N-palmitoyl-sphingosine (d18:1/16:0) (BioDeep_00000028009)

 

Secondary id: BioDeep_00000411899, BioDeep_00000871835

human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite


代谢物信息卡片


N-[(1S,2R,3E)-2-Hydroxy-1-(hydroxymethyl)-3-heptadecenyl]-octadecanamide

化学式: C34H67NO3 (537.5120672)
中文名称: N-棕榈酰-D-鞘氨醇, N-棕榈酰神经鞘氨醇
谱图信息: 最多检出来源 Homo sapiens(urine) 2.82%

Reviewed

Last reviewed on 2024-09-14.

Cite this Page

N-palmitoyl-sphingosine (d18:1/16:0). BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/n-palmitoyl-sphingosine_(d18:1_16:0) (retrieved 2024-09-17) (BioDeep RN: BioDeep_00000028009). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: CCCCCCCCCCCCCCCC(=O)NC(CO)C(C=CCCCCCCCCCCCCC)O
InChI: InChI=1S/C34H67NO3/c1-3-5-7-9-11-13-15-17-19-21-23-25-27-29-33(37)32(31-36)35-34(38)30-28-26-24-22-20-18-16-14-12-10-8-6-4-2/h27,29,32-33,36-37H,3-26,28,30-31H2,1-2H3,(H,35,38)/b29-27+/t32-,33+/m0/s1

描述信息

Ceramides, also known as N-acylsphingosines, consist of a sphingoid base linked to a fatty acid chain via the amine group. Ceramides are one of the hydrolysis byproducts of sphingomyelin via the enzyme sphingomyelinase (sphingomyelin phosphorylcholine phosphohydrolase, E.C.3.1.4.12) which has been identified in the subcellular fractions of human epidermis and many other tissues (PMID: 25935). They can also be synthesized from serine and palmitate in a de novo pathway and are regarded as important cellular signals for inducing apoptosis (PMID: 14998372). Ceramides are key to the biosynthesis of glycosphingolipids and gangliosides. Cer(d18:1/16:0), in particular, consists of a monounsaturated 18-carbon dihydroxylated sphingoid base linked to one chain of palmitic acid.
Ceramides (N-acylsphingosine) are one of the hydrolysis byproducts of sphingomyelin by the enzyme sphingomyelinase (sphingomyelin phosphorylcholine phosphohydrolase E.C.3.1.4.12) which has been identified in the subcellular fractions of human epidermis (PMID 25935) and many other tissues. They can also be synthesized from serine and palmitate in a de novo pathway and are regarded as important cellular signals for inducing apoptosis (PMID 14998372). Is key in the biosynthesis of glycosphingolipids and gangliosides. [HMDB]
C16-Ceramide is a natural small molecule activating p53 through the direct and selective binding[1].

同义名列表

53 个代谢物同义名

N-[(1S,2R,3E)-2-Hydroxy-1-(hydroxymethyl)-3-heptadecenyl]-octadecanamide; N-[(2S,3R,4E)-1,3-dihydroxyoctadec-4-en-2-yl]hexadecanamide; (2S,3R,4E)-2-N-Palmitoyloctadecasphinga-4-ene; (2S,3R,4E)-2-acylamino-1,3-Octadec-4-enediol; (2S,3R,4E)-2-Acylaminooctadec-4-ene-1,3-diol; N-Palmitoylsphingosine, (r*,s*-(e))-(+-); N-(Hexadecanoyl)-erythro-4-sphingenine; N-(Hexadecanoyl)-D-erythro-sphingosine; N-Palmitoylsphingosine, R-(r*,s*-(e)); N-Hexadecanoyl-D-erythro-sphingosine; D-Erythro-N-hexadecanoylsphingenine; N-Hexadecanoyl-D-erythro-ceramide; N-Palmitoyl-D-erythro-sphingosine; D-Erythro-N-palmitoylsphingosine; N-(hexadecanoyl)-sphing-4-enine; N-(Hexadecanoyl)sphing-4-enine; N-(Hexadecanoyl)-D-sphingosine; N-(Hexadecanoyl)-4-sphingenine; N-Hexadecanoylsphing-4-enine; N-(Hexadecanoyl)-sphingenine; N-(Hexadecanoyl)-sphingosine; N-Palmitoylsphing-4-enine; N-Palmitoyl 4-sphingenine; N-Hexadecanoylsphingosine; N-Palmitoyl-D-sphingosine; D-Erythro-delta4-ceramide; C16-0(Palmitoyl)ceramide; N-(Hexadecanoyl)ceramide; N-palmitoyl-sphingosine; N-Palmitoylsphingosine; Ceramide (D18:1,C16:0); D-Erythro-C16-ceramide; N-(palmitoyl)-ceramide; C16-Palmitoylceramide; Ceramide (D18:1/16:0); D-Erythro-δ4-ceramide; N-(Palmitoyl)ceramide; N-Palmitoyl ceramide; Ceramide(D18:1/16:0); Palmitoylceramide; N-Acylsphingosine; Cer(d18:1/16:0); C16:0-Ceramide; C(16)-Ceramide; c16 ceramide; Ceramide-C16; C16-ceramide; NFA(C16)cer; Ceramide 16; PCer CPD; Ceramide; C16 Cer; Cer



