Retinal (BioDeep_00000001872)
Secondary id: BioDeep_00000866948, BioDeep_00000875153
human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite natural product
代谢物信息卡片
化学式: C20H28O (284.214)
中文名称: 13-顺式视黄醇, 全反式视黄醛, 视黄醛
谱图信息:
最多检出来源 Homo sapiens(blood) 29.85%
分子结构信息
SMILES: C/C(=C\C=C\C(=C\C=O)\C)/C=C/C1=C(C)CCCC1(C)C
InChI: InChI=1S/C20H28O/c1-16(8-6-9-17(2)13-15-21)11-12-19-18(3)10-7-14-20(19,4)5/h6,8-9,11-13,15H,7,10,14H2,1-5H3/b9-6+,12-11+,16-8+,17-13+
描述信息
A carotenoid constituent of visual pigments. It is the oxidized form of retinol which functions as the active component of the visual cycle. It is bound to the protein opsin forming the complex rhodopsin. When stimulated by visible light, the retinal component of the rhodopsin complex undergoes isomerization at the 11-position of the double bond to the cis-form; this is reversed in "dark" reactions to return to the native trans-configuration. [HMDB]. Retinal is found in many foods, some of which are flaxseed, pepper (c. baccatum), climbing bean, and other soy product.
Retinal is a carotenoid constituent of visual pigments. It is the oxidized form of retinol which functions as the active component of the visual cycle. It is bound to the protein opsin forming the complex rhodopsin. When stimulated by visible light, the retinal component of the rhodopsin complex undergoes isomerization at the 11-position of the double bond to the cis-form; this is reversed in "dark" reactions to return to the native trans-configuration.
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
CONFIDENCE standard compound; INTERNAL_ID 142
同义名列表
27 个代谢物同义名
(2E,4E,6E,8E)-3,7-dimethyl-9-(2,6,6-trimethylcyclohex-1-en-1-yl)nona-2,4,6,8-tetraenal; 3,7-Dimethyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2,4,6,8-nonatetraenal; 3,7-dimethyl-9-(2,6,6-trimethylcyclohexen-1-yl)nona-2,4,6,8-tetraenal; all-trans-Vitamin a aldehyde; trans-Vitamin a aldehyde; all-trans-Retinaldehyde; Vitamin a1 aldehyde; all-epsilon-Retinal; Aldehyde, vitamin a; Vitamin a aldehyde; all-trans-Retinene; all trans-Retinal; All-trans-retinal; Retinal, 13-cis-; epsilon-Retinal; 11-cis-retinal; alpha-Retinene; 11 cis Retinal; Retinaldehyde; all-e-Retinal; trans-Retinal; Axerophthal; Retinene 1; e-Retinal; Retinene; Retinal; Retinal
数据库引用编号
23 个数据库交叉引用编号
- ChEBI: CHEBI:17898
- KEGG: C00376
- PubChem: 638015
- HMDB: HMDB0001358
- Metlin: METLIN2276
- ChEMBL: CHEMBL81379
- Wikipedia: Retinal
- LipidMAPS: LMPR01090002
- MeSH: Retinaldehyde
- MetaCyc: RETINAL
- foodb: FDB022576
- CAS: 116-31-4
- MoNA: RP014203
- MoNA: RP014201
- MoNA: RP014202
- PMhub: MS000001355
- PubChem: 3666
- PDB-CCD: RET
- 3DMET: B00095
- NIKKAJI: J5.279E
- RefMet: Retinal
- KNApSAcK: 17898
- LOTUS: LTS0275050
分类词条
相关代谢途径
Reactome(12)
BioCyc(0)
PlantCyc(0)
代谢反应
272 个相关的代谢反应过程信息。
Reactome(253)
- Signaling Pathways:
AMP + p-AMPK heterotrimer ⟶ p-AMPK heterotrimer:AMP
- Signaling by Nuclear Receptors:
ATP + MYB gene:hypophosphorylated RNA polymerase II:TFIIF:ESR1:ESTG:P-TEFb ⟶ ADP + MYB gene:hyperphosphorylated RNA polymerase II:TFIIF:ESR1:ESTG:P-TEFb
- Signaling by Retinoic Acid:
ATP + lipo-PDH ⟶ ADP + p-lipo-PDH
- RA biosynthesis pathway:
9cRA + H+ + Oxygen + TPNH ⟶ 4OH-9cRA + H2O + TPN
- Signaling Pathways:
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- Visual phototransduction:
H+ + RBP2:atRAL + TPNH ⟶ RBP2:atROL + TPN
- The canonical retinoid cycle in rods (twilight vision):
DHA + H+ + Oxygen + TPNH ⟶ H2O + HDoHE + TPN
- The retinoid cycle in cones (daylight vision):
H+ + TPNH + atRAL ⟶ TPN + atROL
- Signaling by Nuclear Receptors:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- RA biosynthesis pathway:
H+ + TPNH + atRAL ⟶ TPN + atROL
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Visual phototransduction:
H+ + RBP2:atRAL + TPNH ⟶ RBP2:atROL + TPN
- Signaling by Nuclear Receptors:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- RA biosynthesis pathway:
H+ + TPNH + atRAL ⟶ TPN + atROL
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Visual phototransduction:
atREs + nascent CM ⟶ nascent CM:atREs
- The canonical retinoid cycle in rods (twilight vision):
RLBP1:11cROL + TPN ⟶ H+ + RLBP1:11cRAL + TPNH
- The retinoid cycle in cones (daylight vision):
H+ + TPNH + atRAL ⟶ TPN + atROL
- Signaling by Nuclear Receptors:
E2QW22 + E2RPT1 + ESR1:ER:PGR:P4 + F6UTY3 + J9P0C0 ⟶ ESR1:ESTG:PGR:P4:FOXA1:GATA3:TLE3:NRIP:EP300
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- RA biosynthesis pathway:
H+ + TPNH + atRAL ⟶ TPN + atROL
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Visual phototransduction:
atREs + nascent CM ⟶ nascent CM:atREs
- The canonical retinoid cycle in rods (twilight vision):
RLBP1:11cROL + TPN ⟶ H+ + RLBP1:11cRAL + TPNH
- The retinoid cycle in cones (daylight vision):
H+ + TPNH + atRAL ⟶ TPN + atROL
- Signaling by Nuclear Receptors:
ESR1 dimer:ESTG + HSP90:ATP:PTGES3:FKBP52:PGR:P4 ⟶ ADP + ESR1:ER:PGR:P4 + F8W2D1 + HSP90:HSP90 + Pi + Q7SZQ8
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- RA biosynthesis pathway:
E9QD41 + atRA ⟶ SUMO-CRABP1:atRA
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Nuclear Receptors:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Signaling by Retinoic Acid:
H+ + TPNH + atRAL ⟶ TPN + atROL
- RA biosynthesis pathway:
H+ + TPNH + atRAL ⟶ TPN + atROL
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Visual phototransduction:
RLBP1:11cROL + TPN ⟶ H+ + RLBP1:11cRAL + TPNH
- The canonical retinoid cycle in rods (twilight vision):
RLBP1:11cROL + TPN ⟶ H+ + RLBP1:11cRAL + TPNH
- The retinoid cycle in cones (daylight vision):
H+ + TPNH + atRAL ⟶ TPN + atROL
- Signaling by Nuclear Receptors:
ESR1 dimer:ESTG + HSP90:ATP:PTGES3:FKBP52:PGR:P4 ⟶ ADP + ESR1:ER:PGR:P4 + HSP90:HSP90 + Pi + Q9VH95 + Q9VL78
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- RA biosynthesis pathway:
atRA + fabp ⟶ SUMO-CRABP1:atRA
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Visual phototransduction:
H+ + RBP2:atRAL + TPNH ⟶ RBP2:atROL + TPN
- The canonical retinoid cycle in rods (twilight vision):
DHA + H+ + Oxygen + TPNH ⟶ H2O + HDoHE + TPN
- The retinoid cycle in cones (daylight vision):
H+ + TPNH + atRAL ⟶ TPN + atROL
- Signaling by Nuclear Receptors:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- RA biosynthesis pathway:
CRABP1 + atRA ⟶ SUMO-CRABP1:atRA
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Visual phototransduction:
atREs + nascent CM ⟶ nascent CM:atREs
- The canonical retinoid cycle in rods (twilight vision):
RLBP1:11cROL + TPN ⟶ H+ + RLBP1:11cRAL + TPNH
- The retinoid cycle in cones (daylight vision):
11cROL + TPN ⟶ 11cRAL + H+ + TPNH
- Signaling by Nuclear Receptors:
