Maltotetraose (BioDeep_00000001108)

Main id: BioDeep_00000000587

Secondary id: BioDeep_00001867596

human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019


代谢物信息卡片


beta-D-glucopyranosyl-(1->4)-beta-D-glucoopyranosyl-(1->4)-beta-D-glucoopyranosyl-(1->4)-D-glucoopyranose

化学式: C24H42O21 (666.2218)
中文名称: 甘露聚糖,来源于酿酒酵母, D-(+)-纤维四糖, 麦芽四糖
谱图信息: 最多检出来源 Homo sapiens(urine) 38.24%

分子结构信息

SMILES: C(C1C(C(C(C(O1)OC2C(OC(C(C2O)O)OC3C(OC(C(C3O)O)OC4C(OC(C(C4O)O)O)CO)CO)CO)O)O)O)O
InChI: InChI=1S/C24H42O21/c25-1-5-9(29)10(30)15(35)22(40-5)44-19-7(3-27)42-24(17(37)12(19)32)45-20-8(4-28)41-23(16(36)13(20)33)43-18-6(2-26)39-21(38)14(34)11(18)31/h5-38H,1-4H2/t5-,6-,7-,8-,9-,10+,11-,12-,13-,14-,15-,16-,17-,18-,19-,20-,21?,22+,23+,24+/m1/s1

描述信息

Cellotetraose is a glucotetrose comprised of four D-glucose residues connected by beta(1->4) linkages.
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents
Maltotetraose can be used as a substrate for the enzyme-coupled determination of amylase activity in biological fluids.
Maltotetraose can be used as a substrate for the enzyme-coupled determination of amylase activity in biological fluids.

同义名列表

17 个代谢物同义名

beta-D-glucopyranosyl-(1->4)-beta-D-glucoopyranosyl-(1->4)-beta-D-glucoopyranosyl-(1->4)-D-glucoopyranose; beta-D-Glcp-(1->4)-beta-D-Glcp-(1->4)-beta-D-Glcp-(1->4)-D-Glcp; 3-AMINO-3-CYCLOHEXYL-PROPIONICACIDAMIDE; (β-D-Glc-[1→4])3-D-Glc; Cellotetraose, >=85\\% (HPLC); LUEWUZLMQUOBSB-YQGOCCRESA-N; D-(+)-Cellotetraose; D-Cellotetraose; Maltotetraose; cellotetraose; cellotetrose; Mannan; Amylotetraose; Fujioligo 450; α-1,4-Tetraglucose; Cellotetraose; Maltotetraose



数据库引用编号

24 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

1 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(1)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