数据库引用编号

9 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

3 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(3)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

5 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Daniela I Staquicini, Marina Cardó-Vila, Jimmy A Rotolo, Fernanda I Staquicini, Fenny H F Tang, Tracey L Smith, Aditya Ganju, Carmine Schiavone, Prashant Dogra, Zhihui Wang, Vittorio Cristini, Ricardo J Giordano, Michael G Ozawa, Wouter H P Driessen, Bettina Proneth, Glauco R Souza, Lina M Brinker, Achraf Noureddine, Ashley J Snider, Daniel Canals, Juri G Gelovani, Irina Petrache, Rubin M Tuder, Lina M Obeid, Yusuf A Hannun, Richard N Kolesnick, C Jeffrey Brinker, Renata Pasqualini, Wadih Arap. Ceramide as an endothelial cell surface receptor and a lung-specific lipid vascular target for circulating ligands. Proceedings of the National Academy of Sciences of the United States of America. 2023 08; 120(34):e2220269120. doi: 10.1073/pnas.2220269120. [PMID: 37579172]
  • Shahrzad Rahimi, Seyyed Abdolhamid Angaji, Ahmad Majd, Behzad Hatami, Kaveh Baghaei. Evaluating the effect of basic fibroblast growth factor on the progression of NASH disease by inhibiting ceramide synthesis and ER stress-related pathways. European journal of pharmacology. 2023 Mar; 942(?):175536. doi: 10.1016/j.ejphar.2023.175536. [PMID: 36693552]
  • İbrahim Aslan, Demet Aydın, Yasemin Koca, Çağatay Yılmaz, Tuğçe Çeker, Aleyna Öztüzün, Mutay Aslan. Sphingolipidomic profile and HDL subfractions in obese dyslipidemic type 2 diabetic patients. Prostaglandins & other lipid mediators. 2023 Feb; 166(?):106719. doi: 10.1016/j.prostaglandins.2023.106719. [PMID: 36863606]
  • Hiroshi Takahashi, Tomohiro Hayakawa, Asami Makino, Kunihiko Iwamoto, Kazuki Ito, Satoshi B Sato, Toshihide Kobayashi. Long chain ceramides raise the main phase transition of monounsaturated phospholipids to physiological temperature. Scientific reports. 2022 12; 12(1):20803. doi: 10.1038/s41598-022-25330-y. [PMID: 36460753]
  • Iulia Zoicas, Sabine E Huber, Liubov S Kalinichenko, Erich Gulbins, Christian P Müller, Johannes Kornhuber. Ceramides affect alcohol consumption and depressive-like and anxiety-like behavior in a brain region- and ceramide species-specific way in male mice. Addiction biology. 2020 11; 25(6):e12847. doi: 10.1111/adb.12847. [PMID: 31828921]
  • Anjali Gupta, Sneha Muralidharan, Federico Torta, Markus R Wenk, Thorsten Wohland. Long acyl chain ceramides govern cholesterol and cytoskeleton dependence of membrane outer leaflet dynamics. Biochimica et biophysica acta. Biomembranes. 2020 03; 1862(3):183153. doi: 10.1016/j.bbamem.2019.183153. [PMID: 31857071]
  • Md Abdullah Al Sazzad, Tomokazu Yasuda, Thomas K M Nyholm, J Peter Slotte. Lateral Segregation of Palmitoyl Ceramide-1-Phosphate in Simple and Complex Bilayers. Biophysical journal. 2019 07; 117(1):36-45. doi: 10.1016/j.bpj.2019.05.015. [PMID: 31133285]
  • Anna Möuts, Tomoya Yamamoto, Thomas K M Nyholm, Michio Murata, J Peter Slotte. Nonlamellar-Phase-Promoting Colipids Enhance Segregation of Palmitoyl Ceramide in Fluid Bilayers. Biophysical journal. 2019 04; 116(8):1507-1515. doi: 10.1016/j.bpj.2019.03.004. [PMID: 30940348]