ESR1 dimer:ESTG + HSP90:ATP:PTGES3:FKBP52:PGR:P4 ⟶ ADP + ESR1:ER:PGR:P4 + HSP90:HSP90 + Immunophilin FKBP52 + Pi + cPGES
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- RA biosynthesis pathway:
H+ + TPNH + atRAL ⟶ TPN + atROL
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Visual phototransduction:
atREs + nascent CM ⟶ nascent CM:atREs
- The canonical retinoid cycle in rods (twilight vision):
RLBP1:11cROL + TPN ⟶ H+ + RLBP1:11cRAL + TPNH
- The retinoid cycle in cones (daylight vision):
H+ + TPNH + atRAL ⟶ TPN + atROL
- Signaling by Nuclear Receptors:
ESR1 dimer:ESTG + HSP90:ATP:PTGES3:FKBP52:PGR:P4 ⟶ ADP + ESR1:ER:PGR:P4 + Fkbp4 + HSP90:HSP90 + Pi + Q9R0Q7
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- RA biosynthesis pathway:
H+ + TPNH + atRAL ⟶ TPN + atROL
- Signaling Pathways:
AMP + p-AMPK heterotrimer ⟶ p-AMPK heterotrimer:AMP
- Signaling by Nuclear Receptors:
ATP + MYB gene:hypophosphorylated RNA polymerase II:TFIIF:ESR1:ESTG:P-TEFb ⟶ ADP + MYB gene:hyperphosphorylated RNA polymerase II:TFIIF:ESR1:ESTG:P-TEFb
- Signaling by Retinoic Acid:
ATP + lipo-PDH ⟶ ADP + p-lipo-PDH
- RA biosynthesis pathway:
9cRA + H+ + Oxygen + TPNH ⟶ 4OH-9cRA + H2O + TPN
- Signaling Pathways:
H2O + cAMP ⟶ AMP
- Signaling by Nuclear Receptors:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Visual phototransduction:
atREs + nascent CM ⟶ nascent CM:atREs
- The canonical retinoid cycle in rods (twilight vision):
DHA + H+ + Oxygen + TPNH ⟶ H2O + HDoHE + TPN
- The retinoid cycle in cones (daylight vision):
H+ + TPNH + atRAL ⟶ TPN + atROL
- Signaling by Nuclear Receptors:
ESR1 dimer:ESTG + HSP90:ATP:PTGES3:FKBP52:PGR:P4 ⟶ ADP + ESR1:ER:PGR:P4 + HSP90:HSP90 + Pi + Ptges3 + Q9QVC8
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- RA biosynthesis pathway:
H+ + TPNH + atRAL ⟶ TPN + atROL
- Signaling Pathways:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Visual phototransduction:
H+ + TPNH + atRAL ⟶ TPN + atROL
- The canonical retinoid cycle in rods (twilight vision):
H+ + TPNH + atRAL ⟶ TPN + atROL
- The retinoid cycle in cones (daylight vision):
H+ + TPNH + atRAL ⟶ TPN + atROL
- Signaling by Nuclear Receptors:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Signaling by Retinoic Acid:
H2O + NAD + atRAL ⟶ H+ + NADH + atRA
- RA biosynthesis pathway:
H2O + NAD + atRAL ⟶ H+ + NADH + atRA
- Signaling Pathways:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- The retinoid cycle in cones (daylight vision):
H+ + TPNH + atRAL ⟶ TPN + atROL
- Signaling by Nuclear Receptors:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Signaling by Retinoic Acid:
H2O + NAD + atRAL ⟶ H+ + NADH + atRA
- RA biosynthesis pathway:
H2O + NAD + atRAL ⟶ H+ + NADH + atRA
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Visual phototransduction:
atREs + nascent CM ⟶ nascent CM:atREs
- The canonical retinoid cycle in rods (twilight vision):
RLBP1:11cROL + TPN ⟶ H+ + RLBP1:11cRAL + TPNH
- The retinoid cycle in cones (daylight vision):
H+ + TPNH + atRAL ⟶ TPN + atROL
- Signaling by Nuclear Receptors:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- RA biosynthesis pathway:
H+ + TPNH + atRAL ⟶ TPN + atROL
- Signaling Pathways:
AMP + p-AMPK heterotrimer ⟶ p-AMPK heterotrimer:AMP
- Signaling by GPCR:
H2O + cAMP ⟶ AMP
- GPCR downstream signalling:
H2O + cAMP ⟶ AMP
- G alpha (i) signalling events:
H2O + cAMP ⟶ AMP
- Visual phototransduction:
H+ + RBP2:atRAL + TPNH ⟶ RBP2:atROL + TPN
- The canonical retinoid cycle in rods (twilight vision):
RLBP1:11cROL + TPN ⟶ H+ + RLBP1:11cRAL + TPNH
- The retinoid cycle in cones (daylight vision):
H+ + TPNH + atRAL ⟶ TPN + atROL
- Signaling by Nuclear Receptors:
ESR1:ESTG + HSP90:ATP:PTGES3:FKBP52:PGR:P4 ⟶ ADP + ESR1:ER:PGR:P4 + H0ZSE5 + H0ZZA2 + HSP90-beta dimer + Pi
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- RA biosynthesis pathway:
H+ + TPNH + atRAL ⟶ TPN + atROL
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Visual phototransduction:
atREs + nascent CM ⟶ nascent CM:atREs
- The retinoid cycle in cones (daylight vision):
F6T9Q4 + atROL ⟶ RLBP1:atROL
- Signaling by Nuclear Receptors:
ESR1 dimer:ESTG + HSP90:ATP:PTGES3:FKBP52:PGR:P4 ⟶ A0A310SUH5 + ADP + ESR1:ER:PGR:P4 + HSP90:HSP90 + Pi + Q5U4Z0
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- RA biosynthesis pathway:
H+ + TPNH + atRAL ⟶ TPN + atROL
- The retinoid cycle in cones (daylight vision):
H+ + TPNH + atRAL ⟶ TPN + atROL
- Signaling by Retinoic Acid:
H+ + TPNH + atRAL ⟶ TPN + atROL
- RA biosynthesis pathway:
H+ + TPNH + atRAL ⟶ TPN + atROL
- Sensory Perception:
H2O + RPALM ⟶ PALM + atROL
- Sensory Perception:
atREs + nascent CM ⟶ nascent CM:atREs
- Sensory Perception:
atREs + nascent CM ⟶ nascent CM:atREs
- Sensory Perception:
atREs + nascent CM ⟶ nascent CM:atREs
- Sensory Perception:
H2O + RPALM ⟶ PALM + atROL
- Sensory Perception:
atREs + nascent CM ⟶ nascent CM:atREs
- Sensory Perception:
atREs + nascent CM ⟶ nascent CM:atREs
- Sensory Perception:
H2O + RPALM ⟶ PALM + atROL
- Sensory Perception:
H2O + RPALM ⟶ PALM + atROL
- Sensory Perception:
H+ + TPNH + atRAL ⟶ TPN + atROL
- Sensory Perception:
atREs + nascent CM ⟶ nascent CM:atREs
- Sensory Perception:
GTP + odorant:Olfactory Receptor:GNAL:GDP:GNB1:GNG13 ⟶ GDP + odorant:Olfactory Receptor:GNAL:GTP:GNB1:GNG13
- The canonical retinoid cycle in rods (twilight vision):
H+ + TPNH + atRAL ⟶ TPN + atROL
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of fat-soluble vitamins:
TTPA + alpha-TOH ⟶ TTPA:alpha-TOH
- Retinoid metabolism and transport:
H+ + RBP2:atRAL + TPNH ⟶ RBP2:atROL + TPN
- Retinoid metabolism and transport:
H+ + RBP2:atRAL + TPNH ⟶ RBP2:atROL + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of fat-soluble vitamins:
H+ + RBP2:atRAL + TPNH ⟶ RBP2:atROL + TPN
- Retinoid metabolism and transport:
atREs + nascent CM ⟶ nascent CM:atREs
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of fat-soluble vitamins:
atREs + nascent CM ⟶ nascent CM:atREs
- Retinoid metabolism and transport:
H+ + RBP2:atRAL + TPNH ⟶ RBP2:atROL + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of fat-soluble vitamins:
Homologues of TTPA + alpha-TOH ⟶ TTPA:alpha-TOH
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of fat-soluble vitamins:
TTPA + alpha-TOH ⟶ TTPA:alpha-TOH
- Retinoid metabolism and transport:
H+ + RBP2:atRAL + TPNH ⟶ RBP2:atROL + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of fat-soluble vitamins:
atREs + nascent CM ⟶ nascent CM:atREs
- Retinoid metabolism and transport:
atREs + nascent CM ⟶ nascent CM:atREs
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of fat-soluble vitamins:
atREs + nascent CM ⟶ nascent CM:atREs
- Retinoid metabolism and transport:
