Gene Association: CTNNB1

UniProt Search: CTNNB1 (PROTEIN_CODING)
Function Description: catenin beta 1

found 500 associated metabolites with current gene based on the text mining result from the pubmed database.

(-)-Arctiin

(3R,4R)-4-[(3,4-dimethoxyphenyl)methyl]-3-[[3-methoxy-4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxy-phenyl]methyl]tetrahydrofuran-2-one

C27H34O11 (534.2101)


Natural compounds from herbs are recognized as an important source of therapeutic agents. Seeking for natural products with high selectivity and less side effects merits considerable efforts. Arctium lappa, also known as burdock, is widely consumed in East Asia, Europe and America to promote well-being for hundreds of years. In Chinese traditional medicine, Arctium lappa (mainly roots, and, to a less extend, seeds and leaves) is an important herbal medicinal preparation. It is commonly used for alleviating symptoms of inflammatory disorders, such as anemopyretic cold, cough, measles, urticaria and furuncle (Shin et al., 2015; Zhao et al., 2009). In addition, Arctium lappa is applied to treat various skin disorders including eczema and acne (Chan et al., 2011; Miglani and Manchanda, 2014). Lignans are the most characteristic phytoconstituents of Arctium lappa. Among them, ATG (Formula:C21H24O6; PubChem CID:64,981) and its glycoside, arctiin are the major bioactive compounds (Fig. 1). ATG, rich in roots and seeds of Arctium lappa, has attracted a great deal of attention due to its prominent therapeutic potential. It possesses many biological activities such as anti-oxidative stress (Lü et al., 2016), anti-cancer (He et al., 2018; Shabgah et al., 2021), anti-virus (Gao et al., 2018a) and anti-inflammation (Hyam et al., 2013; Zhao et al., 2009). Significant curative effects of ATG have been demonstrated on a wide range of human diseases including cancers, autoimmune disorders, chronic diseases, viral infections and other health concerns. The bioactivity of ATG largely depend on its chemical structure. For instance, the chiral carbon atom in the lactone ring is essential for the anti-tumor effect of ATG as (–)-arctigenin exhibits greater tumor suppression effect than (+)-arctigenin (Awale et al., 2014). Furthermore, the dibenzyl butyrolactone is key for the interactions between ATG and proteins. (-)-arctiin is a member of the class of compounds known as lignan glycosides. Lignan glycosides are aromatic polycyclic compounds containing a carbohydrate component glycosidically linked to a lignan moiety. They include 1-aryltetralin lactones (-)-arctiin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (-)-arctiin can be found in burdock, which makes (-)-arctiin a potential biomarker for the consumption of this food product. Arctiin is a glycoside and a lignan. Arctiin is a natural product found in Abeliophyllum distichum, Forsythia suspensa, and other organisms with data available. Arctiin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=20362-31-6 (retrieved 2024-06-28) (CAS RN: 20362-31-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Arctiin (NSC 315527) is a plant lignan extracted from burdock seeds and has anti-cancer activity. Arctiin (NSC 315527) is a plant lignan extracted from burdock seeds and has anti-cancer activity.

   

Ginsenoside A2

(2R,3R,4S,5S,6R)-2-(((3S,5R,6S,8R,9R,10R,12R,13R,14R,17S)-3,12-dihydroxy-4,4,8,10,14-pentamethyl-17-((S)-6-methyl-2-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)hept-5-en-2-yl)hexadecahydro-1H-cyclopenta[a]phenanthren-6-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C42H72O14 (800.4922)


Ginsenoside Rg1 is a ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 6 and 20 have been converted to the corresponding beta-D-glucopyranosides, and in which a double bond has been introduced at the 24-25 position. It has a role as a neuroprotective agent and a pro-angiogenic agent. It is a 12beta-hydroxy steroid, a beta-D-glucoside, a tetracyclic triterpenoid, a ginsenoside and a 3beta-hydroxy-4,4-dimethylsteroid. It derives from a hydride of a dammarane. Ginsenosides are a class of steroid glycosides, and triterpene saponins, found exclusively in the plant genus Panax (ginseng). Ginsenosides have been the target of research, as they are viewed as the active compounds behind the claims of ginsengs efficacy. Because ginsenosides appear to affect multiple pathways, their effects are complex and difficult to isolate. Rg1 Appears to be most abundant in Panax ginseng (Chinese/Korean Ginseng). It improves spatial learning and increase hippocampal synaptophysin level in mice, plus demonstrates estrogen-like activity. Ginsenoside RG1 is a natural product found in Panax vietnamensis, Panax ginseng, and Panax notoginseng with data available. See also: Asian Ginseng (part of); American Ginseng (part of); Panax notoginseng root (part of). Ginsenoside A2 is found in tea. Ginsenoside A2 is a constituent of Panax ginseng (ginseng) Constituent of Panax ginseng (ginseng). Ginsenoside A2 is found in tea. D002491 - Central Nervous System Agents Ginsenoside Rg1 is one of the major active components of Panax ginseng. Ginsenoside Rg1 ameliorates the impaired cognitive function, displays promising effects by reducing cerebral Aβ levels. Ginsenoside Rg1 also reduces NF-κB nuclear translocation. Ginsenoside Rg1 is one of the major active components of Panax ginseng. Ginsenoside Rg1 ameliorates the impaired cognitive function, displays promising effects by reducing cerebral Aβ levels. Ginsenoside Rg1 also reduces NF-κB nuclear translocation.

   

(S)-Isocorydine

(9S)-4,15,16-trimethoxy-10-methyl-10-azatetracyclo[7.7.1.0^{2,7}.0^{13,17}]heptadeca-1(17),2,4,6,13,15-hexaen-3-ol

C20H23NO4 (341.1627)


Isocorydine is an aporphine alkaloid. Isocorydine is a natural product found in Sarcocapnos saetabensis, Thalictrum delavayi, and other organisms with data available. (S)-Isocorydine is found in cherimoya. (S)-Isocorydine is an alkaloid from Peumus boldus (boldo). (S)-Isocorydine belongs to the family of Aporphines. These are quinoline alkaloids containing the dibenzo[de,g]quinoline ring system. See also: Peumus boldus leaf (part of). (S)-Isocorydine is found in cherimoya. (S)-Isocorydine is an alkaloid from Peumus boldus (boldo Alkaloid from Peumus boldus (boldo). (S)-Isocorydine is found in cherimoya and poppy. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2324 Isocorydine is isolated from Dicranostigma leptopodum (Maxim.) Fedde (DLF). Isocorydine combines with Doxorubicin (DOX) has a promising potential to eradicate hepatocellular carcinoma (HCC)[1]. Isocorydine is isolated from Dicranostigma leptopodum (Maxim.) Fedde (DLF). Isocorydine combines with Doxorubicin (DOX) has a promising potential to eradicate hepatocellular carcinoma (HCC)[1].

   

Umbelliferone

7-Hydroxy-2H-1-benzopyran-2-one

C9H6O3 (162.0317)


Umbelliferone is a hydroxycoumarin that is coumarin substituted by a hydroxy group ay position 7. It has a role as a fluorescent probe, a plant metabolite and a food component. Umbelliferone is a natural product found in Ficus septica, Artemisia ordosica, and other organisms with data available. See also: Chamomile (part of). Occurs widely in plants including Angelica subspecies Phytoalexin of infected sweet potato. Umbelliferone is found in many foods, some of which are macadamia nut, silver linden, quince, and capers. Umbelliferone is found in anise. Umbelliferone occurs widely in plants including Angelica species Phytoalexin of infected sweet potat A hydroxycoumarin that is coumarin substituted by a hydroxy group ay position 7. [Raw Data] CB220_Umbelliferone_pos_50eV_CB000077.txt [Raw Data] CB220_Umbelliferone_pos_40eV_CB000077.txt [Raw Data] CB220_Umbelliferone_pos_30eV_CB000077.txt [Raw Data] CB220_Umbelliferone_pos_10eV_CB000077.txt [Raw Data] CB220_Umbelliferone_pos_20eV_CB000077.txt [Raw Data] CB220_Umbelliferone_neg_40eV_000039.txt [Raw Data] CB220_Umbelliferone_neg_10eV_000039.txt [Raw Data] CB220_Umbelliferone_neg_30eV_000039.txt [Raw Data] CB220_Umbelliferone_neg_20eV_000039.txt Umbelliferone. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=93-35-6 (retrieved 2024-07-12) (CAS RN: 93-35-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Umbelliferone (7-Hydroxycoumarin), a natural product of the coumarin family, is a fluorescing compound which can be used as a sunscreen agent. Umbelliferone (7-Hydroxycoumarin), a natural product of the coumarin family, is a fluorescing compound which can be used as a sunscreen agent.

   

Danshensu

(R)-a,3,4-Trihydroxybenzenepropanoic acid; 3-(3,4-Dihydroxyphenyl)-(2R)-lactic acid; Dan shen suan A; Salvianic acid A;Danshensu

C9H10O5 (198.0528)


(2R)-3-(3,4-dihydroxyphenyl)lactic acid is a (2R)-2-hydroxy monocarboxylic acid that is (R)-lactic acid substituted at position 3 by a 3,4-dihydroxyphenyl group. It is a (2R)-2-hydroxy monocarboxylic acid and a 3-(3,4-dihydroxyphenyl)lactic acid. It is a conjugate acid of a (2R)-3-(3,4-dihydroxyphenyl)lactate. Danshensu is a natural product found in Salvia miltiorrhiza, Melissa officinalis, and other organisms with data available. Salvianic acid A. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=76822-21-4 (retrieved 2024-06-29) (CAS RN: 76822-21-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Danshensu, an active ingredient of?Salvia miltiorrhiza, shows wide cardiovascular benefit by activating Nrf2 signaling pathway. Danshensu, an active ingredient of?Salvia miltiorrhiza, shows wide cardiovascular benefit by activating Nrf2 signaling pathway.

   

Ginsenoside Rb1

2-{[2-(5-{[4,5-dihydroxy-6-(hydroxymethyl)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-16-hydroxy-2,6,6,10,11-pentamethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl)-6-methylhept-5-en-2-yl]oxy}-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol

C54H92O23 (1108.6029)


Ginsenoside Rb1 is a ginsenoside found in Panax ginseng and Panax japonicus var. major that is ginsenoside Rd in which the beta-D-glucopyranoside group at position 20 is replaced by a beta-D-glucopyranosyl-beta-D-glucopyranoside group. It has a role as a neuroprotective agent, an anti-obesity agent, an anti-inflammatory drug, an apoptosis inhibitor, a radical scavenger and a plant metabolite. It is a ginsenoside, a glycoside and a tetracyclic triterpenoid. It is functionally related to a ginsenoside Rd. Ginsenosides are a class of steroid glycosides, and triterpene saponins, found exclusively in the plant genus Panax (ginseng). Ginsenosides have been the target of research, as they are viewed as the active compounds behind the claims of ginsengs efficacy. Because ginsenosides appear to affect multiple pathways, their effects are complex and difficult to isolate. Rb1 appears to be most abundant in Panax quinquefolius (American Ginseng). Rb1 seems to affect the reproductive system in animal testicles. Recent research shows that Rb1 affects rat embryo development and has teratogenic effects, causing birth defects. Another study shows that Rb1 may increase testosterone production in male rats indirectly through the stimulation of the luteinizing hormone. Ginsenoside rb1 is a natural product found in Panax vietnamensis, Gynostemma pentaphyllum, and other organisms with data available. See also: Asian Ginseng (part of); American Ginseng (part of); Panax notoginseng root (part of). Ginsenoside Rb1 is found in tea. Ginsenoside Rb1 is a constituent of Panax ginseng (ginseng) Constituent of Panax ginseng (ginseng). Ginsenoside Rb1 is found in tea. Ginsenoside Rb1. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=41753-43-9 (retrieved 2024-06-29) (CAS RN: 41753-43-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Ginsenoside Rb1, a main constituent of the root of Panax ginseng, inhibits Na+, K+-ATPase activity with an IC50 of 6.3±1.0 μM. Ginsenoside also inhibits IRAK-1 activation and phosphorylation of NF-κB p65 . Ginsenoside Rb1, a main constituent of the root of Panax ginseng, inhibits Na+, K+-ATPase activity with an IC50 of 6.3±1.0 μM. Ginsenoside also inhibits IRAK-1 activation and phosphorylation of NF-κB p65 .

   

(20R)-Ginsenoside Rh2

3-O-β-D-Glucopyranosyl-20(S)-protopanaxadiol

C36H62O8 (622.4444)


(20S)-ginsenoside Rh2 is a ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy group at position 3 has been converted to the corresponding beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. It has a role as a plant metabolite, an antineoplastic agent, an apoptosis inducer, a cardioprotective agent, a bone density conservation agent and a hepatoprotective agent. It is a beta-D-glucoside, a 12beta-hydroxy steroid, a ginsenoside, a tetracyclic triterpenoid and a 20-hydroxy steroid. It derives from a hydride of a dammarane. Ginsenoside Rh2 is a natural product found in Panax ginseng and Panax notoginseng with data available. A ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy group at position 3 has been converted to the corresponding beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. Ginsenoside C-K, a bacterial metabolite of G-Rb1, exhibits anti-inflammatory effects by reducing iNOS and COX-2. Ginsenoside C-K exhibits an inhibition against the activity of CYP2C9 and CYP2A6 in human liver microsomes with IC50s of 32.0±3.6 μM and 63.6±4.2 μM, respectively. Ginsenoside C-K, a bacterial metabolite of G-Rb1, exhibits anti-inflammatory effects by reducing iNOS and COX-2. Ginsenoside C-K exhibits an inhibition against the activity of CYP2C9 and CYP2A6 in human liver microsomes with IC50s of 32.0±3.6 μM and 63.6±4.2 μM, respectively. Ginsenoside Rh2 induces the activation of caspase-8 and caspase-9. Ginsenoside Rh2 induces cancer cell apoptosis in a multi-path manner. Ginsenoside Rh2 induces the activation of caspase-8 and caspase-9. Ginsenoside Rh2 induces cancer cell apoptosis in a multi-path manner.

   

Angelicin

2-Propenoic acid, 3-(4-hydroxy-5-benzofuranyl)-, .delta.-lactone

C11H6O3 (186.0317)


Angelicin is a furanocoumarin. Angelicin is a natural product found in Cullen cinereum, Psoralea glabra, and other organisms with data available. Angelicin is found in coriander. Angelicin is a constituent of roots and leaves of angelica (Angelica archangelica). Angelicin is found in roots and on surface of parsnips and diseased celery.Angelicin is a furanocoumarin. It can be found in Bituminaria bituminosa. It is present in the list of IARC Group 3 carcinogens (Angelicin plus ultraviolet A radiation). (Wikipedia). See also: Angelica archangelica root (part of); Cullen corylifolium fruit (part of). Angelicin is found in coriander. Angelicin is a constituent of roots and leaves of angelica (Angelica archangelica). Angelicin is found in roots and on surface of parsnips and diseased celery.Angelicin is a furanocoumarin. It can be found in Bituminaria bituminosa. It is present in the list of IARC Group 3 carcinogens (Angelicin plus ultraviolet A radiation). (Wikipedia). Constituent of roots and leaves of angelica (Angelica archangelica). Found in roots and on surface of parsnips and diseased celery D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D007364 - Intercalating Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D002491 - Central Nervous System Agents > D000927 - Anticonvulsants Angelicin is a natural tricyclic aromatic hydrocarbon compound that is structurally related to psoralen and has anti-cancer, anti-inflammatory, anti-viral and other activities. Cytotoxic, IC50: 49.56 μM; inhibits MHV-68, IC50: 5.39 μg/ml (28.95 μM). Angelicin is a natural tricyclic aromatic hydrocarbon compound that is structurally related to psoralen and has anti-cancer, anti-inflammatory, anti-viral and other activities. Cytotoxic, IC50: 49.56 μM; inhibits MHV-68, IC50: 5.39 μg/ml (28.95 μM).

   

Loganin

(1S,4aS,6S,7R,7aS)-6-hydroxy-7-methyl-1-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-1,4a,5,6,7,7a-hexahydrocyclopenta[d]pyran-4-carboxylic acid methyl ester

C17H26O10 (390.1526)


Loganin is an iridoid monoterpenoid with formula C17H26O10 that is isolated from several plant species and exhibits neuroprotective and anti-inflammatory properties. It has a role as a plant metabolite, a neuroprotective agent, an EC 3.4.23.46 (memapsin 2) inhibitor, an EC 3.2.1.20 (alpha-glucosidase) inhibitor, an anti-inflammatory agent and an EC 3.1.1.7 (acetylcholinesterase) inhibitor. It is a cyclopentapyran, a beta-D-glucoside, an enoate ester, a monosaccharide derivative, an iridoid monoterpenoid, a methyl ester and a secondary alcohol. It is functionally related to a loganetin. Loganin is one of the best-known of the iridoid glycosides. It is named for the Loganiaceae, having first been isolated from the seeds of a member of that plant family, namely those of Strychnos nux-vomica. It also occurs in Alstonia boonei (Apocynaceae),[1] a medicinal tree of West Africa and in the medicinal/entheogenic shrub Desfontainia spinosa (Columelliaceae) native to Central America and South America. Loganin is a natural product found in Strychnos axillaris, Lonicera japonica, and other organisms with data available. An iridoid monoterpenoid with formula C17H26O10 that is isolated from several plant species and exhibits neuroprotective and anti-inflammatory properties. Loganin, also known as loganoside, is a member of the class of compounds known as iridoid o-glycosides. Iridoid o-glycosides are iridoid monoterpenes containing a glycosyl (usually a pyranosyl) moiety linked to the iridoid skeleton. Thus, loganin is considered to be an isoprenoid lipid molecule. Loganin is soluble (in water) and a very weakly acidic compound (based on its pKa). Loganin can be found in a number of food items such as groundcherry, annual wild rice, muscadine grape, and broad bean, which makes loganin a potential biomarker for the consumption of these food products. Loganin is one of the best-known of the iridoid glycosides.It is named for the Loganiaceae,having first been isolated from the seeds of a member of that plant family, namely those of Strychnos nux-vomica. It also occurs in Alstonia boonei (Apocynaceae), a medicinal tree of West Africa and in the medicinal/entheogenic shrub Desfontainia spinosa (Columelliaceae) native to Central America and South America . Loganin is formed from loganic acid by the enzyme loganic acid O-methyltransferase (LAMT). Loganin then becomes a substrate for the enzyme secologanin synthase (SLS) to form secologanin, a secoiridoid monoterpene found as part of ipecac and terpene indole alkaloids. Loganin is the main iridoid glycoside compound in Cornus officinalis and has anti-inflammatory and anti-shock effects. Loganin is the main iridoid glycoside compound in Cornus officinalis and has anti-inflammatory and anti-shock effects.

   

Notoginsenoside R1

2-{[2-(8-{[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl]oxy}-5,16-dihydroxy-2,6,6,10,11-pentamethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl)-6-methylhept-5-en-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C47H80O18 (932.5344)


Notoginsenoside R1 is a ginsenoside found in Panax notoginseng that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 6 and 20 have been converted to the corresponding beta-D-xylopyranosyl-(1->2)-beta-D-glucopyranoside and beta-D-glucopyranoside respectively, and in which a double bond has been introduced at the 24-25 position. It has a role as a plant metabolite, an antioxidant, a neuroprotective agent, an apoptosis inducer and a phytoestrogen. It is a beta-D-glucoside, a 12beta-hydroxy steroid, a 3beta-hydroxy steroid, a disaccharide derivative, a ginsenoside, a tetracyclic triterpenoid and a 3beta-hydroxy-4,4-dimethylsteroid. It derives from a hydride of a dammarane. Notoginsenoside R1 is a natural product found in Panax ginseng, Panax notoginseng, and other organisms with data available. See also: Panax notoginseng root (part of). Notoginsenoside R1 is found in tea. Notoginsenoside R1 is a constituent of roots of Panax notoginseng (ginseng) Constituent of roots of Panax notoginseng (ginseng). Notoginsenoside R1 is found in tea. Notoginsenoside R1 (Sanchinoside R1), a saponin, is isolated from P. notoginseng. Notoginsenoside R1 exhibits anti-oxidation, anti-inflammatory, anti-angiogenic, and anti-apoptosis activities. Notoginsenoside R1 provides cardioprotection against ischemia/reperfusion (I/R) injury. Notoginsenoside R1 also provides neuroprotection in H2O2-induced oxidative damage in PC12 cells[1][2][3]. Notoginsenoside R1 (Sanchinoside R1), a saponin, is isolated from P. notoginseng. Notoginsenoside R1 exhibits anti-oxidation, anti-inflammatory, anti-angiogenic, and anti-apoptosis activities. Notoginsenoside R1 provides cardioprotection against ischemia/reperfusion (I/R) injury. Notoginsenoside R1 also provides neuroprotection in H2O2-induced oxidative damage in PC12 cells[1][2][3].

   

Betulafolienetriol

(3S,5R,8R,9R,10R,12R,13R,14R,17S)-17-[(2S)-2-hydroxy-6-methylhept-5-en-2-yl]-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthrene-3,12-diol

C30H52O3 (460.3916)


Protopanaxadiol is found in tea. Sapogenin of Ginsenosides Rb1, Rb2 and Re from Panax ginseng (ginseng) Protopanaxadiol (PPD) is an organic coumpound characterizing a group of ginsenosides. It is a dammarane-type tetracyclic terpene sapogenin found in ginseng (Panax ginseng) and in notoginseng (Panax pseudoginseng) (20S)-protopanaxadiol is a diastereomer of protopanaxadiol in which the 20-hydroxy substituent has been introduced at the pro-S position. (20S)-Protopanaxadiol is a natural product found in Gynostemma pentaphyllum, Panax ginseng, and Aralia elata with data available. 20S-protopanaxadiol (aPPD) is a metabolite of ginseng saponins, inhibits Akt activity and induces apoptosis in various tumor cells[1]. 20S-protopanaxadiol (aPPD) is a metabolite of ginseng saponins, inhibits Akt activity and induces apoptosis in various tumor cells[1].

   

Bufalin

5-[(3S,5R,8R,9S,10S,13R,14S,17R)-3,14-dihydroxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-17-yl]pyran-2-one

C24H34O4 (386.2457)


Bufalin is a cardiotonic steroid toxin[1] originally isolated from Chinese toad venom, which is a component of some traditional Chinese medicines.[2][3] Bufalin has in vitro antitumor effects against various malignant cell lines, including hepatocellular[4] and lung carcinoma.[5] However, as with other bufadienolides, its potential use is hampered by its cardiotoxicity.[6] Bufalin is a 14beta-hydroxy steroid that is bufan-20,22-dienolide having hydroxy substituents at the 5beta- and 14beta-positions. It has been isolated from the skin of the toad Bufo bufo. It has a role as an antineoplastic agent, a cardiotonic drug, an anti-inflammatory agent and an animal metabolite. It is a 3beta-hydroxy steroid and a 14beta-hydroxy steroid. It is functionally related to a bufanolide. Bufalin is a natural product found in Cunninghamella blakesleeana, Bufo gargarizans, and other organisms with data available. Bufalin is an active ingredient and one of the glycosides in the traditional Chinese medicine ChanSu; it is also a bufadienolide toxin originally isolated from the venom of the Chinese toad Bufo gargarizans, with potential cardiotonic and antineoplastic activity. Although the mechanism of action of bufalin is still under investigation, this agent is a specific Na+/K+-ATPase inhibitor and can induce apoptosis in cancer cell lines through the activation of the transcription factor AP-1 via a mitogen activated protein kinase (MAPK) pathway. A 14beta-hydroxy steroid that is bufan-20,22-dienolide having hydroxy substituents at the 5beta- and 14beta-positions. It has been isolated from the skin of the toad Bufo bufo. Bufalin is an active component isolated from Chan Su, acts as a potent Na+/K+-ATPase inhibitor, binds to the subunit α1, α2 and α3, with Kd of 42.5, 45 and 40 nM, respectively[1][2]. Anti-cancer activity[2]. Bufalin is an active component isolated from Chan Su, acts as a potent Na+/K+-ATPase inhibitor, binds to the subunit α1, α2 and α3, with Kd of 42.5, 45 and 40 nM, respectively[1][2]. Anti-cancer activity[2].

   

Ginsenoside B2

2-[(2-{[5,16-dihydroxy-2,6,6,10,11-pentamethyl-14-(6-methyl-2-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}hept-5-en-2-yl)tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-8-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl)oxy]-6-methyloxane-3,4,5-triol

C48H82O18 (946.5501)


Ginsenoside Re is a ginsenoside found in Panax ginseng that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 6 and 20 have been converted to the corresponding alpha-L-rhamnopyranosyl-(1->2)-beta-D-glucopyranoside and beta-D-glucopyranoside respectively, and in which a double bond has been introduced at the 24-25 position. It has a role as a plant metabolite, an antioxidant, a neuroprotective agent, an anti-inflammatory agent, an antineoplastic agent and a nephroprotective agent. It is a 12beta-hydroxy steroid, a 3beta-hydroxy steroid, a beta-D-glucoside, a ginsenoside, a tetracyclic triterpenoid, a disaccharide derivative and a 3beta-hydroxy-4,4-dimethylsteroid. It derives from a hydride of a dammarane. Ginsenoside B2 is under investigation in clinical trial NCT00781534 (A Clinical Trial of Ginseng in Diabetes). Ginsenoside Re is a natural product found in Panax vietnamensis, Luffa aegyptiaca, and other organisms with data available. See also: Asian Ginseng (part of); American Ginseng (part of); Panax notoginseng root (part of). Ginsenoside B2 is found in tea. Ginsenoside B2 is a constituent of Panax ginseng (ginseng) and Panax japonicum (Japanese ginseng) Constituent of Panax ginseng (ginseng) and Panax japonicum (Japanese ginseng). Ginsenoside B2 is found in tea. Ginsenoside Re (Ginsenoside B2) is an extract from Panax notoginseng. Ginsenoside Re decreases the β-amyloid protein (Aβ). Ginsenoside Re plays a role in antiinflammation through inhibition of JNK and NF-κB. Ginsenoside Re (Ginsenoside B2) is an extract from Panax notoginseng. Ginsenoside Re decreases the β-amyloid protein (Aβ). Ginsenoside Re plays a role in antiinflammation through inhibition of JNK and NF-κB.

