5-methylthioadenosine (MTA) (BioDeep_00000001262)

 

Secondary id: BioDeep_00000399874, BioDeep_00000412675

natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019 Volatile Flavor Compounds


代谢物信息卡片


(2R,3R,4S,5S)-2-(6-amino-9H-purin-9-yl)-5-[(methylsulfanyl)methyl]oxolane-3,4-diol

化学式: C11H15N5O3S (297.089556)
中文名称: 5'-甲硫腺苷, 5-脱氧-5-甲硫腺苷, 5'-脱氧-5'-(甲硫基)腺苷
谱图信息: 最多检出来源 Homo sapiens(blood) 0.18%

Reviewed

Last reviewed on 2024-09-13.

Cite this Page

5-methylthioadenosine (MTA). BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/5-methylthioadenosine_(mta) (retrieved 2024-11-21) (BioDeep RN: BioDeep_00000001262). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: CSCC1C(C(C(O1)N2C=NC3=C(N=CN=C32)N)O)O
InChI: InChI=1S/C11H15N5O3S/c1-20-2-5-7(17)8(18)11(19-5)16-4-15-6-9(12)13-3-14-10(6)16/h3-5,7-8,11,17-18H,2H2,1H3,(H2,12,13,14)/t5-,7-,8-,11-/m1/s1

描述信息

5-Methylthioadenosine, also known as MTA or thiomethyladenosine, belongs to the class of organic compounds known as 5-deoxy-5-thionucleosides. These are 5-deoxyribonucleosides in which the ribose is thio-substituted at the 5position by a S-alkyl group. 5-Methylthioadenosine is metabolized solely by MTA-phosphorylase, to yield 5-methylthioribose-1-phosphate and adenine, a crucial step in the methionine and purine salvage pathways, respectively. 5-Methylthioadenosine exists in all living species, ranging from bacteria to humans. 5-Methylthioadenosine (MTA) is a naturally occurring sulfur-containing nucleoside present in all mammalian tissues. Within humans, 5-methylthioadenosine participates in a number of enzymatic reactions. In particular, 5-methylthioadenosine and spermidine can be biosynthesized from S-adenosylmethioninamine and putrescine through the action of the enzyme spermidine synthase. In addition, 5-methylthioadenosine can be converted into 5-methylthioribose 1-phosphate and L-methionine; which is catalyzed by the enzyme S-methyl-5-thioadenosine phosphorylase. It is produced from S-adenosylmethionine mainly through the polyamine biosynthetic pathway, where it behaves as a powerful inhibitory product. For instance, 5-Methylthioadenosine has been shown to influence the regulation of gene expression, proliferation, differentiation, and apoptosis (PMID:15313459). In humans, 5-methylthioadenosine is involved in the metabolic disorder called hypermethioninemia. Outside of the human body, 5-Methylthioadenosine has been detected, but not quantified in several different foods, such as soursops, allspices, summer grapes, alaska wild rhubarbs, and breadfruits. Elevated excretion appears in children with severe combined immunodeficiency syndrome (SCID) (PMID:3987052). Evidence suggests that 5-Methylthioadenosine can affect cellular processes in many ways. 5-Methylthioadenosine can be found in human urine.
5-deoxy-5-methylthioadenosine, also known as S-methyl-5-thioadenosine or mta, is a member of the class of compounds known as 5-deoxy-5-thionucleosides. 5-deoxy-5-thionucleosides are 5-deoxyribonucleosides in which the ribose is thio-substituted at the 5position by a S-alkyl group. 5-deoxy-5-methylthioadenosine is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 5-deoxy-5-methylthioadenosine can be found in a number of food items such as allspice, sesame, roselle, and bayberry, which makes 5-deoxy-5-methylthioadenosine a potential biomarker for the consumption of these food products. 5-deoxy-5-methylthioadenosine can be found primarily in blood and urine, as well as in human fibroblasts, platelet and prostate tissues. 5-deoxy-5-methylthioadenosine exists in all living species, ranging from bacteria to humans. In humans, 5-deoxy-5-methylthioadenosine is involved in a couple of metabolic pathways, which include methionine metabolism and spermidine and spermine biosynthesis. 5-deoxy-5-methylthioadenosine is also involved in several metabolic disorders, some of which include glycine n-methyltransferase deficiency, methionine adenosyltransferase deficiency, homocystinuria-megaloblastic anemia due to defect in cobalamin metabolism, cblg complementation type, and hypermethioninemia.

5'-Methylthioadenosine (5'-(Methylthio)-5'-deoxyadenosine) is a nucleoside generated from S-adenosylmethionine (SAM) during polyamine synthesis[1]. 5'-Methylthioadenosine suppresses tumors by inhibiting tumor cell proliferation, invasion, and the induction of apoptosis while controlling the inflammatory micro-environments of tumor tissue. 5'-Methylthioadenosine and its associated materials have striking regulatory effects on tumorigenesis[2].
5'-Methylthioadenosine (5'-(Methylthio)-5'-deoxyadenosine) is a nucleoside generated from S-adenosylmethionine (SAM) during polyamine synthesis[1]. 5'-Methylthioadenosine suppresses tumors by inhibiting tumor cell proliferation, invasion, and the induction of apoptosis while controlling the inflammatory micro-environments of tumor tissue. 5'-Methylthioadenosine and its associated materials have striking regulatory effects on tumorigenesis[2].
5'-Methylthioadenosine (5'-(Methylthio)-5'-deoxyadenosine) is a nucleoside generated from S-adenosylmethionine (SAM) during polyamine synthesis[1]. 5'-Methylthioadenosine suppresses tumors by inhibiting tumor cell proliferation, invasion, and the induction of apoptosis while controlling the inflammatory micro-environments of tumor tissue. 5'-Methylthioadenosine and its associated materials have striking regulatory effects on tumorigenesis[2].