atREs + nascent CM ⟶ nascent CM:atREs
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of fat-soluble vitamins:
atREs + nascent CM ⟶ nascent CM:atREs
- Retinoid metabolism and transport:
atREs + nascent CM ⟶ nascent CM:atREs
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of fat-soluble vitamins:
atREs + nascent CM ⟶ nascent CM:atREs
- Retinoid metabolism and transport:
atREs + nascent CM ⟶ nascent CM:atREs
- Retinoid metabolism and transport:
H+ + RBP2:atRAL + TPNH ⟶ RBP2:atROL + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of fat-soluble vitamins:
TTPA + alpha-TOH ⟶ TTPA:alpha-TOH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of fat-soluble vitamins:
atREs + nascent CM ⟶ nascent CM:atREs
- Retinoid metabolism and transport:
atREs + nascent CM ⟶ nascent CM:atREs
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of fat-soluble vitamins:
Oxygen + betaC ⟶ atRAL
- Retinoid metabolism and transport:
Oxygen + betaC ⟶ atRAL
- Signaling by GPCR:
2AG + H2O ⟶ AA + Glycerol + H+
- GPCR downstream signalling:
2AG + H2O ⟶ AA + Glycerol + H+
- G alpha (i) signalling events:
ATP + H2O + atRAL ⟶ ADP + Pi + atRAL
- Visual phototransduction:
ATP + H2O + atRAL ⟶ ADP + Pi + atRAL
- Retinoid metabolism and transport:
atREs + nascent CM ⟶ nascent CM:atREs
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
6x(PCCA:PCCB) + ATP + Btn ⟶ 6x(Btn-PCCA:PCCB) + AMP + PPi
- Metabolism of fat-soluble vitamins:
atREs + nascent CM ⟶ nascent CM:atREs
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of fat-soluble vitamins:
Oxygen + betaC ⟶ atRAL
- Retinoid metabolism and transport:
Oxygen + betaC ⟶ atRAL
- Signaling by GPCR:
2AG + H2O ⟶ AA + Glycerol + H+
- GPCR downstream signalling:
2AG + H2O ⟶ AA + Glycerol + H+
- G alpha (i) signalling events:
ATP + Calmodulin:CaMK IV ⟶ ADP + phospho-CaMK IV:Calmodulin
- Visual phototransduction:
ATP + H2O + atRAL ⟶ ADP + Pi + atRAL
- The canonical retinoid cycle in rods (twilight vision):
ATP + H2O + atRAL ⟶ ADP + Pi + atRAL
- Transport of small molecules:
ATP + CHOL + H2O ⟶ ADP + CHOL + Pi
- ABC-family proteins mediated transport:
ATP + CHOL + H2O ⟶ ADP + CHOL + Pi
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- ABC-family proteins mediated transport:
ATP + CHOL + H2O ⟶ ADP + CHOL + Pi
- The canonical retinoid cycle in rods (twilight vision):
H+ + TPNH + atRAL ⟶ TPN + atROL
- Transport of small molecules:
CHOL + NPC2 ⟶ NPC2:CHOL
- ABC-family proteins mediated transport:
ATP + Cl- + H2O ⟶ ADP + Cl- + Pi
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- ABC-family proteins mediated transport:
ATP + CHOL + H2O ⟶ ADP + CHOL + Pi
- Visual phototransduction:
RLBP1:11cROL + TPN ⟶ H+ + RLBP1:11cRAL + TPNH
- Transport of small molecules:
ATP + CHOL + H2O ⟶ ADP + CHOL + Pi
- ABC-family proteins mediated transport:
ATP + CHOL + H2O ⟶ ADP + CHOL + Pi
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- ABC-family proteins mediated transport:
ATP + CHOL + H2O ⟶ ADP + CHOL + Pi
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- ABC-family proteins mediated transport:
ATP + CHOL + H2O ⟶ ADP + CHOL + Pi
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- ABC-family proteins mediated transport:
ATP + CHOL + H2O ⟶ ADP + CHOL + Pi
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- ABC-family proteins mediated transport:
ATP + CHOL + H2O ⟶ ADP + CHOL + Pi
- Transport of small molecules:
ATP + CHOL + H2O ⟶ ADP + CHOL + Pi
- ABC-family proteins mediated transport:
ATP + CHOL + H2O ⟶ ADP + CHOL + Pi
- The canonical retinoid cycle in rods (twilight vision):
ATP + H2O + atRAL ⟶ ADP + Pi + atRAL
- Transport of small molecules:
CHOL + phosphatidylcholines ⟶ 1-acyl LPC + CHEST
- ABC-family proteins mediated transport:
ATP + Cl- + H2O ⟶ ADP + Cl- + Pi
- Visual phototransduction:
ATP + H2O + atRAL ⟶ ADP + Pi + atRAL
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- ABC-family proteins mediated transport:
ATP + CHOL + H2O ⟶ ADP + CHOL + Pi
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- ABC-family proteins mediated transport:
ATP + CHOL + H2O ⟶ ADP + CHOL + Pi
- Transport of small molecules:
ATP + CHOL + H2O ⟶ ADP + CHOL + Pi
- ABC-family proteins mediated transport:
ATP + CHOL + H2O ⟶ ADP + CHOL + Pi
- The canonical retinoid cycle in rods (twilight vision):
DHA + H+ + Oxygen + TPNH ⟶ H2O + HDoHE + TPN
- The canonical retinoid cycle in rods (twilight vision):
RLBP1:11cROL + TPN ⟶ H+ + RLBP1:11cRAL + TPNH
- The canonical retinoid cycle in rods (twilight vision):
ATP + H2O + atRAL ⟶ ADP + Pi + atRAL
- Sensory Perception:
Q54YX3 + atROL ⟶ RLBP1:atROL
- Sensory Perception:
ATP + H2O + atRAL ⟶ ADP + Pi + atRAL
- The phototransduction cascade:
GTP ⟶ PPi + cGMP
- Inactivation, recovery and regulation of the phototransduction cascade:
GTP ⟶ PPi + cGMP
- The phototransduction cascade:
Homologues of GNAT1 ⟶ Homologues of GNAT1 (Met removed) + L-Met
- Inactivation, recovery and regulation of the phototransduction cascade:
Homologues of GNAT1 ⟶ Homologues of GNAT1 (Met removed) + L-Met
- The phototransduction cascade:
GNAT1 ⟶ GNAT1 (Met removed) + L-Met
- Inactivation, recovery and regulation of the phototransduction cascade:
GNAT1 ⟶ GNAT1 (Met removed) + L-Met
- The phototransduction cascade:
Q90WX6 ⟶ L-Met + Q90WX6
- Inactivation, recovery and regulation of the phototransduction cascade:
Q90WX6 ⟶ L-Met + Q90WX6
- The phototransduction cascade:
cGMP:CNG channel ⟶ CNG channel + cGMP
- Inactivation, recovery and regulation of the phototransduction cascade:
CNG channel + cGMP ⟶ cGMP:CNG channel
- Biosynthesis of A2E, implicated in retinal degradation:
PE + atRAL ⟶ NRPE
- The phototransduction cascade:
Transducin alpha-1 chain ⟶ GNAT1 (Met removed) + L-Met
- Inactivation, recovery and regulation of the phototransduction cascade:
Transducin alpha-1 chain ⟶ GNAT1 (Met removed) + L-Met
- Disease:
ADORA2B + Ade-Rib ⟶ ADORA2B:Ade-Rib
- Diseases associated with visual transduction:
PE + atRAL ⟶ NRPE
- Retinoid cycle disease events:
PE + atRAL ⟶ NRPE
- The phototransduction cascade:
Gnat1 ⟶ GNAT1 (Met removed) + L-Met
- Inactivation, recovery and regulation of the phototransduction cascade:
Gnat1 ⟶ GNAT1 (Met removed) + L-Met
- The phototransduction cascade:
D3ZSS5 ⟶ D3ZSS5 + L-Met
- Inactivation, recovery and regulation of the phototransduction cascade:
D3ZSS5 ⟶ D3ZSS5 + L-Met
- The phototransduction cascade:
A0A287BRP2 ⟶ A0A287BRP2 + L-Met
- Inactivation, recovery and regulation of the phototransduction cascade:
A0A287BRP2 ⟶ A0A287BRP2 + L-Met
- The phototransduction cascade:
ATP + Q9IA36 ⟶ ADP + phospho-p-S334,338,343-at-retinyl-RHO
- Inactivation, recovery and regulation of the phototransduction cascade:
ATP + Q9IA36 ⟶ ADP + phospho-p-S334,338,343-at-retinyl-RHO
- Diseases of the neuronal system:
PE + atRAL ⟶ NRPE
BioCyc(5)
- retinol biosynthesis:
all-trans-retinol + NADP+ ⟶ all-trans-retinal + H+ + NADPH
- the visual cycle I (vertebrates):
all-trans-retinol + NADP+ ⟶ all-trans-retinal + H+ + NADPH
- retinol biosynthesis:
H2O + a dietary all-trans-retinyl ester ⟶ all-trans-retinol + H+ + a fatty acid
- the visual cycle I (vertebrates):
all-trans-retinol + NADP+ ⟶ all-trans-retinal + H+ + NADPH
- retinol biosynthesis:
all-trans-retinol + NADP+ ⟶ all-trans-retinal + H+ + NADPH
WikiPathways(4)
- Retinol metabolism:
beta-Carotene ⟶ all-trans-retinal
- Vitamin A and carotenoid metabolism:
Betacarotene ⟶ all-trans Retinal
- Vitamin A1 and A5/X pathways:
ATROL ⟶ ATRA
- 10q22q23 copy number variation:
Retinal ⟶ 11-cis-Retinaldehyde
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(1)
- @COVID-19 Disease
Map["name"]:
2-Methyl-3-acetoacetyl-CoA + Coenzyme A ⟶ Acetyl-CoA + Propanoyl-CoA
PathBank(9)
- Retinol Metabolism:
11-cis-Retinaldehyde + NADP ⟶ NADPH + Retinal
- Vitamin A Deficiency:
11-cis-Retinaldehyde + NADP ⟶ NADPH + Retinal
- Retinol Metabolism:
NAD + Vitamin A + Water ⟶ NADH + all-trans-Retinoic acid
- Vitamin A Deficiency:
NAD + Vitamin A + Water ⟶ NADH + all-trans-Retinoic acid
- Retinol Metabolism:
NAD + Vitamin A + Water ⟶ NADH + all-trans-Retinoic acid
- Retinol Metabolism:
NAD + Vitamin A + Water ⟶ NADH + all-trans-Retinoic acid
- Retinol Metabolism:
NAD + Vitamin A + Water ⟶ NADH + all-trans-Retinoic acid
- Retinol Metabolism:
NAD + Vitamin A + Water ⟶ NADH + all-trans-Retinoic acid
- Vitamin A Deficiency:
NAD + Vitamin A + Water ⟶ NADH + all-trans-Retinoic acid
PharmGKB(0)
58 个相关的物种来源信息
- 8292 - Amphibia: LTS0275050
- 4050 - Araliaceae: LTS0275050
- 2157 - Archaea: LTS0275050
- 6656 - Arthropoda: LTS0275050
- 2 - Bacteria: LTS0275050
- 7711 - Chordata: LTS0275050
- 3028117 - Cyanophyceae: LTS0275050
- 6042 - Demospongiae: LTS0275050
- 2759 - Eukaryota: LTS0275050
- 28890 - Euryarchaeota: LTS0275050
- 7136 - Galleria: LTS0275050
- 7137 - Galleria mellonella: 10.1073/PNAS.0807805105
- 7137 - Galleria mellonella: LTS0275050
- 2237 - Haloarcula: LTS0275050
- 29282 - Haloarcula japonica: 10.1128/JB.02523-14
- 29282 - Haloarcula japonica: LTS0275050
- 183963 - Halobacteria: LTS0275050
- 2236 - Halobacteriaceae: LTS0275050
- 9604 - Hominidae: LTS0275050
- 9605 - Homo: LTS0275050
- 9606 - Homo sapiens:
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1038/NBT.2488
- 9606 - Homo sapiens: LTS0275050
- 50557 - Insecta: LTS0275050
- 3398 - Magnoliopsida: LTS0275050
- 40674 - Mammalia: LTS0275050
- 33208 - Metazoa: LTS0275050
- 10066 - Muridae: LTS0275050
- 10088 - Mus: LTS0275050
- 10090 - Mus musculus: LTS0275050
- 10090 - Mus musculus: NA
- 1762 - Mycobacteriaceae: LTS0275050
- 1763 - Mycobacterium: LTS0275050
- 1773 - Mycobacterium tuberculosis: LTS0275050
- 1177 - Nostoc: 10.1074/JBC.M606299200
- 1177 - Nostoc: LTS0275050
- 1162 - Nostocaceae: LTS0275050
- 4053 - Panax: LTS0275050
- 4054 - Panax ginseng: 10.1016/J.PHYMED.2009.03.014
- 4054 - Panax ginseng: LTS0275050
- 6040 - Porifera: LTS0275050
- 7135 - Pyralidae: LTS0275050
- 8399 - Rana: LTS0275050
- 8407 - Rana temporaria: 10.1042/BJ0450612
- 8407 - Rana temporaria: LTS0275050
- 8397 - Ranidae: LTS0275050
- 4070 - Solanaceae: LTS0275050
- 4107 - Solanum: LTS0275050
- 4081 - Solanum lycopersicum: 10.1016/S0031-9422(00)89781-2
- 4081 - Solanum lycopersicum: LTS0275050
- 35493 - Streptophyta: LTS0275050
- 55566 - Suberites: LTS0275050
- 55567 - Suberites domuncula: 10.3390/MD10010177
- 55567 - Suberites domuncula: LTS0275050
- 55660 - Suberitidae: LTS0275050
- 58023 - Tracheophyta: LTS0275050
- 33090 - Viridiplantae: LTS0275050
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Md Jakaria, Abdel A Belaidi, Ashley I Bush, Scott Ayton. Vitamin A metabolites inhibit ferroptosis.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2023 May; 164(?):114930. doi:
10.1016/j.biopha.2023.114930
. [PMID: 37236031] - Miwa Hara, Wenjing Wu, Volha V Malechka, Yusuke Takahashi, Jian-Xing Ma, Gennadiy Moiseyev. PNPLA2 mobilizes retinyl esters from retinosomes and promotes the generation of 11-cis-retinal in the visual cycle.
Cell reports.
2023 02; 42(2):112091. doi:
10.1016/j.celrep.2023.112091
. [PMID: 36763501] - Chao Chen, Kunhuan Yang, Danxue He, Bo Yang, Lei Tao, Jingmeng Chen, Yalin Wu. Induction of ferroptosis by HO-1 contributes to retinal degeneration in mice with defective clearance of all-trans-retinal.
Free radical biology & medicine.
2023 01; 194(?):245-254. doi:
10.1016/j.freeradbiomed.2022.12.008
. [PMID: 36509314] - Daniela M Verra, Perrine Spinnhirny, Cristina Sandu, Stéphane Grégoire, Niyazi Acar, Olivier Berdeaux, Lionel Brétillon, Janet R Sparrow, David Hicks. Intrinsic differences in rod and cone membrane composition: implications for cone degeneration.
Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie.
2022 Oct; 260(10):3131-3148. doi:
10.1007/s00417-022-05684-9
. [PMID: 35524799] - Richard Fitoussi, Marie-Christine Branchet, Natacha Garnier, Gallic Beauchef, Alex Nkengne, Katell Vié, Sylvie Boisnic. A Harungana madagascariensis extract with retinol-like properties: Gene upregulations and protein expressions in human fibroblasts and skin explants.
International journal of cosmetic science.
2022 Apr; 44(2):201-215. doi:
10.1111/ics.12768
. [PMID: 35238059] - Amanda D'Espessailles, Valeria Campos, Nevenka Juretić, Gladys S Tapia, Paulina Pettinelli. Hepatic retinaldehyde dehydrogenases are modulated by tocopherol supplementation in mice with hepatic steatosis.
Nutrition (Burbank, Los Angeles County, Calif.).
2022 02; 94(?):111539. doi:
10.1016/j.nut.2021.111539
. [PMID: 34974285] - Michael P Luciano, Rupak Timilsina, Martin J Schnermann, Alexandra J Dickinson. Imaging retinaldehyde-protein binding in plants using a merocyanine reporter.
Methods in enzymology.
2022; 671(?):421-433. doi:
10.1016/bs.mie.2022.01.017
. [PMID: 35878988] - Andrew G McKee, Charles P Kuntz, Joseph T Ortega, Hope Woods, Victoria Most, Francis J Roushar, Jens Meiler, Beata Jastrzebska, Jonathan P Schlebach. Systematic profiling of temperature- and retinal-sensitive rhodopsin variants by deep mutational scanning.
The Journal of biological chemistry.
2021 12; 297(6):101359. doi:
10.1016/j.jbc.2021.101359
. [PMID: 34756884] - Alexandra J Dickinson, Jingyuan Zhang, Michael Luciano, Guy Wachsman, Evan Sandoval, Martin Schnermann, José R Dinneny, Philip N Benfey. A plant lipocalin promotes retinal-mediated oscillatory lateral root initiation.
Science (New York, N.Y.).