   

Gentiopicrin

(5R,6S)-6-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-5-vinyl-5,6-dihydropyrano[3,4-c]pyran-1(3H)-one

C16H20O9 (356.1107)


Gentiopicrin is a glycoside. Gentiopicroside is a natural product found in Aster auriculatus, Exacum affine, and other organisms with data available. See also: Centaurium erythraea whole (part of). Gentiopicroside. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=20831-76-9 (retrieved 2024-07-01) (CAS RN: 20831-76-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Gentiopicroside, a naturally occurring iridoid glycoside, inhibits P450 activity, with an IC50 and a Ki of 61 μM and 22.8 μM for CYP2A6; Gentiopicroside has anti-inflammatoryand antioxidative effects. Gentiopicroside, a naturally occurring iridoid glycoside, inhibits P450 activity, with an IC50 and a Ki of 61 μM and 22.8 μM for CYP2A6; Gentiopicroside has anti-inflammatoryand antioxidative effects.

   

Arenobufagin

5-[(3S,5R,8R,9S,10S,11S,13R,14S,17R)-3,11,14-trihydroxy-10,13-dimethyl-12-oxo-2,3,4,5,6,7,8,9,11,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl]pyran-2-one

C24H32O6 (416.2199)


Arenobufagin is a natural product found in Bufo gargarizans, Bufotes viridis, and other organisms with data available. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides Arenobufagin is a natural bufadienolide from toad venom; has potent antineoplastic activity against HCC HepG2 cells as well as corresponding multidrug-resistant HepG2/ADM cells. IC50 value: Target: in vitro: arenobufagin induced mitochondria-mediated apoptosis in HCC cells, with decreasing mitochondrial potential, as well as increasing Bax/Bcl-2 expression ratio, Bax translocation from cytosol to mitochondria. Arenobufagin also induced autophagy in HepG2/ADM cells. Autophagy-specific inhibitors (3-methyladenine, chloroquine and bafilomycin A1) or Beclin1 and Atg 5 small interfering RNAs (siRNAs) enhanced arenobufagin-induced apoptosis, indicating that arenobufagin-mediated autophagy may protect HepG2/ADM cells from undergoing apoptotic cell death [1]. arenobufagin inhibited vascular endothelial growth factor (VEGF)-induced viability, migration, invasion and tube formation in human umbilical vein endothelial cells (HUVECs) in vitro [2]. Arenobufagin blocked the Na+/K+ pump current in a dose-dependent manner with a half-maximal concentration of 0.29 microM and a Hill coefficient of 1.1 [3]. in vivo: arenobufagin inhibited the growth of HepG2/ADM xenograft tumors, which were associated with poly (ADP-ribose) polymerase cleavage, light chain 3-II activation and mTOR inhibition [1]. Arenobufagin also suppressed sprouting formation from VEGF-treated aortic rings in an ex vivo model [2]. Arenobufagin is a natural bufadienolide from toad venom; has potent antineoplastic activity against HCC HepG2 cells as well as corresponding multidrug-resistant HepG2/ADM cells. IC50 value: Target: in vitro: arenobufagin induced mitochondria-mediated apoptosis in HCC cells, with decreasing mitochondrial potential, as well as increasing Bax/Bcl-2 expression ratio, Bax translocation from cytosol to mitochondria. Arenobufagin also induced autophagy in HepG2/ADM cells. Autophagy-specific inhibitors (3-methyladenine, chloroquine and bafilomycin A1) or Beclin1 and Atg 5 small interfering RNAs (siRNAs) enhanced arenobufagin-induced apoptosis, indicating that arenobufagin-mediated autophagy may protect HepG2/ADM cells from undergoing apoptotic cell death [1]. arenobufagin inhibited vascular endothelial growth factor (VEGF)-induced viability, migration, invasion and tube formation in human umbilical vein endothelial cells (HUVECs) in vitro [2]. Arenobufagin blocked the Na+/K+ pump current in a dose-dependent manner with a half-maximal concentration of 0.29 microM and a Hill coefficient of 1.1 [3]. in vivo: arenobufagin inhibited the growth of HepG2/ADM xenograft tumors, which were associated with poly (ADP-ribose) polymerase cleavage, light chain 3-II activation and mTOR inhibition [1]. Arenobufagin also suppressed sprouting formation from VEGF-treated aortic rings in an ex vivo model [2].

   

Berbamine

16H-1,24:6,9-dietheno-11,15-metheno-2H-pyrido(2,3:17,18)(1,11)dioxacycloeicosino(2,3,4-ij)isoquinolin-12-ol, 3,4,4a,5,16a,17,18,19-octahydro-21,22,26-trimethoxy-4,17-dimethyl-, hydrochloride, hydrate (1:1:4), (4aS,16aR)-

C37H40N2O6 (608.2886)


Berbamine is a member of isoquinolines and a bisbenzylisoquinoline alkaloid. Berbamine is a natural product found in Berberis poiretii, Berberis integerrima Berbamine inhibits the proliferation of KM3 cells in a dose- and time-dependent manner. Combination of berbamine with dexamethasone (Dex), doxorubicin (Dox) or arsenic trioxide (ATO) resulted in enhanced inhibition of cell growth. Flow cytometric analysis revealed that KM3 cells were arrested at G1 phase and apoptotic cells increased from 0.54\\\% to 51.83\\\% for 36 h. Morphological changes of cells undergoing apoptosis were observed under light microscope. Berbamine treatment led to increased expression of A20, down-regulation of IKKα, p-IκBα, and followed by inhibition of p65 nuclear localization. As a result, NF-κB downstream targets such as cyclinD1, Bcl-xL, Bid and survivin were down-regulated. Berbamine inhibits SARS-CoV-2 infection by compromising TRPMLs-mediated endolysosomal trafficking of ACE2. (+)-Berbamine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=478-61-5 (retrieved 2024-06-29) (CAS RN: 478-61-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Berbamine is a natural compound extracted from traditional Chinese medicine?Phellodendron amurense Rupr. with anti-tumor, immunomodulatory and cardiovascular effects. Berbamine?is a calcium channel blocker. Berbamine is a natural compound extracted from traditional Chinese medicine?Phellodendron amurense Rupr. with anti-tumor, immunomodulatory and cardiovascular effects. Berbamine?is a calcium channel blocker.

   

Bufotalin

[(3S,5R,8R,9S,10S,13R,14S,16S,17R)-3,14-dihydroxy-10,13-dimethyl-17-(6-oxopyran-3-yl)-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-16-yl] acetate

C26H36O6 (444.2512)


Bufotalin is a steroid lactone. It is functionally related to a bufanolide. Bufotalin is a natural product found in Bufo gargarizans, Duttaphrynus melanostictus Bufotalin is a cardiotoxic bufanolide steroid, cardiac glycoside analogue, secreted by a number of toad species.[2][3] Bufotalin can be extracted from the skin parotoid glands of several types of toad. Rhinella marina (Cane toad), Rhaebo guttatus (Smooth-sided toad), Bufo melanostictus (Asian toad), and Bufo bufo (common European toad) are sources of bufotalin. Traditional medicine Bufotalin is part of Ch'an Su, a traditional Chinese medicine used for cancer. It is also known as Venenum Bufonis or senso (Japanese).[5] Toxicity Specifically, in cats the lethal median dose is 0.13 mg/kg.[1] and in dogs is 0.36 mg/kg (intravenous).[6] Knowing this it is advisable to monitor those functions continuously using an EKG. As there is no antidote against bufotalin all occurring symptoms need to be treated separately or if possible in combination with others. To increase the clearance theoretically, due to the similarities with digitoxin, cholestyramine, a bile salt, might help.[6] Recent animal studies have shown that taurine restores cardiac functions.[7] Symptomatic measures include lignocaine, atropine and phenytoin for cardiac toxicity and intravenous potassium compounds to correct hyperkalaemia from its effect on the Na+/K+ ATPase pump.[6] Pharmacology and mechanism of action After a single intravenous injection, bufotalin gets quickly distributed and eliminated from the blood plasma with a half-time of 28.6 minutes and a MRT of 14.7 min. After 30 minutes after an administration of bufotalin, the concentrations within the brain and lungs are significantly higher than those in blood and other tissues.[8] It also increases cancer cell's susceptibility to apoptosis via TNF-α signalling by the BH3 interacting domain death agonist and STAT proteins.[9] Bufotalin induces apoptosis in vitro in human hepatocellular carcinoma Hep 3B cells and might involve caspases and apoptosis inducing factor (AIF).[10] The use of bufotalin as a cancer treating compound is still in the experimental phase. It also arrests cell cycle at G(2)/M, by up- and down- regulation of several enzymes. Bufotalin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=471-95-4 (retrieved 2024-06-29) (CAS RN: 471-95-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Bufotalin is a steroid lactone isolated from Venenum Bufonis with potently antitumor activities. Bufotalin induces cancer cell apoptosis and also induces endoplasmic reticulum (ER) stress activation[1][2]. Bufotalin is a steroid lactone isolated from Venenum Bufonis with potently antitumor activities. Bufotalin induces cancer cell apoptosis and also induces endoplasmic reticulum (ER) stress activation[1][2].

   

(S)-Boldine

4,16-dimethoxy-10-methyl-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(17),2,4,6,13,15-hexaene-5,15-diol

C19H21NO4 (327.1471)


Boldine is an aporphine alkaloid. Boldine is a natural product found in Lindera umbellata, Damburneya salicifolia, and other organisms with data available. See also: Peumus boldus leaf (part of). (S)-Boldine is found in sweet bay. (S)-Boldine is an alkaloid from Sassafras and the leaves of Peumus boldus (boldo). (S)-Boldine is a flavouring ingredient. Alkaloid from Sassafras and the leaves of Peumus boldus (boldo). Flavouring ingredient. (S)-Boldine is found in sweet bay. D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Boldine is an aporphine isoquinoline alkaloid extracted from the root of Litsea cubeba and also possesses these properties, including antioxidant, anti-inflammatory and cytoprotective effects. Boldine suppresses osteoclastogenesis, improves bone destruction by down-regulating the OPG/RANKL/RANK signal pathway and may be a potential therapeutic agent for rheumatoid arthritis[1]. Boldine is an aporphine isoquinoline alkaloid extracted from the root of Litsea cubeba and also possesses these properties, including antioxidant, anti-inflammatory and cytoprotective effects. Boldine suppresses osteoclastogenesis, improves bone destruction by down-regulating the OPG/RANKL/RANK signal pathway and may be a potential therapeutic agent for rheumatoid arthritis[1].

   

Cucurbitacin_E

[(E,6R)-6-[(8S,9R,10R,13R,14S,16R,17R)-2,16-dihydroxy-4,4,9,13,14-pentamethyl-3,11-dioxo-8,10,12,15,16,17-hexahydro-7H-cyclopenta[a]phenanthren-17-yl]-6-hydroxy-2-methyl-5-oxohept-3-en-2-yl] acetate

C32H44O8 (556.3036)


Cucurbitacin E is a cucurbitacin in which a lanostane skeleton is multi-substituted with hydroxy, methyl and oxo substituents, with unsaturation at positions 1, 5 and 23. It is a cucurbitacin and a tertiary alpha-hydroxy ketone. Cucurbitacin E is a natural product found in Cucurbita foetidissima, Helicteres angustifolia, and other organisms with data available. A cucurbitacin in which a lanostane skeleton is multi-substituted with hydroxy, methyl and oxo substituents, with unsaturation at positions 1, 5 and 23. Cucurbitacin E is a natural compound which from Cucurbitaceae plants. Cucurbitacin E significantly suppresses the activity of the cyclin B1/CDC2 complex. Cucurbitacin E is a natural compound which from Cucurbitaceae plants. Cucurbitacin E significantly suppresses the activity of the cyclin B1/CDC2 complex.

   

(all-E)-Crocetin

(2E,4E,6E,8E,10E,12E,14E)-2,6,11,15-tetramethylhexadeca-2,4,6,8,10,12,14-heptaenedioic acid8,8-diapocarotene-8,8-dioic acid

C20H24O4 (328.1675)


Crocetin is a 20-carbon dicarboxylic acid which is a diterpenoid and natural carotenoid. Found in the crocus flower, it has been administered as an anti-fatigue dietary supplement. It has a role as a nutraceutical, a metabolite and an antioxidant. It is a carotenoic acid, a diterpenoid and a polyunsaturated dicarboxylic acid. It is a conjugate acid of a crocetin(2-). Vitamin A-analog that increases diffusivity of oxygen in aqueous solutions, including plasma. Crocetin is a natural product found in Verbascum lychnitis, Gardenia jasminoides, and other organisms with data available. cis-Crocetin is found in herbs and spices. cis-Crocetin is occurs as glycoside in saffro COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Occurs as glycoside in saffron. cis-Crocetin is found in herbs and spices. D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000970 - Antineoplastic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Escin

(2S,3S,4S,5R,6R)-6-[[(3S,4S,4aR,6aR,6bS,8R,8aR,9R,10R,12aS,14aR,14bR)-9-acetyloxy-8-hydroxy-4,8a-bis(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-10-[(E)-2-methylbut-2-enoyl]oxy-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy]-4-hydroxy-3,5-bis[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy]oxane-2-carboxylic acid

C55H86O24 (1130.5509)


Aescin is a triterpenoid saponin. escin Ib is a natural product found in Aesculus chinensis, Aesculus hippocastanum, and other organisms with data available. See also: Horse Chestnut (part of). D002317 - Cardiovascular Agents escin Ia is a natural product found in Aesculus chinensis and Aesculus hippocastanum with data available. See also: Horse Chestnut (part of). Escin, a natural compound of triterpenoid saponins isolated from horse chestnut (Aesculus hippocastanum) seeds, can be used as a vasoprotective anti-inflammatory, anti-edematous and anti-nociceptive agent[1]. Escin, a natural compound of triterpenoid saponins isolated from horse chestnut (Aesculus hippocastanum) seeds, can be used as a vasoprotective anti-inflammatory, anti-edematous and anti-nociceptive agent[1]. Escin IA is a triterpene saponin isolated from Aesculus hippocastanum, which inhibits HIV-1 protease with IC50 values of 35 μM. Escin IA has anti-TNBC metastasis activity, and its action mechanisms involved inhibition of epithelial-mesenchymal transition process by down-regulating LOXL2 expression[1][2]. Escin IA is a triterpene saponin isolated from Aesculus hippocastanum, which inhibits HIV-1 protease with IC50 values of 35 μM. Escin IA has anti-TNBC metastasis activity, and its action mechanisms involved inhibition of epithelial-mesenchymal transition process by down-regulating LOXL2 expression[1][2]. Escin IB is a saponin isolated from skin and the endosperm of seeds of horse chestnut (Aesculus hippocastanum). Escin IB shows inhibitory effect on pancreatic lipase activity[1][2]. Escin IB is a saponin isolated from skin and the endosperm of seeds of horse chestnut (Aesculus hippocastanum). Escin IB shows inhibitory effect on pancreatic lipase activity[1][2]. Escin IB is a saponin isolated from skin and the endosperm of seeds of horse chestnut (Aesculus hippocastanum). Escin IB shows inhibitory effect on pancreatic lipase activity[1][2].

   

Geraniin

.beta.-D-Glucopyranose, cyclic 2.fwdarw.7:4.fwdarw.5-(3,6-dihydro-2,9,10,11,11-pentahydroxy-3-oxo-2,6-methano-2H-1-benzoxocin-5,7-dicarboxylate)cyclic 3,6-(4,4,5,5,6,6-hexahydroxy[1,1-biphenyl]-2,2-dicarboxylate) 1-(3,4,5-trihydroxybenzoate), stereoisomer

C41H28O27 (952.0818)


Geraniin is a tannin. Geraniin is a natural product found in Euphorbia makinoi, Macaranga tanarius, and other organisms with data available. Geraniin is a TNF-α releasing inhibitor with numerous activities including anticancer, anti-inflammatory, and anti-hyperglycemic activities, with an IC50 of 43 μM. Geraniin is a TNF-α releasing inhibitor with numerous activities including anticancer, anti-inflammatory, and anti-hyperglycemic activities, with an IC50 of 43 μM.

   

Geniposide

(1S,4aS,7aS)-7-(hydroxymethyl)-1-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-1,4a,5,7a-tetrahydrocyclopenta[d]pyran-4-carboxylic acid methyl ester

C17H24O10 (388.1369)


Geniposide is a terpene glycoside. Geniposide is a natural product found in Feretia apodanthera, Gardenia jasminoides, and other organisms with data available. See also: Gardenia jasminoides whole (part of). Origin: Plant; SubCategory_DNP: Monoterpenoids, Iridoid monoterpenoids Annotation level-1 Geniposide is an iridoid glucoside extracted from Gardenia jasminoidesEllis fruits; exhibits a varity of biological activities such as anti-diabetic, antioxidative, antiproliferative and neuroprotective activities. Geniposide is an iridoid glucoside extracted from Gardenia jasminoidesEllis fruits; exhibits a varity of biological activities such as anti-diabetic, antioxidative, antiproliferative and neuroprotective activities.

   

Isoliquiritigenin

(E)-1-(2,4-dihydroxyphenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one

C15H12O4 (256.0736)


Isoliquiritigenin is a member of the class of chalcones that is trans-chalcone hydroxylated at C-2, -4 and -4. It has a role as an EC 1.14.18.1 (tyrosinase) inhibitor, a biological pigment, a NMDA receptor antagonist, a GABA modulator, a metabolite, an antineoplastic agent and a geroprotector. It is functionally related to a trans-chalcone. It is a conjugate acid of an isoliquiritigenin(1-). Isoliquiritigenin is a precursor to several flavonones in many plants. Isoliquiritigenin is a natural product found in Pterocarpus indicus, Dracaena draco, and other organisms with data available. See also: Glycyrrhiza Glabra (part of); Glycyrrhiza uralensis Root (part of); Pterocarpus marsupium wood (part of). Isolated from Medicago subspecies Isoliquiritigenin is found in many foods, some of which are cocoa bean, purple mangosteen, blackcurrant, and chives. A member of the class of chalcones that is trans-chalcone hydroxylated at C-2, -4 and -4. Isoliquiritigenin is found in pulses. Isoliquiritigenin is isolated from Medicago specie D004791 - Enzyme Inhibitors Isoliquiritigenin is an anti-tumor flavonoid from the root of Glycyrrhiza uralensis Fisch., which inhibits aldose reductase with an IC50 of 320 nM. Isoliquiritigenin is a potent inhibitor of influenza virus replication with an EC50 of 24.7 μM. Isoliquiritigenin is an anti-tumor flavonoid from the root of Glycyrrhiza uralensis Fisch., which inhibits aldose reductase with an IC50 of 320 nM. Isoliquiritigenin is a potent inhibitor of influenza virus replication with an EC50 of 24.7 μM.

   

Parthenolide

(1aR,4E,7aS,10aS,10bS)-1a,5-Dimethyl-8-methylene-2,3,6,7,7a,8,10a,10b-octahydrooxireno[9,10]cyclodeca[1,2-b]furan-9(1aH)-one

C15H20O3 (248.1412)


D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents (1Ar,7aS,10aS,10bS)-1a,5-dimethyl-8-methylidene-2,3,6,7,7a,8,10a,10b-octahydrooxireno[9,10]cyclodeca[1,2-b]furan-9(1aH)-one is a germacranolide. Parthenolide has been used in trials studying the diagnostic of Allergic Contact Dermatitis. (1aR,7aS,10aS,10bS)-1a,5-dimethyl-8-methylidene-2,3,6,7,7a,8,10a,10b-octahydrooxireno[9,10]cyclodeca[1,2-b]furan-9(1aH)-one is a natural product found in Cyathocline purpurea, Tanacetum parthenium, and other organisms with data available. Parthenolide belongs to germacranolides and derivatives class of compounds. Those are sesquiterpene lactones with a structure based on the germacranolide skeleton, characterized by a gamma lactone fused to a 1,7-dimethylcyclodec-1-ene moiety. Thus, parthenolide is considered to be an isoprenoid lipid molecule. Parthenolide is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Parthenolide is a bitter tasting compound found in sweet bay, which makes parthenolide a potential biomarker for the consumption of this food product. Parthenolide is a sesquiterpene lactone of the germacranolide class which occurs naturally in the plant feverfew (Tanacetum parthenium), after which it is named. It is found in highest concentration in the flowers and fruit . relative retention time with respect to 9-anthracene Carboxylic Acid is 1.002 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.000 Parthenolide is a sesquiterpene lactone found in the medicinal herb Feverfew. Parthenolide exhibits anti-inflammatory activity by inhibiting NF-κB activation; also inhibits HDAC1 protein without affecting other class I/II HDACs. Parthenolide is a sesquiterpene lactone found in the medicinal herb Feverfew. Parthenolide exhibits anti-inflammatory activity by inhibiting NF-κB activation; also inhibits HDAC1 protein without affecting other class I/II HDACs.

   

Hesperetin 7-neohesperidoside

(S)-7-(((2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)tetrahydro-2H-pyran-2-yl)oxy)-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)chroman-4-one

C28H34O15 (610.1898)


Neohesperidin is a flavanone glycoside that is hesperitin having an 2-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety attached to the 7-hydroxy group. It has a role as an antineoplastic agent and a plant metabolite. It is a neohesperidoside, a disaccharide derivative, a dihydroxyflavanone, a member of 3-hydroxyflavanones, a monomethoxyflavanone, a flavanone glycoside and a member of 4-methoxyflavanones. It is functionally related to a hesperetin. (S)-7-(((2-O-6-Deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl)oxy)-2,3-dihydro-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-4H-1-benzopyran-4-one is a natural product found in Citrus medica, Arabidopsis thaliana, and other organisms with data available. Constituent of Seville orange peel (Citrus aurantium) and other Citrus subspecies Very bitter flavouring agent. Hesperetin 7-neohesperidoside is found in many foods, some of which are grapefruit/pummelo hybrid, pummelo, citrus, and grapefruit. Hesperetin 7-neohesperidoside is found in citrus. Hesperetin 7-neohesperidoside is a constituent of Seville orange peel (Citrus aurantium) and other Citrus species Very bitter flavouring agent Neohesperidin is a flavonoid compound found in high amounts in citrus fruits with anti-oxidant and anti-inflammatory effects. Neohesperidin is a flavonoid compound found in high amounts in citrus fruits with anti-oxidant and anti-inflammatory effects.

   

Sweroside

(3S,4R,4aS)-4-ethenyl-3-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-4,4a,5,6-tetrahydro-3H-pyrano[3,4-c]pyran-8-one

C16H22O9 (358.1264)


Sweroside is a glycoside. Sweroside is a natural product found in Strychnos axillaris, Lonicera japonica, and other organisms with data available. See also: Lonicera japonica flower (part of); Menyanthes trifoliata leaf (part of); Centaurium erythraea whole (part of). Sweroside, isolated from Lonicera japonica, exhibits cytoprotective, anti-osteoporotic, and hepatoprotective effect[1][2]. Sweroside, isolated from Lonicera japonica, exhibits cytoprotective, anti-osteoporotic, and hepatoprotective effect[1][2].