同义名列表

32 个代谢物同义名

(2R,3R,4S,5S)-2-(6-amino-9H-purin-9-yl)-5-[(methylsulfanyl)methyl]oxolane-3,4-diol; 1-(6-amino-9H-purin-9-yl)-1-deoxy-5-S-methyl-5-thio-β-δ-Ribofuranose; (2R,3R,4S,5S)-2-(6-aminopurin-9-yl)-5-(methylsulfanylmethyl)oxolane-3,4-diol; 1-(6-Amino-9H-purin-9-yl)-1-deoxy-5-S-methyl-5-thio-beta-delta-ribofuranose; 1-(6-amino-9H-purin-9-yl)-1-deoxy-5-S-methyl-5-thio-β-D-Ribofuranose; 1-(6-Amino-9H-purin-9-yl)-1-deoxy-5-S-methyl-5-thio-beta-D-ribofuranose; 9-(5-S-Methyl-5-thio-beta-D-ribofuranosyl)-9H-purin-6-amine; 9-(5-S-Methyl-5-thio-β-D-ribofuranosyl)-9H-purin-6-amine; 9-(5-S-Methyl-5-thio-b-D-ribofuranosyl)-9H-purin-6-amine; Adenine(5-deoxy-5-methylthio)9-beta-D-furanoriboside; 5′-Deoxy-5′-(methylthio)adenosine; 5-Methylthioadenosine, methyl-(14)C-labeled; 5-Deoxy-5-(methylthio)adenosine; 5-(Methylthio)-5-deoxyadenosine; 5-Deoxy-5-Methylthioadenosine; 5-Methylthio-5-deoxyadenosine; 5-S-Methyl-5-thio-adenosine; 5-S-Methyl-5-thioadenosine; S-Methyl-5-thioadenosine; Adenylthiomethylpentose; 5-S-Methylthioadenosine; 5-(Methylthio)adenosine; 5-Methylthioadenosine; Thiomethyladenosine; Methylthioadenosine; 5-MTDA; MTA; 5'-Methylthioadenosine; 5'-(Methylthio)-5'-deoxyadenosine; 5'-Deoxy-5'-(methylthio)adenosine; 5'-S-Methyl-5'-thioadenosine; 5'-Methylthioadenosine



数据库引用编号

37 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(10)

BioCyc(11)

PlantCyc(3)

代谢反应

2490 个相关的代谢反应过程信息。

Reactome(153)

BioCyc(143)

WikiPathways(1)

Plant Reactome(870)

INOH(1)

PlantCyc(1285)

COVID-19 Disease Map(1)

PathBank(36)

PharmGKB(0)