2021 Sep; 373(6562):1532-1536. doi:
10.1126/science.abf7461
. [PMID: 34446443] - Deepshe Dewett, Khanh Lam-Kamath, Clara Poupault, Heena Khurana, Jens Rister. Mechanisms of vitamin A metabolism and deficiency in the mammalian and fly visual system.
Developmental biology.
2021 08; 476(?):68-78. doi:
10.1016/j.ydbio.2021.03.013
. [PMID: 33774009] - Huili Li, Ming Zhang, Dahong Wang, Guojun Dong, Zhiwei Chen, Suilin Li, Xiaohong Sun, Min Zeng, Haiyang Liao, Huifang Chen, Shengyan Xiao, Xiaodan Li. Blue Light from Cell Phones Can Cause Chronic Retinal Light Injury: The Evidence from a Clinical Observational Study and a SD Rat Model.
BioMed research international.
2021; 2021(?):3236892. doi:
10.1155/2021/3236892
. [PMID: 34055970] - Chao Chen, Jingmeng Chen, Yan Wang, Zuguo Liu, Yalin Wu. Ferroptosis drives photoreceptor degeneration in mice with defects in all-trans-retinal clearance.
The Journal of biological chemistry.
2021 Jan; 296(?):100187. doi:
10.1074/jbc.ra120.015779
. [PMID: 33334878] - Elliot H Choi, Anahita Daruwalla, Susie Suh, Henri Leinonen, Krzysztof Palczewski. Retinoids in the visual cycle: role of the retinal G protein-coupled receptor.
Journal of lipid research.
2021; 62(?):100040. doi:
10.1194/jlr.tr120000850
. [PMID: 32493732] - Hye Jin Kim, Janet R Sparrow. Bisretinoid phospholipid and vitamin A aldehyde: shining a light.
Journal of lipid research.
2021; 62(?):100042. doi:
10.1194/jlr.tr120000742
. [PMID: 32371567] - Kasun Ratnayake, John L Payton, Mitchell E Meger, Nipunika H Godage, Emanuela Gionfriddo, Ajith Karunarathne. Blue light-triggered photochemistry and cytotoxicity of retinal.
Cellular signalling.
2020 05; 69(?):109547. doi:
10.1016/j.cellsig.2020.109547
. [PMID: 31982549] - Raquel Pequerul, Javier Vera, Joan Giménez-Dejoz, Isidro Crespo, Joan Coines, Sergio Porté, Carme Rovira, Xavier Parés, Jaume Farrés. Structural and kinetic features of aldehyde dehydrogenase 1A (ALDH1A) subfamily members, cancer stem cell markers active in retinoic acid biosynthesis.
Archives of biochemistry and biophysics.
2020 03; 681(?):108256. doi:
10.1016/j.abb.2020.108256
. [PMID: 31923393] - Jun Han, Min-Lu Han, Hao Xing, Zhen-Li Li, Dao-Yi Yuan, Han Wu, Han Zhang, Ming-da Wang, Chao Li, Lei Liang, Yan-Yan Song, Ai-Jing Xu, Meng-Chao Wu, Feng Shen, Ying Xie, Tian Yang. Tissue and serum metabolomic phenotyping for diagnosis and prognosis of hepatocellular carcinoma.
International journal of cancer.
2020 03; 146(6):1741-1753. doi:
10.1002/ijc.32599
. [PMID: 31361910] - Yang Li, Haichuang Lan, Xia Yan, Xiaotao Shi, Xiao Liu, Shuzhang Xiao. Retinal-based polyene fluorescent probe for selectively detection of Cu2+ in physiological saline and serum.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
2020 Feb; 227(?):117565. doi:
10.1016/j.saa.2019.117565
. [PMID: 31670041] - Chris P F Redfern. Vitamin A and its natural derivatives.
Methods in enzymology.
2020; 637(?):1-25. doi:
10.1016/bs.mie.2020.02.002
. [PMID: 32359642] - Mark K Adams, Olga V Belyaeva, Natalia Y Kedishvili. Generation and isolation of recombinant retinoid oxidoreductase complex.
Methods in enzymology.
2020; 637(?):77-93. doi:
10.1016/bs.mie.2020.02.005
. [PMID: 32359661] - Virginie Ribet, Vincenzo Nobile, Ana Beatris Rossi. In situ antioxidant activity of a dermo-cosmetic product: A randomized controlled clinical study.
Experimental dermatology.
2019 11; 28(11):1219-1226. doi:
10.1111/exd.14005
. [PMID: 31309627] - Hsin-Yu Huang, Ming-Lun Syue, I-Chia Chen, Tsyr-Yan Yu, Li-Kang Chu. Influence of Lipid Compositions in the Events of Retinal Schiff Base of Bacteriorhodopsin Embedded in Covalently Circularized Nanodiscs: Thermal Isomerization, Photoisomerization, and Deprotonation.
The journal of physical chemistry. B.
2019 10; 123(43):9123-9133. doi:
10.1021/acs.jpcb.9b07788
. [PMID: 31584816] - Ting Yang, Wenying Zhang, Jie Cheng, Yanhong Nie, Qi Xin, Shuai Yuan, Yusheng Dou. Formation Mechanism of Ion Channel in Channelrhodopsin-2: Molecular Dynamics Simulation and Steering Molecular Dynamics Simulations.
International journal of molecular sciences.
2019 Aug; 20(15):. doi:
10.3390/ijms20153780
. [PMID: 31382458] - Yu-Min Kao, Chung-Hao Cheng, Ming-Lun Syue, Hsin-Yu Huang, I-Chia Chen, Tsyr-Yan Yu, Li-Kang Chu. Photochemistry of Bacteriorhodopsin with Various Oligomeric Statuses in Controlled Membrane Mimicking Environments: A Spectroscopic Study from Femtoseconds to Milliseconds.
The journal of physical chemistry. B.
2019 03; 123(9):2032-2039. doi:
10.1021/acs.jpcb.9b01224
. [PMID: 30742764] - Hye Jin Kim, Janet R Sparrow. Bisretinoids: More than Meets the Eye.
Advances in experimental medicine and biology.
2019; 1185(?):341-346. doi:
10.1007/978-3-030-27378-1_56
. [PMID: 31884635] - Jessica L Cooperstone, Janet A Novotny, Ken M Riedl, Morgan J Cichon, David M Francis, Robert W Curley, Steven J Schwartz, Earl H Harrison. Limited appearance of apocarotenoids is observed in plasma after consumption of tomato juices: a randomized human clinical trial.
The American journal of clinical nutrition.
2018 10; 108(4):784-792. doi:
10.1093/ajcn/nqy177
. [PMID: 30239552] - Hye Jin Kim, Janet R Sparrow. Novel bisretinoids of human retina are lyso alkyl ether glycerophosphoethanolamine-bearing A2PE species.
Journal of lipid research.
2018 09; 59(9):1620-1629. doi:
10.1194/jlr.m084459
. [PMID: 29986955] - Kasun Ratnayake, John L Payton, O Harshana Lakmal, Ajith Karunarathne. Blue light excited retinal intercepts cellular signaling.
Scientific reports.
2018 07; 8(1):10207. doi:
10.1038/s41598-018-28254-8
. [PMID: 29976989] - Keiichi Inoue, Shinya Tahara, Yoshitaka Kato, Satoshi Takeuchi, Tahei Tahara, Hideki Kandori. Spectroscopic Study of Proton-Transfer Mechanism of Inward Proton-Pump Rhodopsin, Parvularcula oceani Xenorhodopsin.
The journal of physical chemistry. B.
2018 06; 122(25):6453-6461. doi:
10.1021/acs.jpcb.8b01279
. [PMID: 29807427] - Yuanyuan Chen, Yu Chen, Beata Jastrzebska, Marcin Golczak, Sahil Gulati, Hong Tang, William Seibel, Xiaoyu Li, Hui Jin, Yong Han, Songqi Gao, Jianye Zhang, Xujie Liu, Hossein Heidari-Torkabadi, Phoebe L Stewart, William E Harte, Gregory P Tochtrop, Krzysztof Palczewski. A novel small molecule chaperone of rod opsin and its potential therapy for retinal degeneration.
Nature communications.
2018 05; 9(1):1976. doi:
10.1038/s41467-018-04261-1
. [PMID: 29773803] - Olga V Belyaeva, Lizhi Wu, Igor Shmarakov, Peter S Nelson, Natalia Y Kedishvili. Retinol dehydrogenase 11 is essential for the maintenance of retinol homeostasis in liver and testis in mice.
The Journal of biological chemistry.
2018 05; 293(18):6996-7007. doi:
10.1074/jbc.ra117.001646
. [PMID: 29567832] - Songqi Gao, Shirin Kahremany, Jianye Zhang, Beata Jastrzebska, Janice Querubin, Simon M Petersen-Jones, Krzysztof Palczewski. Retinal-chitosan Conjugates Effectively Deliver Active Chromophores to Retinal Photoreceptor Cells in Blind Mice and Dogs.