   

Berberine

16,17-dimethoxy-5,7-dioxa-13lambda5-azapentacyclo[11.8.0.0^{2,10}.0^{4,8}.0^{15,20}]henicosa-1(21),2,4(8),9,13,15,17,19-octaen-13-ylium

[C20H18NO4]+ (336.1236)


Berberine is an organic heteropentacyclic compound, an alkaloid antibiotic, a botanical anti-fungal agent and a berberine alkaloid. It has a role as an antilipemic drug, a hypoglycemic agent, an antioxidant, a potassium channel blocker, an antineoplastic agent, an EC 1.1.1.21 (aldehyde reductase) inhibitor, an EC 1.1.1.141 [15-hydroxyprostaglandin dehydrogenase (NAD(+))] inhibitor, an EC 1.13.11.52 (indoleamine 2,3-dioxygenase) inhibitor, an EC 1.21.3.3 (reticuline oxidase) inhibitor, an EC 2.1.1.116 [3-hydroxy-N-methyl-(S)-coclaurine 4-O-methyltransferase] inhibitor, an EC 3.1.1.4 (phospholipase A2) inhibitor, an EC 3.4.21.26 (prolyl oligopeptidase) inhibitor, an EC 3.4.14.5 (dipeptidyl-peptidase IV) inhibitor, an EC 3.1.3.48 (protein-tyrosine-phosphatase) inhibitor, an EC 3.1.1.7 (acetylcholinesterase) inhibitor, an EC 3.1.1.8 (cholinesterase) inhibitor, an EC 2.7.11.10 (IkappaB kinase) inhibitor, an EC 2.1.1.122 [(S)-tetrahydroprotoberberine N-methyltransferase] inhibitor, a geroprotector and a metabolite. An alkaloid from Hydrastis canadensis L., Berberidaceae. It is also found in many other plants. It is relatively toxic parenterally, but has been used orally for various parasitic and fungal infections and as antidiarrheal. Berberine is a quaternary ammonia compound found in many botanical products, including goldenseal, barberry and Oregon grape, which is used for its purported antioxidant and antimicrobial properties for a host of conditions, including obesity, diabetes, hyperlipidemia, heart failure, H. pylori infection and colonic adenoma prevention. Berberine has not been linked to serum aminotransferase elevations during therapy nor to instances of clinically apparent liver injury. Berberine is a natural product found in Berberis poiretii, Thalictrum delavayi, and other organisms with data available. Berberine is a quaternary ammonium salt of an isoquinoline alkaloid and active component of various Chinese herbs, with potential antineoplastic, radiosensitizing, anti-inflammatory, anti-lipidemic and antidiabetic activities. Although the mechanisms of action through which berberine exerts its effects are not yet fully elucidated, upon administration this agent appears to suppress the activation of various proteins and/or modulate the expression of a variety of genes involved in tumorigenesis and inflammation, including, but not limited to transcription factor nuclear factor-kappa B (NF-kB), myeloid cell leukemia 1 (Mcl-1), B-cell lymphoma 2 (Bcl-2), B-cell lymphoma-extra large (Bcl-xl), cyclooxygenase (COX)-2, tumor necrosis factor (TNF), interleukin (IL)-6, IL-12, inducible nitric oxide synthase (iNOS), intercellular adhesion molecule-1 (ICAM-1), E-selectin, monocyte chemoattractant protein-1 (MCP-1), C-X-C motif chemokine 2 (CXCL2), cyclin D1, activator protein (AP-1), hypoxia-inducible factor 1 (HIF-1), signal transducer and activator of transcription 3 (STAT3), peroxisome proliferator-activated receptor (PPAR), arylamine N-acetyltransferase (NAT), and DNA topoisomerase I and II. The modulation of gene expression may induce cell cycle arrest and apoptosis, and inhibit cancer cell proliferation. In addition, berberine modulates lipid and glucose metabolism. An alkaloid from Hydrastis canadensis L., Berberidaceae. It is also found in many other plants. It is relatively toxic parenterally, but has been used orally for various parasitic and fungal infections and as antidiarrheal. See also: Goldenseal (part of); Berberis aristata stem (part of). Berberine is a quaternary ammonium salt that belongs to the protoberberine group of benzylisoquinoline alkaloids. Chemically, berberine is classified as an isoquinoline alkaloid. More specifically, berberine is a plant alkaloid derived from tyrosine through a complex 8 step biosynthetic process. Berberine is found in plants such as Berberis vulgaris (barberry), Berberis aristata (tree turmeric), Mahonia aquifolium (Oregon grape) and Hydrastis canadensis (goldenseal). Two other known berberine-containing plants are Phellodendron chinense and Phellodendron amurense. Berberine is usually found in the roots, rhizomes, stems, and bark of Berberis plants. Due to berberines intense yellow color, plants that contain berberine were traditionally used to dye wool, leather, and wood. Under ultraviolet light, berberine shows a strong yellow fluorescence, making it useful in histology for staining heparin in mast cells. Berberine is a bioactive plant compound that has been frequently used in traditional medicine. Among the known physiological effects or bioactivities are: 1) Antimicrobial action against bacteria, fungi, protozoa, viruses, helminthes, and Chlamydia; 2) Antagonism against the effects of cholera and E coli heat-stable enterotoxin; 3) Inhibition of intestinal ion secretion and of smooth muscle contraction; 4) Reduction of inflammation and 5) Stimulation of bile secretion and bilirubin discharge (PMID:32335802). Berberine can inhibit bacterial growth in the gut, including Helicobacter pylori, protect the intestinal epithelial barrier from injury, and ameliorate liver injury. Currently, berberine is sold as an Over-the-Counter (OTC) drug for treating gastrointestinal infections in China (PMID:18442638). Berberine also inhibits the proliferation of various types of cancer cells and impedes invasion and metastasis (PMID:32335802). Recent evidence has also confirmed that berberine improves the efficacy and safety of both chemo and radiotherapies for cancer treatment (PMID:32335802). Berberine has also been shown to regulate glucose and lipid metabolism in vitro and in vivo (PMID:18442638). In fact, berberine is the main active component of an ancient Chinese herb Coptis chinensis French, which has been used to treat diabetes for thousands of years. As an anti-diabetic, berberine increases glucose uptake by muscle fibers independent of insulin levels. It triggers AMPK activation and increases glycolysis, leading to decreased insulin resistance and decreased oxygen respiration. The same mechanism leads to a reduction in gluconeogenesis in the liver. AMPK activation by berberine also leads to an antiatherosclerotic effect in mice. Berberines AMPK activation may also underlie berberines anti-obesity effects and favorable influence on weight loss (PMID:18442638). While its use as a medication is widely touted, it is important to remember that berberine inhibits CYP2D6 and CYP3A4 enzymes, both of which are involved in the metabolism of many endogenous substances and xenobiotics, including a number of prescription drugs. An alkaloid from Hydrastis canadensis L., Berberidaceae. It is also found in many other plants. It is relatively toxic parenterally, but has been used orally for various parasitic and fungal infections and as antidiarrheal. [HMDB] COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials [Raw Data] CBA98_Berberine_pos_50eV.txt [Raw Data] CBA98_Berberine_pos_10eV.txt [Raw Data] CBA98_Berberine_pos_20eV.txt [Raw Data] CBA98_Berberine_pos_40eV.txt [Raw Data] CBA98_Berberine_pos_30eV.txt Berberine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2086-83-1 (retrieved 2024-09-04) (CAS RN: 2086-83-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Jatrorrhizine

2,9,10-Trimethoxy-5,6-dihydro-7lambda~5~-isoquino[3,2-a]isoquinolin-3-ol hydrochloride

C20H20NO4+ (338.1392)


Jatrorrhizine is an alkaloid.

   

(S)-3-Butyl-1(3H)-isobenzofuranone

3-Butylphthalide pound>>3-n-Butylphthalide

C12H14O2 (190.0994)


Butylphthalide is a member of benzofurans. Butylphthalide has been used in trials studying the prevention of Restenosis. Butylphthalide is a natural product found in Ligusticum striatum, Angelica sinensis, and other organisms with data available. See also: Celery Seed (part of); Angelica sinensis root oil (part of). Potential nutriceutical. 3-Butyl-1(3H)-isobenzofuranone is found in many foods, some of which are dill, parsley, lovage, and wild celery. C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents 3-Butyl-1(3H)-isobenzofuranone is found in dill. Potential nutriceutical. D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D020011 - Protective Agents Butylphthalide (3-n-Butylphthalide) is an active molecule against cerebral ischemia. It was originally isolated from celery species and has been shown to be effective in stroke animal models. Butylphthalide (3-n-Butylphthalide) is an active molecule against cerebral ischemia. It was originally isolated from celery species and has been shown to be effective in stroke animal models.

   

Decursin

CROTONIC ACID, 3-METHYL-, ESTER WITH 7,8-DIHYDRO-7-HYDROXY-8,8-DIMETHYL-2H,6H-BENZO(1,2-B:5,4-B)DIPYRAN-2-ONE, (+)-

C19H20O5 (328.1311)


Decursin is a member of coumarins. Decursin is a natural product found in Scutellaria lateriflora, Angelica glauca, and other organisms with data available. See also: Angelica gigas root (part of). D020536 - Enzyme Activators Decursinol angelate is a natural product found in Angelica glauca and Angelica gigas with data available. See also: Angelica gigas root (part of). Decursin ((+)-Decursin) is a potent anti-tumor agent. Decursin also is a cytotoxic agent and a potent protein kinase C activator. Decursin induces apoptosis and cell cycle arrest at G1 phase. Decursin decreases the expression of CDK2, CDK4, CDK6, cyclin D1 protein at 48 h. Decursin inhibits cell proliferation and migration. Decursin shows anti-tumor, anti-inflammatory and analgesic activities[1][2][3][4]. Decursin ((+)-Decursin) is a potent anti-tumor agent. Decursin also is a cytotoxic agent and a potent protein kinase C activator. Decursin induces apoptosis and cell cycle arrest at G1 phase. Decursin decreases the expression of CDK2, CDK4, CDK6, cyclin D1 protein at 48 h. Decursin inhibits cell proliferation and migration. Decursin shows anti-tumor, anti-inflammatory and analgesic activities[1][2][3][4]. Decursinol angelate, a cytotoxic and protein kinase C (PKC) activating agent from the root of Angelica gigas, possesses anti-tumor and anti-inflammatory activities[1][2].

   

Icariin

5-hydroxy-2-(4-methoxyphenyl)-8-(3-methylbut-2-en-1-yl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C33H40O15 (676.2367)


Icariin is a member of the class of flavonols that is kaempferol which is substituted at position 8 by a 3-methylbut-2-en-1-yl group and in which the hydroxy groups at positions 3, 4, and 7 have been converted to the corresponding 6-deoxy-alpha-L-mannopyranoside, methyl ether, and beta-D-glucopyranoside, respectively. A phoshphodiesterase-5 inhibitor, it is obtained from several species of plants in the genus Epimedium and is thought to be the main active ingredient of the Chinese herbal medicine Herba Epimedii (yinyanghuo). It has a role as a bone density conservation agent, a phytoestrogen, an EC 3.1.4.35 (3,5-cyclic-GMP phosphodiesterase) inhibitor and an antioxidant. It is a glycosyloxyflavone and a member of flavonols. Icariin has been investigated for the basic science of the Pharmacokinetic Profile of Icariin in Humans. Icariin is a natural product found in Epimedium pubescens, Epimedium grandiflorum, and other organisms with data available. Origin: Plant, Pyrans Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.077 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.073 Icariin is a flavonol glycoside. Icariin inhibits PDE5 and PDE4 activities with IC50s of 432 nM and 73.50 μM, respectively. Icariin also is a PPARα activator. Icariin is a flavonol glycoside. Icariin inhibits PDE5 and PDE4 activities with IC50s of 432 nM and 73.50 μM, respectively. Icariin also is a PPARα activator. Icariin is a flavonol glycoside. Icariin inhibits PDE5 and PDE4 activities with IC50s of 432 nM and 73.50 μM, respectively. Icariin also is a PPARα activator.

   

trans-Isoasarone

17-(1,5-Dimethyl-hexyl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol; compound with 1,2,4-trimethoxy-5-propenyl-benzene (Alphaasarone and cholesterol)

C12H16O3 (208.1099)


Alpha-asarone is the trans-isomer of asarone. It has a role as an anticonvulsant and a GABA modulator. alpha-Asarone is a natural product found in Sphallerocarpus gracilis, Asarum hypogynum, and other organisms with data available. trans-Isoasarone is found in carrot. trans-Isoasarone is a constituent of Asarum species and carrot seed (Daucus carota) (CCD) Constituent of Asarum subspecies and carrot seed (Daucus carota) (CCD). trans-Isoasarone is found in wild carrot and carrot. D006401 - Hematologic Agents > D005343 - Fibrinolytic Agents D009676 - Noxae > D002273 - Carcinogens D050299 - Fibrin Modulating Agents D002317 - Cardiovascular Agents The trans-isomer of asarone. alpha-Asarone (α-Asarone) is one of the main psychoactive compounds, and possesses an antidepressant-like activity in mice. alpha-Asarone (α-Asarone) is one of the main psychoactive compounds, and possesses an antidepressant-like activity in mice. alpha-Asarone (α-Asarone) is one of the main psychoactive compounds, and possesses an antidepressant-like activity in mice. Beta-asarone is a major ingredient of Acorus tatarinowii Schott, penetrates blood brain barrier, with the properties of immunosuppression, central nervous system inhibition, sedation, and hypothermy. Beta-asarone protects against Parkinson’s disease[1]. Beta-asarone is a major ingredient of Acorus tatarinowii Schott, penetrates blood brain barrier, with the properties of immunosuppression, central nervous system inhibition, sedation, and hypothermy. Beta-asarone protects against Parkinson’s disease[1].

   

Irigenin

4H-1-Benzopyran-4-one,5,7-dihydroxy-3-(3-hydroxy-4,5-dimethoxyphenyl)-6-methoxy-

C18H16O8 (360.0845)


Irigenin, also known as 5,7,3-trihydroxy-6,4,5-trimethoxyisoflavone, is a member of the class of compounds known as 3-hydroxy,4-methoxyisoflavonoids. 3-hydroxy,4-methoxyisoflavonoids are isoflavonoids carrying a methoxy group attached to the C4 atom, as well as a hydroxyl group at the C3-position of the isoflavonoid backbone. Thus, irigenin is considered to be a flavonoid lipid molecule. Irigenin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Irigenin can be synthesized from isoflavone. Irigenin can also be synthesized into iridin. Irigenin can be found in lima bean, which makes irigenin a potential biomarker for the consumption of this food product. Irigenin is an O-methylated isoflavone, a type of flavonoid. It can be isolated from the rhizomes of the leopard lily (Belamcanda chinensis), and Iris kemaonensis . Irigenin is a hydroxyisoflavone that is isoflavone substituted by hydroxy groups at positions 5, 7 and 3 and methoxy groups at positions 6, 4 and 5 respectively. It has a role as a plant metabolite. It is a hydroxyisoflavone and a member of 4-methoxyisoflavones. It is functionally related to an isoflavone. Irigenin is a natural product found in Iris milesii, Iris tectorum, and other organisms with data available. Irigenin is a is a lead compound, and mediates its anti-metastatic effect by specifically and selectively blocking α9β1 and α4β1 integrins binding sites on C-C loop of Extra Domain A (EDA). Irigenin shows anti-cancer properties. It sensitizes TRAIL-induced apoptosis via enhancing pro-apoptotic molecules in gastric cancer cells[1]. Irigenin is a is a lead compound, and mediates its anti-metastatic effect by specifically and selectively blocking α9β1 and α4β1 integrins binding sites on C-C loop of Extra Domain A (EDA). Irigenin shows anti-cancer properties. It sensitizes TRAIL-induced apoptosis via enhancing pro-apoptotic molecules in gastric cancer cells[1].

   

Naringin

(2S)-7-[(2S,4S,5S,3R,6R)-3-((2S,6S,3R,4R,5R)-3,4,5-trihydroxy-6-methyl(2H-3,4, 5,6-tetrahydropyran-2-yloxy))-4,5-dihydroxy-6-(hydroxymethyl)(2H-3,4,5,6-tetra hydropyran-2-yloxy)]-5-hydroxy-2-(4-hydroxyphenyl)chroman-4-one

C27H32O14 (580.1792)


Naringin, also known as naringoside or naringin hydrate, is a flavanone-7-O-glycoside between the flavanone naringenin and the disaccharide neohesperidose. Naringin belongs to the flavonoid family. Flavonoids consist of 15 carbon atoms in 3 rings, 2 of which must be benzene rings connected by a 3 carbon chain. Naringin contains the basic flavonoid structure along with one rhamnose and one glucose unit attached to its aglycone portion, called naringenin, at the 7-carbon position. The steric hindrance provided by the two sugar units makes naringin less potent than its aglycone counterpart, naringenin. Naringin is a bitter tasting compound. Naringin is found, on average, in the highest concentration within a few different foods, such as rosemaries, grapefruit/pummelo hybrids, and grapefruits and in a lower concentration in grape wines, pummelo, and beers. Naringin has also been detected, but not quantified in several different foods, such as citrus, limes, herbs and spices, common oregano, and mandarin orange (clementine, tangerine). Both naringin and hesperetin, which are the aglycones of naringin and hesperidin, occur naturally in citrus fruits. Naringin is the major flavonoid glycoside in grapefruit and gives grapefruit juice its bitter taste. Narinigin exerts a variety of pharmacological effects such as antioxidant activity, blood lipid-lowering, anticarcinogenic activity, and inhibition of selected cytochrome P450 enzymes including CYP3A4 and CYP1A2, which may result in several drug interactions in-vitro. Naringin is a disaccharide derivative that is (S)-naringenin substituted by a 2-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as a metabolite, an antineoplastic agent and an anti-inflammatory agent. It is a disaccharide derivative, a dihydroxyflavanone, a member of 4-hydroxyflavanones, a (2S)-flavan-4-one and a neohesperidoside. It is functionally related to a (S)-naringenin. Naringin is a natural product found in Podocarpus fasciculus, Citrus latipes, and other organisms with data available. See also: Naringenin (related); Drynaria fortunei root (part of). A disaccharide derivative that is (S)-naringenin substituted by a 2-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. obtained from citrus fruits, Clymenia polyandra (clymenia) and Origanum vulgare (oregano) IPB_RECORD: 401; CONFIDENCE confident structure Naringin is a major flavanone glycoside obtained from tomatoes, grapefruits, and many other citrus fruits. Naringin exhibits biological properties such as antioxidant, anti-inflammatory, and antiapoptotic activities. Naringin is a major flavanone glycoside obtained from tomatoes, grapefruits, and many other citrus fruits. Naringin exhibits biological properties such as antioxidant, anti-inflammatory, and antiapoptotic activities.

   

Diosgenin

(2R,4S,5R,6aR,6bS,8aS,8bR,9S,11aS,12aS,12bS)-5,6a,8a,9-Tetramethyl-1,3,3,4,4,5,5,6,6a,6b,6,7,8,8a,8b,9,11a,12,12a,12b-icosahydrospiro[naphtho[2,1:4,5]indeno[2,1-b]furan-10,2-pyran]-4-ol

C27H42O3 (414.3134)


Diosgenin is a sapogenin that is spirostan which is substituted by a hydroxy group at the 3beta position, contains a double bond at the 5-6 position, and has R- configuration at position 25. A natural product found in Dioscorea (wild yam) species, it is used as the starting point for the commercial synthesis of a number of steroids, including cortisone, pregnenolone and progesterone. It has a role as an apoptosis inducer, an antiviral agent, an antineoplastic agent and a metabolite. It is a 3beta-sterol, a spiroketal, a hexacyclic triterpenoid and a sapogenin. It derives from a hydride of a spirostan. Diosgenin is a natural product found in Ophiopogon intermedius, Dracaena draco, and other organisms with data available. A spirostan found in DIOSCOREA and other plants. The 25S isomer is called yamogenin. Solasodine is a natural derivative formed by replacing the spiro-ring with a nitrogen, which can rearrange to SOLANINE. See also: Fenugreek seed (part of); Dioscorea polystachya tuber (part of). A sapogenin that is spirostan which is substituted by a hydroxy group at the 3beta position, contains a double bond at the 5-6 position, and has R- configuration at position 25. A natural product found in Dioscorea (wild yam) species, it is used as the starting point for the commercial synthesis of a number of steroids, including cortisone, pregnenolone and progesterone. Diosgenin is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Diosgenin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Diosgenin can be found in a number of food items such as carrot, wild carrot, yam, and bitter gourd, which makes diosgenin a potential biomarker for the consumption of these food products. Diosgenin, a phytosteroid sapogenin, is the product of hydrolysis by acids, strong bases, or enzymes of saponins, extracted from the tubers of Dioscorea wild yam, such as the Kokoro. The sugar-free (aglycone) product of such hydrolysis, diosgenin is used for the commercial synthesis of cortisone, pregnenolone, progesterone, and other steroid products . Bottle Name:Diosgenin; Origin: Plant; Formula(Parent): C27H42O3; PRIME Parent Name:Diosgenin; PRIME in-house No.:T0108; SubCategory_DNP: The sterols, Cholestanes Origin: Plant; Formula(Parent): C27H42O3; Bottle Name:Diosgenin; PRIME Parent Name:Diosgenin; PRIME in-house No.:T0108; SubCategory_DNP: The sterols, Cholestanes CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2260 Diosgenin, a steroidal saponin, can inhibit STAT3 signaling pathway[1]. Diosgenin is an exogenous activator of Pdia3/ERp57[2]. Diosgenin inhibits aortic atherosclerosis progression by suppressing macrophage miR-19b expression[5]. Diosgenin, a steroidal saponin, can inhibit STAT3 signaling pathway[1]. Diosgenin is an exogenous activator of Pdia3/ERp57[2]. Diosgenin inhibits aortic atherosclerosis progression by suppressing macrophage miR-19b expression[5].

   

Gallic acid

3,4,5-trihydroxybenzoic acid

C7H6O5 (170.0215)


Gallic acid is an odorless white solid. Sinks in water. (USCG, 1999) Gallic acid is a trihydroxybenzoic acid in which the hydroxy groups are at positions 3, 4, and 5. It has a role as an astringent, a cyclooxygenase 2 inhibitor, a plant metabolite, an antioxidant, an antineoplastic agent, a human xenobiotic metabolite, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, an apoptosis inducer and a geroprotector. It is a conjugate acid of a gallate. Gallic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Gallic Acid is a natural product found in Visnea mocanera, Ardisia paniculata, and other organisms with data available. Gallic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A colorless or slightly yellow crystalline compound obtained from nutgalls. It is used in photography, pharmaceuticals, and as an analytical reagent. See also: Gallic acid monohydrate (active moiety of); Paeonia lactiflora root (part of); Galium aparine whole (part of) ... View More ... Gallic acid is an organic acid, also known as 3,4,5-trihydroxybenzoic acid, found in gallnuts, sumac, witch hazel, tea leaves, oak bark, and other plants. The chemical formula is C6H2(OH)3CO2H. Gallic acid is widely distributed in plants and is found both free and as part of tannins. It is commonly used in the pharmaceutical industry. Gallic acid can also be used to synthesize the hallucinogenic alkaloid mescaline, also known as 3,4,5-trimethoxyphenethylamine. Salts and esters of gallic acid are termed gallates. Gallic acid has been found to be s metabolite of Aspergillus (PMID:24031294). A trihydroxybenzoic acid in which the hydroxy groups are at positions 3, 4, and 5. Present in red wine. Japan approved food antioxidant additive Gallic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=149-91-7 (retrieved 2024-07-01) (CAS RN: 149-91-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2]. Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2].

   

4-Hydroxycinnamic acid

(E)-3-(4-hydroxyphenyl)prop-2-enoic acid

C9H8O3 (164.0473)


4-Hydroxycinnamic acid, also known as p-Coumaric acid, is a coumaric acid in which the hydroxy substituent is located at C-4 of the phenyl ring. It has a role as a plant metabolite. It is a conjugate acid of a 4-coumarate. p-coumaric acid is an organic compound that is a hydroxy derivative of cinnamic acid. There are three isomers of coumaric acid: o-coumaric acid, m-coumaric acid, and p-coumaric acid, that differ by the position of the hydroxy substitution of the phenyl group. p-Coumaric acid is the most abundant isomer of the three in nature. p-Coumaric acid exists in two forms trans-p-coumaric acid and cis-p-coumaric acid. It is a crystalline solid that is slightly soluble in water, but very soluble in ethanol and diethyl ether. 4-Hydroxycinnamic acid belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. 4-Hydroxycinnamic acid exists in all living species, ranging from bacteria to humans. Outside of the human body, 4-Hydroxycinnamic acid is found, on average, in the highest concentration within a few different foods, such as pepper (Capsicum frutescens), pineapples, and sunflowers and in a lower concentration in spinachs, kiwis, and sweet oranges. 4-Hydroxycinnamic acid has also been detected, but not quantified in several different foods, such as wild rices, soursops, garden onions, hyssops, and avocado. 4-coumaric acid is a coumaric acid in which the hydroxy substituent is located at C-4 of the phenyl ring. It has a role as a plant metabolite. It is a conjugate acid of a 4-coumarate. 4-Hydroxycinnamic acid is a natural product found in Ficus septica, Visnea mocanera, and other organisms with data available. trans-4-Coumaric acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Black Cohosh (part of); Galium aparine whole (part of); Lycium barbarum fruit (part of) ... View More ... Coumaric acid is a hydroxycinnamic acid, an organic compound that is a hydroxy derivative of cinnamic acid. There are three isomers, o-coumaric acid, m-coumaric acid, and p-coumaric acid, that differ by the position of the hydroxy substitution of the phenyl group. p-Coumaric acid is the most abundant isomer of the three in nature. p-Coumaric acid is found in many foods, some of which are garden onion, turmeric, green bell pepper, and common thyme. D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants The trans-isomer of 4-coumaric acid. D000890 - Anti-Infective Agents Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 168 KEIO_ID C024 p-Coumaric acid is the abundant isomer of cinnamic acid which has antitumor and anti-mutagenic activities. p-Coumaric acid is the abundant isomer of cinnamic acid which has antitumor and anti-mutagenic activities. p-Hydroxycinnamic acid, a common dietary phenol, could inhibit platelet activity, with IC50s of 371 μM, 126 μM for thromboxane B2 production and lipopolysaccharide-induced prostaglandin E2 generation, respectively. p-Hydroxycinnamic acid, a common dietary phenol, could inhibit platelet activity, with IC50s of 371 μM, 126 μM for thromboxane B2 production and lipopolysaccharide-induced prostaglandin E2 generation, respectively. p-Coumaric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=7400-08-0 (retrieved 2024-09-04) (CAS RN: 7400-08-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Deoxycholic acid

(4R)-4-[(3R,5R,8R,9S,10S,12S,13R,14S,17R)-3,12-dihydroxy-10, 13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16, 17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoic acid

C24H40O4 (392.2926)


Deoxycholic acid is a bile acid that is 5beta-cholan-24-oic acid substituted by hydroxy groups at positions 3 and 12 respectively. It has a role as a human blood serum metabolite. It is a bile acid, a dihydroxy-5beta-cholanic acid and a C24-steroid. It is a conjugate acid of a deoxycholate. Deoxycholic acid is a a bile acid which emulsifies and solubilizes dietary fats in the intestine, and when injected subcutaneously, it disrupts cell membranes in adipocytes and destroys fat cells in that tissue. In April 2015, deoxycholic acid was approved by the FDA for the treatment submental fat to improve aesthetic appearance and reduce facial fullness or convexity. It is marketed under the brand name Kybella by Kythera Biopharma and is the first pharmacological agent available for submental fat reduction, allowing for a safer and less invasive alternative than surgical procedures. Deoxycholic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Deoxycholic acid is a Cytolytic Agent. The physiologic effect of deoxycholic acid is by means of Decreased Cell Membrane Integrity. Deoxycholic acid is a natural product found in Pseudomonas syringae and Homo sapiens with data available. Deoxycholic Acid is a steroidal acid that is a secondary bile acid, with cytolytic activity. Upon subcutaneous administration, deoxycholic acid causes lysis of adipocytes and improves the appearance of fullness associated with submental fat. Also, it may potentially be able to reduce fat in other subcutaneous fatty tissues. Deoxycholic acid, naturally produced by the metabolism of cholic acid by intestinal bacteria, is involved in the emulsification of dietary fats in the intestine. Deoxycholic acid is a bile acid formed by bacterial action from cholate. It is usually conjugated with glycine or taurine. Deoxycholic acid acts as a detergent to solubilize fats for intestinal absorption, is reabsorbed itself, and is used as a choleretic and detergent. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g., membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues. (A3407, A3408, A3409, A3410). A bile acid formed by bacterial action from cholate. It is usually conjugated with glycine or taurine. Deoxycholic acid acts as a detergent to solubilize fats for intestinal absorption, is reabsorbed itself, and is used as a choleretic and detergent. Deoxycholic acid is a secondary bile acid produced in the liver and is usually conjugated with glycine or taurine. It facilitates fat absorption and cholesterol excretion. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, and depends only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine, and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH, and consequently require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). When present in sufficiently high levels, deoxycholic acid can act as a hepatotoxin, a metabotoxin, and an oncometabolite. A hepatotoxin causes damage to the liver or liver cells. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. An oncometabolite is a compound, when present at chronically high levels, that promotes tumour growth and survival. Among the primary bile acids, cholic acid is considered to be the least hepatotoxic while deoxycholic acid is the most hepatoxic (PMID: 1641875). The liver toxicity of bile acids appears to be due to their ability to peroxidate lipids and to lyse liver cells. High bile acid levels lead to the generation of reactive oxygen species and reactive nitrogen species, disruption of the cell membrane and mitochondria, induction of DNA damage, mutation and apoptosis, and the development of reduced apoptosis capability upon chronic exposure (PMID: 24884764). Chronically high levels of deoxycholic acid are associated with familial hypercholanemia. In hypercholanemia, bile acids, including deoxycholic acid, are elevated in the blood. This disease causes liver damage, extensive itching, poor fat absorption, and can lead to rickets due to lack of calcium in bones. The deficiency of normal bile acids in the intestines results in a deficiency of vitamin K, which also adversely affects clotting of the blood. The bile acid ursodiol (ursodeoxycholic acid) can improve symptoms associated with familial hypercholanemia. Chronically high levels of deoxycholic acid are also associated with several forms of cancer including colon cancer, pancreatic cancer, esophageal cancer, and many other GI cancers. A bile acid that is 5beta-cholan-24-oic acid substituted by hydroxy groups at positions 3 and 12 respectively. Deoxycholic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=83-44-3 (retrieved 2024-07-01) (CAS RN: 83-44-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Deoxycholic acid (cholanoic acid), a bile acid, is a by-product of intestinal metabolism, that activates the G protein-coupled bile acid receptorTGR5[1][2]. Deoxycholic acid (cholanoic acid), a bile acid, is a by-product of intestinal metabolism, that activates the G protein-coupled bile acid receptorTGR5[1][2].