81 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Houchao Xu, Tobias G Köllner, Feng Chen, Jeroen S Dickschat. Functional and Mechanistic Characterization of the 4,5-diepi-Isoishwarane Synthase from the Liverwort Radula lindenbergiana. Chembiochem : a European journal of chemical biology. 2024 Apr; 25(8):e202400104. doi: 10.1002/cbic.202400104. [PMID: 38372483]
  • N R Kiran, Ananth Krishna Narayanan, Soumyajit Mohapatra, Priyanka Gupta, Dinesh A Nagegowda. Analysis of root volatiles and functional characterization of a root-specific germacrene A synthase in Artemisia pallens. Planta. 2024 Feb; 259(3):58. doi: 10.1007/s00425-024-04334-0. [PMID: 38308700]
  • Qiang Lyu, Rou-An Chen, Hsiao-Li Chuang, Hsin-Bai Zou, Lihong Liu, Li-Kang Sung, Po-Yu Liu, Hsin-Yi Wu, Hsin-Yuan Chang, Wan-Ju Cheng, Wei-Kai Wu, Ming-Shiang Wu, Cheng-Chih Hsu. Bifidobacterium alleviate metabolic disorders via converting methionine to 5'-methylthioadenosine. Gut microbes. 2024 Jan; 16(1):2300847. doi: 10.1080/19490976.2023.2300847. [PMID: 38439565]
  • Wenjuan Li, Jie Mai, Lu Lin, Zhi-Gang Zhang, Rodrigo Ledesma-Amaro, Weiliang Dong, Xiao-Jun Ji. Combination of microbial and chemical synthesis for the sustainable production of β-elemene, a promising plant-extracted anticancer compound. Biotechnology and bioengineering. 2023 Sep; ?(?):. doi: 10.1002/bit.28544. [PMID: 37661795]
  • Eric Fordjour, Chun-Li Liu, Yunpeng Hao, Isaac Sackey, Yankun Yang, Xiuxia Liu, Ye Li, Tianwei Tan, Zhonghu Bai. Engineering Escherichia coli BL21 (DE3) for high-yield production of germacrene A, a precursor of β-elemene via combinatorial metabolic engineering strategies. Biotechnology and bioengineering. 2023 Jun; ?(?):. doi: 10.1002/bit.28467. [PMID: 37309999]
  • Timothy Salita, Yepy H Rustam, Vinzenz Hofferek, Michael Jackson, Isaac Tollestrup, Jeffrey P Sheridan, Vern L Schramm, Gary B Evans, Gavin E Reid, Andrew B Munkacsi. Phosphoinositide and redox dysregulation by the anticancer methylthioadenosine phosphorylase transition state inhibitor. Biochimica et biophysica acta. Molecular and cell biology of lipids. 2023 Jun; ?(?):159346. doi: 10.1016/j.bbalip.2023.159346. [PMID: 37301365]
  • Dong-Mei Xie, Qiang Zhang, Ling-Kai Xin, Guo-Kai Wang, Cong-Bin Liu, Min-Jian Qin. Cloning and Functional Characterization of Two Germacrene A Oxidases Isolated from Xanthium sibiricum. Molecules (Basel, Switzerland). 2022 May; 27(10):. doi: 10.3390/molecules27103322. [PMID: 35630799]
  • Katarina Cankar, Paul Bundock, Robert Sevenier, Suvi T Häkkinen, Johanna Christina Hakkert, Jules Beekwilder, Ingrid M van der Meer, Michiel de Both, Dirk Bosch. Inactivation of the germacrene A synthase genes by CRISPR/Cas9 eliminates the biosynthesis of sesquiterpene lactones in Cichorium intybus L. Plant biotechnology journal. 2021 12; 19(12):2442-2453. doi: 10.1111/pbi.13670. [PMID: 34270859]
  • Justin A North, John A Wildenthal, Tobias J Erb, Bradley S Evans, Kathryn M Byerly, John A Gerlt, Fred R Tabita. A bifunctional salvage pathway for two distinct S-adenosylmethionine by-products that is widespread in bacteria, including pathogenic Escherichia coli. Molecular microbiology. 2020 05; 113(5):923-937. doi: 10.1111/mmi.14459. [PMID: 31950558]
  • Milica Bogdanović, Katarina Cankar, Milan Dragićević, Harro Bouwmeester, Jules Beekwilder, Ana Simonović, Slađana Todorović. Silencing of germacrene A synthase genes reduces guaianolide oxalate content in Cichorium intybus L. GM crops & food. 2020; 11(1):54-66. doi: 10.1080/21645698.2019.1681868. [PMID: 31668117]
  • Trinh-Don Nguyen, Moonhyuk Kwon, Soo-Un Kim, Conrad Fischer, Dae-Kyun Ro. Catalytic Plasticity of Germacrene A Oxidase Underlies Sesquiterpene Lactone Diversification. Plant physiology. 2019 11; 181(3):945-960. doi: 10.1104/pp.19.00629. [PMID: 31534022]
  • Pramod Kumar, Gajanand Sharma, Varun Gupta, Ramanpreet Kaur, Kanika Thakur, Ruchi Malik, Anil Kumar, Naveen Kaushal, Om Prakash Katare, Kaisar Raza. Oral Delivery of Methylthioadenosine to the Brain Employing Solid Lipid Nanoparticles: Pharmacokinetic, Behavioral, and Histopathological Evidences. AAPS PharmSciTech. 2019 Jan; 20(2):74. doi: 10.1208/s12249-019-1296-0. [PMID: 30631981]
  • Dorottya Nagy-Szakal, Dinesh K Barupal, Bohyun Lee, Xiaoyu Che, Brent L Williams, Ellie J R Kahn, Joy E Ukaigwe, Lucinda Bateman, Nancy G Klimas, Anthony L Komaroff, Susan Levine, Jose G Montoya, Daniel L Peterson, Bruce Levin, Mady Hornig, Oliver Fiehn, W Ian Lipkin. Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics. Scientific reports. 2018 07; 8(1):10056. doi: 10.1038/s41598-018-28477-9. [PMID: 29968805]