  • Suryaprakash Raichur, Bodo Brunner, Maximilian Bielohuby, Gitte Hansen, Anja Pfenninger, Bing Wang, Jens C Bruning, Philip Just Larsen, Norbert Tennagels. The role of C16:0 ceramide in the development of obesity and type 2 diabetes: CerS6 inhibition as a novel therapeutic approach. Molecular metabolism. 2019 03; 21(?):36-50. doi: 10.1016/j.molmet.2018.12.008. [PMID: 30655217]
  • Dorottya Nagy-Szakal, Dinesh K Barupal, Bohyun Lee, Xiaoyu Che, Brent L Williams, Ellie J R Kahn, Joy E Ukaigwe, Lucinda Bateman, Nancy G Klimas, Anthony L Komaroff, Susan Levine, Jose G Montoya, Daniel L Peterson, Bruce Levin, Mady Hornig, Oliver Fiehn, W Ian Lipkin. Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics. Scientific reports. 2018 07; 8(1):10056. doi: 10.1038/s41598-018-28477-9. [PMID: 29968805]
  • Appala Venkata Ramana Murthy, Fanny Guyomarc'h, Christelle Lopez. Palmitoyl ceramide promotes milk sphingomyelin gel phase domains formation and affects the mechanical properties of the fluid phase in milk-SM/DOPC supported membranes. Biochimica et biophysica acta. Biomembranes. 2018 Mar; 1860(3):635-644. doi: 10.1016/j.bbamem.2017.12.005. [PMID: 29229528]
  • Mahmoudreza Doroudgar, Michel Lafleur. Ceramide-C16 Is a Versatile Modulator of Phosphatidylethanolamine Polymorphism. Biophysical journal. 2017 Jun; 112(11):2357-2366. doi: 10.1016/j.bpj.2017.04.047. [PMID: 28591608]
  • Aritz B García-Arribas, Hasna Ahyayauch, Jesús Sot, Pablo L López-González, Alicia Alonso, Félix M Goñi. Ceramide-Induced Lamellar Gel Phases in Fluid Cell Lipid Extracts. Langmuir : the ACS journal of surfaces and colloids. 2016 09; 32(35):9053-63. doi: 10.1021/acs.langmuir.6b01579. [PMID: 27486830]
  • Pritam Mandal, Pakiza Noutsi, Sahraoui Chaieb. Cholesterol Depletion from a Ceramide/Cholesterol Mixed Monolayer: A Brewster Angle Microscope Study. Scientific reports. 2016 06; 6(?):26907. doi: 10.1038/srep26907. [PMID: 27245215]
  • Ahmad Alsahli, Kathryn Kiefhaber, Tziporah Gold, Munira Muluke, Hongfeng Jiang, Serge Cremers, Ulrike Schulze-Späte. Palmitic Acid Reduces Circulating Bone Formation Markers in Obese Animals and Impairs Osteoblast Activity via C16-Ceramide Accumulation. Calcified tissue international. 2016 05; 98(5):511-9. doi: 10.1007/s00223-015-0097-z. [PMID: 26758875]
  • Georgios Grammatikos, Niklas Schoell, Nerea Ferreirós, Dimitra Bon, Eva Herrmann, Harald Farnik, Verena Köberle, Albrecht Piiper, Stefan Zeuzem, Bernd Kronenberger, Oliver Waidmann, Josef Pfeilschifter. Serum sphingolipidomic analyses reveal an upregulation of C16-ceramide and sphingosine-1-phosphate in hepatocellular carcinoma. Oncotarget. 2016 Apr; 7(14):18095-105. doi: 10.18632/oncotarget.7741. [PMID: 26933996]
  • Piotr Laudanski, Karol Charkiewicz, Rafal Kisielewski, Pawel Kuc, Ewa Koc-Zorawska, Grzegorz Raba, Janusz Kraczkowski, Violetta Dymicka-Piekarska, Adrian Chabowski, Marian Kacerovsky, Bo Jacobsson, Piotr Zabielski, Agnieszka Blachnio-Zabielska. Plasma C16-Cer levels are increased in patients with preterm labor. Prostaglandins & other lipid mediators. 2016 03; 123(?):40-5. doi: 10.1016/j.prostaglandins.2016.04.005. [PMID: 27184754]