2 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 4 GLUL, NF1, RB1, TXN
Golgi apparatus, trans-Golgi network membrane 1 LRBA
Peripheral membrane protein 1 GBA1
Endoplasmic reticulum membrane 1 LRBA
Nucleus 9 CEBPD, FUS, GLUL, HMX1, MYBL1, NACC2, NF1, RB1, TXN
cytosol 7 ACOX1, GLUL, LRBA, NF1, RB1, RENBP, TXN
dendrite 1 NF1
trans-Golgi network 1 GBA1
nucleoplasm 7 ATP2B1, CEBPD, FUS, MYBL1, NF1, RB1, TXN
RNA polymerase II transcription regulator complex 1 CEBPD
Cell membrane 7 ATP2B1, GLUL, LRBA, MGAM, NF1, PTGDR2, TREH
Lipid-anchor 1 GLUL
Multi-pass membrane protein 2 ATP2B1, PTGDR2
Synapse 1 ATP2B1
glutamatergic synapse 3 ATP2B1, FUS, NF1
Golgi apparatus 2 GBA1, LRBA
lysosomal membrane 2 GBA1, LRBA
presynaptic membrane 1 ATP2B1
Cytoplasm, cytosol 1 GLUL
Lysosome 1 GBA1
Presynapse 1 NF1
plasma membrane 7 ATP2B1, GLUL, LRBA, MGAM, NF1, PTGDR2, TREH
synaptic vesicle membrane 1 ATP2B1
Membrane 6 ACOX1, ATP2B1, LRBA, MGAM, NF1, TREH
apical plasma membrane 1 MGAM
axon 1 NF1
basolateral plasma membrane 1 ATP2B1
extracellular exosome 8 AMY2A, ATP2B1, GBA1, GLUL, MGAM, RENBP, TREH, TXN
Lysosome membrane 2 GBA1, LRBA
Lumenal side 1 GBA1
endoplasmic reticulum 2 GBA1, GLUL
extracellular space 2 AMY2A, GH1
lysosomal lumen 1 GBA1
mitochondrion 2 GLUL, NACC2
intracellular membrane-bounded organelle 1 ATP2B1
Secreted 3 GH1, MGAM, TXN
extracellular region 4 AMY2A, GH1, MGAM, TXN
Single-pass membrane protein 2 LRBA, MGAM
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 ATP2B1
nucleolus 2 NACC2, NF1
spindle 1 RB1
GABA-ergic synapse 1 FUS
Peroxisome 1 ACOX1
peroxisomal matrix 1 ACOX1
peroxisomal membrane 1 ACOX1
PML body 1 RB1
lateral plasma membrane 1 ATP2B1
neuron projection 1 PTGDR2
chromatin 4 CEBPD, HMX1, NACC2, RB1
cell projection 1 ATP2B1
Nucleus, nucleolus 1 NF1
Basolateral cell membrane 1 ATP2B1
Lipid-anchor, GPI-anchor 1 TREH
endosome lumen 1 GH1
tertiary granule membrane 1 MGAM
Presynaptic cell membrane 1 ATP2B1
cell body 1 GLUL
side of membrane 1 TREH
Microsome 1 GLUL
SWI/SNF complex 1 RB1
immunological synapse 1 ATP2B1
ficolin-1-rich granule membrane 1 MGAM
intracellular non-membrane-bounded organelle 1 FUS
postsynaptic cytosol 1 FUS
presynaptic cytosol 1 FUS
glial cell projection 1 GLUL
growth hormone receptor complex 1 GH1
chromatin lock complex 1 RB1
Rb-E2F complex 1 RB1
photoreceptor ribbon synapse 1 ATP2B1