  • Junbo Gou, Fuhua Hao, Chongyang Huang, Moonhyuk Kwon, Fangfang Chen, Changfu Li, Chaoyang Liu, Dae-Kyun Ro, Huiru Tang, Yansheng Zhang. Discovery of a non-stereoselective cytochrome P450 catalyzing either 8α- or 8β-hydroxylation of germacrene A acid from the Chinese medicinal plant, Inula hupehensis. The Plant journal : for cell and molecular biology. 2018 Jan; 93(1):92-106. doi: 10.1111/tpj.13760. [PMID: 29086444]
  • Stéphane G Gooré, Zana A Ouattara, Thierry A Yapi, Yves-Alain Békro, Pierre Tomi, Mathieu Paoli, Félix Tomi. Chemical composition of Ivorian Artabotrys insignis leaf oil. Combined analysis including 13C NMR, to quantify germacrene A and β-elemene. Natural product research. 2017 Aug; 31(15):1836-1839. doi: 10.1080/14786419.2017.1292269. [PMID: 28278653]
  • Yating Hu, Yongjin J Zhou, Jichen Bao, Luqi Huang, Jens Nielsen, Anastasia Krivoruchko. Metabolic engineering of Saccharomyces cerevisiae for production of germacrene A, a precursor of beta-elemene. Journal of industrial microbiology & biotechnology. 2017 07; 44(7):1065-1072. doi: 10.1007/s10295-017-1934-z. [PMID: 28547322]
  • Trinh-Don Nguyen, Juan A Faraldos, Maria Vardakou, Melissa Salmon, Paul E O'Maille, Dae-Kyun Ro. Discovery of germacrene A synthases in Barnadesia spinosa: The first committed step in sesquiterpene lactone biosynthesis in the basal member of the Asteraceae. Biochemical and biophysical research communications. 2016 Oct; 479(4):622-627. doi: 10.1016/j.bbrc.2016.09.165. [PMID: 27697527]
  • Justin A North, Jaya Sriram, Karuna Chourey, Christopher D Ecker, Ritin Sharma, John A Wildenthal, Robert L Hettich, F Robert Tabita. Metabolic Regulation as a Consequence of Anaerobic 5-Methylthioadenosine Recycling in Rhodospirillum rubrum. mBio. 2016 07; 7(4):. doi: 10.1128/mbio.00855-16. [PMID: 27406564]
  • Marimuthu Govindarajan, Mohan Rajeswary, Giovanni Benelli. Chemical composition, toxicity and non-target effects of Pinus kesiya essential oil: An eco-friendly and novel larvicide against malaria, dengue and lymphatic filariasis mosquito vectors. Ecotoxicology and environmental safety. 2016 Jul; 129(?):85-90. doi: 10.1016/j.ecoenv.2016.03.007. [PMID: 26995063]
  • A B Bombo, B Appezzato-da-Glória, A-K Aschenbrenner, O Spring. Capitate glandular trichomes in Aldama discolor (Heliantheae - Asteraceae): morphology, metabolite profile and sesquiterpene biosynthesis. Plant biology (Stuttgart, Germany). 2016 May; 18(3):455-62. doi: 10.1111/plb.12423. [PMID: 26642998]
  • Zhenggui Du, Yongjie Zhou, Xufeng Lu, Lei Li, Changli Lu, Li Li, Bo Li, Hong Bu, Jiayin Yang, Yujun Shi. Octreotide prevents liver failure through upregulating 5'-methylthioadenosine in extended hepatectomized rats. Liver international : official journal of the International Association for the Study of the Liver. 2016 Feb; 36(2):212-22. doi: 10.1111/liv.12863. [PMID: 25944273]
  • Wolfgang Zierer, Mohammad R Hajirezaei, Kai Eggert, Norbert Sauer, Nicolaus von Wirén, Benjamin Pommerrenig. Phloem-Specific Methionine Recycling Fuels Polyamine Biosynthesis in a Sulfur-Dependent Manner and Promotes Flower and Seed Development. Plant physiology. 2016 Feb; 170(2):790-806. doi: 10.1104/pp.15.00786. [PMID: 26662272]
  • Swati Dey, Justin A North, Jaya Sriram, Bradley S Evans, F Robert Tabita. In Vivo Studies in Rhodospirillum rubrum Indicate That Ribulose-1,5-bisphosphate Carboxylase/Oxygenase (Rubisco) Catalyzes Two Obligatorily Required and Physiologically Significant Reactions for Distinct Carbon and Sulfur Metabolic Pathways. The Journal of biological chemistry. 2015 Dec; 290(52):30658-68. doi: 10.1074/jbc.m115.691295. [PMID: 26511314]
  • Cara L Fiore, Krista Longnecker, Melissa C Kido Soule, Elizabeth B Kujawinski. Release of ecologically relevant metabolites by the cyanobacterium Synechococcus elongates CCMP 1631. Environmental microbiology. 2015 Oct; 17(10):3949-63. doi: 10.1111/1462-2920.12899. [PMID: 25970745]
  • Michael L Barta, Keisha Thomas, Hongling Yuan, Scott Lovell, Kevin P Battaile, Vern L Schramm, P Scott Hefty. Structural and biochemical characterization of Chlamydia trachomatis hypothetical protein CT263 supports that menaquinone synthesis occurs through the futalosine pathway. The Journal of biological chemistry. 2014 Nov; 289(46):32214-32229. doi: 10.1074/jbc.m114.594325. [PMID: 25253688]
  • Veronica Gonzalez, Sabrina Touchet, Daniel J Grundy, Juan A Faraldos, Rudolf K Allemann. Evolutionary and mechanistic insights from the reconstruction of α-humulene synthases from a modern (+)-germacrene A synthase. Journal of the American Chemical Society. 2014 Oct; 136(41):14505-12. doi: 10.1021/ja5066366. [PMID: 25230152]
  • Kaouthar Eljounaidi, Katarina Cankar, Cinzia Comino, Andrea Moglia, Alain Hehn, Frédéric Bourgaud, Harro Bouwmeester, Barbara Menin, Sergio Lanteri, Jules Beekwilder. Cytochrome P450s from Cynara cardunculus L. CYP71AV9 and CYP71BL5, catalyze distinct hydroxylations in the sesquiterpene lactone biosynthetic pathway. Plant science : an international journal of experimental plant biology. 2014 Jun; 223(?):59-68. doi: 10.1016/j.plantsci.2014.03.007. [PMID: 24767116]
