cells via the ROS-mediated signaling pathway[1]. Anti-apoptotic effects[1].
C11H12O4_1H-2-Benzopyran-1-one, 3,4-dihydro-6-hydroxy-8-methoxy-3-methyl
L-Kynurenine
A kynurenine that has L configuration. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; YGPSJZOEDVAXAB-QMMMGPOBSA-N_STSL_0006_L-Kynurenine_2000fmol_180416_S2_LC02_MS02_52; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. L-Kynurenine is a metabolite of the amino acid L-tryptophan. L-Kynurenine is an aryl hydrocarbon receptor agonist.
2-Benzylsuccinic acid
A dicarboxylic acid consisting of succinic acid carrying a 2-benzyl substituent.
Dimethylcaffeic acid
(E)-3,4-Dimethoxycinnamic acid is the less active isomer of 3,4-Dimethoxycinnamic acid. 3,4-Dimethoxycinnamic acid exerts anti-apoptotic effects on L-02 cells via the ROS-mediated signaling pathway[1]. Anti-apoptotic effects[1]. (E)-3,4-Dimethoxycinnamic acid is the less active isomer of 3,4-Dimethoxycinnamic acid. 3,4-Dimethoxycinnamic acid exerts anti-apoptotic effects on L-02 cells via the ROS-mediated signaling pathway[1]. Anti-apoptotic effects[1]. 3,4-Dimethoxycinnamic acid (O-Methylferulic acid) is a monomer extracted and purified from Securidaca inappendiculata Hassk. 3,4-Dimethoxycinnamic acid exerts anti-apoptotic effects on L-02 cells via the ROS-mediated signaling pathway[1]. Anti-apoptotic effects[1]. 3,4-Dimethoxycinnamic acid (O-Methylferulic acid) is a monomer extracted and purified from Securidaca inappendiculata Hassk. 3,4-Dimethoxycinnamic acid exerts anti-apoptotic effects on L-02 cells via the ROS-mediated signaling pathway[1]. Anti-apoptotic effects[1].
2,5-Dimethoxycinnamic acid
1-(2-Methoxy-3,4-methylenedioxyphenyl)-1-propanone
ETHYL 4-OXO-4,5,6,7-TETRAHYDRO-1H-INDAZOLE-3-CARBOXYLATE
Pikamilone
Picamilon is an orally active derivative of γ-aminobutyric acid that has nootropic effect. Picamilon improves the epilepsy model in rats and promotes correction of functional disorders of the pancreas during Alloxan (HY-W017227)-induced diabetes mellitus in rats[1][2][3].
4-(1,3-dioxolan-2-yl)-N-hydroxybenzenecarboximidamide
(2S,3R)-3AMINO-4-CYCLOBUTYL-2-HYDROXYBUTANAMIDE HYDROCHLORIDE
(3-Formyl-5-isopropoxyphenyl)boronic acid
C10H13BO4 (208.09068480000002)
(3-FORMYL-4-ISOPROPOXYPHENYL)BORONIC ACID
C10H13BO4 (208.09068480000002)
2-[(R)-amino(cyclopropyl)methyl]benzonitrile,hydrochloride
2-[(S)-amino(cyclopropyl)methyl]benzonitrile,hydrochloride
3-[(S)-amino(cyclopropyl)methyl]benzonitrile,hydrochloride
4-[(S)-amino(cyclopropyl)methyl]benzonitrile,hydrochloride
[4-(Methoxycarbonyl)-3,5-dimethylphenyl]boronic acid
C10H13BO4 (208.09068480000002)
1,4-Benzodioxin-2-carboxylic acid, 2,3-dihydro-, ethyl ester, (2S)-
2-HYDROXY-5,6,7,8-TETRAHYDRO-[1,6]NAPHTHYRIDINE-3-CARBOXYLIC ACID METHYL ESTER
4-ethoxycarbonylmethylphenylboronic acid
C10H13BO4 (208.09068480000002)
(4-((CYCLOPROPYLMETHYL)THIO)PHENYL)BORONIC ACID
C10H13BO2S (208.07292680000003)