  • Meenu N Perera, Vidyaramanan Ganesan, Leah J Siskind, Zdzislaw M Szulc, Alicja Bielawska, Robert Bittman, Marco Colombini. Ceramide channel: Structural basis for selective membrane targeting. Chemistry and physics of lipids. 2016 Jan; 194(?):110-116. doi: 10.1016/j.chemphyslip.2015.09.007. [PMID: 26408265]
  • Aritz B García-Arribas, Jon V Busto, Alicia Alonso, Félix M Goñi. Atomic force microscopy characterization of palmitoylceramide and cholesterol effects on phospholipid bilayers: a topographic and nanomechanical study. Langmuir : the ACS journal of surfaces and colloids. 2015 Mar; 31(10):3135-45. doi: 10.1021/la504047n. [PMID: 25693914]
  • Bercem Dutagaci, Johanna Becker-Baldus, José D Faraldo-Gómez, Clemens Glaubitz. Ceramide-lipid interactions studied by MD simulations and solid-state NMR. Biochimica et biophysica acta. 2014 Oct; 1838(10):2511-9. doi: 10.1016/j.bbamem.2014.05.024. [PMID: 24882733]
  • Jon V Busto, Aritz B García-Arribas, Jesús Sot, Alejandro Torrecillas, Juan C Gómez-Fernández, Félix M Goñi, Alicia Alonso. Lamellar gel (lβ) phases of ternary lipid composition containing ceramide and cholesterol. Biophysical journal. 2014 Feb; 106(3):621-30. doi: 10.1016/j.bpj.2013.12.021. [PMID: 24507602]
  • Irina A Gorshkova, Huashan Wang, Gerasim A Orbelyan, Jonathan Goya, Viswanathan Natarajan, David G Beiser, Terry L Vanden Hoek, Evgeny V Berdyshev. Inhibition of sphingosine-1-phosphate lyase rescues sphingosine kinase-1-knockout phenotype following murine cardiac arrest. Life sciences. 2013 Sep; 93(9-11):359-66. doi: 10.1016/j.lfs.2013.07.017. [PMID: 23892195]
  • Toshiyuki Itoi, Tatsujiro Oka, Naoto Terada. Modulation of C16:0-ceramide in hypertrophied immature hearts by losartan. Pediatrics international : official journal of the Japan Pediatric Society. 2013 Jun; 55(3):272-6. doi: 10.1111/ped.12052. [PMID: 23316794]
  • Sherry S W Leung, Jon V Busto, Amir Keyvanloo, Félix M Goñi, Jenifer Thewalt. Insights into sphingolipid miscibility: separate observation of sphingomyelin and ceramide N-acyl chain melting. Biophysical journal. 2012 Dec; 103(12):2465-74. doi: 10.1016/j.bpj.2012.10.041. [PMID: 23260048]
  • Sharon Epstein, Clare L Kirkpatrick, Guillaume A Castillon, Manuel Muñiz, Isabelle Riezman, Fabrice P A David, Claes B Wollheim, Howard Riezman. Activation of the unfolded protein response pathway causes ceramide accumulation in yeast and INS-1E insulinoma cells. Journal of lipid research. 2012 Mar; 53(3):412-420. doi: 10.1194/jlr.m022186. [PMID: 22210926]
  • Sofia L Souza, Joana Valério, Sérgio S Funari, Eurico Melo. The thermotropism and prototropism of ternary mixtures of ceramide C16, cholesterol and palmitic acid. An exploratory study. Chemistry and physics of lipids. 2011 Oct; 164(7):643-53. doi: 10.1016/j.chemphyslip.2011.06.009. [PMID: 21723267]