  • Ye Ni Zhang, Min Song, Tzi Bun Ng, Li Zhao, Fang Liu. Purification and characterization of antioxidant components from the fruiting bodies of Pleurotus abalonus including 9-beta-d-ribofuranosidoadenine, 5'-deoxy-5'-(methylthio)adenosine, and a triterpenoid. Environmental toxicology and pharmacology. 2013 Sep; 36(2):689-696. doi: 10.1016/j.etap.2013.06.007. [PMID: 23892470]
  • Oscar Cascón, Sabrina Touchet, David J Miller, Veronica Gonzalez, Juan A Faraldos, Rudolf K Allemann. Chemoenzymatic preparation of germacrene analogues. Chemical communications (Cambridge, England). 2012 Oct; 48(78):9702-4. doi: 10.1039/c2cc35542f. [PMID: 22914774]
  • Ishari Waduwara-Jayabahu, Yasmin Oppermann, Markus Wirtz, Zachary T Hull, Sarah Schoor, Alexander N Plotnikov, Rüdiger Hell, Margret Sauter, Barbara A Moffatt. Recycling of methylthioadenosine is essential for normal vascular development and reproduction in Arabidopsis. Plant physiology. 2012 Apr; 158(4):1728-44. doi: 10.1104/pp.111.191072. [PMID: 22345506]
  • Anita Zamboni, Laura Zanin, Nicola Tomasi, Mario Pezzotti, Roberto Pinton, Zeno Varanini, Stefano Cesco. Genome-wide microarray analysis of tomato roots showed defined responses to iron deficiency. BMC genomics. 2012 Mar; 13(?):101. doi: 10.1186/1471-2164-13-101. [PMID: 22433273]
  • Thanawat Pitakpornpreecha, Anuchit Plubrukarn, Rapepun Wititsuwannakul. Quantification of 5'-deoxy-5'-methylthioadenosine in heat-treated natural rubber latex serum. Phytochemical analysis : PCA. 2012 Jan; 23(1):12-5. doi: 10.1002/pca.1319. [PMID: 21538640]
  • Kenichi Yamazaki, Yoshihiko Ikeguchi, Takuya Niwa, Kaoru Hayashi, Takahiro Iwaki, Ikumi Ishii, Masaru Niitsu, Anthony E Pegg, Akira Shirahata. Determination of cellular aminopropyltransferase activity using precolumn fluorescent etheno-derivatization with high-performance liquid chromatography. Analytical sciences : the international journal of the Japan Society for Analytical Chemistry. 2012; 28(6):621-4. doi: 10.2116/analsci.28.621. [PMID: 22729051]
  • Ewa Bretes, Andrzej Guranowski, Katarzyna Nuc. 5'-methylthioadenosine nucleosidase from yellow lupine (Lupinus luteus): molecular characterization and mutational analysis. Protein and peptide letters. 2011 Aug; 18(8):817-24. doi: 10.2174/092986611795714023. [PMID: 21443501]
  • Nobuhiro Ikezawa, Jens Christian Göpfert, Don Trinh Nguyen, Soo-Un Kim, Paul E O'Maille, Otmar Spring, Dae-Kyun Ro. Lettuce costunolide synthase (CYP71BL2) and its homolog (CYP71BL1) from sunflower catalyze distinct regio- and stereoselective hydroxylations in sesquiterpene lactone metabolism. The Journal of biological chemistry. 2011 Jun; 286(24):21601-11. doi: 10.1074/jbc.m110.216804. [PMID: 21515683]
  • S Sivapalaratnam, M M Motazacker, S Maiwald, G K Hovingh, J J P Kastelein, M Levi, M D Trip, G M Dallinga-Thie. Genome-wide association studies in atherosclerosis. Current atherosclerosis reports. 2011 Jun; 13(3):225-32. doi: 10.1007/s11883-011-0173-4. [PMID: 21369780]
  • Wenqiang Pang, Ying Zhang, Shiming Wang, Aiqun Jia, Wei Dong, Chun Cai, Zichun Hua, Jianfa Zhang. The mPlrp2 and mClps genes are involved in the hydrolysis of retinyl esters in the mouse liver. Journal of lipid research. 2011 May; 52(5):934-41. doi: 10.1194/jlr.m010082. [PMID: 21339507]
  • Benjamin Pommerrenig, Kirstin Feussner, Wolfgang Zierer, Valentyna Rabinovych, Franz Klebl, Ivo Feussner, Norbert Sauer. Phloem-specific expression of Yang cycle genes and identification of novel Yang cycle enzymes in Plantago and Arabidopsis. The Plant cell. 2011 May; 23(5):1904-19. doi: 10.1105/tpc.110.079657. [PMID: 21540433]
  • Indranil Basu, Joseph Locker, Maria B Cassera, Thomas J Belbin, Emilio F Merino, Xinyuan Dong, Ivan Hemeon, Gary B Evans, Chandan Guha, Vern L Schramm. Growth and metastases of human lung cancer are inhibited in mouse xenografts by a transition state analogue of 5'-methylthioadenosine phosphorylase. The Journal of biological chemistry. 2011 Feb; 286(6):4902-11. doi: 10.1074/jbc.m110.198374. [PMID: 21135097]
  • Katarina Cankar, Adèle van Houwelingen, Dirk Bosch, Theo Sonke, Harro Bouwmeester, Jules Beekwilder. A chicory cytochrome P450 mono-oxygenase CYP71AV8 for the oxidation of (+)-valencene. FEBS letters. 2011 Jan; 585(1):178-82. doi: 10.1016/j.febslet.2010.11.040. [PMID: 21115006]
  • Karen K W Siu, Kyle Asmus, Allison N Zhang, Cathy Horvatin, Sheng Li, Tong Liu, Barbara Moffatt, Virgil L Woods, P Lynne Howell. Mechanism of substrate specificity in 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidases. Journal of structural biology. 2011 Jan; 173(1):86-98. doi: 10.1016/j.jsb.2010.06.006. [PMID: 20554051]