(5,6-DIMETHYL-THIENO[2,3-D]PYRIMIDIN-4-YL)-HYDRAZINE
(S)-Methyl 2-(6-hydroxy-2,3-dihydrobenzofuran-3-yl)acetate
4-(2-METHOXYCARBONYLETHYL)PHENYLBORONIC ACID
C10H13BO4 (208.09068480000002)
METHYL 3-(3-BORONOPHENYL)PROPIONATE
C10H13BO4 (208.09068480000002)
1-(2-HYDROXY-ETHOXYMETHYL)-5-TRIFLUOROMETHYL-1H-PYRIMIDINE-2,4-DIONE
Ethyl 2,3-dihydrobenzo[b][1,4]dioxine-5-carboxylate
8a-(Trifluoromethyl)hexahydropyrrolo[1,2-a]pyrimidin-6(7H)-one
C8H11F3N2O (208.08234319999997)
2,5-Methano-5H,9H-pyrimido[2,1-b][1,5,3]dioxazepin-9-one,2,3-dihydro-3-(hydroxymethyl)-8-methyl-, (2R,3R,5R)-
(6-FLUORO-1,2,3,4-TETRAHYDRO-NAPHTHALEN-2-YL)-ACETIC ACID
[4-(Propoxycarbonyl)phenyl]boronic acid
C10H13BO4 (208.09068480000002)
(3-(2-ETHOXY-2-OXOETHYL)PHENYL)BORONIC ACID
C10H13BO4 (208.09068480000002)
5-fluoro-3-((trimethylsilyl)ethynyl)pyridin-2-amine
C10H13FN2Si (208.08319899999998)
tert-Butyl 3-aminoazetidine-1-carboxylate hydrochloride
6-methoxy-3,4-dihydro-2H-chromene-2-carboxylic acid
(3-Formyl-5-propoxyphenyl)boronic acid
C10H13BO4 (208.09068480000002)
ETHYL5-OXO-1,2,3,5-TETRAHYDROIMIDAZO[1,2-A]PYRIDINE-8-CARBOXYLATE
(E)-3-(4-Amino-3,5-dimethylphenyl)acrylonitrile hydrochloride
3-(Cyclopropylmethyl)thiophenylboronic acid
C10H13BO2S (208.07292680000003)
(3-(CYCLOBUTYLTHIO)PHENYL)BORONIC ACID
C10H13BO2S (208.07292680000003)
6,6-DIMETHYL-4-OXO-4,5,6,7-TETRAHYDRO-1-BENZOFURAN-3-CARBOXYLIC ACID
[4-(Isopropoxycarbonyl)phenyl]boronic acid
C10H13BO4 (208.09068480000002)
3-Isopropoxycarbonylphenylboronic acid
C10H13BO4 (208.09068480000002)
2-BENZO[1,3]DIOXOL-5-YL-PROPIONIC ACID METHYL ESTER
4-HYDROXY-2,2-DIMETHYL-2,3-DIHYDROBENZOFURAN-6-CARBOXYLIC ACID
dimethyl bicyclo[2.2.1]hepta-2,5-diene-5,6-dicarboxylate
4-Chloro-2-(2-methyl-2-propanyl)-1H-pyrrolo[2,3-b]pyridine
6-(BENZYLOXY)-9-(1S,3R,4S)-4-(BENZYLOXY)-3-(BENZYOXYMETHYL)-2-METHYLENECYCLOPENTYL)-9H-PURIN-2-AMINE
3-(4-hydroxy-3-methoxyphenyl)-2-methylprop-2-enoic acid
2-Methyl-3-[(3,4-methylenedioxy)phenyl]propionic acid
ethyl 4-oxo-6,7-dihydro-5H-1-benzofuran-3-carboxylate
N-(7-amino-2,3-dihydro-1,4-benzodioxin-6-yl)acetamide
Pyrrolo[3,4-b]pyrrole, octahydro-1-(trifluoroacetyl)- (9CI)
C8H11F3N2O (208.08234319999997)
[2R,4R,5R]-5-hydroxy-2-phenyl-[1,3]dioxane-4-carbaldehyde
5-(5,5-Dimethyl-1,3,2-dioxaborinan-2-yl)furan-2-carbaldehyde
C10H13BO4 (208.09068480000002)
methyl 6-methoxy-2,3-dihydro-1-benzofuran-2-carboxylate
Boronic acid,[4-(1,3-dioxan-2-yl)phenyl]-(9CI)
C10H13BO4 (208.09068480000002)
3-(2,3-Dihydro-benzo[1,4]dioxin-6-yl)-propionic acid
D-kynurenine
A kynurenine that has D configuration. D-kynurenine, a metabolite of D-tryptophan, can serve as the bioprecursor of kynurenic acid (KYNA) and 3-hydroxykynurenine. D-Kynurenine is an agonist for G protein-coupled receptor, GPR109B. D-Kynurenine is a substrate in a fluorometric assay of D-amino acid oxidase. D-kynurenine promotes epithelial-to-mesenchymal transition via activating aryl hydrocarbon receptor (AHR)[1][2][3][4].