  • Michal Goldschmidt-Arzi, Eyal Shimoni, Helena Sabanay, Anthony H Futerman, Lia Addadi. Intracellular localization of organized lipid domains of C16-ceramide/cholesterol. Journal of structural biology. 2011 Jul; 175(1):21-30. doi: 10.1016/j.jsb.2011.03.021. [PMID: 21473916]
  • Jon V Busto, María Laura Fanani, Luisina De Tullio, Jesús Sot, Bruno Maggio, Félix M Goñi, Alicia Alonso. Coexistence of immiscible mixtures of palmitoylsphingomyelin and palmitoylceramide in monolayers and bilayers. Biophysical journal. 2009 Nov; 97(10):2717-26. doi: 10.1016/j.bpj.2009.08.040. [PMID: 19917225]
  • Michael R Morrow, Anne Helle, Joshua Perry, Ilpo Vattulainen, Susanne K Wiedmer, Juha M Holopainen. Ceramide-1-phosphate, in contrast to ceramide, is not segregated into lateral lipid domains in phosphatidylcholine bilayers. Biophysical journal. 2009 Mar; 96(6):2216-26. doi: 10.1016/j.bpj.2008.11.060. [PMID: 19289048]
  • Shoghag Panjarian, Lina Kozhaya, Sawsan Arayssi, Maisaa Yehia, Jacek Bielawski, Alicja Bielawska, Julnar Usta, Yusuf A Hannun, Lina M Obeid, Ghassan S Dbaibo. De novo N-palmitoylsphingosine synthesis is the major biochemical mechanism of ceramide accumulation following p53 up-regulation. Prostaglandins & other lipid mediators. 2008 Jun; 86(1-4):41-8. doi: 10.1016/j.prostaglandins.2008.02.004. [PMID: 18400537]
  • Grégory Seumois, Marianne Fillet, Laurent Gillet, Céline Faccinetto, Christophe Desmet, Cédric François, Benjamin Dewals, Cécile Oury, Alain Vanderplasschen, Pierre Lekeux, Fabrice Bureau. De novo C16- and C24-ceramide generation contributes to spontaneous neutrophil apoptosis. Journal of leukocyte biology. 2007 Jun; 81(6):1477-86. doi: 10.1189/jlb.0806529. [PMID: 17329567]
  • Yukinori Taniguchi, Tetsuhiko Ohba, Hidetake Miyata, Kazuo Ohki. Rapid phase change of lipid microdomains in giant vesicles induced by conversion of sphingomyelin to ceramide. Biochimica et biophysica acta. 2006 Feb; 1758(2):145-53. doi: 10.1016/j.bbamem.2006.02.026. [PMID: 16580624]
  • Masatoshi Eto, Jaafar Bennouna, Oriana C Hunter, Michael T Lotze, Andrew A Amoscato. Importance of C16 ceramide accumulation during apoptosis in prostate cancer cells. International journal of urology : official journal of the Japanese Urological Association. 2006 Feb; 13(2):148-56. doi: 10.1111/j.1442-2042.2006.01249.x. [PMID: 16563140]
  • Yosuke Osawa, Hiroshi Uchinami, Jacek Bielawski, Robert F Schwabe, Yusuf A Hannun, David A Brenner. Roles for C16-ceramide and sphingosine 1-phosphate in regulating hepatocyte apoptosis in response to tumor necrosis factor-alpha. The Journal of biological chemistry. 2005 Jul; 280(30):27879-87. doi: 10.1074/jbc.m503002200. [PMID: 15946935]
  • Jesús Sot, Félix M Goñi, Alicia Alonso. Molecular associations and surface-active properties of short- and long-N-acyl chain ceramides. Biochimica et biophysica acta. 2005 Jun; 1711(1):12-9. doi: 10.1016/j.bbamem.2005.02.014. [PMID: 15904658]
  • Gloria I Perez, Andrea Jurisicova, Tiina Matikainen, Toshitake Moriyama, Mee-Ran Kim, Yasushi Takai, James K Pru, Richard N Kolesnick, Jonathan L Tilly. A central role for ceramide in the age-related acceleration of apoptosis in the female germline. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2005 May; 19(7):860-2. doi: 10.1096/fj.04-2903fje. [PMID: 15728664]