  • Qing Liu, Mohammad Majdi, Katarina Cankar, Miriam Goedbloed, Tatsiana Charnikhova, Francel W A Verstappen, Ric C H de Vos, Jules Beekwilder, Sander van der Krol, Harro J Bouwmeester. Reconstitution of the costunolide biosynthetic pathway in yeast and Nicotiana benthamiana. PloS one. 2011; 6(8):e23255. doi: 10.1371/journal.pone.0023255. [PMID: 21858047]
  • Barbara Roe, Elizabeth Kensicki, Robert Mohney, William W Hall. Metabolomic profile of hepatitis C virus-infected hepatocytes. PloS one. 2011; 6(8):e23641. doi: 10.1371/journal.pone.0023641. [PMID: 21853158]
  • Wayne Chadwick, Randall Brenneman, Bronwen Martin, Stuart Maudsley. Complex and multidimensional lipid raft alterations in a murine model of Alzheimer's disease. International journal of Alzheimer's disease. 2010 Dec; 2010(?):604792. doi: 10.4061/2010/604792. [PMID: 21151659]
  • Huawen Lin, Alan L Kwan, Susan K Dutcher. Synthesizing and salvaging NAD: lessons learned from Chlamydomonas reinhardtii. PLoS genetics. 2010 Sep; 6(9):e1001105. doi: 10.1371/journal.pgen.1001105. [PMID: 20838591]
  • Don Trinh Nguyen, Jens Christian Göpfert, Nobuhiro Ikezawa, Gillian Macnevin, Meena Kathiresan, Jürgen Conrad, Otmar Spring, Dae-Kyun Ro. Biochemical conservation and evolution of germacrene A oxidase in asteraceae. The Journal of biological chemistry. 2010 May; 285(22):16588-98. doi: 10.1074/jbc.m110.111757. [PMID: 20351109]
  • Daniel A Enquobahrie, Michelle A Williams, Chunfang Qiu, Seid Y Muhie, Kimberly Slentz-Kesler, Zhaoping Ge, Tanya Sorenson. Early pregnancy peripheral blood gene expression and risk of preterm delivery: a nested case control study. BMC pregnancy and childbirth. 2009 Dec; 9(?):56. doi: 10.1186/1471-2393-9-56. [PMID: 20003277]
  • Laurence Colin, Carine Van Lint. Molecular control of HIV-1 postintegration latency: implications for the development of new therapeutic strategies. Retrovirology. 2009 Dec; 6(?):111. doi: 10.1186/1742-4690-6-111. [PMID: 19961595]
  • Yukihito Kabuyama, Elizabeth S Litman, Paul D Templeton, Sandra I Metzner, Eric S Witze, Gretchen M Argast, Stephen J Langer, Kirsi Polvinen, Yiqun Shellman, Daniel Chan, John B Shabb, James E Fitzpatrick, Katheryn A Resing, Marcelo C Sousa, Natalie G Ahn. A mediator of Rho-dependent invasion moonlights as a methionine salvage enzyme. Molecular & cellular proteomics : MCP. 2009 Oct; 8(10):2308-20. doi: 10.1074/mcp.m900178-mcp200. [PMID: 19620624]
  • Yan Zhang, Guiying Zhang, Jiahuan Zhang, Xiaoyu Wang, Jinsheng Wang. Mutagenesis of the enolase-phosphatase gene in Xanthomonas oryzae pv. oryzae affects growth on methylthioadenosine and in vivo S-adenosylmethionine pools. Archives of microbiology. 2009 Oct; 191(10):773-83. doi: 10.1007/s00203-009-0505-8. [PMID: 19730818]
  • Hubert Cieśliński, Anna Długołecka, Józef Kur, Marianna Turkiewicz. An MTA phosphorylase gene discovered in the metagenomic library derived from Antarctic top soil during screening for lipolytic active clones confers strong pink fluorescence in the presence of rhodamine B. FEMS microbiology letters. 2009 Oct; 299(2):232-40. doi: 10.1111/j.1574-6968.2009.01756.x. [PMID: 19732148]
  • Karen K W Siu, Jeffrey E Lee, Janice R Sufrin, Barbara A Moffatt, Martin McMillan, Kenneth A Cornell, Chelsea Isom, P Lynne Howell. Molecular determinants of substrate specificity in plant 5'-methylthioadenosine nucleosidases. Journal of molecular biology. 2008 Apr; 378(1):112-28. doi: 10.1016/j.jmb.2008.01.088. [PMID: 18342331]
  • Ya Zhao, Zhong Yuan. [A new coumarin glycoside from Glehnia littoralis]. Yao xue xue bao = Acta pharmaceutica Sinica. 2007 Oct; 42(10):1070-3. doi: . [PMID: 18229615]
  • Katharina Bürstenbinder, Guillaume Rzewuski, Markus Wirtz, Rüdiger Hell, Margret Sauter. The role of methionine recycling for ethylene synthesis in Arabidopsis. The Plant journal : for cell and molecular biology. 2007 Jan; 49(2):238-49. doi: 10.1111/j.1365-313x.2006.02942.x. [PMID: 17144895]
  • Quanren He, Hirofumi Suzuki, Raghubir P Sharma. S-adenosylmethionine or 5'-methylthioadenosine are unable to prevent fumonisin B1 hepatotoxicity in mice despite increased oxidation in liver. Journal of applied toxicology : JAT. 2006 Nov; 26(6):509-16. doi: 10.1002/jat.1170. [PMID: 17080400]
  • Manas K Chattopadhyay, Celia White Tabor, Herbert Tabor. Methylthioadenosine and polyamine biosynthesis in a Saccharomyces cerevisiae meu1delta mutant. Biochemical and biophysical research communications. 2006 Apr; 343(1):203-7. doi: 10.1016/j.bbrc.2006.02.144. [PMID: 16530730]
  • Natalia Nieto, Arthur I Cederbaum. S-adenosylmethionine blocks collagen I production by preventing transforming growth factor-beta induction of the COL1A2 promoter. The Journal of biological chemistry. 2005 Sep; 280(35):30963-74. doi: 10.1074/jbc.m503569200. [PMID: 15983038]