Molecular pharmacology.
2018 05; 93(5):438-452. doi:
10.1124/mol.117.111294
. [PMID: 29453250] - Kritika Nayak, Sameer S Katiyar, Varun Kushwah, Sanyog Jain. Coenzyme Q10 and retinaldehyde co-loaded nanostructured lipid carriers for efficacy evaluation in wrinkles.
Journal of drug targeting.
2018 04; 26(4):333-344. doi:
10.1080/1061186x.2017.1379527
. [PMID: 28895754] - Volha V Malechka, Gennadiy Moiseyev, Yusuke Takahashi, Younghwa Shin, Jian-Xing Ma. Impaired Rhodopsin Generation in the Rat Model of Diabetic Retinopathy.
The American journal of pathology.
2017 Oct; 187(10):2222-2231. doi:
10.1016/j.ajpath.2017.06.007
. [PMID: 28734946] - He Tian, Thomas P Sakmar, Thomas Huber. The Energetics of Chromophore Binding in the Visual Photoreceptor Rhodopsin.
Biophysical journal.
2017 Jul; 113(1):60-72. doi:
10.1016/j.bpj.2017.05.036
. [PMID: 28700926] - Monika R VanGordon, Gaurav Gyawali, Steven W Rick, Susan B Rempe. Atomistic Study of Intramolecular Interactions in the Closed-State Channelrhodopsin Chimera, C1C2.
Biophysical journal.
2017 Mar; 112(5):943-952. doi:
10.1016/j.bpj.2017.01.023
. [PMID: 28297653] - Arisu Shigeta, Shota Ito, Keiichi Inoue, Takashi Okitsu, Akimori Wada, Hideki Kandori, Izuru Kawamura. Solid-State Nuclear Magnetic Resonance Structural Study of the Retinal-Binding Pocket in Sodium Ion Pump Rhodopsin.
Biochemistry.
2017 01; 56(4):543-550. doi:
10.1021/acs.biochem.6b00999
. [PMID: 28040890] - Eriko Nango, Antoine Royant, Minoru Kubo, Takanori Nakane, Cecilia Wickstrand, Tetsunari Kimura, Tomoyuki Tanaka, Kensuke Tono, Changyong Song, Rie Tanaka, Toshi Arima, Ayumi Yamashita, Jun Kobayashi, Toshiaki Hosaka, Eiichi Mizohata, Przemyslaw Nogly, Michihiro Sugahara, Daewoong Nam, Takashi Nomura, Tatsuro Shimamura, Dohyun Im, Takaaki Fujiwara, Yasuaki Yamanaka, Byeonghyun Jeon, Tomohiro Nishizawa, Kazumasa Oda, Masahiro Fukuda, Rebecka Andersson, Petra Båth, Robert Dods, Jan Davidsson, Shigeru Matsuoka, Satoshi Kawatake, Michio Murata, Osamu Nureki, Shigeki Owada, Takashi Kameshima, Takaki Hatsui, Yasumasa Joti, Gebhard Schertler, Makina Yabashi, Ana-Nicoleta Bondar, Jörg Standfuss, Richard Neutze, So Iwata. A three-dimensional movie of structural changes in bacteriorhodopsin.
Science (New York, N.Y.).
2016 12; 354(6319):1552-1557. doi:
10.1126/science.aah3497
. [PMID: 28008064] - Junhua Wang, Peter D Westenskow, Mingliang Fang, Martin Friedlander, Gary Siuzdak. Quantitative metabolomics of photoreceptor degeneration and the effects of stem cell-derived retinal pigment epithelium transplantation.
Philosophical transactions. Series A, Mathematical, physical, and engineering sciences.
2016 Oct; 374(2079):. doi:
10.1098/rsta.2015.0376
. [PMID: 27644974] - Adrian Yi, Natalia Mamaeva, Hai Li, John L Spudich, Kenneth J Rothschild. Resonance Raman Study of an Anion Channelrhodopsin: Effects of Mutations near the Retinylidene Schiff Base.
Biochemistry.
2016 04; 55(16):2371-80. doi:
10.1021/acs.biochem.6b00104
. [PMID: 27039989] - Christoph Schnedermann, Vera Muders, David Ehrenberg, Ramona Schlesinger, Philipp Kukura, Joachim Heberle. Vibronic Dynamics of the Ultrafast all-trans to 13-cis Photoisomerization of Retinal in Channelrhodopsin-1.
Journal of the American Chemical Society.
2016 Apr; 138(14):4757-62. doi:
10.1021/jacs.5b12251
. [PMID: 26999496] - Joseph L Napoli. Functions of Intracellular Retinoid Binding-Proteins.
Sub-cellular biochemistry.
2016 ; 81(?):21-76. doi:
10.1007/978-94-024-0945-1_2
. [PMID: 27830500] - Andrew Harris, Milena Ljumovic, Ana-Nicoleta Bondar, Yohei Shibata, Shota Ito, Keiichi Inoue, Hideki Kandori, Leonid S Brown. A new group of eubacterial light-driven retinal-binding proton pumps with an unusual cytoplasmic proton donor.
Biochimica et biophysica acta.
2015 Dec; 1847(12):1518-29. doi:
10.1016/j.bbabio.2015.08.003
. [PMID: 26260121] - Tivadar Orban, William M Johnson, Zhiqian Dong, Tadao Maeda, Akiko Maeda, Tsutomu Sakai, Hiroshi Tsuneoka, John J Mieyal, Krzysztof Palczewski. Serum levels of lipid metabolites in age-related macular degeneration.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology.
2015 Nov; 29(11):4579-88. doi:
10.1096/fj.15-275289
. [PMID: 26187344] - Meike Luck, Sara Bruun, Anke Keidel, Peter Hegemann, Peter Hildebrandt. Photochemical chromophore isomerization in histidine kinase rhodopsin HKR1.
FEBS letters.
2015 Apr; 589(10):1067-71. doi:
10.1016/j.febslet.2015.03.024
. [PMID: 25836735] - Mian Zhang, Can Liu, Meng-yue Hu, Ji Zhang, Ping Xu, Feng Li, Ze-yu Zhong, Li Liu, Xiao-dong Liu. High-fat diet enhanced retinal dehydrogenase activity, but suppressed retinol dehydrogenase activity in liver of rats.
Journal of pharmacological sciences.
2015 Apr; 127(4):430-8. doi:
10.1016/j.jphs.2015.03.001
. [PMID: 25953270] - Y Kanan, W C Gordon, P K Mukherjee, N G Bazan, M R Al-Ubaidi. Neuroprotectin D1 is synthesized in the cone photoreceptor cell line 661W and elicits protection against light-induced stress.
Cellular and molecular neurobiology.
2015 Mar; 35(2):197-204. doi:
10.1007/s10571-014-0111-4
. [PMID: 25212825] - Zahra Nossoni, Zahra Assar, Ipek Yapici, Meisam Nosrati, Wenjing Wang, Tetyana Berbasova, Chrysoula Vasileiou, Babak Borhan, James Geiger. Structures of holo wild-type human cellular retinol-binding protein II (hCRBPII) bound to retinol and retinal.
Acta crystallographica. Section D, Biological crystallography.
2014 Dec; 70(Pt 12):3226-32. doi:
10.1107/s1399004714023839
. [PMID: 25478840] - Vera Muders, Silke Kerruth, Víctor A Lórenz-Fonfría, Christian Bamann, Joachim Heberle, Ramona Schlesinger. Resonance Raman and FTIR spectroscopic characterization of the closed and open states of channelrhodopsin-1.
FEBS letters.
2014 Jun; 588(14):2301-6. doi:
10.1016/j.febslet.2014.05.019
. [PMID: 24859039] - Antoine Gautier. Structure determination of α-helical membrane proteins by solution-state NMR: emphasis on retinal proteins.
Biochimica et biophysica acta.
2014 May; 1837(5):578-88. doi:
10.1016/j.bbabio.2013.06.009
. [PMID: 23831435] - Sridevi Mony, Seung Joon Lee, Jeffrey F Harper, Sonali P Barwe, Sigrid A Langhans. Regulation of Na,K-ATPase β1-subunit in TGF-β2-mediated epithelial-to-mesenchymal transition in human retinal pigmented epithelial cells.
Experimental eye research.
2013 Oct; 115(?):113-22. doi:
10.1016/j.exer.2013.06.007
. [PMID: 23810808] - Tassadite Dahmane, Fabrice Rappaport, Jean-Luc Popot. Amphipol-assisted folding of bacteriorhodopsin in the presence or absence of lipids: functional consequences.
European biophysics journal : EBJ.