   

Cordycepin

(2R,3R,5S)-2-(6-amino-9H-purin-9-yl)-5-(hydroxymethyl)tetrahydrofuran-3-ol

C10H13N5O3 (251.1018)


Cordycepin is a 3-deoxyribonucleoside and a member of adenosines. It has a role as an antimetabolite and a nucleoside antibiotic. Cordycepin has been used in trials studying the treatment of Leukemia. Cordycepin is a natural product found in Aspergillus nidulans, Streptomyces sparsogenes, and other organisms with data available. Cordycepin is a purine nucleoside antimetabolite and antibiotic isolated from the fungus Cordyceps militaris with potential antineoplastic, antioxidant, and anti-inflammatory activities. Cordycepin is an inhibitor of polyadenylation, activates AMP-activated protein kinase (AMPK) and reduces mammalian target of rapamycin (mTOR) signaling, which may result in both the induction of tumor cell apoptosis and a decrease in tumor cell proliferation. mTOR, a serine/threonine kinase belonging to the phosphatidylinositol 3-kinase (PI3K)-related kinase (PIKK) family, plays an important role in the PI3K/AKT/mTOR signaling pathway that regulates cell growth and proliferation, and its expression or activity is frequently dysregulated in human cancers. C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D009676 - Noxae > D009153 - Mutagens D000970 - Antineoplastic Agents Cordycepin (3'-Deoxyadenosine) is a nucleoside derivative and inhibits IL-1β-induced MMP-1 and MMP-3 expression in rheumatoid arthritis synovial fibroblasts (RASFs) in a dose-dependent manner[1]. Cordycepin kills Mycobacterium tuberculosis through hijacking the bacterial adenosine kinase[2]. Cordycepin (3'-Deoxyadenosine) is a nucleoside derivative and inhibits IL-1β-induced MMP-1 and MMP-3 expression in rheumatoid arthritis synovial fibroblasts (RASFs) in a dose-dependent manner[1]. Cordycepin kills Mycobacterium tuberculosis through hijacking the bacterial adenosine kinase[2]. Cordycepin (3'-Deoxyadenosine) is a nucleoside derivative and inhibits IL-1β-induced MMP-1 and MMP-3 expression in rheumatoid arthritis synovial fibroblasts (RASFs) in a dose-dependent manner[1]. Cordycepin kills Mycobacterium tuberculosis through hijacking the bacterial adenosine kinase[2].

   

Digitoxin

3-[(3S,5R,8R,9S,10S,13R,14S,17R)-3-[(2R,4S,5S,6R)-5-[(2S,4S,5S,6R)-5-[(2S,4S,5S,6R)-4,5-dihydroxy-6-methyl-tetrahydropyran-2-yl]oxy-4-hydroxy-6-methyl-tetrahydropyran-2-yl]oxy-4-hydroxy-6-methyl-tetrahydropyran-2-yl]oxy-14-hydroxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-17-yl]-2H-furan-5-one

C41H64O13 (764.4347)


Digitoxin appears as odorless white or pale buff microcrystalline powder. Used as a cardiotonic drug. (EPA, 1998) Digitoxin is a cardenolide glycoside in which the 3beta-hydroxy group of digitoxigenin carries a 2,6-dideoxy-beta-D-ribo-hexopyranosyl-(1->4)-2,6-dideoxy-beta-D-ribo-hexopyranosyl-(1->4)-2,6-dideoxy-beta-D-ribo-hexopyranosyl trisaccharide chain. It has a role as an EC 3.6.3.9 (Na(+)/K(+)-transporting ATPase) inhibitor. It is functionally related to a digitoxigenin. It is a conjugate acid of a digitoxin(1-). A cardiac glycoside sometimes used in place of digoxin. It has a longer half-life than digoxin; toxic effects, which are similar to those of digoxin, are longer lasting. (From Martindale, The Extra Pharmacopoeia, 30th ed, p665) Digitoxin is a natural product found in Digitalis obscura, Digitalis parviflora, and other organisms with data available. Digitoxin is a lipid soluble cardiac glycoside that inhibits the plasma membrane sodium potassium ATPase, leading to increased intracellular sodium and calcium levels and decreased intracellular potassium levels. In studies increased intracellular calcium precedes cell death and decreased intracellular potassium increase caspase activation and DNA fragmentation, causing apoptosis and inhibition of cancer cell growth. (NCI) Digitoxin is only found in individuals that have used or taken this drug. It is a cardiac glycoside sometimes used in place of digoxin. It has a longer half-life than digoxin; toxic effects, which are similar to those of digoxin, are longer lasting. (From Martindale, The Extra Pharmacopoeia, 30th ed, p665)Digitoxin inhibits the Na-K-ATPase membrane pump, resulting in an increase in intracellular sodium and calcium concentrations. Increased intracellular concentrations of calcium may promote activation of contractile proteins (e.g., actin, myosin). Digitoxin also acts on the electrical activity of the heart, increasing the slope of phase 4 depolarization, shortening the action potential duration, and decreasing the maximal diastolic potential. A cardiac glycoside sometimes used in place of DIGOXIN. It has a longer half-life than digoxin; toxic effects, which are similar to those of digoxin, are longer lasting. (From Martindale, The Extra Pharmacopoeia, 30th ed, p665) See also: Acetyldigitoxin (is active moiety of). Digitoxin, also known as crystodigin or digitoxoside, belongs to cardenolide glycosides and derivatives class of compounds. Those are compounds containing a carbohydrate glycosidically bound to the cardenolide moiety. Thus, digitoxin is considered to be a sterol lipid molecule. Digitoxin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Digitoxin can be synthesized from digitoxigenin. Digitoxin can also be synthesized into 3-O-acetyldigitoxin. Digitoxin can be found in common bean, which makes digitoxin a potential biomarker for the consumption of this food product. Digitoxin can be found primarily in blood and urine. Digitoxin is a non-carcinogenic (not listed by IARC) potentially toxic compound. Digitoxin is a drug which is used for the treatment and management of congestive cardiac insufficiency, arrhythmias and heart failure. Digitoxin is a cardiac glycoside. It is a phytosteroid and is similar in structure and effects to digoxin (though the effects are longer-lasting). Unlike digoxin (which is eliminated from the body via the kidneys), it is eliminated via the liver, so could be used in patients with poor or erratic kidney function. However, it is now rarely used in current Western medical practice. While several controlled trials have shown digoxin to be effective in a proportion of patients treated for heart failure, the evidence base for digitoxin is not as strong, although it is presumed to be similarly effective . Digitoxin exhibits similar toxic effects to the more-commonly used digoxin, namely: anorexia, nausea, vomiting, diarrhoea, confusion, visual disturbances, and cardiac arrhythmias (DrugBank). Digitoxin inhibits the Na-K-ATPase membrane pump, resulting in an increase in intracellular sodium and calcium concentrations. Increased intracellular concentrations of calcium may promote activation of contractile proteins (e.g., actin, myosin). Digitoxin also acts on the electrical activity of the heart, increasing the slope of phase 4 depolarization, shortening the action potential duration, and decreasing the maximal diastolic potential (T3DB). Digitoxin is a cardenolide glycoside in which the 3beta-hydroxy group of digitoxigenin carries a 2,6-dideoxy-beta-D-ribo-hexopyranosyl-(1->4)-2,6-dideoxy-beta-D-ribo-hexopyranosyl-(1->4)-2,6-dideoxy-beta-D-ribo-hexopyranosyl trisaccharide chain. It has a role as an EC 3.6.3.9 (Na(+)/K(+)-transporting ATPase) inhibitor. It derives from a digitoxigenin. It is a conjugate acid of a digitoxin(1-). Digitoxin appears as odorless white or pale buff microcrystalline powder. It is a cardiac glycoside sometimes used in place of digoxin. It has a longer half-life than digoxin; toxic effects, which are similar to those of digoxin, are longer lasting. Digitoxin inhibits the Na-K-ATPase membrane pump, resulting in an increase in intracellular sodium and calcium concentrations. Increased intracellular concentrations of calcium may promote activation of contractile proteins (e.g., actin, myosin). Digitoxin also acts on the electrical activity of the heart, increasing the slope of phase 4 depolarization, shortening the action potential duration, and decreasing the maximal diastolic potential. C - Cardiovascular system > C01 - Cardiac therapy > C01A - Cardiac glycosides > C01AA - Digitalis glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D004071 - Digitalis Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides C78274 - Agent Affecting Cardiovascular System > C78322 - Cardiotonic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D004791 - Enzyme Inhibitors C471 - Enzyme Inhibitor Digitoxin is a potent Na+/K+-ATPase inhibitor with an EC50 value of 0.78 μM. Digitoxin is a potent Na+/K+-ATPase inhibitor with an EC50 value of 0.78 μM.

   

Aesculetin

6,7-dihydroxychromen-2-one

C9H6O4 (178.0266)


Aesculetin, also known as cichorigenin or cichoriin aglucon, belongs to the class of organic compounds known as 6,7-dihydroxycoumarins. These are coumarins bearing two hydroxyl groups at positions 6 and 7 of the coumarin skeleton, respectively. Aesculetin is found, on average, in the highest concentration within sherries. Aesculetin has also been detected, but not quantified, in several different foods, such as horseradish, carrots, dandelions, grape wines, and highbush blueberries. This could make aesculetin a potential biomarker for the consumption of these foods. Esculetin is a hydroxycoumarin that is umbelliferone in which the hydrogen at position 6 is substituted by a hydroxy group. It is used in filters for absorption of ultraviolet light. It has a role as an antioxidant, an ultraviolet filter and a plant metabolite. Esculetin is a natural product found in Artemisia eriopoda, Euphorbia decipiens, and other organisms with data available. A hydroxycoumarin that is umbelliferone in which the hydrogen at position 6 is substituted by a hydroxy group. It is used in filters for absorption of ultraviolet light. Metabolite of infected sweet potato. Aesculetin is found in many foods, some of which are root vegetables, wild carrot, sweet basil, and carrot. D020011 - Protective Agents > D000975 - Antioxidants Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB031_Aesculetin_pos_20eV_CB000017.txt [Raw Data] CB031_Aesculetin_pos_10eV_CB000017.txt [Raw Data] CB031_Aesculetin_pos_40eV_CB000017.txt [Raw Data] CB031_Aesculetin_pos_50eV_CB000017.txt [Raw Data] CB031_Aesculetin_pos_30eV_CB000017.txt [Raw Data] CB031_Aesculetin_neg_10eV_000010.txt [Raw Data] CB031_Aesculetin_neg_20eV_000010.txt [Raw Data] CB031_Aesculetin_neg_30eV_000010.txt CONFIDENCE standard compound; ML_ID 39 Esculetin is an active ingredient extracted mainly from the bark of Fraxinus rhynchophylla. Esculetin inhibits platelet-derived growth factor (PDGF)-induced airway smooth muscle cells (ASMCs) phenotype switching through inhibition of PI3K/Akt pathway. Esculetin has antioxidant, antiinflammatory, and antitumor activities[1]. Esculetin is an active ingredient extracted mainly from the bark of Fraxinus rhynchophylla. Esculetin inhibits platelet-derived growth factor (PDGF)-induced airway smooth muscle cells (ASMCs) phenotype switching through inhibition of PI3K/Akt pathway. Esculetin has antioxidant, antiinflammatory, and antitumor activities[1]. Esculetin is an active ingredient extracted mainly from the bark of Fraxinus rhynchophylla. Esculetin inhibits platelet-derived growth factor (PDGF)-induced airway smooth muscle cells (ASMCs) phenotype switching through inhibition of PI3K/Akt pathway. Esculetin has antioxidant, antiinflammatory, and antitumor activities[1].

   

Gastrodin

(2R,3S,4S,5R,6S)-2-(hydroxymethyl)-6-(4-(hydroxymethyl)phenoxy)-tetrahydro-2H-pyran-3,4,5-triol

C13H18O7 (286.1052)


Gastrodin is a glycoside. Gastrodin is a natural product found in Cyrtosia septentrionalis, Dactylorhiza hatagirea, and other organisms with data available. See also: Gastrodia elata tuber (part of). Gastrodin, a main constituent of a Chinese herbal medicine Tianma, has been known to display anti-inflammatory effects. Gastrodin, has long been used for treating dizziness, epilepsy, stroke and dementia. Gastrodin, a main constituent of a Chinese herbal medicine Tianma, has been known to display anti-inflammatory effects. Gastrodin, has long been used for treating dizziness, epilepsy, stroke and dementia.

   

Evodiamine

(1S)-21-METHYL-3,13,21-TRIAZAPENTACYCLO[11.8.0.0(2),(1)?.0?,?.0(1)?,(2)?]HENICOSA-2(10),4,6,8,15,17,19-HEPTAEN-14-ONE

C19H17N3O (303.1372)


Evodiamine is a member of beta-carbolines. Evodiamine is a natural product found in Vepris soyauxii, Cryptocarya, and other organisms with data available. Origin: Plant; Formula(Parent): C19H17N3O; Bottle Name:Evodiamine; PRIME Parent Name:Evodiamine; PRIME in-house No.:V0296; SubCategory_DNP: Monoterpenoid indole alkaloids, Indoloquinolizidine alkaloids, Indole alkaloids Formula(Parent): C19H17N3O; Bottle Name:Evodiamine; Origin: Plant; PRIME Parent Name:Evodiamine; PRIME in-house No.:V0296; SubCategory_DNP: Monoterpenoid indole alkaloids, Indoloquinolizidine alkaloids, Indole alkaloids Annotation level-1 (±)-Evodiamine, a quinazolinocarboline alkaloid, is a Top1 inhibitor. Evodiamine exhibits anti-inflammatory, antiobesity, and antitumor effects. (±)-Evodiamine inhibits the proliferation of a wide variety of tumor cells by inducing their apoptosis[1]. Evodiamine is an alkaloid isolated from the fruit of Evodia rutaecarpa Bentham with diverse biological activities including anti-inflammatory, anti-obesity, and antitumor. Evodiamine is an alkaloid isolated from the fruit of Evodia rutaecarpa Bentham with diverse biological activities including anti-inflammatory, anti-obesity, and antitumor.

   

Aristolochic acid

6-methoxy-9-nitro-14,16-dioxatetracyclo[8.7.0.0²,⁷.0¹³,¹⁷]heptadeca-1,3,5,7,9,11,13(17)-heptaene-11-carboxylic acid

C17H11NO7 (341.0535)


Aristolochic acid A is an aristolochic acid that is phenanthrene-1-carboxylic acid that is substituted by a methylenedioxy group at the 3,4 positions, by a methoxy group at position 8, and by a nitro group at position 10. It is the most abundant of the aristolochic acids and is found in almost all Aristolochia (birthworts or pipevines) species. It has been tried in a number of treatments for inflammatory disorders, mainly in Chinese and folk medicine. However, there is concern over their use as aristolochic acid is both carcinogenic and nephrotoxic. It has a role as a nephrotoxin, a carcinogenic agent, a mutagen, a toxin and a metabolite. It is a monocarboxylic acid, a C-nitro compound, a cyclic acetal, an organic heterotetracyclic compound, an aromatic ether and a member of aristolochic acids. Aristolochic acid is a natural product found in Thottea duchartrei, Aristolochia, and other organisms with data available. Aristolochic acids are a family of carcinogenic, mutagenic, and nephrotoxic compounds commonly found in the Aristolochiaceae family of plants, including Aristolochia and Asarum (wild ginger), which are commonly used in Chinese herbal medicine. Aristolochic acid I is the most abundant of the aristolochic acids and is found in almost all Aristolochia species. Aristolochic acids are often accompanied by aristolactams. See also: Aristolochia fangchi root (part of). D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens Aristolochic acid A (Aristolochic acid I; TR 1736) is the main component of plant extract Aristolochic acids, which are found in various herbal plants of genus Aristolochia and Asarum. Aristolochic acid A significantly reduces both activator protein 1 (AP-1) and NF-κB activities. Aristolochic acid A reduces BLCAP gene expression in human cell lines[1]. Aristolochic acid A (Aristolochic acid I; TR 1736) is the main component of plant extract Aristolochic acids, which are found in various herbal plants of genus Aristolochia and Asarum. Aristolochic acid A significantly reduces both activator protein 1 (AP-1) and NF-κB activities. Aristolochic acid A reduces BLCAP gene expression in human cell lines[1].

   

Scoparone

6,7-dimethoxychromen-2-one

C11H10O4 (206.0579)


Scoparone is a member of the class of coumarins that is esculetin in which the two hydroxy groups at positions 6 and 7 are replaced by methoxy groups. It is a major constituent of the Chinese herbal medicine Yin Chen Hao, and exhibits a variety of pharmacological activities such as anti-inflammatory, anti-allergic, and anti-tumor activities. It has a role as a plant metabolite, an anti-inflammatory agent, an antilipemic drug, an immunosuppressive agent, an antihypertensive agent and an anti-allergic agent. It is a member of coumarins and an aromatic ether. It is functionally related to an esculetin. Scoparone is a natural product found in Haplophyllum ramosissimum, Haplophyllum thesioides, and other organisms with data available. A member of the class of coumarins that is esculetin in which the two hydroxy groups at positions 6 and 7 are replaced by methoxy groups. It is a major constituent of the Chinese herbal medicine Yin Chen Hao, and exhibits a variety of pharmacological activities such as anti-inflammatory, anti-allergic, and anti-tumor activities. D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics Scoparone is found in anise. Scoparone is found in several citrus oil D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Found in several citrus oils Scoparone is isolated from Artemisia capillaris Thunb., has anticoagulant, vasorelaxant antioxidant, anti-inflammatory activities[1]. Scoparone is isolated from Artemisia capillaris Thunb., has anticoagulant, vasorelaxant antioxidant, anti-inflammatory activities[1].

   

Astragaloside IV

(2R,3R,4S,5S,6R)-2-(((2aR,3R,4S,5aS,5bS,7S,7aR,9S,11aR,12aS)-4-hydroxy-3-((2R,5S)-5-(2-hydroxypropan-2-yl)-2-methyltetrahydrofuran-2-yl)-2a,5a,8,8-tetramethyl-9-(((2S,3R,4S,5R)-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl)oxy)tetradecahydro-1H,12H-cyclopenta[a]cyclopropa[e]phenanthren-7-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C41H68O14 (784.4609)


Astragaloside IV is a pentacyclic triterpenoid that is cycloastragenol having beta-D-xylopyranosyl and beta-D-glucopyranosyl residues attached at positions O-3 and O-6 respectively. It is isolated from Astragalus membranaceus var mongholicus. It has a role as an EC 4.2.1.1 (carbonic anhydrase) inhibitor, an anti-inflammatory agent, a neuroprotective agent, an antioxidant, a pro-angiogenic agent and a plant metabolite. It is a triterpenoid saponin and a pentacyclic triterpenoid. It is functionally related to a cycloastragenol. Astragaloside IV is a natural product found in Euphorbia glareosa, Astragalus ernestii, and other organisms with data available. A pentacyclic triterpenoid that is cycloastragenol having beta-D-xylopyranosyl and beta-D-glucopyranosyl residues attached at positions O-3 and O-6 respectively. It is isolated from Astragalus membranaceus var mongholicus. Astragaloside IV, an active component isolated from Astragalus membranaceus, suppresses the activation of ERK1/2 and JNK, and downregulates matrix metalloproteases (MMP)-2, (MMP)-9 in MDA-MB-231 breast cancer cells. Astragaloside IV, an active component isolated from Astragalus membranaceus, suppresses the activation of ERK1/2 and JNK, and downregulates matrix metalloproteases (MMP)-2, (MMP)-9 in MDA-MB-231 breast cancer cells. Astragaloside IV, an active component isolated from Astragalus membranaceus, suppresses the activation of ERK1/2 and JNK, and downregulates matrix metalloproteases (MMP)-2, (MMP)-9 in MDA-MB-231 breast cancer cells.

   

Astilbin

(2R,3R)-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-3,4-dihydro-2H-1-benzopyran-4-one

C21H22O11 (450.1162)


Astilbin is a flavanone glycoside that is (+)-taxifolin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. It has a role as a radical scavenger, an anti-inflammatory agent and a plant metabolite. It is an alpha-L-rhamnoside, a member of 3-hydroxyflavanones, a tetrahydroxyflavanone, a flavanone glycoside, a monosaccharide derivative and a member of 4-hydroxyflavanones. It is functionally related to a (+)-taxifolin. It is an enantiomer of a neoastilbin. Astilbin is a natural product found in Smilax corbularia, Rhododendron simsii, and other organisms with data available. Astilbin is a metabolite found in or produced by Saccharomyces cerevisiae. Astilbin is found in alcoholic beverages. Astilbin is a constituent of Vitis vinifera (wine grape).Astilbin is a flavanonol, a type of flavonoid. It can be found in St Johns wort (Hypericum perforatum, Clusiaceae, subfamily Hypericoideae, formerly often considered a full family Hypericaceae), in Dimorphandra mollis (Fava danta, Fabaceae), in the the leaves of Harungana madagascariensis (Hypericaceae), in the rhizome of Astilbe thunbergii, in the root of Astilbe odontophylla(Saxifragaceae) and in the rhizone of Smilax glabra (Chinaroot, Smilacaceae). A flavanone glycoside that is (+)-taxifolin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. Constituent of Vitis vinifera (wine grape) Astilbin is a flavonoid compound and enhances NRF2 activation. Astilbin also suppresses TNF-α expression and NF-κB activation. Astilbin is a flavonoid compound and enhances NRF2 activation. Astilbin also suppresses TNF-α expression and NF-κB activation. Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3]. Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3].

   

Ginsenoside

(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-2-[[(3S,5R,6S,8R,9R,10R,12R,13R,14R,17S)-3,12-dihydroxy-17-[(2S)-2-hydroxy-6-methylhept-5-en-2-yl]-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-6-yl]oxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O14 (800.4922)


Ginsenoside Rf is a ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy group at position 6 has been converted to the corresponding beta-D-glucopyranosyl-(1->2)-beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. It has a role as a plant metabolite, an apoptosis inducer and an antineoplastic agent. It is a 12beta-hydroxy steroid, a 3beta-hydroxy steroid, a beta-D-glucoside, a disaccharide derivative, a ginsenoside, a tetracyclic triterpenoid, a 20-hydroxy steroid and a 3beta-hydroxy-4,4-dimethylsteroid. It derives from a hydride of a dammarane. Ginsenoside Rf is a natural product found in Gynostemma pentaphyllum, Panax ginseng, and other organisms with data available. See also: Asian Ginseng (part of). A ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy group at position 6 has been converted to the corresponding beta-D-glucopyranosyl-(1->2)-beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. Ginsenoside Rg1 is a ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 6 and 20 have been converted to the corresponding beta-D-glucopyranosides, and in which a double bond has been introduced at the 24-25 position. It has a role as a neuroprotective agent and a pro-angiogenic agent. It is a 12beta-hydroxy steroid, a beta-D-glucoside, a tetracyclic triterpenoid, a ginsenoside and a 3beta-hydroxy-4,4-dimethylsteroid. It derives from a hydride of a dammarane. Ginsenosides are a class of steroid glycosides, and triterpene saponins, found exclusively in the plant genus Panax (ginseng). Ginsenosides have been the target of research, as they are viewed as the active compounds behind the claims of ginsengs efficacy. Because ginsenosides appear to affect multiple pathways, their effects are complex and difficult to isolate. Rg1 Appears to be most abundant in Panax ginseng (Chinese/Korean Ginseng). It improves spatial learning and increase hippocampal synaptophysin level in mice, plus demonstrates estrogen-like activity. Ginsenoside RG1 is a natural product found in Panax vietnamensis, Panax ginseng, and Panax notoginseng with data available. See also: Asian Ginseng (part of); American Ginseng (part of); Panax notoginseng root (part of). A ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 6 and 20 have been converted to the corresponding beta-D-glucopyranosides, and in which a double bond has been introduced at the 24-25 position. D002491 - Central Nervous System Agents Ginsenoside Rf is a trace component of ginseng root. Ginsenoside Rf inhibits N-type Ca2+ channel. Ginsenoside Rf is a trace component of ginseng root. Ginsenoside Rf inhibits N-type Ca2+ channel. Ginsenoside Rg1 is one of the major active components of Panax ginseng. Ginsenoside Rg1 ameliorates the impaired cognitive function, displays promising effects by reducing cerebral Aβ levels. Ginsenoside Rg1 also reduces NF-κB nuclear translocation. Ginsenoside Rg1 is one of the major active components of Panax ginseng. Ginsenoside Rg1 ameliorates the impaired cognitive function, displays promising effects by reducing cerebral Aβ levels. Ginsenoside Rg1 also reduces NF-κB nuclear translocation.