  • Yung-Jin Chang, Jianming Jin, Hee-Young Nam, Soo-Un Kim. Point mutation of (+)-germacrene A synthase from Ixeris dentata. Biotechnology letters. 2005 Mar; 27(5):285-8. doi: 10.1007/s10529-005-0681-9. [PMID: 15834787]
  • Tomasz Stepkowski, Krzysztof Brzeziński, Andrzej B Legocki, Mariusz Jaskólski, Gilles Béna. Bayesian phylogenetic analysis reveals two-domain topology of S-adenosylhomocysteine hydrolase protein sequences. Molecular phylogenetics and evolution. 2005 Jan; 34(1):15-28. doi: 10.1016/j.ympev.2004.09.008. [PMID: 15579379]
  • Margret Sauter, Kenneth A Cornell, Sára Beszteri, Guillaume Rzewuski. Functional analysis of methylthioribose kinase genes in plants. Plant physiology. 2004 Dec; 136(4):4061-71. doi: 10.1104/pp.104.053587. [PMID: 15557090]
  • Andres A Caro, Arthur I Cederbaum. Antioxidant properties of S-adenosyl-L-methionine in Fe(2+)-initiated oxidations. Free radical biology & medicine. 2004 May; 36(10):1303-16. doi: 10.1016/j.freeradbiomed.2004.02.015. [PMID: 15110395]
  • Yonggen Lou, Ian T Baldwin. Nitrogen supply influences herbivore-induced direct and indirect defenses and transcriptional responses in Nicotiana attenuata. Plant physiology. 2004 May; 135(1):496-506. doi: 10.1104/pp.104.040360. [PMID: 15133153]
  • Asaph Aharoni, Ashok P Giri, Stephan Deuerlein, Frans Griepink, Willem-Jan de Kogel, Francel W A Verstappen, Harrie A Verhoeven, Maarten A Jongsma, Wilfried Schwab, Harro J Bouwmeester. Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. The Plant cell. 2003 Dec; 15(12):2866-84. doi: 10.1105/tpc.016253. [PMID: 14630967]
  • Bryan T Greenhagen, Paul Griggs, Shunji Takahashi, Lyle Ralston, Joe Chappell. Probing sesquiterpene hydroxylase activities in a coupled assay with terpene synthases. Archives of biochemistry and biophysics. 2003 Jan; 409(2):385-94. doi: 10.1016/s0003-9861(02)00613-6. [PMID: 12504906]
  • Agnieszka Sekowska, Antoine Danchin. The methionine salvage pathway in Bacillus subtilis. BMC microbiology. 2002 Apr; 2(?):8. doi: 10.1186/1471-2180-2-8. [PMID: 12022921]
  • H J Hwang, E H Kim, Y D Cho. Isolation and properties of arginase from a shade plant, ginseng (Panax ginseng C.A. Meyer) roots. Phytochemistry. 2001 Dec; 58(7):1015-24. doi: 10.1016/s0031-9422(01)00392-2. [PMID: 11730864]
  • K A Mowen, J Tang, W Zhu, B T Schurter, K Shuai, H R Herschman, M David. Arginine methylation of STAT1 modulates IFNalpha/beta-induced transcription. Cell. 2001 Mar; 104(5):731-41. doi: 10.1016/s0092-8674(01)00269-0. [PMID: 11257227]
  • M M Simile, S Banni, E Angioni, G Carta, M R De Miglio, M R Muroni, D F Calvisi, A Carru, R M Pascale, F Feo. 5'-Methylthioadenosine administration prevents lipid peroxidation and fibrogenesis induced in rat liver by carbon-tetrachloride intoxication. Journal of hepatology. 2001 Mar; 34(3):386-94. doi: 10.1016/s0168-8278(00)00078-7. [PMID: 11322199]
  • D Yang, F Wang, J Peng, S Ren. [GC-MS analysis and inhibitory activity of the essential oil extracted from the leaves of Lindera communis]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 1999 Mar; 22(3):128-31. doi: ". [PMID: 12575094]
  • H M Liebich, C Di Stefano, A Wixforth, H R Schmid. Quantitation of urinary nucleosides by high-performance liquid chromatography. Journal of chromatography. A. 1997 Feb; 763(1-2):193-7. doi: 10.1016/s0021-9673(96)00757-1. [PMID: 9129323]
  • L E Brackett, J W Daly. Functional characterization of the A2b adenosine receptor in NIH 3T3 fibroblasts. Biochemical pharmacology. 1994 Mar; 47(5):801-14. doi: 10.1016/0006-2952(94)90480-4. [PMID: 8135856]
  • J Kido, Y Ashida, K Shinkai, H Akedo, A Isoai, H Kumagai, H Inoue. Effects of methylthiodeoxyadenosine and its analogs on in vitro invasion of rat ascites hepatoma cells and methylation of their phospholipids. Japanese journal of cancer research : Gann. 1991 Oct; 82(10):1104-11. doi: 10.1111/j.1349-7006.1991.tb01764.x. [PMID: 1955377]
  • K Kaneko, S Fujimori, T Kumakawa, N Kamatani, I Akaoka. Disturbance in the metabolism of 5'-methylthioadenosine and adenine in patients with neoplastic diseases, and in those with a deficiency in adenine phosphoribosyltransferase. Metabolism: clinical and experimental. 1991 Sep; 40(9):918-21. doi: 10.1016/0026-0495(91)90066-6. [PMID: 1895956]
  • L E Brackett, J W Daly. Relaxant effects of adenosine analogs on guinea pig trachea in vitro: xanthine-sensitive and xanthine-insensitive mechanisms. The Journal of pharmacology and experimental therapeutics. 1991 Apr; 257(1):205-13. doi: NULL. [PMID: 2019986]
  • R G Liteplo, T J Jurewicz. Serum has a differential effect on DNA replication in a human melanoma cell line cultured in methionine or 5'-deoxy-5'-methylthioadenosine. Biochimica et biophysica acta. 1991 Mar; 1088(3):365-72. doi: 10.1016/0167-4781(91)90126-7. [PMID: 2015299]