文献列表

  • Zhen Huang, Guorong Ni, Xiaoyan Zhao, Fei Wang, Mingren Qu. Characterization of a GH8 β-1,4-Glucanase from Bacillus subtilis B111 and Its Saccharification Potential for Agricultural Straws. Journal of microbiology and biotechnology. 2021 Oct; 31(10):1446-1454. doi: 10.4014/jmb.2105.05026. [PMID: 34409950]
  • Eun Yeong Jang, Ki-Bae Hong, Yeok Boo Chang, Jungcheul Shin, Eun Young Jung, Kyungae Jo, Hyung Joo Suh. In Vitro Prebiotic Effects of Malto-Oligosaccharides Containing Water-Soluble Dietary Fiber. Molecules (Basel, Switzerland). 2020 Nov; 25(21):. doi: 10.3390/molecules25215201. [PMID: 33182247]
  • Evandro Ares de Araújo, Lívia Regina Manzine, Vassili Piiadov, Marco Antonio Seiki Kadowaki, Igor Polikarpov. Biochemical characterization, low-resolution SAXS structure and an enzymatic cleavage pattern of BlCel48 from Bacillus licheniformis. International journal of biological macromolecules. 2018 May; 111(?):302-310. doi: 10.1016/j.ijbiomac.2017.12.138. [PMID: 29292147]
  • Thomas J Simmons, Stephen C Fry. Bonds broken and formed during the mixed-linkage glucan : xyloglucan endotransglucosylase reaction catalysed by Equisetum hetero-trans-β-glucanase. The Biochemical journal. 2017 03; 474(7):1055-1070. doi: 10.1042/bcj20160935. [PMID: 28108640]
  • Maryam Foumani, Thu V Vuong, Benjamin MacCormick, Emma R Master. Enhanced Polysaccharide Binding and Activity on Linear β-Glucans through Addition of Carbohydrate-Binding Modules to Either Terminus of a Glucooligosaccharide Oxidase. PloS one. 2015; 10(5):e0125398. doi: 10.1371/journal.pone.0125398. [PMID: 25932926]
  • Wim Sluiter, Jeroen C van den Bosch, Daphne A Goudriaan, Carin M van Gelder, Juna M de Vries, Jan G M Huijmans, Arnold J J Reuser, Ans T van der Ploeg, George J G Ruijter. Rapid ultraperformance liquid chromatography-tandem mass spectrometry assay for a characteristic glycogen-derived tetrasaccharide in Pompe disease and other glycogen storage diseases. Clinical chemistry. 2012 Jul; 58(7):1139-47. doi: 10.1373/clinchem.2011.178319. [PMID: 22623745]
  • Elizabeth A Znameroski, Samuel T Coradetti, Christine M Roche, Jordan C Tsai, Anthony T Iavarone, Jamie H D Cate, N Louise Glass. Induction of lignocellulose-degrading enzymes in Neurospora crassa by cellodextrins. Proceedings of the National Academy of Sciences of the United States of America. 2012 Apr; 109(16):6012-7. doi: 10.1073/pnas.1118440109. [PMID: 22474347]
  • Tian Liu, Yong Zhou, Lei Chen, Wei Chen, Lin Liu, Xu Shen, Wenqing Zhang, Jianzhen Zhang, Qing Yang. Structural insights into cellulolytic and chitinolytic enzymes revealing crucial residues of insect β-N-acetyl-D-hexosaminidase. PloS one. 2012; 7(12):e52225. doi: 10.1371/journal.pone.0052225. [PMID: 23300622]
  • Aldino Viegas, Natércia F Brás, Nuno M F S A Cerqueira, Pedro Alexandrino Fernandes, José A M Prates, Carlos M G A Fontes, Marta Bruix, Maria João Romão, Ana Luísa Carvalho, Maria João Ramos, Anjos L Macedo, Eurico J Cabrita. Molecular determinants of ligand specificity in family 11 carbohydrate binding modules: an NMR, X-ray crystallography and computational chemistry approach. The FEBS journal. 2008 May; 275(10):2524-35. doi: 10.1111/j.1742-4658.2008.06401.x. [PMID: 18422658]
  • Nelson Arno Wulff, Helaine Carrer, Sérgio Florentino Pascholati. Expression and purification of cellulase Xf818 from Xylella fastidiosa in Escherichia coli. Current microbiology. 2006 Sep; 53(3):198-203. doi: 10.1007/s00284-005-0475-2. [PMID: 16874548]
  • Emma R Master, Ulla J Rudsander, Weilin Zhou, Hongbin Henriksson, Christina Divne, Stuart Denman, David B Wilson, Tuula T Teeri. Recombinant expression and enzymatic characterization of PttCel9A, a KOR homologue from Populus tremula x tremuloides. Biochemistry. 2004 Aug; 43(31):10080-9. doi: 10.1021/bi049453x. [PMID: 15287736]