2013 Mar; 42(2-3):85-101. doi:
10.1007/s00249-012-0839-z
. [PMID: 22926530] - Kyoko Ito, Lei Hao, Amanda E Wray, A Catharine Ross. Lipid emulsion administered intravenously or orally attenuates triglyceride accumulation and expression of inflammatory markers in the liver of nonobese mice fed parenteral nutrition formula.
The Journal of nutrition.
2013 Mar; 143(3):253-9. doi:
10.3945/jn.112.169797
. [PMID: 23325918] - Sybille Ullrich, Ronnie Gueta, Georg Nagel. Degradation of channelopsin-2 in the absence of retinal and degradation resistance in certain mutants.
Biological chemistry.
2013 Feb; 394(2):271-80. doi:
10.1515/hsz-2012-0256
. [PMID: 23134970] - Małgorzata Różanowska, Kinga Handzel, Michael E Boulton, Bartosz Różanowski. Cytotoxicity of all-trans-retinal increases upon photodegradation.
Photochemistry and photobiology.
2012 Nov; 88(6):1362-72. doi:
10.1111/j.1751-1097.2012.01161.x
. [PMID: 22515697] - Song-Qi Gao, Tadao Maeda, Kiichiro Okano, Krzysztof Palczewski. A microparticle/hydrogel combination drug-delivery system for sustained release of retinoids.
Investigative ophthalmology & visual science.
2012 Sep; 53(10):6314-23. doi:
10.1167/iovs.12-10279
. [PMID: 22918645] - Rikard Frederiksen, Nicholas P Boyer, Benjamin Nickle, Kalyan S Chakrabarti, Yiannis Koutalos, Rosalie K Crouch, Daniel Oprian, M Carter Cornwall. Low aqueous solubility of 11-cis-retinal limits the rate of pigment formation and dark adaptation in salamander rods.
The Journal of general physiology.
2012 Jun; 139(6):493-505. doi:
10.1085/jgp.201110685
. [PMID: 22641642] - G Kaya. New therapeutic targets in dermatoporosis.
The journal of nutrition, health & aging.
2012 Apr; 16(4):285-8. doi:
10.1007/s12603-012-0041-0
. [PMID: 22499444] - Guilherme Antônio Behr, Carlos Eduardo Schnorr, José Cláudio Fonseca Moreira. Increased blood oxidative stress in experimental menopause rat model: the effects of vitamin A low-dose supplementation upon antioxidant status in bilateral ovariectomized rats.
Fundamental & clinical pharmacology.
2012 Apr; 26(2):235-49. doi:
10.1111/j.1472-8206.2010.00923.x
. [PMID: 21226757] - Liraz Levi, Tamar Ziv, Arie Admon, Berta Levavi-Sivan, Esther Lubzens. Insight into molecular pathways of retinal metabolism, associated with vitellogenesis in zebrafish.
American journal of physiology. Endocrinology and metabolism.
2012 Mar; 302(6):E626-44. doi:
10.1152/ajpendo.00310.2011
. [PMID: 22205629] - Ville R I Kaila, Robert Send, Dage Sundholm. The effect of protein environment on photoexcitation properties of retinal.
The journal of physical chemistry. B.
2012 Feb; 116(7):2249-58. doi:
10.1021/jp205918m
. [PMID: 22166007] - Erix Wiliam Hernández-Rodríguez, Elsa Sánchez-García, Rachel Crespo-Otero, Ana Lilian Montero-Alejo, Luis Alberto Montero, Walter Thiel. Understanding rhodopsin mutations linked to the retinitis pigmentosa disease: a QM/MM and DFT/MRCI study.
The journal of physical chemistry. B.
2012 Jan; 116(3):1060-76. doi:
10.1021/jp2037334
. [PMID: 22126625] - Philip D Kiser, Marcin Golczak, Akiko Maeda, Krzysztof Palczewski. Key enzymes of the retinoid (visual) cycle in vertebrate retina.
Biochimica et biophysica acta.
2012 Jan; 1821(1):137-51. doi:
10.1016/j.bbalip.2011.03.005
. [PMID: 21447403] - Eugenia Poliakov, Alexander Gubin, James Laird, Susan Gentleman, Robert G Salomon, T Michael Redmond. The mechanism of fenretinide (4-HPR) inhibition of β-carotene monooxygenase 1. New suspect for the visual side effects of fenretinide.
Advances in experimental medicine and biology.
2012; 723(?):167-74. doi:
10.1007/978-1-4614-0631-0_23
. [PMID: 22183330] - Brent L Nannenga, François Baneyx. Reprogramming chaperone pathways to improve membrane protein expression in Escherichia coli.
Protein science : a publication of the Protein Society.
2011 Aug; 20(8):1411-20. doi:
10.1002/pro.669
. [PMID: 21633988] - Rebecca L Surles, Paul R Hutson, Ashley R Valentine, Jordan P Mills, Sherry A Tanumihardjo. 3, 4-Didehydroretinol kinetics differ during lactation in sows on a retinol depletion regimen and the serum:milk 3, 4-didehydroretinol:retinol ratios are correlated.
The Journal of nutrition.
2011 Apr; 141(4):554-9. doi:
10.3945/jn.110.131904
. [PMID: 21310863] - Paul Curnow, Paula J Booth. The contribution of a covalently bound cofactor to the folding and thermodynamic stability of an integral membrane protein.
Journal of molecular biology.
2010 Nov; 403(4):630-42. doi:
10.1016/j.jmb.2010.09.003
. [PMID: 20850459] - Toshiaki Irie, Tamiko Sugimoto, Nobuo Ueki, Haruki Senoo, Takaharu Seki. Retinoid storage in the egg of reptiles and birds.
Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.
2010 Sep; 157(1):113-8. doi:
10.1016/j.cbpb.2010.05.009
. [PMID: 20576484] - Martin-Paul Agbaga, Md Nawajes A Mandal, Robert E Anderson. Retinal very long-chain PUFAs: new insights from studies on ELOVL4 protein.
Journal of lipid research.
2010 Jul; 51(7):1624-42. doi:
10.1194/jlr.r005025
. [PMID: 20299492] - Albert R Wielgus, Colin F Chignell, Patricia Ceger, Joan E Roberts. Comparison of A2E cytotoxicity and phototoxicity with all-trans-retinal in human retinal pigment epithelial cells.
Photochemistry and photobiology.
2010 Jul; 86(4):781-91. doi:
10.1111/j.1751-1097.2010.00750.x
. [PMID: 20497365] - Ekaterina Zaitseva, Michael F Brown, Reiner Vogel. Sequential rearrangement of interhelical networks upon rhodopsin activation in membranes: the Meta II(a) conformational substate.
Journal of the American Chemical Society.
2010 Apr; 132(13):4815-21. doi:
10.1021/ja910317a
. [PMID: 20230054] - Take Matsuyama, Takahiro Yamashita, Hiroo Imai, Yoshinori Shichida. Covalent bond between ligand and receptor required for efficient activation in rhodopsin.
The Journal of biological chemistry.
2010 Mar; 285(11):8114-21. doi:
10.1074/jbc.m109.063875
. [PMID: 20042594] - Rebekah S Marsh, Yan Yan, Vanessa M Reed, Damian Hruszkewycz, Robert W Curley, Earl H Harrison. {beta}-Apocarotenoids do not significantly activate retinoic acid receptors {alpha} or {beta}.
Experimental biology and medicine (Maywood, N.J.).
2010 Mar; 235(3):342-8. doi:
10.1258/ebm.2009.009202
. [PMID: 20404052] - Michael F Brown, Gilmar F J Salgado, Andrey V Struts. Retinal dynamics during light activation of rhodopsin revealed by solid-state NMR spectroscopy.
Biochimica et biophysica acta.
2010 Feb; 1798(2):177-93. doi:
10.1016/j.bbamem.2009.08.013
. [PMID: 19716801] - Janet R Sparrow, Yalin Wu, Chul Y Kim, Jilin Zhou. Phospholipid meets all-trans-retinal: the making of RPE bisretinoids.
Journal of lipid research.
2010 Feb; 51(2):247-61. doi:
10.1194/jlr.r000687
. [PMID: 19666736] - Quan Yuan, Joanna J Kaylor, Anh Miu, Sara Bassilian, Julian P Whitelegge, Gabriel H Travis. Rpe65 isomerase associates with membranes through an electrostatic interaction with acidic phospholipid headgroups.
The Journal of biological chemistry.
2010 Jan; 285(2):988-99. doi:
10.1074/jbc.m109.025643
. [PMID: 19892706] - David E Gloriam, Steven M Foord, Frank E Blaney, Stephen L Garland. Definition of the G protein-coupled receptor transmembrane bundle binding pocket and calculation of receptor similarities for drug design.
Journal of medicinal chemistry.