   

Luteolin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one

C15H10O6 (286.0477)


Luteolin is a naturally occurring flavonoid. (PMID:17168665). The flavonoids are polyphenolic compounds found as integral components of the human diet. They are universally present as constituents of flowering plants, particularly of food plants. The flavonoids are phenyl substituted chromones (benzopyran derivatives) consisting of a 15-carbon basic skeleton (C6-C3-C6), composed of a chroman (C6-C3) nucleus (the benzo ring A and the heterocyclic ring C), also shared by the tocopherols, with a phenyl (the aromatic ring B) substitution usually at the 2-position. Different substitutions can typically occur in the rings, A and B. Several plants and spices containing flavonoid derivatives have found application as disease preventive and therapeutic agents in traditional medicine in Asia for thousands of years. The selection of a particular food plant, plant tissue or herb for its potential health benefits appears to mirror its flavonoid composition. The much lower risk of colon, prostate and breast cancers in Asians, who consume more vegetables, fruits and tea than populations in the Western hemisphere do, raises the question of whether flavonoid components mediate the protective effects of diets rich in these foodstuffs by acting as natural chemopreventive and anticancer agents. An impressive body of information exists on the antitumoral action of plant flavonoids. In vitro work has concentrated on the direct and indirect actions of flavonoids on tumor cells, and has found a variety of anticancer effects such as cell growth and kinase activity inhibition, apoptosis induction, suppression of the secretion of matrix metalloproteinases and of tumor invasive behavior. Furthermore, some studies have reported the impairment of in vivo angiogenesis by dietary flavonoids. Experimental animal studies indicate that certain dietary flavonoids possess antitumoral activity. The hydroxylation pattern of the B ring of the flavones and flavonols, such as luteolin seems to critically influence their activities, especially the inhibition of protein kinase activity and antiproliferation. The different mechanisms underlying the potential anticancer action of plant flavonoids await further elucidation. Certain dietary flavonols and flavones targeting cell surface signal transduction enzymes, such as protein tyrosine and focal adhesion kinases, and the processes of angiogenesis appear to be promising candidates as anticancer agents. Further in vivo studies of these bioactive constituents is deemed necessary in order to develop flavonoid-based anticancer strategies. In view of the increasing interest in the association between dietary flavonoids and cancer initiation and progression, this important field is likely to witness expanded effort and to attract and stimulate further vigorous investigations (PMID:16097445). Luteolin is a tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. It has a role as an EC 2.3.1.85 (fatty acid synthase) inhibitor, an antineoplastic agent, a vascular endothelial growth factor receptor antagonist, a plant metabolite, a nephroprotective agent, an angiogenesis inhibitor, a c-Jun N-terminal kinase inhibitor, an anti-inflammatory agent, an apoptosis inducer, a radical scavenger and an immunomodulator. It is a 3-hydroxyflavonoid and a tetrahydroxyflavone. It is a conjugate acid of a luteolin-7-olate. Luteolin is a natural product found in Verbascum lychnitis, Carex fraseriana, and other organisms with data available. Luteolin is a naturally-occurring flavonoid, with potential anti-oxidant, anti-inflammatory, apoptosis-inducing and chemopreventive activities. Upon administration, luteolin scavenges free radicals, protects cells from reactive oxygen species (ROS)-induced damage and induces direct cell cycle arrest and apoptosis in tumor cells. This inhibits tumor cell proliferation and suppresses metastasis. 5,7,3,4-tetrahydroxy-flavone, one of the FLAVONES. See also: Chamomile (part of); Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of). A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. Flavone v. widespread in plant world; found especies in celery, peppermint, rosemary, thyme and Queen Annes Lace leaves (wild carrot). Potential nutriceutical. Luteolin is found in many foods, some of which are soy bean, ginger, abalone, and swiss chard. Acquisition and generation of the data is financially supported in part by CREST/JST. IPB_RECORD: 361; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 48 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].

   

L-Tyrosine

(2S)-2-amino-3-(4-hydroxyphenyl)propanoic acid

C9H11NO3 (181.0739)


Tyrosine (Tyr) or L-tyrosine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-tyrosine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Tyrosine is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aromatic amino acid. Tyrosine is a non-essential amino acid, meaning the body can synthesize it – usually from phenylalanine. The conversion of phenylalanine to tyrosine is catalyzed by the enzyme phenylalanine hydroxylase, a monooxygenase. This enzyme catalyzes the reaction causing the addition of a hydroxyl group to the end of the 6-carbon aromatic ring of phenylalanine, such that it becomes tyrosine. Tyrosine is found in many high-protein food products such as chicken, turkey, fish, milk, yogurt, cottage cheese, cheese, peanuts, almonds, pumpkin seeds, sesame seeds, soy products, lima beans, avocados and bananas. Tyrosine is one of the few amino acids that readily passes the blood-brain barrier. Once in the brain, it is a precursor for the neurotransmitters dopamine, norepinephrine and epinephrine, better known as adrenalin. These neurotransmitters are an important part of the bodys sympathetic nervous system, and their concentrations in the body and brain are directly dependent upon dietary tyrosine. Tyrosine is not found in large concentrations throughout the body, probably because it is rapidly metabolized. Folic acid, copper and vitamin C are cofactor nutrients of these reactions. Tyrosine is also the precursor for hormones, including thyroid hormones (diiodotyrosine), catecholestrogens and the major human pigment, melanin. Tyrosine is an important amino acid in many proteins, peptides and even enkephalins, the bodys natural pain reliever. Valine and other branched amino acids, and possibly tryptophan and phenylalanine may reduce tyrosine absorption. A number of genetic errors of tyrosine metabolism have been identified, such as hawkinsinuria and tyrosinemia I. The most common feature of these diseases is the increased amount of tyrosine in the blood, which is marked by decreased motor activity, lethargy and poor feeding. Infection and intellectual deficits may occur. Vitamin C supplements can help reverse these disease symptoms. Some adults also develop elevated tyrosine in their blood. This typically indicates a need for more vitamin C. More tyrosine is needed under stress, and tyrosine supplements prevent the stress-induced depletion of norepinephrine and can help aleviate biochemical depression. However, tyrosine may not be good for treating psychosis. Many antipsychotic medications apparently function by inhibiting tyrosine metabolism. L-Dopa, which is directly used in Parkinsons, is made from tyrosine. Tyrosine, the nutrient, can be used as an adjunct in the treatment of Parkinsons. Peripheral metabolism of tyrosine necessitates large doses of tyrosine, however, compared to L-Dopa (http://www.dcnutrition.com). In addition to its role as a precursor for neurotransmitters, tyrosine plays an important role for the function of many proteins. Within many proteins or enzymes, certain tyrosine residues can be tagged (at the hydroxyl group) with a phosphate group (phosphorylated) by specialized protein kinases. In its phosphorylated form, tyrosine is called phosphotyrosine. Tyrosine phosphorylation is considered to be one of the key steps in signal transduction and regulation of enzymatic activity. Tyrosine (or its precursor phenylalanine) is also needed to synthesize the benzoquinone structure which forms part of coenzyme Q10. L-tyrosine is an optically active form of tyrosine having L-configuration. It has a role as an EC 1.3.1.43 (arogenate dehydrogenase) inhibitor, a nutraceutical, a micronutrient and a fundamental metabolite. It is an erythrose 4-phosphate/phosphoenolpyruvate family amino acid, a proteinogenic amino acid, a tyrosine and a L-alpha-amino acid. It is functionally related to a L-tyrosinal. It is a conjugate base of a L-tyrosinium. It is a conjugate acid of a L-tyrosinate(1-). It is an enantiomer of a D-tyrosine. It is a tautomer of a L-tyrosine zwitterion. Tyrosine is a non-essential amino acid. In animals it is synthesized from [phenylalanine]. It is also the precursor of [epinephrine], thyroid hormones, and melanin. L-Tyrosine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). L-Tyrosine is the levorotatory isomer of the aromatic amino acid tyrosine. L-tyrosine is a naturally occurring tyrosine and is synthesized in vivo from L-phenylalanine. It is considered a non-essential amino acid; however, in patients with phenylketonuria who lack phenylalanine hydroxylase and cannot convert phenylalanine into tyrosine, it is considered an essential nutrient. In vivo, tyrosine plays a role in protein synthesis and serves as a precursor for the synthesis of catecholamines, thyroxine, and melanin. Tyrosine is an essential amino acid that readily passes the blood-brain barrier. Once in the brain, it is a precursor for the neurotransmitters dopamine, norepinephrine and epinephrine, better known as adrenalin. These neurotransmitters are an important part of the bodys sympathetic nervous system, and their concentrations in the body and brain are directly dependent upon dietary tyrosine. Tyrosine is not found in large concentrations throughout the body, probably because it is rapidly metabolized. Folic acid, copper and vitamin C are cofactor nutrients of these reactions. Tyrosine is also the precursor for hormones, thyroid, catecholestrogens and the major human pigment, melanin. Tyrosine is an important amino acid in many proteins, peptides and even enkephalins, the bodys natural pain reliever. Valine and other branched amino acids, and possibly tryptophan and phenylalanine may reduce tyrosine absorption. A number of genetic errors of tyrosine metabolism occur. Most common is the increased amount of tyrosine in the blood of premature infants, which is marked by decreased motor activity, lethargy and poor feeding. Infection and intellectual deficits may occur. Vitamin C supplements reverse the disease. Some adults also develop elevated tyrosine in their blood. This indicates a need for more vitamin C. More tyrosine is needed under stress, and tyrosine supplements prevent the stress-induced depletion of norepinephrine and can cure biochemical depression. However, tyrosine may not be good for psychosis. Many antipsychotic medications apparently function by inhibiting tyrosine metabolism. L-dopa, which is directly used in Parkinsons, is made from tyrosine. Tyrosine, the nutrient, can be used as an adjunct in the treatment of Parkinsons. Peripheral metabolism of tyrosine necessitates large doses of tyrosine, however, compared to L-dopa. A non-essential amino acid. In animals it is synthesized from PHENYLALANINE. It is also the precursor of EPINEPHRINE; THYROID HORMONES; and melanin. Dietary supplement, nutrient. Flavouring ingredient. L-Tyrosine is found in many foods, some of which are blue crab, sweet rowanberry, lemon sole, and alpine sweetvetch. An optically active form of tyrosine having L-configuration. L-Tyrosine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=60-18-4 (retrieved 2024-07-01) (CAS RN: 60-18-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Tyrosine is a non-essential amino acid which can inhibit citrate synthase activity in the posterior cortex. L-Tyrosine is a non-essential amino acid which can inhibit citrate synthase activity in the posterior cortex.

   

Osthol

InChI=1/C15H16O3/c1-10(2)4-7-12-13(17-3)8-5-11-6-9-14(16)18-15(11)12/h4-6,8-9H,7H2,1-3H

C15H16O3 (244.1099)


Osthol, also known as 7-methoxy-8-(3-methylpent-2-enyl)coumarin, belongs to coumarins and derivatives class of compounds. Those are polycyclic aromatic compounds containing a 1-benzopyran moiety with a ketone group at the C2 carbon atom (1-benzopyran-2-one). Osthol is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Osthol can be found in a number of food items such as wild celery, lemon, parsley, and wild carrot, which makes osthol a potential biomarker for the consumption of these food products. Osthol is an O-methylated coumarin. It is a calcium channel blocker, found in plants such as Cnidium monnieri, Angelica archangelica and Angelica pubescens . Osthole is a member of coumarins and a botanical anti-fungal agent. It has a role as a metabolite. Osthole is a natural product found in Murraya alata, Pentaceras australe, and other organisms with data available. See also: Angelica pubescens root (part of). D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D007155 - Immunologic Factors Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells. Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells. Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells.

   

Paeoniflorin

((2S,2aR,2a1S,3aR,4R,5aR)-4-Hydroxy-2-methyl-2a-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)hexahydro-2H-1,5-dioxa-2,4-methanocyclobuta[cd]pentalen-2a1-yl)methyl benzoate

C23H28O11 (480.1632)


Paeoniflorin is a terpene glycoside. Peoniflorin is under investigation in clinical trial NCT02878863 (Paeoniflorin Combination of Hepatoprotective Drugs Versus Hepatoprotective Drugs Only for Auto-immune Hepatitis). Paeoniflorin is a natural product found in Paeonia, Paeonia tenuifolia, and other organisms with data available. See also: Paeonia lactiflora root (part of); Paeonia veitchii root (part of); Paeonia X suffruticosa root bark (part of). D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Paeoniflorin is a heat shock protein-inducing compound and commonly exists in the plants of Paeoniaceae family, with various biological activities, including anticancer activity, anti-inflammatory activity, enhancing cognition and attenuating learning impairment, anti-oxidative stress, antiplatelet aggregation, expansion of blood vessels, and reducing blood viscosity[1][2][3]. Paeoniflorin is a heat shock protein-inducing compound and commonly exists in the plants of Paeoniaceae family, with various biological activities, including anticancer activity, anti-inflammatory activity, enhancing cognition and attenuating learning impairment, anti-oxidative stress, antiplatelet aggregation, expansion of blood vessels, and reducing blood viscosity[1][2][3].

   

Calycosin

4H-1-Benzopyran-4-one, 7-hydroxy-3-(3-hydroxy-4-methoxyphenyl)-

C16H12O5 (284.0685)


Calycosin is a member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone which is substituted by an additional hydroxy group at the 3 position and a methoxy group at the 4 position. It has a role as a metabolite and an antioxidant. It is a member of 7-hydroxyisoflavones and a member of 4-methoxyisoflavones. It is functionally related to an isoflavone. It is a conjugate acid of a calycosin(1-). Calycosin is a natural product found in Thermopsis lanceolata, Hedysarum polybotrys, and other organisms with data available. A polyphenol metabolite detected in biological fluids [PhenolExplorer] Calycosin is a natural compound with antioxidant and anti-inflammatory activity. Calycosin is a natural compound with antioxidant and anti-inflammatory activity.

   

Alizarina

1,2-dihydroxyanthracene-9,10-dione

C14H8O4 (240.0423)


Alizarin is a dihydroxyanthraquinone that is anthracene-9,10-dione in which the two hydroxy groups are located at positions 1 and 2. It has a role as a chromophore, a dye and a plant metabolite. Alizarin has been reported in Rubia lanceolata, Rubia argyi COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8028 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Alizarin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=72-48-0 (retrieved 2024-12-18) (CAS RN: 72-48-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Aucubin

(2S,3R,4S,5S,6R)-2-(((1S,4aR,5S,7aS)-5-hydroxy-7-(hydroxymethyl)-1,4a,5,7a-tetrahydrocyclopenta[c]pyran-1-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C15H22O9 (346.1264)


Aucubin is found in common verbena. Aucubin is a monoterpenoid based compound. Aucubin, like all iridoids, has a cyclopentan-[C]-pyran skeleton. Iridoids can consist of ten, nine, or rarely eight carbons in which C11 is more frequently missing than C10. Aucubin has 10 carbons with the C11 carbon missing. The stereochemical configurations at C5 and C9 lead to cis fused rings, which are common to all iridoids containing carbocylclic- or seco-skeleton in non-rearranged form. Oxidative cleavage at C7-C8 bond affords secoiridoids. The last steps in the biosynthesis of iridoids usually consist of O-glycosylation and O-alkylation. Aucubin, a glycoside iridoid, has an O-linked glucose moiety. Aucubin is an iridoid glycoside. Iridoids are commonly found in plants and function as defensive compounds. Irioids decrease the growth rates of many generalist herbivores. Aucubin is found in the leaves of Aucuba japonica (Cornaceae), Eucommia ulmoides (Eucommiaceae), and Plantago asiatic (Plantaginaceae), etc, plants used in traditional Chinese and folk medicine. Aucubin was found to protect against liver damage induced by carbon tetrachloride or alpha-amanitin in mice and rats when 80 mg/kg was dosed intraperitoneally. Geranyl pyrophosphate is the precursor for iridoids. Geranyl phosphate is generated through the mevalonate pathway or the methylerythritol phosphate pathway. The initial steps of the pathway involve the fusion of three molecules of acetyl-CoA to produce the C6 compound 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). HMG-CoA is then reduced in two steps by the enzyme HMG-CoA reductase. The resulting mevalonate is then sequentially phosphorylated by two separate kinases, mevalonate kinase and phosphomevalonate kinase, to form 5-pyrophosphomevalonate. Phosphosphomevalonate decarboxylase through a concerted decarboxylation reaction affords isopentenyl pyrophosphate (IPP). IPP is the basic C5 building block that is added to prenyl phosphate cosubstrates to form longer chains. IPP is isomerized to the allylic ester dimethylallyl pyrophosphate (DMAPP) by IPP isomerase. Through a multistep process, including the dephosphorylation DMAPP, IPP and DMAPP are combinded to from the C10 compound geranyl pyrophosphate (GPP). Geranyl pyrophosphate is a major branch point for terpenoid synthesis. The cyclizaton reaction to form the iridoid pyrane ring may result from one of two routes: route 1 - a hydride nucleophillic attack on C1 will lead to 1-O-carbonyl atom attack on C3, yielding the lactone ring; route 2 - loss of proton from carbon 4 leads to the formation of a double bond C3-C4; consequently the 3-0-carbonyl atom will attach to C1 Aucubin is a monoterpenoid based compound. Aucubin, like all iridoids, has a cyclopentan-[C]-pyran skeleton. Iridoids can consist of ten, nine, or rarely eight carbons in which C11 is more frequently missing than C10. Aucubin has 10 carbons with the C11 carbon missing. The stereochemical configurations at C5 and C9 lead to cis fused rings, which are common to all iridoids containing carbocylclic- or seco-skeleton in non-rearranged form. Oxidative cleavage at C7-C8 bond affords secoiridoids. The last steps in the biosynthesis of iridoids usually consist of O-glycosylation and O-alkylation. Aucubin, a glycoside iridoid, has an O-linked glucose moiety.; Aucubin is an iridoid glycoside. Iridoids are commonly found in plants and function as defensive compounds. Irioids decrease the growth rates of many generalist herbivores. Aucubin is found in the leaves of Aucuba japonica (Cornaceae), Eucommia ulmoides (Eucommiaceae), and Plantago asiatic (Plantaginaceae), etc, plants used in traditional Chinese and folk medicine. Aucubin was found to protect against liver damage induced by carbon tetrachloride or alpha-amanitin in mice and rats when 80 mg/kg was dosed intraperitoneally.; Geranyl pyrophosphate is the precursor for iridoids. Geranyl phosphate is generated through the mevalonate pathway or the methylerythritol phosphate pathway. The initial steps of the pathway involve the fusion of three molecules of acetyl-CoA to produce the C6 compound 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). HMG-CoA is then reduced in two steps by the enzyme HMG-CoA reductase. The resulting mevalonate is then sequentially phosphorylated by two separate kinases, mevalonate kinase and phosphomevalonate kinase, to form 5-pyrophosphomevalonate. Phosphosphomevalonate decarboxylase through a concerted decarboxylation reaction affords isopentenyl pyrophosphate (IPP). IPP is the basic C5 building block that is added to prenyl phosphate cosubstrates to form longer chains. IPP is isomerized to the allylic ester dimethylallyl pyrophosphate (DMAPP) by IPP isomerase. Through a multistep process, including the dephosphorylation DMAPP, IPP and DMAPP are combinded to from the C10 compound geranyl pyrophosphate (GPP). Geranyl pyrophosphate is a major branch point for terpenoid synthesis.; The cyclizaton reaction to form the iridoid pyrane ring may result from one of two routes: route 1 - a hydride nucleophillic attack on C1 will lead to 1-O-carbonyl atom attack on C3, yielding the lactone ring; route 2 - loss of proton from carbon 4 leads to the formation of a double bond C3-C4; consequently the 3-0-carbonyl atom will attach to C1. Aucubin is an organic molecular entity. It has a role as a metabolite. Aucubin is a natural product found in Verbascum lychnitis, Plantago media, and other organisms with data available. See also: Chaste tree fruit (part of); Rehmannia glutinosa Root (part of); Plantago ovata seed (part of). Aucubin, an iridoid glucoside, is isolated from Plantago asiatica, Eucommia ulmoides, the leaves of Aucuba japonica and more recently from butterfly larva. Aucubin has many biological activities, such as antioxidant, anti-aging, anti-inflammatory, antimicrobial, anti-fibrotic, anti-cancer, hepatoprotective, neuroprotective and osteoprotective effects[1][2][3]. Aucubin, an iridoid glucoside, is isolated from Plantago asiatica, Eucommia ulmoides, the leaves of Aucuba japonica and more recently from butterfly larva. Aucubin has many biological activities, such as antioxidant, anti-aging, anti-inflammatory, antimicrobial, anti-fibrotic, anti-cancer, hepatoprotective, neuroprotective and osteoprotective effects[1][2][3].

   

Zongorine

(1R,2R,5S,7R,8R,9R,13R,16S,17R)-11-ethyl-7,16-dihydroxy-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.15,8.01,10.02,8.013,17]nonadecan-4-one

C22H31NO3 (357.2304)


Songorine is a kaurane diterpenoid. Songorine is a diterpenoid alkaloid isolated from the genus Aconitum. Songorine is a GABAA receptor antagonist in rat brain and has anti cancer, antiarrhythmic and anti-inflammatory activities. Songorine has the potential for the treatment of Epithelial ovarian cancer (EOC)[1]. Songorine is a diterpenoid alkaloid isolated from the genus Aconitum. Songorine is a GABAA receptor antagonist in rat brain and has anti cancer, antiarrhythmic and anti-inflammatory activities. Songorine has the potential for the treatment of Epithelial ovarian cancer (EOC)[1]. Songorine is a diterpenoid alkaloid isolated from the genus Aconitum. Songorine is a GABAA receptor antagonist in rat brain and has anti cancer, antiarrhythmic and anti-inflammatory activities. Songorine has the potential for the treatment of Epithelial ovarian cancer (EOC)[1].

   

Isoquercitrin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O12 (464.0955)


Quercetin 3-O-beta-D-glucopyranoside is a quercetin O-glucoside that is quercetin with a beta-D-glucosyl residue attached at position 3. Isolated from Lepisorus contortus, it exhibits antineoplastic activityand has been found to decrease the rate of polymerization and sickling of red blood cells It has a role as an antineoplastic agent, a plant metabolite, a bone density conservation agent, an osteogenesis regulator, an antioxidant, a histamine antagonist, an antipruritic drug and a geroprotector. It is a quercetin O-glucoside, a tetrahydroxyflavone, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a beta-D-glucose. It is a conjugate acid of a quercetin 3-O-beta-D-glucopyranoside(1-). Isoquercetin has been used in trials studying the treatment of Kidney Cancer, Renal cell carcinoma, Advanced Renal Cell Carcinoma, Thromboembolism of Vein in Pancreatic Cancer, and Thromboembolism of Vein VTE in Colorectal Cancer, among others. Isoquercitrin is a natural product found in Ficus auriculata, Lotus ucrainicus, and other organisms with data available. Isoquercetin is an orally bioavailable, glucoside derivative of the flavonoid quercetin and protein disulfide isomerase (PDI) inhibitor, with antioxidant and potential antithrombotic activity. As an antioxidant, isoquercetin scavenges free radicals and inhibits oxidative damage to cells. As a PDI inhibitor, this agent blocks PDI-mediated platelet activation, and fibrin generation, which prevents thrombus formation after vascular injury. In addition, isoquercetin is an alpha-glucosidase inhibitor. PDI, an oxidoreductase secreted by activated endothelial cells and platelets, plays a key role in the initiation of the coagulation cascade. Cancer, in addition to other thrombotic disorders, increases the risk of thrombus formation. Isoquercitrin is found in alcoholic beverages. Isoquercitrin occurs widely in plants. Isoquercitrin is present in red wine.Isoquercitin can be isolated from mangoes and from Rheum nobile, the Noble rhubarb or Sikkim rhubarb, a giant herbaceous plant native to the Himalaya. Quercetin glycosides are also present in tea. (Wikipedia A quercetin O-glucoside that is quercetin with a beta-D-glucosyl residue attached at position 3. Isolated from Lepisorus contortus, it exhibits antineoplastic activityand has been found to decrease the rate of polymerization and sickling of red blood cells [Raw Data] CB053_Isoquercitrin_pos_10eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_pos_30eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_pos_50eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_pos_40eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_pos_20eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_neg_40eV_000017.txt [Raw Data] CB053_Isoquercitrin_neg_20eV_000017.txt [Raw Data] CB053_Isoquercitrin_neg_50eV_000017.txt [Raw Data] CB053_Isoquercitrin_neg_30eV_000017.txt [Raw Data] CB053_Isoquercitrin_neg_10eV_000017.txt Quercetin 3-glucoside. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=482-35-9 (retrieved 2024-07-09) (CAS RN: 482-35-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor.