METHYL 2-OXO-5,6,7,8-TETRAHYDRO-2H-CHROMENE-3-CARBOXYLATE
3-(2-METHYL-1,3-DIOXOLAN-2-YL)PHENYLBORONIC ACID
C10H13BO4 (208.09068480000002)
2-(2-Methyl-1,3-dioxolan-2-yl)phenylboronic acid
C10H13BO4 (208.09068480000002)
3-(Propoxycarbonyl)Phenylboronic Acid
C10H13BO4 (208.09068480000002)
(2-ethoxy-3-formyl-5-methylphenyl)boronic acid
C10H13BO4 (208.09068480000002)
1H-Indene-4-carboxylicacid,2,3,5,6,7,7a-hexahydro-7a-methyl-1,5-dioxo-(9CI)
2-Butyl-5,6-dihydro-1H-imidazo[4,5-D]pyridazine-4,7-dione
Monoisopropyl phthalate
A phthalic acid monoester obtained by formal condensation of one of the carboxy groups of phthalic acid with the hydroxy group of isopropanol.
1-(4-Trimethylsilyloxyphenyl)ethanone
C11H16O2Si (208.09195160000002)
3-Carboxymethyl-6,7,8,9-tetrahydro-4H-pyrido[1,2-a]pyrimidin-4-one
Acetophenone, 3-(trimethylsiloxy)-
C11H16O2Si (208.09195160000002)
(+/-)-epibatidine
D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics
[(3R)-7-nitro-1,2,3,4-tetrahydroisoquinolin-3-yl]methanol
102-37-4
Ethyl Caffeate is a natural phenolic compound isolated from Bidens pilosa. Ethyl caffeate suppresses NF-κB activation and its downstream inflammatory mediators, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and prostaglandin E2 (PGE2) in vitro or in mouse skin[1]. Ethyl Caffeate is a natural phenolic compound isolated from Bidens pilosa. Ethyl caffeate suppresses NF-κB activation and its downstream inflammatory mediators, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and prostaglandin E2 (PGE2) in vitro or in mouse skin[1].
AIDS-021439
(E)-3,4-Dimethoxycinnamic acid is the less active isomer of 3,4-Dimethoxycinnamic acid. 3,4-Dimethoxycinnamic acid exerts anti-apoptotic effects on L-02 cells via the ROS-mediated signaling pathway[1]. Anti-apoptotic effects[1]. (E)-3,4-Dimethoxycinnamic acid is the less active isomer of 3,4-Dimethoxycinnamic acid. 3,4-Dimethoxycinnamic acid exerts anti-apoptotic effects on L-02 cells via the ROS-mediated signaling pathway[1]. Anti-apoptotic effects[1]. 3,4-Dimethoxycinnamic acid (O-Methylferulic acid) is a monomer extracted and purified from Securidaca inappendiculata Hassk. 3,4-Dimethoxycinnamic acid exerts anti-apoptotic effects on L-02 cells via the ROS-mediated signaling pathway[1]. Anti-apoptotic effects[1]. 3,4-Dimethoxycinnamic acid (O-Methylferulic acid) is a monomer extracted and purified from Securidaca inappendiculata Hassk. 3,4-Dimethoxycinnamic acid exerts anti-apoptotic effects on L-02 cells via the ROS-mediated signaling pathway[1]. Anti-apoptotic effects[1].
2,4-Dihydroxy-3-methyl-6-(2-oxopropyl)benzaldehyde
A dihydroxybenzaldehyde that is 2,4-dihydroxybenzaldehyde in which the hydrogens at positions 3 and 6 have been replaced by a methyl and 2-oxopropyl groups, respectively.
3,3-Dimethoxy-1-phenylpropane-1,2-dione
An alpha-diketone that is 1-phenyl-1,2-propanedione substituted by two methoxy groups at position 3.
(3R,4S)-3-(6-chloro-3-pyridyl)-7-azabicyclo[2.2.1]heptane
D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics
1-Hydroxy-4-(4-hydroxy-3-methoxyphenyl)but-3-en-2-one
Formyl-5-hydroxykynurenamine
A hydroxykynurenamine that is 5-hydroxykynurenamine with the hydrogen on the aryl amine replaced by a formyl group.
3-(6-chloro-3-pyridinyl)-7-azabicyclo[2.2.1]heptane
3-Methyl-6-methoxy-8-hydroxy-3,4-dihydroisocoumarin
3-(3-Methoxy-4,5-methylenedioxyphenyl)-2-propen-1-ol
L-kynurenine zwitterion
Zwitterionic form of L-kynurenine arising from transfer of a proton from the carboxy to the amino group; major species at pH 7.3.