  • J G Altin, R A Bradshaw. Production of 1,2-diacylglycerol in PC12 cells by nerve growth factor and basic fibroblast growth factor. Journal of neurochemistry. 1990 May; 54(5):1666-76. doi: 10.1111/j.1471-4159.1990.tb01220.x. [PMID: 2324742]
  • K Kaneko, S Fujimori, T Kanbayashi, Y Miyazawa, T Kumakawa, H Fujii, S Miwa, N Kamatani, I Akaoka. Measurement of 5'-methylthioadenosine in patients with neoplasms. International journal of cancer. 1990 Jan; 45(1):8-11. doi: 10.1002/ijc.2910450103. [PMID: 2298507]
  • T K Smith, L Lindqvist, L Alakuijala, T O Eloranta. Effects of dietary polyamine precursors on the metabolism and tissue concentrations of amino acids in the rat. Annals of nutrition & metabolism. 1989; 33(3):143-52. doi: 10.1159/000177531. [PMID: 2802527]
  • F Della Ragione, A Oliva, V Gragnaniello, M Fioretti, A Fioretti, L F Menna, V Papparella, V Zappia. Chromatographic and radioimmunological methods for the determination of 5'-deoxy-5'-methylthioadenosine in biological fluids. Journal of chromatography. 1988 May; 440(?):141-9. doi: 10.1016/s0021-9673(00)94518-7. [PMID: 3403660]
  • G L Russo, F Della Ragione, R Utili, A Andreana, G Ruggiero, V Zappia. Studies on human serum 5'-deoxy-5'-methylthioadenosine phosphorylase: molecular properties and clinical perspectives. Advances in experimental medicine and biology. 1988; 250(?):229-38. doi: 10.1007/978-1-4684-5637-0_21. [PMID: 3151228]
  • N R Smalheiser, N B Schwartz. Kinetic analysis of 'rapid onset' neurite formation in NG108-15 cells reveals a dual role for substratum-bound laminin. Brain research. 1987 Jul; 431(1):111-21. doi: 10.1016/0165-3806(87)90200-8. [PMID: 3620981]
  • M Näslund, I Kláŝterská, A Kolman, L Ehrenberg. Mutagenic and comutagenic action of 5'-deoxy-5'-(methylthio)adenosine. Mutation research. 1986 Jun; 161(1):1-7. doi: 10.1016/0027-5107(86)90094-1. [PMID: 3517630]
  • G C Mills, J S Mills. Urinary excretion of methylthioadenosine in immunodeficient children. Clinica chimica acta; international journal of clinical chemistry. 1985 Mar; 147(1):15-23. doi: 10.1016/0009-8981(85)90005-1. [PMID: 3987052]
  • G C Mills, F C Schmalstieg, R M Goldblum. Urinary purines and nucleosides in immune deficiencies. Annals of the New York Academy of Sciences. 1985; 451(?):66-77. doi: 10.1111/j.1749-6632.1985.tb27097.x. [PMID: 3865574]
  • V L Chan, H J Ho. Multiple mechanisms of adenosine toxicity in an adenosine sensitive mutant of baby hamster kidney (BHK) cells. Basic life sciences. 1985; 31(?):103-16. doi: 10.1007/978-1-4613-2449-2_6. [PMID: 3994628]
  • R W Wolford, M K Riscoe, L Johnson, A J Ferro, J H Fitchen. Effect of 5'-methylthioadenosine (a naturally occurring nucleoside) on murine hematopoiesis. Experimental hematology. 1984 Dec; 12(11):867-71. doi: . [PMID: 6510486]
  • K Kaneko, S Fujimori, N Kamatani, I Akaoka. 5'-Methylthioadenosine in urine from normal subjects and cancer patients. Biochimica et biophysica acta. 1984 Nov; 802(2):169-74. doi: 10.1016/0304-4165(84)90158-2. [PMID: 6498213]
  • R L Pajula. Kinetic properties of spermine synthase from bovine brain. The Biochemical journal. 1983 Dec; 215(3):669-76. doi: 10.1042/bj2150669. [PMID: 6419729]
  • R Dante, M Arnaud, A Niveleau. Effects of 5'deoxy-5'-methylthioadenosine on the metabolism of S-adenosyl methionine. Biochemical and biophysical research communications. 1983 Jul; 114(1):214-21. doi: 10.1016/0006-291x(83)91615-7. [PMID: 6309166]
  • K C Agarwal, F X Russo, R E Parks. Inhibition of human and rat platelet aggregation by extracts of Mo-er (Auricularia auricula). Thrombosis and haemostasis. 1982 Oct; 48(2):162-5. doi: . [PMID: 6983740]
  • T O Eloranta, K Tuomi, A M Raina. Uptake and utilization of 5'-methylthioadenosine by cultured baby-hamster kidney cells. The Biochemical journal. 1982 Jun; 204(3):803-7. doi: 10.1042/bj2040803. [PMID: 6896991]
  • A Raina, K Tuomi, R L Pajula. Inhibition of the synthesis of polyamines and macromolecules by 5'-methylthioadenosine and 5'-alkylthiotubercidins in BHK21 cells. The Biochemical journal. 1982 Jun; 204(3):697-703. doi: 10.1042/bj2040697. [PMID: 6896990]
  • V Zappia, F Della Ragione, M Porcelli, G Cacciapuoti, M Carteni-Farina. Studies on 5'-methylthioadenosine uptake by human erythrocytes. Medical biology. 1981 Dec; 59(5-6):354-8. doi: . [PMID: 7339300]
  • C H Edwards, W D Wade, M M Freeburne, E G Jones, R E Stacey, L Sherman, C W Seo, G A Edwards. Formation of methionine from alpha-amino-n-butyric acid and 5'-methylthioadenosine in the rat. The Journal of nutrition. 1977 Oct; 107(10):1927-36. doi: 10.1093/jn/107.10.1927. [PMID: 903835]
  • . . . . doi: . [PMID: 19946895]
  • . . . . doi: . [PMID: 20345605]
  • . . . . doi: . [PMID: 9073064]