   

L-Threonine

(2S,3R)-2-amino-3-hydroxybutanoic acid

C4H9NO3 (119.0582)


L-threonine is an optically active form of threonine having L-configuration. It has a role as a nutraceutical, a micronutrient, a Saccharomyces cerevisiae metabolite, a plant metabolite, an Escherichia coli metabolite, a human metabolite, an algal metabolite and a mouse metabolite. It is an aspartate family amino acid, a proteinogenic amino acid, a threonine and a L-alpha-amino acid. It is a conjugate base of a L-threoninium. It is a conjugate acid of a L-threoninate. It is an enantiomer of a D-threonine. It is a tautomer of a L-threonine zwitterion. An essential amino acid occurring naturally in the L-form, which is the active form. It is found in eggs, milk, gelatin, and other proteins. L-Threonine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Threonine is an essential amino acid in humans (provided by food), Threonine is an important residue of many proteins, such as tooth enamel, collagen, and elastin. An important amino acid for the nervous system, threonine also plays an important role in porphyrin and fat metabolism and prevents fat buildup in the liver. Useful with intestinal disorders and indigestion, threonine has also been used to alleviate anxiety and mild depression. (NCI04) Threonine is an essential amino acid in humans. It is abundant in human plasma, particularly in newborns. Severe deficiency of threonine causes neurological dysfunction and lameness in experimental animals. Threonine is an immunostimulant which promotes the growth of thymus gland. It also can probably promote cell immune defense function. This amino acid has been useful in the treatment of genetic spasticity disorders and multiple sclerosis at a dose of 1 gram daily. It is highly concentrated in meat products, cottage cheese and wheat germ. The threonine content of most of the infant formulas currently on the market is approximately 20\\\\\\% higher than the threonine concentration in human milk. Due to this high threonine content the plasma threonine concentrations are up to twice as high in premature infants fed these formulas than in infants fed human milk. The whey proteins which are used for infant formulas are sweet whey proteins. Sweet whey results from cheese production. Threonine catabolism in mammals appears to be due primarily (70-80\\\\\\%) to the activity of threonine dehydrogenase (EC 1.1.1.103) that oxidizes threonine to 2-amino-3-oxobutyrate, which forms glycine and acetyl CoA, whereas threonine dehydratase (EC 4.2.1.16) that catabolizes threonine into 2-oxobutyrate and ammonia, is significantly less active. Increasing the threonine plasma concentrations leads to accumulation of threonine and glycine in the brain. Such accumulation affects the neurotransmitter balance which may have consequences for the brain development during early postnatal life. Thus, excessive threonine intake during infant feeding should be avoided. (A3450). An essential amino acid occurring naturally in the L-form, which is the active form. It is found in eggs, milk, gelatin, and other proteins. See also: Amlisimod (monomer of) ... View More ... Threonine (Thr) or L-threonine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-threonine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Threonine is found in all organisms ranging from bacteria to plants to animals. It is classified as a polar, uncharged (at physiological pH), aliphatic amino acid. Threonine is sometimes considered as a branched chain amino acid. Threonine was actually the last of the 20 amino acids to be discovered (in 1938). It was named threonine because it was similar in structure to threonic acid, a four-carbon monosaccharide. Threonine is an essential amino acid in humans, meaning the body cannot synthesize it and that it must be obtained from the diet. Foods high in threonine include cottage cheese, poultry, fish, meat, lentils, black turtle bean and sesame seeds. Adult humans require about 20 mg/kg body weight/day. In plants and microorganisms, threonine is synthesized from aspartic acid via alpha-aspartyl-semialdehyde and homoserine. In proteins, the threonine residue is susceptible to numerous posttranslational modifications. The hydroxyl side-chain can undergo O-linked glycosylation and phosphorylation through the action of a threonine kinase. Threonine is abundant in human plasma, particularly in newborns. Severe deficiency of threonine causes neurological dysfunction and lameness in experimental animals. Threonine is an immunostimulant which promotes the growth of thymus gland. It also can probably promote cell immune defense function. The threonine content of most of the infant formulas currently on the market is approximately 20\\\\\\% higher than the threonine concentration in human milk. Due to this high threonine content the plasma threonine concentrations are up to twice as high in premature infants fed these formulas than in infants fed human milk. The whey proteins which are used for infant formulas are sweet whey proteins. Sweet whey results from cheese production. Increasing the threonine plasma concentrations leads to accumulation of threonine and glycine in the brain. Such accumulation affects the neurotransmitter balance which may have consequences for the brain development during early postnatal life. Thus, excessive threonine intake during infant feeding should be avoided. (PMID 9853925). Threonine is metabolized in at least two ways. In many animals it is converted to pyruvate via threonine dehydrogenase. An intermediate in this pathway can undergo thiolysis with CoA to produce acetyl-CoA and glycine. In humans the gene for threonine dehydrogenase is an inactive pseudogene, so threonine is converted to alpha-ketobutyrate. From wide variety of protein hydrolysates. Dietary supplement, nutrient L-Threonine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=72-19-5 (retrieved 2024-07-01) (CAS RN: 72-19-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). DL-Threonine, an essential amino acid, has the potential to treat hypostatic leg ulceration[1]. L-Threonine is a natural amino acid, can be produced by microbial fermentation, and is used in food, medicine, or feed[1]. L-Threonine is a natural amino acid, can be produced by microbial fermentation, and is used in food, medicine, or feed[1].

   

Aconine

(1S,2R,3R,4R,5R,6S,7S,8R,9R,13R,14R,16S,17S,18R)-11-ethyl-6,16,18-trimethoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.12,5.01,10.03,8.013,17]nonadecane-4,5,7,8,14-pentol

C25H41NO9 (499.2781)


A diterpene alkaloid with formula C25H41NO9 that is isolated from several Aconitum species. Aconine is a diterpene alkaloid with formula C25H41NO9 that is isolated from several Aconitum species. It has a role as a plant metabolite, a human urinary metabolite, a NF-kappaB inhibitor and a xenobiotic. It is a bridged compound, a diterpene alkaloid, an organic heteropolycyclic compound, a polyether, a tertiary amino compound, a pentol, a secondary alcohol and a tertiary alcohol. It derives from a hydride of an aconitane. Jesaconine is a natural product found in Euglena gracilis, Aconitum, and Aconitum pendulum with data available. Origin: Plant; SubCategory_DNP: Terpenoid alkaloids, Diterpene alkaloid, Aconitum alkaloid Aconine inhibits receptor activator of nuclear factor (NF)-κB ligand (RANKL)-induced NF-κB activation. Aconine inhibits receptor activator of nuclear factor (NF)-κB ligand (RANKL)-induced NF-κB activation.

   

Isobergapten

5-BENZOFURANACRYLIC ACID, 4-HYDROXY-6-METHOXY-, .DELTA.-LACTONE

C12H8O4 (216.0423)


Isobergapten is a furanocoumarin. Isobergapten is a natural product found in Dorstenia psilurus, Saposhnikovia divaricata, and other organisms with data available. Isobergapten is a furocoumarin. Furocoumarins, are phototoxic and photocarcinogenic. They intercalate DNA and photochemically induce mutations. Furocoumarins are botanical phytoalexins found to varying extents in a variety of vegetables and fruits, notably citrus fruits. The levels of furocoumarins present in our diets, while normally well below that causing evident acute phototoxicity, do cause pharmacologically relevant drug interactions. Some are particularly active against cytochrome P450s. For example, in humans, bergamottin and dihydroxybergamottin are responsible for the grapefruit juice effect, in which these furanocoumarins affect the metabolism of certain drugs. Isobergapten is a member of the class of compounds known as angular furanocoumarins. Angular furanocoumarins are furanocoumarins, with a structure characterized by a furan ring angularly fused to a coumarin. Isobergapten is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Isobergapten can be found in parsnip, which makes isobergapten a potential biomarker for the consumption of this food product. Isobergapten is a non-carcinogenic (not listed by IARC) potentially toxic compound. Furocoumarin toxins can cause stomach ache and may also cause a painful skin reaction when contact with the parsnip plant is combined with UV rays from sunlight (L579) (T3DB). Isobergapten is an allelopathic inhibitor isolated from seeds of Hevacleum laciniatum[1]. Isobergapten is an allelopathic inhibitor isolated from seeds of Hevacleum laciniatum[1].

   

Lycorine

1H-[1,3]Dioxolo[4,5-j]pyrrolo[3,2,1-de]phenanthridine-1,2-diol, 2,4,5,7,12b,12c-hexahydro-, (1S,2S,12bS,12cS)-

C16H17NO4 (287.1158)


Lycorine is an indolizidine alkaloid that is 3,12-didehydrogalanthan substituted by hydroxy groups at positions and 2 and a methylenedioxy group across positions 9 and 10. Isolated from Crinum asiaticum, it has been shown to exhibit antimalarial activity. It has a role as a protein synthesis inhibitor, an antimalarial, a plant metabolite and an anticoronaviral agent. It derives from a hydride of a galanthan. Lycorine is a natural product found in Sternbergia clusiana, Pancratium trianthum, and other organisms with data available. Lycorine is a toxic crystalline alkaloid found in various Amaryllidaceae species, such as the cultivated bush lily (Clivia miniata), surprise lilies (Lycoris), and daffodils (Narcissus). It may be highly poisonous, or even lethal, when ingested in certain quantities. Symptoms of lycorine toxicity are vomiting, diarrhea, and convulsions. Lycorine, definition at mercksource.com Regardless, it is sometimes used medicinally, a reason why some groups may harvest the very popular Clivia miniata. An indolizidine alkaloid that is 3,12-didehydrogalanthan substituted by hydroxy groups at positions and 2 and a methylenedioxy group across positions 9 and 10. Isolated from Crinum asiaticum, it has been shown to exhibit antimalarial activity. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.144 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.136 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.138 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2316 INTERNAL_ID 2316; CONFIDENCE Reference Standard (Level 1) [Raw Data] CBA60_Lycorine_pos_30eV.txt [Raw Data] CBA60_Lycorine_pos_10eV.txt [Raw Data] CBA60_Lycorine_pos_50eV.txt [Raw Data] CBA60_Lycorine_pos_40eV.txt [Raw Data] CBA60_Lycorine_pos_20eV.txt Lycorine is a natural alkaloid extracted from the Amaryllidaceae plant. Lycorine is a potent and orally active SCAP inhibitor with a Kd value 15.24 nM. Lycorine downregulates the SCAP protein level without changing its transcription[2]. Lycorine is also a melanoma vasculogenic inhibitor[3]. Lycorine can be used for the study of prostate cancer and metabolic diseases[2].
Lycorine is a natural alkaloid extracted from the Amaryllidaceae plant. Lycorine is a potent and orally active SCAP inhibitor with a Kd value 15.24 nM. Lycorine downregulates the SCAP protein level without changing its transcription[2]. Lycorine is also a melanoma vasculogenic inhibitor[3]. Lycorine can be used for the study of prostate cancer and metabolic diseases[2].
Lycorine is a natural alkaloid extracted from the Amaryllidaceae plant. Lycorine is a potent and orally active SCAP inhibitor with a Kd value 15.24 nM. Lycorine downregulates the SCAP protein level without changing its transcription[2]. Lycorine is also a melanoma vasculogenic inhibitor[3]. Lycorine can be used for the study of prostate cancer and metabolic diseases[2].

   

dehydrocorydalin

2,3,9,10-Tetramethoxy-13-methyl-5,6-dihydroisoquinolino[3,2-a]isoquinolin-7-ium

C22H24NO4+ (366.1705)


Dehydrocorydaline is an alkaloid. Dehydrocorydaline is a natural product found in Corydalis turtschaninovii, Corydalis nobilis, and other organisms with data available. Dehydrocorydaline (13-Methylpalmatine) is an alkaloid that regulates protein expression of Bax, Bcl-2; activates caspase-7, caspase-8, and inactivates PARP[1]. Dehydrocorydaline elevates p38 MAPK activation. Anti-inflammatory and anti-cancer activities[2]. Dehydrocorydaline shows strong anti-malarial effects (IC50=38 nM), and low cytotoxicity (cell viability?>?90\\%) using P. falciparum 3D7 strain[3]. Dehydrocorydaline (13-Methylpalmatine) is an alkaloid that regulates protein expression of Bax, Bcl-2; activates caspase-7, caspase-8, and inactivates PARP[1]. Dehydrocorydaline elevates p38 MAPK activation. Anti-inflammatory and anti-cancer activities[2]. Dehydrocorydaline shows strong anti-malarial effects (IC50=38 nM), and low cytotoxicity (cell viability?>?90\%) using P. falciparum 3D7 strain[3].

   

Haematoxylin

Benz(b)indeno(1,2-d)pyran-3,4,6a,9,10(6H)-pentol, 7,11b-dihydro-, (6aS,11bR)-

C16H14O6 (302.079)


An organic heterotetracyclic compound 7,11b-dihydroindeno[2,1-c]chromene carrying five hydroxy substituents at positions 3, 4, 6a, 9 and 10. The most important and most used dye in histology, histochemistry, histopathology and in cytology. Hematoxylin appears as white to yellowish crystals that redden on exposure to light. (NTP, 1992) (+)-haematoxylin is a haematoxylin. It is an enantiomer of a (-)-haematoxylin. Hematoxylin is a natural product found in Haematoxylum brasiletto and Haematoxylum campechianum with data available. A dye obtained from the heartwood of logwood (Haematoxylon campechianum Linn., Leguminosae) used as a stain in microscopy and in the manufacture of ink. D004396 - Coloring Agents

   

Senkyunolide

1(3H)-Isobenzofuranone, 3-butyl-4,5-dihydro-, (3S)-

C12H16O2 (192.115)


Senkyunolide is a member of 2-benzofurans. Senkyunolide A is a natural product found in Ligusticum striatum, Angelica sinensis, and other organisms with data available. See also: Celery (part of); Scutellaria baicalensis Root (part of); Angelica acutiloba Root (part of) ... View More ... Senkyunolide A, isolated from Ligusticum chuanxiong Hort, has cytoprotective and antiproliferative activities. Anti-tumor activity[1][2]. Senkyunolide A, isolated from Ligusticum chuanxiong Hort, has cytoprotective and antiproliferative activities. Anti-tumor activity[1][2].

   

Isovitexin

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-4H-chromen-4-one

C21H20O10 (432.1056)


Isovitexin is a C-glycosyl compound that consists of apigenin substituted by a 1,5-anhydro-D-glucitol moiety at position 6. It has a role as an EC 3.2.1.20 (alpha-glucosidase) inhibitor and a metabolite. It is a C-glycosyl compound and a trihydroxyflavone. It is functionally related to an apigenin. It is a conjugate acid of an isovitexin-7-olate. Isovitexin is a natural product found in Carex fraseriana, Rauhiella, and other organisms with data available. See also: Fenugreek seed (part of); Acai (part of); Crataegus monogyna flowering top (part of). [Raw Data] CBA25_Isovitexin_neg_20eV_1-7_01_1425.txt [Raw Data] CBA25_Isovitexin_neg_10eV_1-7_01_1369.txt [Raw Data] CBA25_Isovitexin_pos_30eV_1-7_01_1399.txt [Raw Data] CBA25_Isovitexin_neg_40eV_1-7_01_1427.txt [Raw Data] CBA25_Isovitexin_neg_30eV_1-7_01_1426.txt [Raw Data] CBA25_Isovitexin_neg_50eV_1-7_01_1428.txt [Raw Data] CBA25_Isovitexin_pos_20eV_1-7_01_1398.txt [Raw Data] CBA25_Isovitexin_pos_10eV_1-7_01_1358.txt [Raw Data] CBA25_Isovitexin_pos_40eV_1-7_01_1400.txt [Raw Data] CBA25_Isovitexin_pos_50eV_1-7_01_1401.txt Isovitexin is a flavonoid isolated from passion flower, Cannabis and, and the palm, possesses anti-inflammatory and anti-oxidant activities; Isovitexin acts like a JNK1/2 inhibitor and inhibits the activation of NF-κB. Isovitexin is a flavonoid isolated from passion flower, Cannabis and, and the palm, possesses anti-inflammatory and anti-oxidant activities; Isovitexin acts like a JNK1/2 inhibitor and inhibits the activation of NF-κB.

   

Isoorientin 7-O-(6'-O-(E)-feruloyl)glucoside

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-4H-chromen-4-one

C21H20O11 (448.1006)


Isoorientin 7-o-(6-o-(e)-feruloyl)glucoside, also known as homoorientin or luteolin-6-C-beta-D-glucoside, is a member of the class of compounds known as flavonoid c-glycosides. Flavonoid c-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to the 2-phenylchromen-4-one flavonoid backbone. Isoorientin 7-o-(6-o-(e)-feruloyl)glucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Isoorientin 7-o-(6-o-(e)-feruloyl)glucoside can be synthesized from luteolin. Isoorientin 7-o-(6-o-(e)-feruloyl)glucoside is also a parent compound for other transformation products, including but not limited to, isoorientin 7-O-glucoside, 7-O-[alpha-L-rhamnosyl-(1->2)-beta-D-glucosyl]isoorientin, and 7-O-(6-sinapoylglucosyl)isoorientin. Isoorientin 7-o-(6-o-(e)-feruloyl)glucoside can be found in barley, which makes isoorientin 7-o-(6-o-(e)-feruloyl)glucoside a potential biomarker for the consumption of this food product. Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA21_Isoorientin_neg_20eV_1-3_01_1409.txt [Raw Data] CBA21_Isoorientin_pos_20eV_1-3_01_1382.txt [Raw Data] CBA21_Isoorientin_pos_50eV_1-3_01_1385.txt [Raw Data] CBA21_Isoorientin_neg_40eV_1-3_01_1411.txt [Raw Data] CBA21_Isoorientin_neg_10eV_1-3_01_1365.txt [Raw Data] CBA21_Isoorientin_neg_50eV_1-3_01_1412.txt [Raw Data] CBA21_Isoorientin_pos_10eV_1-3_01_1354.txt [Raw Data] CBA21_Isoorientin_pos_40eV_1-3_01_1384.txt [Raw Data] CBA21_Isoorientin_pos_30eV_1-3_01_1383.txt [Raw Data] CBA21_Isoorientin_neg_30eV_1-3_01_1410.txt Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM. Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM.

   

Isoliquiritin

(E)-1-(2,4-Dihydroxyphenyl)-3-(4-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)phenyl)prop-2-en-1-one

C21H22O9 (418.1264)


Isoliquiritin is a monosaccharide derivative that is trans-chalcone substituted by hydroxy groups at positions 2 and 4 and a beta-D-glucopyranosyloxy group at position 4 respectively. It has a role as an antineoplastic agent and a plant metabolite. It is a member of chalcones, a member of resorcinols, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a trans-chalcone. Isoliquiritin is a natural product found in Allium chinense, Portulaca oleracea, and other organisms with data available. See also: Glycyrrhiza Glabra (part of). Isoliquiritin is found in fruits. Isoliquiritin is isolated from Glycyrrhiza specie Isolated from Glycyrrhiza subspecies Isoliquiritin is found in tea and fruits. Isoliquiritin, isolated from Licorice Root, inhibits angiogenesis and tube formation. Isoliquiritin also exhibits antidepressant-like effects and antifungal activity[1][2][3]. Isoliquiritin, isolated from Licorice Root, inhibits angiogenesis and tube formation. Isoliquiritin also exhibits antidepressant-like effects and antifungal activity[1][2][3].

   

Vitamin D3

(1S,3Z)-3-((2E)-2-((1R,3AR,7AS)-7A-METHYL-1-((2R)-6-METHYLHEPTAN-2-YL)-2,3,3A,5,6,7-HEXAHYDRO-1H-INDEN-4-YLIDENE)ETHYLIDENE)-4-METHYLIDENE-CYCLOHEXAN-1-OL

C27H44O (384.3392)


Vitamin d3 appears as fine colorless crystals. Water insoluble. (NTP, 1992) Calciol is a hydroxy seco-steroid that is (5Z,7E)-9,10-secocholesta-5,7,10(19)-triene in which the pro-S hydrogen at position 3 has been replaced by a hydroxy group. It is the inactive form of vitamin D3, being hydroxylated in the liver to calcidiol (25-hydroxyvitamin D3), which is then further hydroxylated in the kidney to give calcitriol (1,25-dihydroxyvitamin D3), the active hormone. It has a role as a human metabolite and a geroprotector. It is a seco-cholestane, a hydroxy seco-steroid, a member of D3 vitamins, a secondary alcohol and a steroid hormone. Vitamin D, in general, is a secosteroid generated in the skin when 7-dehydrocholesterol located there interacts with ultraviolet irradiation - like that commonly found in sunlight. Both the endogenous form of vitamin D (that results from 7-dehydrocholesterol transformation), vitamin D3 (cholecalciferol), and the plant-derived form, vitamin D2 (ergocalciferol), are considered the main forms of vitamin d and are found in various types of food for daily intake. Structurally, ergocalciferol differs from cholecalciferol in that it possesses a double bond between C22 and C23 and has an additional methyl group at C24. Finally, ergocalciferol is pharmacologically less potent than cholecalciferol, which makes vitamin D3 the preferred agent for medical use. Appropriate levels of vitamin D must be upheld in the body in order to maintain calcium and phosphorus levels in a healthy physiologic range to sustain a variety of metabolic functions, transcription regulation, and bone metabolism. However, studies are also ongoing to determine whether or not cholecalciferol may also play certain roles in cancer, autoimmune disorders, cardiovascular disease, and other medical conditions that may be associated with vitamin D deficiency. Cholecalciferol is a Vitamin D. Cholecalciferol is a natural product found in Taiwanofungus camphoratus, Theobroma cacao, and other organisms with data available. Cholecalciferol is a steroid hormone produced in the skin when exposed to ultraviolet light or obtained from dietary sources. The active form of cholecalciferol, 1,25-dihydroxycholecalciferol (calcitriol) plays an important role in maintaining blood calcium and phosphorus levels and mineralization of bone. The activated form of cholecalciferol binds to vitamin D receptors and modulates gene expression. This leads to an increase in serum calcium concentrations by increasing intestinal absorption of phosphorus and calcium, promoting distal renal tubular reabsorption of calcium and increasing osteoclastic resorption. Cholecalciferol is only found in individuals that have used or taken this drug. It is a derivative of 7-dehydroxycholesterol formed by ultraviolet rays breaking of the C9-C10 bond. It differs from ergocalciferol in having a single bond between C22 and C23 and lacking a methyl group at C24. [PubChem]The first step involved in the activation of vitamin D3 is a 25-hydroxylation which is catalysed by the 25-hydroxylase in the liver and then by other enzymes. The mitochondrial sterol 27-hydroxylase catalyses the first reaction in the oxidation of the side chain of sterol intermediates. The active form of vitamin D3 (calcitriol) binds to intracellular receptors that then function as transcription factors to modulate gene expression. Like the receptors for other steroid hormones and thyroid hormones, the vitamin D receptor has hormone-binding and DNA-binding domains. The vitamin D receptor forms a complex with another intracellular receptor, the retinoid-X receptor, and that heterodimer is what binds to DNA. In most cases studied, the effect is to activate transcription, but situations are also known in which vitamin D suppresses transcription. Calcitriol increases the serum calcium concentrations by: increasing GI absorption of phosphorus and calcium, increasing osteoclastic resorption, and increasing distal renal tubula... Vitamin D3, also called cholecalciferol, is one of the forms of vitamin D. Vitamin D3 is a steroid hormone that has long been known for its important role in regulating body levels of calcium and phosphorus, in mineralization of bone, and for the assimilation of Vitamin A. It is structurally similar to steroids such as testosterone, cholesterol, and cortisol (although vitamin D3, itself, is a secosteroid). Vitamin D3 is a derivative of 7-dehydroxycholesterol formed by ultraviolet rays breaking the C9-C10 bond. It differs from ergocalciferol in having a single bond between C22 and C23 and lacking a methyl group at C24. Vitamin D3 can also come from dietary sources, such as beef liver, cheese, egg yolks, and fatty fish (PubChem). The first step involved in the activation of vitamin D3 is a 25-hydroxylation catalyzed by 25-hydroxylase in the liver and then by other enzymes. The mitochondrial sterol 27-hydroxylase catalyzes the first reaction in the oxidation of the side chain of sterol intermediates. The active form of vitamin D3 (calcitriol) binds to intracellular receptors that then function as transcription factors to modulate gene expression. Like the receptors for other steroid hormones and thyroid hormones, the vitamin D receptor has hormone-binding and DNA-binding domains. The vitamin D receptor forms a complex with another intracellular receptor, the retinoid-X receptor, and that heterodimer is what binds to DNA. In most cases studied, the effect is to activate transcription, but situations are also known in which vitamin D suppresses transcription. Calcitriol increases the serum calcium concentrations by (1) increasing GI absorption of phosphorus and calcium, (2) increasing osteoclastic resorption, and (3) increasing distal renal tubular reabsorption of calcium. Calcitriol appears to promote intestinal absorption of calcium through binding to the vitamin D receptor in the mucosal cytoplasm of the intestine. Subsequently, calcium is absorbed through the formation of a calcium-binding protein. Vitamin d, also known as colecalciferol or calciol, belongs to vitamin d and derivatives class of compounds. Those are compounds containing a secosteroid backbone, usually secoergostane or secocholestane. Thus, vitamin d is considered to be a secosteroid lipid molecule. Vitamin d is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Vitamin d can be found in a number of food items such as dumpling, vinegar, chocolate, and margarine, which makes vitamin d a potential biomarker for the consumption of these food products. Vitamin d can be found primarily in blood and urine. Vitamin d is a non-carcinogenic (not listed by IARC) potentially toxic compound. Vitamin d is a drug which is used for the treatment of vitamin d deficiency or insufficiency, refractory rickets (vitamin d resistant rickets), familial hypophosphatemia and hypoparathyroidism, and in the management of hypocalcemia and renal osteodystrophy in patients with chronic renal failure undergoing dialysis. also used in conjunction with calcium in the management and prevention of primary or corticosteroid-induced osteoporosis. A - Alimentary tract and metabolism > A11 - Vitamins > A11C - Vitamin a and d, incl. combinations of the two > A11CC - Vitamin d and analogues COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D000077264 - Calcium-Regulating Hormones and Agents D018977 - Micronutrients > D014815 - Vitamins D050071 - Bone Density Conservation Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Isopimpinellin

InChI=1/C13H10O5/c1-15-10-7-3-4-9(14)18-12(7)13(16-2)11-8(10)5-6-17-11/h3-6H,1-2H3

C13H10O5 (246.0528)


Isopimpinellin is a member of psoralens. Isopimpinellin is a natural product found in Zanthoxylum mayu, Zanthoxylum ovalifolium, and other organisms with data available. Isopimpinellin is found in angelica. Isopimpinellin is present in the seeds of Pastinaca sativa (parsnip) Isopimpinellin belongs to the family of Furanocoumarins. These are polycyclic aromatic compounds containing a furan ring fused to a coumarin moeity. See also: Angelica keiskei top (part of). Present in the seeds of Pastinaca sativa (parsnip). Isopimpinellin is found in many foods, some of which are carrot, anise, celery stalks, and fennel. Isopimpinellin is found in angelica. Isopimpinellin is present in the seeds of Pastinaca sativa (parsnip D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Isopimpinellin, an orally active compound isolated from Glomerella cingulata. Isopimpinellin blocks DNA adduct formation and skin tumor initiation by 7,12-dimethylbenz[a]anthracene. Isopimpinellin possesses anti-leishmania effect[1]. Isopimpinellin, an orally active compound isolated from Glomerella cingulata. Isopimpinellin blocks DNA adduct formation and skin tumor initiation by 7,12-dimethylbenz[a]anthracene. Isopimpinellin possesses anti-leishmania effect[1].