2009 Jul; 52(14):4429-42. doi:
10.1021/jm900319e
. [PMID: 19537715] - Akiko Maeda, Tadao Maeda, Marcin Golczak, Steven Chou, Amar Desai, Charles L Hoppel, Shigemi Matsuyama, Krzysztof Palczewski. Involvement of all-trans-retinal in acute light-induced retinopathy of mice.
The Journal of biological chemistry.
2009 May; 284(22):15173-83. doi:
10.1074/jbc.m900322200
. [PMID: 19304658] - Prasad Phatak, Jan S Frähmcke, Marius Wanko, Michael Hoffmann, Paul Strodel, Jeremy C Smith, Sándor Suhai, Ana-Nicoleta Bondar, Marcus Elstner. Long-distance proton transfer with a break in the bacteriorhodopsin active site.
Journal of the American Chemical Society.
2009 May; 131(20):7064-78. doi:
10.1021/ja809767v
. [PMID: 19405533] - John C Saari, Maria Nawrot, Ronald E Stenkamp, David C Teller, Gregory G Garwin. Release of 11-cis-retinal from cellular retinaldehyde-binding protein by acidic lipids.
Molecular vision.
2009; 15(?):844-54. doi:
NULL
. [PMID: 19390642] - Mineko Terao, Mami Kurosaki, Maria Monica Barzago, Maddalena Fratelli, Renzo Bagnati, Antonio Bastone, Chiara Giudice, Eugenio Scanziani, Alessandra Mancuso, Cecilia Tiveron, Enrico Garattini. Role of the molybdoflavoenzyme aldehyde oxidase homolog 2 in the biosynthesis of retinoic acid: generation and characterization of a knockout mouse.
Molecular and cellular biology.
2009 Jan; 29(2):357-77. doi:
10.1128/mcb.01385-08
. [PMID: 18981221] - Alexander M Dizhoor, Michael L Woodruff, Elena V Olshevskaya, Marianne C Cilluffo, M Carter Cornwall, Paul A Sieving, Gordon L Fain. Night blindness and the mechanism of constitutive signaling of mutant G90D rhodopsin.
The Journal of neuroscience : the official journal of the Society for Neuroscience.
2008 Nov; 28(45):11662-72. doi:
10.1523/jneurosci.4006-08.2008
. [PMID: 18987202] - Yoshikazu Imanishi, Wenyu Sun, Tadao Maeda, Akiko Maeda, Krzysztof Palczewski. Retinyl ester homeostasis in the adipose differentiation-related protein-deficient retina.
The Journal of biological chemistry.
2008 Sep; 283(36):25091-102. doi:
10.1074/jbc.m802981200
. [PMID: 18606814] - Roxana A Radu, Jane Hu, Jennifer Peng, Dean Bok, Nathan L Mata, Gabriel H Travis. Retinal pigment epithelium-retinal G protein receptor-opsin mediates light-dependent translocation of all-trans-retinyl esters for synthesis of visual chromophore in retinal pigment epithelial cells.
The Journal of biological chemistry.
2008 Jul; 283(28):19730-8. doi:
10.1074/jbc.m801288200
. [PMID: 18474598] - Maureen A Kane, Alexandra E Folias, Joseph L Napoli. HPLC/UV quantitation of retinal, retinol, and retinyl esters in serum and tissues.
Analytical biochemistry.
2008 Jul; 378(1):71-9. doi:
10.1016/j.ab.2008.03.038
. [PMID: 18410739] - Seung-Ah Lee, Olga V Belyaeva, Natalia Y Kedishvili. Effect of lipid peroxidation products on the activity of human retinol dehydrogenase 12 (RDH12) and retinoid metabolism.
Biochimica et biophysica acta.
2008 Jun; 1782(6):421-5. doi:
10.1016/j.bbadis.2008.03.004
. [PMID: 18396173] - Olivier Sorg, Christian Tran, Pierre Carraux, Denise Grand, Christelle Barraclough, Jean-François Arrighi, Patrick Descombes, Vincent Piguet, Jean-Hilaire Saurat. Metabolism and biological activities of topical 4-oxoretinoids in mouse skin.
The Journal of investigative dermatology.
2008 Apr; 128(4):999-1008. doi:
10.1038/sj.jid.5701106
. [PMID: 17943179] - Pick-Wei Lau, Alan Grossfield, Scott E Feller, Michael C Pitman, Michael F Brown. Dynamic structure of retinylidene ligand of rhodopsin probed by molecular simulations.
Journal of molecular biology.
2007 Sep; 372(4):906-917. doi:
10.1016/j.jmb.2007.06.047
. [PMID: 17719606] - Andrey V Struts, Gilmar F J Salgado, Katsunori Tanaka, Sonja Krane, Koji Nakanishi, Michael F Brown. Structural analysis and dynamics of retinal chromophore in dark and meta I states of rhodopsin from 2H NMR of aligned membranes.
Journal of molecular biology.
2007 Sep; 372(1):50-66. doi:
10.1016/j.jmb.2007.03.046
. [PMID: 17640664] - Ting Wang, Yong Duan. Chromophore channeling in the G-protein coupled receptor rhodopsin.
Journal of the American Chemical Society.
2007 Jun; 129(22):6970-1. doi:
10.1021/ja0691977
. [PMID: 17500517] - Derek Alsop, Scott Brown, Glen Van Der Kraak. The effects of copper and benzo[a]pyrene on retinoids and reproduction in zebrafish.
Aquatic toxicology (Amsterdam, Netherlands).
2007 May; 82(4):281-95. doi:
10.1016/j.aquatox.2007.03.001
. [PMID: 17433458] - Elena Karnaukhova. Interactions of human serum albumin with retinoic acid, retinal and retinyl acetate.
Biochemical pharmacology.
2007 Mar; 73(6):901-10. doi:
10.1016/j.bcp.2006.11.023
. [PMID: 17217919] - François Collard, Didier Vertommen, Juliette Fortpied, Gregg Duester, Emile Van Schaftingen. Identification of 3-deoxyglucosone dehydrogenase as aldehyde dehydrogenase 1A1 (retinaldehyde dehydrogenase 1).
Biochimie.
2007 Mar; 89(3):369-73. doi:
10.1016/j.biochi.2006.11.005
. [PMID: 17175089] - Istvan Szatmari, Attila Pap, Ralph Rühl, Jiang-Xing Ma, Petr A Illarionov, Gurdyal S Besra, Eva Rajnavolgyi, Balazs Dezso, Laszlo Nagy. PPARgamma controls CD1d expression by turning on retinoic acid synthesis in developing human dendritic cells.
The Journal of experimental medicine.
2006 Oct; 203(10):2351-62. doi:
10.1084/jem.20060141
. [PMID: 16982809] - Quanhua He, Dmitriy Alexeev, Maureen E Estevez, Sarah L McCabe, Peter D Calvert, David E Ong, M Carter Cornwall, Anita L Zimmerman, Clint L Makino. Cyclic nucleotide-gated ion channels in rod photoreceptors are protected from retinoid inhibition.
The Journal of general physiology.
2006 Oct; 128(4):473-85. doi:
10.1085/jgp.200609619
. [PMID: 17001087] - Gilmar F J Salgado, Andrey V Struts, Katsunori Tanaka, Sonja Krane, Koji Nakanishi, Michael F Brown. Solid-state 2H NMR structure of retinal in metarhodopsin I.
Journal of the American Chemical Society.
2006 Aug; 128(34):11067-71. doi:
10.1021/ja058738+
. [PMID: 16925423] - Li Zhu, Yoshikazu Imanishi, Sławomir Filipek, Andrei Alekseev, Beata Jastrzebska, Wenyu Sun, David A Saperstein, Krzysztof Palczewski. Autosomal recessive retinitis pigmentosa and E150K mutation in the opsin gene.
The Journal of biological chemistry.
2006 Aug; 281(31):22289-22298. doi:
10.1074/jbc.m602664200
. [PMID: 16737970] - Yongdong Jin, Noga Friedman, Mordechai Sheves, Tao He, David Cahen. Bacteriorhodopsin (bR) as an electronic conduction medium: current transport through bR-containing monolayers.
Proceedings of the National Academy of Sciences of the United States of America.
2006 Jun; 103(23):8601-6. doi:
10.1073/pnas.0511234103
. [PMID: 16731629] - Jelena Ostojić, Donald S Sakaguchi, Yancy de Lathouder, Mark S Hargrove, James T Trent, Young H Kwon, Randy H Kardon, Markus H Kuehn, Daniel M Betts, Sinisa Grozdanić. Neuroglobin and cytoglobin: oxygen-binding proteins in retinal neurons.
Investigative ophthalmology & visual science.
2006 Mar; 47(3):1016-23. doi:
10.1167/iovs.05-0465
. [PMID: 16505036]