  • Kimiko Mogami, Hiroko Kishi, Sei Kobayashi. Sphingomyelinase causes endothelium-dependent vasorelaxation through endothelial nitric oxide production without cytosolic Ca(2+) elevation. FEBS letters. 2005 Jan; 579(2):393-7. doi: 10.1016/j.febslet.2004.11.100. [PMID: 15642349]
  • Burkhard Hinz, Robert Ramer, Karin Eichele, Ulrike Weinzierl, Kay Brune. R(+)-methanandamide-induced cyclooxygenase-2 expression in H4 human neuroglioma cells: possible involvement of membrane lipid rafts. Biochemical and biophysical research communications. 2004 Nov; 324(2):621-6. doi: 10.1016/j.bbrc.2004.09.095. [PMID: 15474472]
  • Masatoshi Eto, Jaafar Bennouna, Oriana C Hunter, Pamela A Hershberger, Tatsuya Kanto, Candace S Johnson, Michael T Lotze, Andrew A Amoscato. C16 ceramide accumulates following androgen ablation in LNCaP prostate cancer cells. The Prostate. 2003 Sep; 57(1):66-79. doi: 10.1002/pros.10275. [PMID: 12886525]
  • Jürgen Bock, Ildikò Szabó, Nikita Gamper, Constantin Adams, Erich Gulbins. Ceramide inhibits the potassium channel Kv1.3 by the formation of membrane platforms. Biochemical and biophysical research communications. 2003 Jun; 305(4):890-7. doi: 10.1016/s0006-291x(03)00763-0. [PMID: 12767914]
  • Marianne Fillet, Mohamed Bentires-Alj, Valerie Deregowski, Roland Greimers, Jacques Gielen, Jacques Piette, Vincent Bours, Marie-Paule Merville. Mechanisms involved in exogenous C2- and C6-ceramide-induced cancer cell toxicity. Biochemical pharmacology. 2003 May; 65(10):1633-42. doi: 10.1016/s0006-2952(03)00125-4. [PMID: 12754099]
  • Leah J Siskind, Richard N Kolesnick, Marco Colombini. Ceramide channels increase the permeability of the mitochondrial outer membrane to small proteins. The Journal of biological chemistry. 2002 Jul; 277(30):26796-803. doi: 10.1074/jbc.m200754200. [PMID: 12006562]
  • I N Singh, L M Stromberg, S G Bourgoin, V A Sciorra, A J Morris, D N Brindley. Ceramide inhibition of mammalian phospholipase D1 and D2 activities is antagonized by phosphatidylinositol 4,5-bisphosphate. Biochemistry. 2001 Sep; 40(37):11227-33. doi: 10.1021/bi010787l. [PMID: 11551222]
  • J M Holopainen, J Lemmich, F Richter, O G Mouritsen, G Rapp, P K Kinnunen. Dimyristoylphosphatidylcholine/C16:0-ceramide binary liposomes studied by differential scanning calorimetry and wide- and small-angle x-ray scattering. Biophysical journal. 2000 May; 78(5):2459-69. doi: 10.1016/s0006-3495(00)76790-7. [PMID: 10777742]
  • J M Holopainen, M Subramanian, P K Kinnunen. Sphingomyelinase induces lipid microdomain formation in a fluid phosphatidylcholine/sphingomyelin membrane. Biochemistry. 1998 Dec; 37(50):17562-70. doi: 10.1021/bi980915e. [PMID: 9860872]
  • J Shah, J M Atienza, R I Duclos, A V Rawlings, Z Dong, G G Shipley. Structural and thermotropic properties of synthetic C16:0 (palmitoyl) ceramide: effect of hydration. Journal of lipid research. 1995 Sep; 36(9):1936-44. doi: ". [PMID: 8558082]