   

Melatonin

N-[2-(5-methoxy-1H-indol-3-yl)ethyl]acetamide

C13H16N2O2 (232.1212)


Melatonin is a member of the class of acetamides that is acetamide in which one of the hydrogens attached to the nitrogen atom is replaced by a 2-(5-methoxy-1H-indol-3-yl)ethyl group. It is a hormone secreted by the pineal gland in humans. It has a role as a hormone, an anticonvulsant, an immunological adjuvant, a radical scavenger, a central nervous system depressant, a human metabolite, a mouse metabolite and a geroprotector. It is a member of acetamides and a member of tryptamines. It is functionally related to a tryptamine. Melatonin is a biogenic amine that is found in animals, plants and microbes. Aaron B. Lerner of Yale University is credited for naming the hormone and for defining its chemical structure in 1958. In mammals, melatonin is produced by the pineal gland. The pineal gland is small endocrine gland, about the size of a rice grain and shaped like a pine cone (hence the name), that is located in the center of the brain (rostro-dorsal to the superior colliculus) but outside the blood-brain barrier. The secretion of melatonin increases in darkness and decreases during exposure to light, thereby regulating the circadian rhythms of several biological functions, including the sleep-wake cycle. In particular, melatonin regulates the sleep-wake cycle by chemically causing drowsiness and lowering the body temperature. Melatonin is also implicated in the regulation of mood, learning and memory, immune activity, dreaming, fertility and reproduction. Melatonin is also an effective antioxidant. Most of the actions of melatonin are mediated through the binding and activation of melatonin receptors. Individuals with autism spectrum disorders (ASD) may have lower than normal levels of melatonin. A 2008 study found that unaffected parents of individuals with ASD also have lower melatonin levels, and that the deficits were associated with low activity of the ASMT gene, which encodes the last enzyme of melatonin synthesis. Reduced melatonin production has also been proposed as a likely factor in the significantly higher cancer rates in night workers. Melatonin is a hormone produced by the pineal gland that has multiple effects including somnolence, and is believed to play a role in regulation of the sleep-wake cycle. Melatonin is available over-the-counter and is reported to have beneficial effects on wellbeing and sleep. Melatonin has not been implicated in causing serum enzyme elevations or clinically apparent liver injury. Melatonin is a natural product found in Mesocricetus auratus, Ophiopogon japonicus, and other organisms with data available. Therapeutic Melatonin is a therapeutic chemically synthesized form of the pineal indole melatonin with antioxidant properties. The pineal synthesis and secretion of melatonin, a serotonin-derived neurohormone, is dependent on beta-adrenergic receptor function. Melatonin is involved in numerous biological functions including circadian rhythm, sleep, the stress response, aging, and immunity. Melatonin is a hormone involved in sleep regulatory activity, and a tryptophan-derived neurotransmitter, which inhibits the synthesis and secretion of other neurotransmitters such as dopamine and GABA. Melatonin is synthesized from serotonin intermediate in the pineal gland and the retina where the enzyme 5-hydroxyindole-O-methyltransferase, that catalyzes the last step of synthesis, is found. This hormone binds to and activates melatonin receptors and is involved in regulating the sleep and wake cycles. In addition, melatonin possesses antioxidative and immunoregulatory properties via regulating other neurotransmitters. Melatonin is a biogenic amine that is found in animals, plants and microbes. Aaron B. Lerner of Yale University is credited for naming the hormone and for defining its chemical structure in 1958. In mammals, melatonin is produced by the pineal gland. The pineal gland is small endocrine gland, about the size of a rice grain and shaped like a pine cone (hence the name), that is l... Melatonin is a biogenic amine that is found in animals, plants and microbes. Aaron B. Lerner of Yale University is credited for naming the hormone and for defining its chemical structure in 1958. In mammals, melatonin is produced by the pineal gland. The pineal gland is small endocrine gland, about the size of a rice grain and shaped like a pine cone (hence the name), that is located in the center of the brain (rostro-dorsal to the superior colliculus) but outside the blood-brain barrier. The secretion of melatonin increases in darkness and decreases during exposure to light, thereby regulating the circadian rhythms of several biological functions, including the sleep-wake cycle. In particular, melatonin regulates the sleep-wake cycle by chemically causing drowsiness and. lowering the body temperature. Melatonin is also implicated in the regulation of mood,learning and memory, immune activity, dreaming, fertility and reproduction. Melatonin is also an effective antioxidant. Most of the actions of melatonin are mediated through the binding and activation of melatonin receptors. Individuals with autism spectrum disorders(ASD) may have lower than normal levels of melatonin. A 2008 study found that unaffected parents of individuals with ASD also have lower melatonin levels, and that the deficits. were associated with low activity of the ASMT gene, which encodes the last enzyme of melatonin synthesis. Reduced melatonin production has also been proposed as a likely factor in the significantly higher cancer rates in night workers. Melatonin, also known chemically as N-acetyl-5-methoxytryptamine, is a naturally occurring compound found in animals, plants and microbes. In animals, circulating levels of the hormone melatonin vary in a daily cycle, thereby allowing the entrainment of the circadian rhythms of several biological functions. A member of the class of acetamides that is acetamide in which one of the hydrogens attached to the nitrogen atom is replaced by a 2-(5-methoxy-1H-indol-3-yl)ethyl group. It is a hormone secreted by the pineal gland in humans. Melatonin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=73-31-4 (retrieved 2024-07-01) (CAS RN: 73-31-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Melatonin is a hormone made by the pineal gland that can activates melatonin receptor. Melatonin plays a role in sleep and possesses important antioxidative and anti-inflammatory properties[1][2][3]. Melatonin is a novel selective ATF-6 inhibitor and induces human hepatoma cell apoptosis through COX-2 downregulation[4]. Melatonin attenuates palmitic acid-induced (HY-N0830) mouse granulosa cells apoptosis via endoplasmic reticulum stress[5]. Melatonin is a hormone made by the pineal gland that can activates melatonin receptor. Melatonin plays a role in sleep and possesses important antioxidative and anti-inflammatory properties[1][2][3]. Melatonin is a novel selective ATF-6 inhibitor and induces human hepatoma cell apoptosis through COX-2 downregulation[4]. Melatonin attenuates palmitic acid-induced (HY-N0830) mouse granulosa cells apoptosis via endoplasmic reticulum stress[5].

   

Ursolic acid

(1S,2R,4aS,6aS,6bR,8aR,10S,12aR,12bR,14bS)-10-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O3 (456.3603)


Ursolic acid is a ubiquitous triterpenoid in plant kingdom, medicinal herbs, and is an integral part of the human diet. During the last decade over 700 research articles have been published on triterpenoids research, reflecting tremendous interest and progress in our understanding of these compounds. This included the isolation and purification of these tritepernoids from various plants and herbs, the chemical modifications to make more effective and water soluble derivatives, the pharmacological research on their beneficial effects, the toxicity studies, and the clinical use of these triterpenoids in various diseases including anticancer chemotherapies. Ursolic acid (UA), a pentacyclic triterpene acid, has been isolated from many kinds of medicinal plants, such as Eriobotrya japonica, Rosmarinns officinalis, Melaleuca leucadendron, Ocimum sanctum and Glechoma hederaceae. UA has been reported to produce antitumor activities and antioxidant activity, and is reported to have an antioxidant activity. UA may play an important role in regulating the apoptosis induced by high glucose presumably through scavenging of ROS (reactive oxygen species). It has been found recently that ursolic acid treatment affects growth and apoptosis in cancer cells. (PMID: 15994040, 17516235, 17213663). Ursolic acid is a pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. It has a role as a plant metabolite and a geroprotector. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It derives from a hydride of an ursane. Ursolic acid is a natural product found in Gladiolus italicus, Freziera, and other organisms with data available. Ursolic Acid is a pentacyclic triterpenoid found in various fruits, vegetables and medicinal herbs, with a variety of potential pharmacologic activities including anti-inflammatory, antioxidative, antiviral, serum lipid-lowering, and antineoplastic activities. Upon administration, ursolic acid may promote apoptosis and inhibit cancer cell proliferation through multiple mechanisms. This may include the regulation of mitochondrial function through various pathways including the ROCK/PTEN and p53 pathways, the suppression of the nuclear factor-kappa B (NF-kB) pathways, and the increase in caspase-3, caspase-8 and caspase-9 activities. See also: Holy basil leaf (part of); Jujube fruit (part of); Lagerstroemia speciosa leaf (part of). D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors A pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. C274 - Antineoplastic Agent > C129839 - Apoptotic Pathway-targeting Antineoplastic Agent Found in wax of apples, pears and other fruits. V. widely distributed in plants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents D000890 - Anti-Infective Agents D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors 3-Epiursolic Acid is a triterpenoid that can be isolated from Eriobotrya japonica, acts as a competitive inhibitor of cathepsin L (IC50, 6.5 μM; Ki, 19.5 μM), with no obvious effect on cathepsin B[1]. 3-Epiursolic Acid is a triterpenoid that can be isolated from Eriobotrya japonica, acts as a competitive inhibitor of cathepsin L (IC50, 6.5 μM; Ki, 19.5 μM), with no obvious effect on cathepsin B[1]. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy.

   

Chrysosplenetin

4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3,6,7-trimethoxy-

C19H18O8 (374.1002)


Chrysosplenetin, also known as quercetagetin 3,6,7,3-tetramethyl ether or 3,6,7,3-tetra-methylquercetagetin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, chrysosplenetin is considered to be a flavonoid lipid molecule. Chrysosplenetin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Chrysosplenetin can be found in german camomile, which makes chrysosplenetin a potential biomarker for the consumption of this food product. Chrysosplenetin is an O-methylated flavonol. It can be found in the root of Berneuxia thibetica and in Chamomilla recutita . Chrysosplenetin is a tetramethoxyflavone that is the 3,6,7,3-tetramethyl ether derivative of quercetagetin. It has a role as an antiviral agent and a plant metabolite. It is a tetramethoxyflavone and a dihydroxyflavone. It is functionally related to a quercetagetin. Chrysosplenetin is a natural product found in Haplophyllum myrtifolium, Cleome amblyocarpa, and other organisms with data available. Chrysosplenetin is one of the polymethoxylated flavonoids in Artemisia annua L. (Compositae) and other several Chinese herbs. Chrysosplenetin inhibits P-gp activity and reverses the up-regulated P-gp and MDR1 levels induced by artemisinin (ART). Chrysosplenetin significantly augments the rat plasma level and anti-malarial efficacy of ART, partially due to the uncompetitive inhibition effect of Chrysosplenetin on rat CYP3A[1]. Chrysosplenetin is one of the polymethoxylated flavonoids in Artemisia annua L. (Compositae) and other several Chinese herbs. Chrysosplenetin inhibits P-gp activity and reverses the up-regulated P-gp and MDR1 levels induced by artemisinin (ART). Chrysosplenetin significantly augments the rat plasma level and anti-malarial efficacy of ART, partially due to the uncompetitive inhibition effect of Chrysosplenetin on rat CYP3A[1].

   

Rutin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one;Rutin

C27H30O16 (610.1534)


Rutin is a flavonoid known to have a variety of biological activities including antiallergic, anti-inflammatory, antiproliferative, and anticarcinogenic properties. A large number of flavonoids, mostly O-glycosides, are polyphenolic compounds of natural origin that are present in most fruits and vegetables. The average intake of the compounds by humans on a normal diet is more than 1 g per day. Although flavonoids are devoid of classical nutritional value, they are increasingly viewed as beneficial dietary components that act as potential protectors against human diseases such as coronary heart disease, cancers, and inflammatory bowel disease. Rutin acts as a quercetin deliverer to the large intestine; moreover, quercetin is extensively metabolized in the large intestine, which suggests that quercetin liberated from rutin and/or its colonic metabolites may play a role. Rutins anti-inflammatory actions are mediated through a molecular mechanism that underlies the quercetin-mediated therapeutic effects: quercetin-mediated inhibition of tumor necrosis factor-alpha (TNF-alpha)-induced nuclear factor kappa B (NFkB) activation. TNF-alpha-induced NFkB activity plays a central role in the production of pro-inflammatory mediators involved in progression of gut inflammation. (PMID:16132362). Rutin is a rutinoside that is quercetin with the hydroxy group at position C-3 substituted with glucose and rhamnose sugar groups. It has a role as a metabolite and an antioxidant. It is a disaccharide derivative, a quercetin O-glucoside, a tetrahydroxyflavone and a rutinoside. A flavonol glycoside found in many plants, including buckwheat; tobacco; forsythia; hydrangea; viola, etc. It has been used therapeutically to decrease capillary fragility. Rutin is a natural product found in Ficus virens, Visnea mocanera, and other organisms with data available. A flavonol glycoside found in many plants, including BUCKWHEAT; TOBACCO; FORSYTHIA; HYDRANGEA; VIOLA, etc. It has been used therapeutically to decrease capillary fragility. See also: Quercetin (related); Ginkgo (part of); Chamomile (part of) ... View More ... First isolated from Ruta graveolens (rue). Bioflavanoid. Quercetin 3-rutinoside is found in many foods, some of which are tea, bilberry, common oregano, and lemon grass. A rutinoside that is quercetin with the hydroxy group at position C-3 substituted with glucose and rhamnose sugar groups. C - Cardiovascular system > C05 - Vasoprotectives > C05C - Capillary stabilizing agents > C05CA - Bioflavonoids IPB_RECORD: 541; CONFIDENCE confident structure [Raw Data] CBA04_Rutin_neg_50eV.txt [Raw Data] CBA04_Rutin_pos_50eV.txt [Raw Data] CBA04_Rutin_neg_40eV.txt [Raw Data] CBA04_Rutin_pos_10eV.txt [Raw Data] CBA04_Rutin_neg_20eV.txt [Raw Data] CBA04_Rutin_neg_10eV.txt [Raw Data] CBA04_Rutin_neg_30eV.txt [Raw Data] CBA04_Rutin_pos_40eV.txt [Raw Data] CBA04_Rutin_pos_30eV.txt [Raw Data] CBA04_Rutin_pos_20eV.txt Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3]. Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3].

   

Gingerol

3-Decanone, 5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-, (5S)-, 5-Hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-decanone

C17H26O4 (294.1831)


Gingerol is a beta-hydroxy ketone that is 5-hydroxydecan-3-one substituted by a 4-hydroxy-3-methoxyphenyl moiety at position 1; believed to inhibit adipogenesis. It is a constituent of fresh ginger. It has a role as an antineoplastic agent and a plant metabolite. It is a beta-hydroxy ketone and a member of guaiacols. Gingerol is a natural product found in Illicium verum, Piper nigrum, and other organisms with data available. See also: Ginger (part of). Gingerol, a plant polyphenol, is the active constituent of fresh ginger. Chemically, gingerol is a relative of capsaicin, the compound that gives chile peppers their spiciness. It is normally found as a pungent yellow oil, but also can form a low-melting crystalline solid. Constituent of ginger Zingiber officinale. (S)-[6]-Gingerol is found in many foods, some of which are caraway, star anise, cumin, and ginger. [6]-Gingerol is an active compound isolated from Ginger (Zingiber officinale), exhibits a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation. [6]-Gingerol is an active compound isolated from Ginger (Zingiber officinale), exhibits a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation. [6]-Gingerol is an active compound isolated from Ginger (Zingiber officinale), exhibits a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation.

   

Chlorogenic acid

Chlorogenic acid (constituent of echinacea angustifolia root, echinacea pallida root, echinacea purpurea root and echinacea purpurea aerial parts)

C16H18O9 (354.0951)


Chlorogenic acid is a cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 3-hydroxy group of quinic acid. It is an intermediate metabolite in the biosynthesis of lignin. It has a role as a plant metabolite and a food component. It is a cinnamate ester and a tannin. It is functionally related to a (-)-quinic acid and a trans-caffeic acid. It is a conjugate acid of a chlorogenate. Chlorogenic Acid has been used in trials studying the treatment of Advanced Cancer and Impaired Glucose Tolerance. Chlorogenic Acid is a natural product found in Pavetta indica, Fragaria nipponica, and other organisms with data available. Chlorogenic Acid is a polyphenol and the ester of caffeic acid and quinic acid that is found in coffee and black tea, with potential antioxidant and chemopreventive activities. Chlorogenic acid scavenges free radicals, which inhibits DNA damage and may protect against the induction of carcinogenesis. In addition, this agent may upregulate the expression of genes involved in the activation of the immune system and enhances activation and proliferation of cytotoxic T-lymphocytes, macrophages, and natural killer cells. Chlorogenic acid also inhibits the activity of matrix metalloproteinases. A naturally occurring phenolic acid which is a carcinogenic inhibitor. It has also been shown to prevent paraquat-induced oxidative stress in rats. (From J Chromatogr A 1996;741(2):223-31; Biosci Biotechnol Biochem 1996;60(5):765-68). See also: Arctium lappa Root (part of); Cynara scolymus leaf (part of); Lonicera japonica flower (part of) ... View More ... Chlorogenic acid is an ester of caffeic acid and quinic acid. Chlorogenic acid is the major polyphenolic compound in coffee, isolated from the leaves and fruits of dicotyledonous plants. This compound, long known as an antioxidant, also slows the release of glucose into the bloodstream after a meal. Coffee is a complex mixture of chemicals that provides significant amounts of chlorogenic acid. The chlorogenic acid content of a 200 ml (7-oz) cup of coffee has been reported to range from 70-350 mg, which would provide about 35-175 mg of caffeic acid. The results of epidemiological research suggest that coffee consumption may help prevent several chronic diseases, including type 2 diabetes mellitus, Parkinsons disease and liver disease (cirrhosis and hepatocellular carcinoma). Most prospective cohort studies have not found coffee consumption to be associated with significantly increased cardiovascular disease risk. However, coffee consumption is associated with increases in several cardiovascular disease risk factors, including blood pressure and plasma homocysteine. At present, there is little evidence that coffee consumption increases the risk of cancer. (PMID:16507475, 17368041). A cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 3-hydroxy group of quinic acid. It is an intermediate metabolite in the biosynthesis of lignin. [Raw Data] CBA08_Chlorogenic-aci_pos_10eV_1-1_01_209.txt [Raw Data] CBA08_Chlorogenic-aci_neg_30eV_1-1_01_218.txt [Raw Data] CBA08_Chlorogenic-aci_neg_20eV_1-1_01_217.txt [Raw Data] CBA08_Chlorogenic-aci_pos_30eV_1-1_01_211.txt [Raw Data] CBA08_Chlorogenic-aci_neg_40eV_1-1_01_219.txt [Raw Data] CBA08_Chlorogenic-aci_pos_20eV_1-1_01_210.txt [Raw Data] CBA08_Chlorogenic-aci_pos_50eV_1-1_01_213.txt [Raw Data] CBA08_Chlorogenic-aci_neg_50eV_1-1_01_220.txt [Raw Data] CBA08_Chlorogenic-aci_neg_10eV_1-1_01_216.txt [Raw Data] CBA08_Chlorogenic-aci_pos_40eV_1-1_01_212.txt Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb. It is an orally active antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension compound[1][2][3]. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension.

   

Fisetin

2-(3,4-dihydroxyphenyl)-3,7-dihydroxy-4H-chromen-4-one

C15H10O6 (286.0477)


Fisetin is a 7-hydroxyflavonol with additional hydroxy groups at positions 3, 3 and 4. It has a role as an EC 5.99.1.3 [DNA topoisomerase (ATP-hydrolysing)] inhibitor, an antioxidant, an anti-inflammatory agent, a metabolite, a plant metabolite and a geroprotector. It is a 3-hydroxyflavonoid, a 7-hydroxyflavonol and a tetrahydroxyflavone. It is a conjugate acid of a fisetin(1-). Fisetin is a natural product found in Acacia carneorum, Acacia buxifolia, and other organisms with data available. Fisetin is an orally bioavailable naturally occurring polyphenol found in many fruits and vegetables, with potential antioxidant, neuroprotective, anti-inflammatory, antineoplastic, senolytic, and longevity promoting activities. Upon administration, fisetin, as an antioxidant, scavenges free radicals, protect cells from oxidative stress, and is able to upregulate glutathione. It inhibits pro-inflammatory mediators, such as tumor necrosis factor alpha (TNF-a), interleukin-6 (IL-6), and nuclear factor kappa B (NF-kB). Fisetin promotes cellular metabolism, reduces senescence, regulates sirtuin function and may promote longevity. Fisetin also exerts anti-cancer activity by inhibiting certain signaling pathways. It also inhibits certain anti-apoptotic proteins and induces apoptosis in susceptible cells. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials A 7-hydroxyflavonol with additional hydroxy groups at positions 3, 3 and 4. C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor C26170 - Protective Agent > C1509 - Neuroprotective Agent C26170 - Protective Agent > C275 - Antioxidant Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 3,7,3,4-tetrahydroxyflavone, also known as 5-desoxyquercetin or fisetinidin, is a member of the class of compounds known as flavonols. Flavonols are compounds that contain a flavone (2-phenyl-1-benzopyran-4-one) backbone carrying a hydroxyl group at the 3-position. Thus, 3,7,3,4-tetrahydroxyflavone is considered to be a flavonoid lipid molecule. 3,7,3,4-tetrahydroxyflavone is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 3,7,3,4-tetrahydroxyflavone is a bitter tasting compound found in soy bean, which makes 3,7,3,4-tetrahydroxyflavone a potential biomarker for the consumption of this food product. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.847 [Raw Data] CB035_Fisetin_pos_20eV_CB000018.txt [Raw Data] CB035_Fisetin_pos_30eV_CB000018.txt [Raw Data] CB035_Fisetin_pos_40eV_CB000018.txt [Raw Data] CB035_Fisetin_pos_10eV_CB000018.txt [Raw Data] CB035_Fisetin_pos_50eV_CB000018.txt [Raw Data] CB035_Fisetin_neg_10eV_000011.txt [Raw Data] CB035_Fisetin_neg_30eV_000011.txt [Raw Data] CB035_Fisetin_neg_40eV_000011.txt [Raw Data] CB035_Fisetin_neg_20eV_000011.txt [Raw Data] CB035_Fisetin_neg_50eV_000011.txt Fisetin is a natural flavonol found in many fruits and vegetables with various benefits, such as antioxidant, anticancer, neuroprotection effects. Fisetin is a natural flavonol found in many fruits and vegetables with various benefits, such as antioxidant, anticancer, neuroprotection effects. Fisetin is a natural flavonol found in many fruits and vegetables with various benefits, such as antioxidant, anticancer, neuroprotection effects.

   

Oleandrin

[(3S,5R,8R,9S,10S,13R,14S,16S,17R)-14-hydroxy-3-[(2R,4S,5S,6S)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy-10,13-dimethyl-17-(5-oxo-2H-furan-3-yl)-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-16-yl] acetate

C32H48O9 (576.3298)


Oleandrin is a steroid saponin that consists of oleandrigenin having a 2,6-dideoxy-3-O-methyl-alpha-L-arabino-hexopyranosyl residue attached to the oxygen function at position 3. It is a cardenolide glycoside, a 14beta-hydroxy steroid, a steroid ester and a steroid saponin. It is functionally related to an oleandrigenin. Oleandrin has been used in trials studying the treatment of Lung Cancer and Chemotherapeutic Agent Toxicity. Oleandrin is a natural product found in Daphnis nerii, Plumeria, and other organisms with data available. Oleandrin is a lipid soluble cardiac glycoside with potential antineoplastic activity. Upon administration, oleandrin specifically binds to and inhibits the alpha3 subunit of the Na/K-ATPase pump in human cancer cells. This may inhibit the phosphorylation of Akt, upregulate MAPK, inhibit NF-kb activation and inhibit FGF-2 export and may downregulate mTOR thereby inhibiting p70S6K and S6 protein expression. All of this may lead to an induction of apoptosis. As cancer cells with relatively higher expression of the alpha3 subunit and with limited expression of the alpha1 subunit are more sensitive to oleandrin, one may predict the tumor response to treatment with lipid-soluble cardiac glycosides such as oleandrin based on the tumors Na/K-ATPase pump protein subunit expression. Overexpression of the alpha3 subunit in tumor cells correlates with tumor proliferation. See also: Nerium oleander leaf (part of). A steroid saponin that consists of oleandrigenin having a 2,6-dideoxy-3-O-methyl-alpha-L-arabino-hexopyranosyl residue attached to the oxygen function at position 3. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2262 Oleandrin (PBI-05204) inhibits the Na+, K+-ATPase activity with an IC50 of 620 nM. Oleandrin (PBI-05204) inhibits the Na+, K+-ATPase activity with an IC50 of 620 nM.

   

4-Methylumbelliferone

7-Hydroxy-4-methylcoumarin|4-Methylumbelliferone

C10H8O3 (176.0473)


Beta-methylumbelliferone appears as colorless crystals. Insoluble in water. (NTP, 1992) 4-methylumbelliferone is a hydroxycoumarin that is umbelliferone substituted by a methyl group at position 4. It has a role as an antineoplastic agent and a hyaluronic acid synthesis inhibitor. It is functionally related to an umbelliferone. Hymecromone is a natural product found in Ferula fukanensis, Dalbergia volubilis, and other organisms with data available. 4-methylumbelliferone is a metabolite found in or produced by Saccharomyces cerevisiae. A coumarin derivative possessing properties as a spasmolytic, choleretic and light-protective agent. It is also used in ANALYTICAL CHEMISTRY TECHNIQUES for the determination of NITRIC ACID. 4-methylumbelliferone is a substrate for: Liver carboxylesterase 1, Cocaine esterase, and S-formylglutathione hydrolase. A - Alimentary tract and metabolism > A05 - Bile and liver therapy > A05A - Bile therapy A hydroxycoumarin that is umbelliferone substituted by a methyl group at position 4. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78272 - Agent Affecting Nervous System > C29698 - Antispasmodic Agent D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Acquisition and generation of the data is financially supported in part by CREST/JST. 4-Methylumbelliferone is a hyaluronic acid biosynthesis inhibitor with antitumoral and antimetastatic effects. 4-Methylumbelliferone is a hyaluronic acid biosynthesis inhibitor with antitumoral and antimetastatic effects.