  • Breeanna R Urbanowicz, Catherine Rayon, Nicholas C Carpita. Topology of the maize mixed linkage (1->3),(1->4)-beta-d-glucan synthase at the Golgi membrane. Plant physiology. 2004 Feb; 134(2):758-68. doi: 10.1104/pp.103.032011. [PMID: 14730082]
  • Olivier Gonçalves, Thierry Dintinger, Dominique Blanchard, Charles Tellier. Functional mimicry between anti-Tendamistat antibodies and alpha-amylase. Journal of immunological methods. 2002 Nov; 269(1-2):29-37. doi: 10.1016/s0022-1759(02)00238-7. [PMID: 12379350]
  • G J Lawson. Prevalence of macroamylasaemia using polyethylene glycol precipitation as a screening method. Annals of clinical biochemistry. 2001 Jan; 38(Pt 1):37-45. doi: 10.1258/0004563011900263. [PMID: 11270840]
  • R A Burke, G Hughes, J B Moberly. Lack of interference of icodextrin on creatinine measurements. Advances in peritoneal dialysis. Conference on Peritoneal Dialysis. 1999; 15(?):234-7. doi: . [PMID: 10682109]
  • A G Matthysse, D L Thomas, A R White. Mechanism of cellulose synthesis in Agrobacterium tumefaciens. Journal of bacteriology. 1995 Feb; 177(4):1076-81. doi: 10.1128/jb.177.4.1076-1081.1995. [PMID: 7860586]
  • J L Rosenblum, G L Hortin, C H Smith, G E Pashos, M Landt. Macroamylases: differences in activity against various-sized substrates. Clinical chemistry. 1992 Sep; 38(9):1725-9. doi: . [PMID: 1381999]
  • K Ogawa, T Murata, T Usui. Maltotetraose-forming, amylase-mediated, p-nitrophenyl alpha- and beta-maltopentaoside formation in an aqueous-organic solvent system: a substrate for human amylase in serum. Carbohydrate research. 1991 Jun; 212(?):289-94. doi: 10.1016/0008-6215(91)84068-p. [PMID: 1720345]
  • T Usui, T Murata. Enzymatic synthesis of p-nitrophenyl alpha-maltopentaoside in an aqueous-methanol solvent system by maltotetraose-forming amylase: a substrate for human amylase in serum. Journal of biochemistry. 1988 Jun; 103(6):969-72. doi: 10.1093/oxfordjournals.jbchem.a122395. [PMID: 2459114]
  • D W Andersen, L D Stegink, L J Filer, A E Applebaum. Utilization of intravenously administered glycogen by young pigs. The Journal of nutrition. 1987 Feb; 117(2):274-9. doi: 10.1093/jn/117.2.274. [PMID: 3559742]
  • T E Mifflin, D C Benjamin, D E Bruns. Rapid quantitative, specific measurement of pancreatic amylase in serum with use of a monoclonal antibody. Clinical chemistry. 1985 Aug; 31(8):1283-8. doi: 10.1093/clinchem/31.8.1283. [PMID: 3874721]
  • J C Hafkenscheid, M Hessels. Measurement of pancreatic and salivary alpha-amylase in serum: comparison of methods with five different substrates. Enzyme. 1985; 33(3):128-33. doi: 10.1159/000469421. [PMID: 3876927]
  • O Yuge, M Morio, T Fukui, K Fujii, H Kikuchi, S Takahashi. Maltotriose and maltotetraose excreted in urine following intravenous administration of maltose to human volunteers. The Japanese journal of surgery. 1983 Jul; 13(4):296-303. doi: 10.1007/bf02469510. [PMID: 6645121]
  • V W Lee, C Willis. Activity of human and nonhuman amylases on different substrates used in enzymatic kinetic assay methods--a pitfall in interlaboratory quality control. American journal of clinical pathology. 1982 Mar; 77(3):290-6. doi: 10.1093/ajcp/77.3.290. [PMID: 6176111]
  • A Dickgiesser, H A Müller, J D Kruse-Jarres. [The effect of neutral urinary alpha-glucosidase on the alpha-amylase determination with maltotetraose as a substrate]. Das Medizinische Laboratorium. 1981 Sep; 34(9-10):228-31. doi: . [PMID: 6175886]
  • K J Whitlow, N Gochman, R L Forrester, L J Wataji. Maltotetraose as a substrate for enzyme-coupled assay of amylase activity in serum and urine. Clinical chemistry. 1979 Mar; 25(3):481-3. doi: 10.1093/clinchem/25.3.481. [PMID: 95558]