   

Apigenin

5,7-Dihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one

C15H10O5 (270.0528)


Apigenin is a trihydroxyflavone that is flavone substituted by hydroxy groups at positions 4, 5 and 7. It induces autophagy in leukaemia cells. It has a role as a metabolite and an antineoplastic agent. It is a conjugate acid of an apigenin-7-olate. Apigenin is a natural product found in Verbascum lychnitis, Carex fraseriana, and other organisms with data available. Apigenin is a plant-derived flavonoid that has significant promise as a skin cancer chemopreventive agent. Apigenin inhibits the expression of involucrin (hINV), a marker of keratinocyte differentiation, is increased by differentiating agents via a protein kinase Cdelta (PKCdelta), Ras, MEKK1, MEK3 cascade that increases AP1 factor level and AP1 factor binding to DNA elements in the hINV promoter. Apigenin suppresses the 12-O-tetradeconylphorbol-13-acetate-dependent increase in AP1 factor expression and binding to the hINV promoter and the increase in hINV promoter activity. Apigenin also inhibits the increase in promoter activity observed following overexpression of PKCdelta, constitutively active Ras, or MEKK1. The suppression of PKCdelta activity is associated with reduced phosphorylation of PKCdelta-Y311. Activation of hINV promoter activity by the green tea polyphenol, (-)-epigellocathecin-3-gallate, is also inhibited by apigenin, suggesting that the two chemopreventive agents can produce opposing actions in keratinocytes. (A7924). Apigenin, a flavone abundantly found in fruits and vegetables, exhibits antiproliferative, anti-inflammatory, and antimetastatic activities through poorly defined mechanisms. This flavonoid provides selective activity to promote caspase-dependent-apoptosis of leukemia cells and uncover an essential role of PKCdelta during the induction of apoptosis by apigenin. (A7925). Apigenin markedly induces the expression of death receptor 5 (DR5) and synergistically acts with exogenous soluble recombinant human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to induce apoptosis in malignant tumor cells. On the other hand, apigenin-mediated induction of DR5 expression is not observed in normal human peripheral blood mononuclear cells. Moreover, apigenin does not sensitize normal human peripheral blood mononuclear cells to TRAIL-induced apoptosis. (A7926). 5,7,4-trihydroxy-flavone, one of the FLAVONES. See also: Chamomile (part of); Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of). Apigenin is a plant-derived flavonoid that has significant promise as a skin cancer chemopreventive agent. Apigenin inhibits the expression of involucrin (hINV), a marker of keratinocyte differentiation, is increased by differentiating agents via a protein kinase Cdelta (PKCdelta), Ras, MEKK1, and MEK3 cascade that increases AP1 factor level and AP1 factor binding to DNA elements in the hINV promoter. Apigenin suppresses the 12-O-tetradeconylphorbol-13-acetate-dependent increase in AP1 factor expression and binding to the hINV promoter. Apigenin also inhibits the increase in promoter activity observed following overexpression of PKCdelta, constitutively active Ras, or MEKK1. The suppression of PKCdelta activity is associated with reduced phosphorylation of PKCdelta-Y311. Activation of hINV promoter activity by the green tea polyphenol, (-)-epigellocathecin-3-gallate, is also inhibited by apigenin, suggesting that the two chemopreventive agents can produce opposing actions in keratinocytes (PMID: 16982614). Apigenin, a flavone abundantly found in fruits and vegetables, exhibits antiproliferative, anti-inflammatory, and antimetastatic activities through poorly defined mechanisms. This flavonoid provides selective activity to promote caspase-dependent-apoptosis of leukemia cells and uncover an essential role of PKCdelta during the induction of apoptosis by apigenin (PMID: 16844095). Apigenin markedly induces the expression of death receptor 5 (DR5) and synergistically acts with exogenous soluble recombinant human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to induce apoptosis in malignant tumor cells. On the other hand, apigenin-mediated induction of DR5 expression is not observed in normal human peripheral blood mononuclear cells. Moreover, apigenin does not sensitize normal human peripheral blood mononuclear cells to TRAIL-induced apoptosis (PMID: 16648565). Flavone found in a wide variety of foodstuffs; buckwheat, cabbage, celeriac, celery, lettuce, oregano, parsley, peppermint, perilla, pummelo juice, thyme, sweet potatoes, green tea and wild carrot [DFC] A trihydroxyflavone that is flavone substituted by hydroxy groups at positions 4, 5 and 7. It induces autophagy in leukaemia cells. CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8558; ORIGINAL_PRECURSOR_SCAN_NO 8556 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5097; ORIGINAL_PRECURSOR_SCAN_NO 5094 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5096; ORIGINAL_PRECURSOR_SCAN_NO 5093 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8561; ORIGINAL_PRECURSOR_SCAN_NO 8559 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5082; ORIGINAL_PRECURSOR_SCAN_NO 5079 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5104; ORIGINAL_PRECURSOR_SCAN_NO 5099 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8572; ORIGINAL_PRECURSOR_SCAN_NO 8570 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8556; ORIGINAL_PRECURSOR_SCAN_NO 8554 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5085; ORIGINAL_PRECURSOR_SCAN_NO 5082 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8554; ORIGINAL_PRECURSOR_SCAN_NO 8550 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8540; ORIGINAL_PRECURSOR_SCAN_NO 8539 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5090; ORIGINAL_PRECURSOR_SCAN_NO 5089 Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB002_Apigenin_pos_10eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_40eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_20eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_30eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_50eV_CB000005.txt [Raw Data] CB002_Apigenin_neg_40eV_000005.txt [Raw Data] CB002_Apigenin_neg_20eV_000005.txt [Raw Data] CB002_Apigenin_neg_10eV_000005.txt [Raw Data] CB002_Apigenin_neg_50eV_000005.txt CONFIDENCE standard compound; INTERNAL_ID 151 [Raw Data] CB002_Apigenin_neg_30eV_000005.txt CONFIDENCE standard compound; ML_ID 26 Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM. Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM.

   

Amarogentin

(2S,3R,4S,5S,6R)-4,5-Dihydroxy-6-(hydroxymethyl)-2-(((3S,4R,4aS)-8-oxo-4-vinyl-3,4,4a,5,6,8-hexahydropyrano[3,4-c]pyran-3-yl)oxy)tetrahydro-2H-pyran-3-yl 3,3,5-trihydroxy-[1,1-biphenyl]-2-carboxylate

C29H30O13 (586.1686)


Amarogentin is a secoiridoid glycoside that consists of (4aS,5R,6R)-5-ethenyl-6-hydroxy-4,4a,5,6-tetrahydro-1H,3H-pyrano[3,4-c]pyran-1-one having a 2-O-[(3,3,5-trihydroxybiphenyl-2-yl)carbonyl]-beta-D-glucopyranosyl group attached at position 6 via a glycosidic linkage. It has a role as an EC 5.99.1.2 (DNA topoisomerase) inhibitor and a metabolite. It is a secoiridoid glycoside and a monosaccharide derivative. Amarogentin is a natural product found in Swertia japonica, Gentianella nitida, and other organisms with data available. A secoiridoid glycoside that consists of (4aS,5R,6R)-5-ethenyl-6-hydroxy-4,4a,5,6-tetrahydro-1H,3H-pyrano[3,4-c]pyran-1-one having a 2-O-[(3,3,5-trihydroxybiphenyl-2-yl)carbonyl]-beta-D-glucopyranosyl group attached at position 6 via a glycosidic linkage. Amarogentin is a secoiridoid glycoside that is mainly extracted from Swertia and Gentiana roots. Amarogentin exhibits many biological effects, including anti-oxidative, anti-tumour, and anti-diabetic activities. Amarogentin exerts hepatoprotective and immunomodulatory effects. Amarogentin promotes apoptosis, arrests G2/M cell cycle and downregulates of PI3K/Akt/mTOR signalling pathways. Amarogentin exerts beneficial vasculo-metabolic effect by activating AMPK[1][2][3]. Amarogentin is a secoiridoid glycoside that is mainly extracted from Swertia and Gentiana roots. Amarogentin exhibits many biological effects, including anti-oxidative, anti-tumour, and anti-diabetic activities. Amarogentin exerts hepatoprotective and immunomodulatory effects. Amarogentin promotes apoptosis, arrests G2/M cell cycle and downregulates of PI3K/Akt/mTOR signalling pathways. Amarogentin exerts beneficial vasculo-metabolic effect by activating AMPK[1][2][3]. Amarogentin is a secoiridoid glycoside that is mainly extracted from Swertia and Gentiana roots. Amarogentin exhibits many biological effects, including anti-oxidative, anti-tumour, and anti-diabetic activities. Amarogentin exerts hepatoprotective and immunomodulatory effects. Amarogentin promotes apoptosis, arrests G2/M cell cycle and downregulates of PI3K/Akt/mTOR signalling pathways. Amarogentin exerts beneficial vasculo-metabolic effect by activating AMPK[1][2][3].

   

Genistein

Genistein, Pharmaceutical Secondary Standard; Certified Reference Material

C15H10O5 (270.0528)


Genistein is a 7-hydroxyisoflavone with additional hydroxy groups at positions 5 and 4. It is a phytoestrogenic isoflavone with antioxidant properties. It has a role as an antineoplastic agent, a tyrosine kinase inhibitor, an EC 5.99.1.3 [DNA topoisomerase (ATP-hydrolysing)] inhibitor, a phytoestrogen, a plant metabolite, a geroprotector and a human urinary metabolite. It is a conjugate acid of a genistein(1-). An isoflavonoid derived from soy products. It inhibits protein-tyrosine kinase and topoisomerase-II (DNA topoisomerases, type II) activity and is used as an antineoplastic and antitumor agent. Experimentally, it has been shown to induce G2 phase arrest in human and murine cell lines. Additionally, genistein has antihelmintic activity. It has been determined to be the active ingredient in Felmingia vestita, which is a plant traditionally used against worms. It has shown to be effective in the treatment of common liver fluke, pork trematode and poultry cestode. Further, genistein is a phytoestrogen which has selective estrogen receptor modulator properties. It has been investigated in clinical trials as an alternative to classical hormone therapy to help prevent cardiovascular disease in postmenopausal women. Natural sources of genistein include tofu, fava beans, soybeans, kudzu, and lupin. Genistein is a natural product found in Pterocarpus indicus, Ficus septica, and other organisms with data available. Genistein is a soy-derived isoflavone and phytoestrogen with antineoplastic activity. Genistein binds to and inhibits protein-tyrosine kinase, thereby disrupting signal transduction and inducing cell differentiation. This agent also inhibits topoisomerase-II, leading to DNA fragmentation and apoptosis, and induces G2/M cell cycle arrest. Genistein exhibits antioxidant, antiangiogenic, and immunosuppressive activities. (NCI04) Genistein is one of several known isoflavones. Isoflavones compounds, such as genistein and daidzein, are found in a number of plants, but soybeans and soy products like tofu and textured vegetable protein are the primary food source. Genistein is a natural bioactive compound derived from legumes and has drawn because of its potentially beneficial effects on some human degenerative diseases. It has a weak estrogenic effect and is a well-known non-specific tyrosine kinase inhibitor at pharmacological doses. Epidemiological studies show that genistein intake is inversely associated with the risk of cardiovascular diseases. Data suggests a protective role of genistein in cardiovascular events. However, the mechanisms of the genistein action on vascular protective effects are unclear. Past extensive studies exploring its hypolipidemic effect resulted in contradictory data. Genistein also is a relatively poor antioxidant. However, genistein protects against pro-inflammatory factor-induced vascular endothelial barrier dysfunction and inhibits leukocyte-endothelium interaction, thereby modulating vascular inflammation, a major event in the pathogenesis of atherosclerosis. Genistein exerts a non-genomic action by targeting on important signaling molecules in vascular endothelial cells (ECs). Genistein rapidly activates endothelial nitric oxide synthase and production of nitric oxide in ECs. This genistein effect is novel since it is independent of its known effects, but mediated by the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) cascade. Genistein directly stimulates the plasma membrane-associated adenylate cyclases, leading to activation of the cAMP signaling pathway. In addition, genistein activates peroxisome proliferator-activated receptors, ligand-activated nuclear receptors important to normal vascular function. Furthermore, genistein reduces reactive oxygen species (ROS) by attenuating the expression of ROS-producing enzymes. These findings reveal the roles for genistein in the regulation of vascular function and provide a basis for further investigating its therapeutic potential f... Genistein is one of several known isoflavones. Isoflavones compounds, such as genistein and daidzein, are found in a number of plants, but soybeans and soy products like tofu and textured vegetable protein are the primary food source. Genistein is a natural bioactive compound derived from legumes and has drawn because of its potentially beneficial effects on some human degenerative diseases. It has a weak estrogenic effect and is a well-known non-specific tyrosine kinase inhibitor at pharmacological doses. Epidemiological studies show that genistein intake is inversely associated with the risk of cardiovascular diseases. Data suggests a protective role of genistein in cardiovascular events. However, the mechanisms of the genistein action on vascular protective effects are unclear. Past extensive studies exploring its hypolipidemic effect resulted in contradictory data. Genistein also is a relatively poor antioxidant. However, genistein protects against pro-inflammatory factor-induced vascular endothelial barrier dysfunction and inhibits leukocyte-endothelium interaction, thereby modulating vascular inflammation, a major event in the pathogenesis of atherosclerosis. Genistein exerts a non-genomic action by targeting on important signaling molecules in vascular endothelial cells (ECs). Genistein rapidly activates endothelial nitric oxide synthase and production of nitric oxide in ECs. This genistein effect is novel since it is independent of its known effects, but mediated by the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) cascade. Genistein directly stimulates the plasma membrane-associated adenylate cyclases, leading to activation of the cAMP signaling pathway. In addition, genistein activates peroxisome proliferator-activated receptors, ligand-activated nuclear receptors important to normal vascular function. Furthermore, genistein reduces reactive oxygen species (ROS) by attenuating the expression of ROS-producing enzymes. These findings reveal the roles for genistein in the regulation of vascular function and provide a basis for further investigating its therapeutic potential for inflammatory-related vascular disease. (PMID:17979711). Genistein is a biomarker for the consumption of soy beans and other soy products. Genistein is a phenolic compound belonging to the isoflavonoid group. Isoflavonoids are found mainly in soybean. Genistein and daidzein (an other isoflavonoid) represent the major phytochemicals found in this plant. Health benefits (e.g. reduced risk for certain cancers and diseases of old age) associated to soya products consumption have been observed in East Asian populations and several epidemiological studies. This association has been linked to the action of isoflavonoids. With a chemical structure similar to the hormone 17-b-estradiol, soy isoflavones are able to interact with the estrogen receptor. They also possess numerous biological activities. (PMID: 15540649). Genistein is a biomarker for the consumption of soy beans and other soy products. A 7-hydroxyisoflavone with additional hydroxy groups at positions 5 and 4. It is a phytoestrogenic isoflavone with antioxidant properties. C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1821 - Selective Estrogen Receptor Modulator D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D004791 - Enzyme Inhibitors > D047428 - Protein Kinase Inhibitors D020011 - Protective Agents > D016588 - Anticarcinogenic Agents C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist D000970 - Antineoplastic Agents C1892 - Chemopreventive Agent CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5085; ORIGINAL_PRECURSOR_SCAN_NO 5082 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8554; ORIGINAL_PRECURSOR_SCAN_NO 8550 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5097; ORIGINAL_PRECURSOR_SCAN_NO 5094 ORIGINAL_ACQUISITION_NO 5097; CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_PRECURSOR_SCAN_NO 5094 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5104; ORIGINAL_PRECURSOR_SCAN_NO 5099 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8558; ORIGINAL_PRECURSOR_SCAN_NO 8556 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5082; ORIGINAL_PRECURSOR_SCAN_NO 5079 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8540; ORIGINAL_PRECURSOR_SCAN_NO 8539 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8556; ORIGINAL_PRECURSOR_SCAN_NO 8554 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8561; ORIGINAL_PRECURSOR_SCAN_NO 8559 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5096; ORIGINAL_PRECURSOR_SCAN_NO 5093 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8572; ORIGINAL_PRECURSOR_SCAN_NO 8570 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5090; ORIGINAL_PRECURSOR_SCAN_NO 5089 CONFIDENCE Reference Standard (Level 1); NaToxAq - Natural Toxins and Drinking Water Quality - From Source to Tap (https://natoxaq.ku.dk) CONFIDENCE standard compound; EAWAG_UCHEM_ID 3265 IPB_RECORD: 441; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 4238 CONFIDENCE standard compound; INTERNAL_ID 8827 CONFIDENCE standard compound; INTERNAL_ID 2419 CONFIDENCE standard compound; INTERNAL_ID 4162 CONFIDENCE standard compound; INTERNAL_ID 176 Genistein, a soy isoflavone, is a multiple tyrosine kinases (e.g., EGFR) inhibitor which acts as a chemotherapeutic agent against different types of cancer, mainly by altering apoptosis, the cell cycle, and angiogenesis and inhibiting metastasis. Genistein, a soy isoflavone, is a multiple tyrosine kinases (e.g., EGFR) inhibitor which acts as a chemotherapeutic agent against different types of cancer, mainly by altering apoptosis, the cell cycle, and angiogenesis and inhibiting metastasis.

   

Trans-4-hydroxyproline

(2S,4R)-4-hydroxypyrrolidine-2-carboxylic acid

C5H9NO3 (131.0582)


Trans-4-hydroxy-L-proline is an optically active form of 4-hydroxyproline having L-trans-configuration. It has a role as a human metabolite, a plant metabolite and a mouse metabolite. It is a tautomer of a trans-4-hydroxy-L-proline zwitterion. Hydroxyproline is a neutral heterocyclic protein amino acid. It is found in collagen and as such it is common in many gelatin products. Hydroxyproline is mostly used as a diagnostic marker of bone turnover and liver fibrosis. Therapeutically, hydroxyproline is being studied as an an experimental medicine but is approved in France as a combination topical gel product called Cicactive for small, superficial wounds. Hydroxyproline is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Hydroxyproline is a nonessential amino acid derivative formed during post-translational protein modification through hydroxylation of the amino acid proline by the enzyme prolyl hydroxylase which requires vitamin C as a co-factor. Hydroxyproline is a major component of the protein collagen and plays a key role in the stability of the collagen triple helix. It can be used as an indicator to determine the amount of collagen. Increased hydroxyproline levels in the urine and/or serum are normally associated with degradation of connective tissue. Vitamin C deficiency decreases the conversion of proline to hydroxyproline, which leads to reduced collagen stability. 4-Hydroxyproline (or hydroxyproline or Hyp) is a major component of the protein collagen. Hydroxyproline is produced by hydroxylation of the amino acid proline and is, therefore, a post-translationally modified amino acid. Hydroxyproline and proline play key roles for collagen stability. In particular, they permit the sharp twisting of the collagen helix. Hydroxyproline is found in few proteins other than collagen. The only other mammalian protein which includes hydroxyproline is elastin. For this reason, hydroxyproline content has been used as an indicator to determine collagen and/or gelatin amount in tissue or biological samples. Increased serum and urine levels of hydroxyproline have been found in Pagets disease Hydroxyproline (Hyp) content in biological fluids is used as a parameter of collagen catabolism, especially bone resorption or tissue degradation. Bedridden and elderly individuals show significantly elevated serum levels of hydroxyproline in comparison to normal, active individuals Elevated levels of urinary hydroxyproline are also indicative of muscle damage Increased reactive oxygen species (ROS) are also known to accelerate collagen degradation. Hydroxyproline levels increase in cases of depression and stress (A3486, A3487, A3488, A3489). See also: Hydroxyproline; niacinamide (component of); Hydroxyproline; octinoxate (component of) ... View More ... 4-Hydroxyproline (hydroxyproline or Hyp) is a major component of the protein collagen. Hydroxyproline is produced by hydroxylation of the amino acid proline and is, therefore, a post-translationally modified, non-essential amino acid. Hydroxyproline and proline play key roles in collagen stability. In particular, they permit the sharp twisting of the collagen helix. Hydroxyproline is found in few proteins other than collagen. The only other mammalian protein which includes hydroxyproline is elastin. For this reason, hydroxyproline content has been used as an indicator to determine collagen and/or gelatin amount in tissue or biological samples. Increased serum and urine levels of hydroxyproline have been found in Pagets disease (PMID: 436278). Hydroxyproline (Hyp) content in biological fluids is used as a parameter of collagen catabolism, especially bone resorption or tissue degradation. Bedridden and elderly individuals show significantly elevated serum levels of hydroxyproline in comparison to normal, active individuals (PMID: 10706420). Elevated levels of urinary hydroxyproline are also indicative of muscle damage (PMID: 21988268). Increased reactive oxygen species (ROS) are also known to accelerate collagen degradation. Hydroxyproline levels increase in cases of depression and stress (PMID: 21483218). 4-Hydroxyproline is found to be associated with Alzheimers disease, and also hydroxyprolinemia and iminoglycinuria which are both inborn errors of metabolism. 4-Hydroxyproline is also involved in metabolic disorders such as hyperprolinemia type I, hyperornithinemia with gyrate atrophy (HOGA), L-arginine:glycine amidinotransferase deficiency, creatine deficiency, and guanidinoacetate methyltransferase deficiency. A deficiency in ascorbic acid can result in impaired hydroxyproline formation (PubChem). trans-4-Hydroxy-L-proline is a biomarker for the consumption of processed meat. Constituent of proteins [DFC]. 4-hydroxyproline is a biomarker for the consumption of processed meat An optically active form of 4-hydroxyproline having L-trans-configuration. L-Hydroxyproline, one of the hydroxyproline (Hyp) isomers, is a useful chiral building block in the production of many pharmaceuticals. L-Hydroxyproline, one of the hydroxyproline (Hyp) isomers, is a useful chiral building block in the production of many pharmaceuticals.

   

Linonin

11H,13H-Oxireno(d)pyrano(4,3:3,3a)isobenzofuro(5,4-f)(2)benzopyran-4,6,13(2H,5aH)-trione, 8-(3-furanyl)decahydro-2,2,4a,8a-tetramethyl-, (2aR-(2aalpha,4abeta,4bR,5aalpha,8alpha,8aalpha,10aalpha,10bR*,14aalpha))-

C26H30O8 (470.1941)


Linonin, also known as 7,16-dioxo-7,16-dideoxylimondiol or evodin, is a member of the class of compounds known as limonoids. Limonoids are highly oxygenated, modified terpenoids with a prototypical structure either containing or derived from a precursor with a 4,4,8-trimethyl-17-furanylsteroid skeleton. All naturally occurring citrus limonoids contain a furan ring attached to the D-ring, at C-17, as well as oxygen containing functional groups at C-3, C-4, C-7, C-16 and C-17. Linonin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Linonin can be found in lemon, which makes linonin a potential biomarker for the consumption of this food product. Limonin is a limonoid, an epoxide, a hexacyclic triterpenoid, a member of furans, an organic heterohexacyclic compound and a lactone. It has a role as a metabolite, an inhibitor and a volatile oil component. Limonin is a natural product found in Citrus tankan, Flacourtia jangomas, and other organisms with data available. Limonin is a triterpenoid compound rich in citrus fruits that has antiviral and antitumor activities. Limonin is a triterpenoid compound rich in citrus fruits that has antiviral and antitumor activities.

   

Jujuboside A1

2-[(4-{[4,5-dihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl]oxy}-5-hydroxy-2-{[16-hydroxy-2,6,6,10,16-pentamethyl-18-(2-methylprop-1-en-1-yl)-19,21-dioxahexacyclo[18.2.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰.0¹⁵,²⁰]tricosan-7-yl]oxy}oxan-3-yl)oxy]-6-methyloxane-3,4,5-triol

C58H94O26 (1206.6033)


Jujuboside A is a triterpenoid. (2S,3R,4R,5R,6S)-2-[(2S,3R,4S,5S)-4-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-[[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]-3-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxyoxan-2-yl]oxy-5-hydroxy-2-[[(1S,2R,5R,7S,10R,11R,14R,15S,16S,18R,20S)-16-hydroxy-2,6,6,10,16-pentamethyl-18-(2-methylprop-1-enyl)-19,21-dioxahexacyclo[18.2.1.01,14.02,11.05,10.015,20]tricosan-7-yl]oxy]oxan-3-yl]oxy-6-methyloxane-3,4,5-triol is a natural product found in Ziziphus jujuba, Ziziphus lotus, and Ziziphus jujuba var. spinosa with data available. Jujuboside A is found in fruits. Jujuboside A is isolated from seeds of Zizyphus jujuba (Chinese date Jujuboside A is a glycoside extracted from Semen Ziziphi Spinosae, a Chinese herbal medicine used to treat insomnia and anxiety. Jujuboside A is a glycoside extracted from Semen Ziziphi Spinosae, a Chinese herbal medicine used to treat insomnia and anxiety. Jujuboside A is a glycoside extracted from Semen Ziziphi Spinosae, a Chinese herbal medicine used to treat insomnia and anxiety.

   

Ginsenoside F2

(2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-[[(3S,5R,8R,9R,10R,12R,13R,14R, 17S)-12-hydroxy-4,4,8,10,14-pentamethyl-17-[(2S)-6-methyl-2-[(2S,3R,4S, 5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhept-5-en-2-yl]-2, 3,5,6,7,9,11,12,13,15,16, 17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]oxane-3,4,5-triol

C42H72O13 (784.4973)


Ginsenoside F2 is a ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 3 and 20 have been converted to the corresponding beta-D-glucopyranosides, and in which a double bond has been introduced at the 24-25 position. It has a role as an apoptosis inducer, an antineoplastic agent and a plant metabolite. It is a ginsenoside, a tetracyclic triterpenoid, a 12beta-hydroxy steroid and a beta-D-glucoside. It derives from a hydride of a dammarane. ginsenoside F2 is a natural product found in Panax ginseng, Panax notoginseng, and Aralia elata with data available. Ginsenoside F2 is found in tea. Ginsenoside F2 is isolated from Panax species. Isolated from Panax subspecies Ginsenoside F2 is found in tea. Ginsenoside F2, a metabolite from Ginsenoside Rb1, induces apoptosis accompanied by protective autophagy in breast cancer stem cells[1]. Ginsenoside F2, a metabolite from Ginsenoside Rb1, induces apoptosis accompanied by protective autophagy in breast cancer stem cells[1].

   

Daphnetol

7,8-dihydroxychromen-2-one

C9H6O4 (178.0266)


7,8-dihydroxycoumarin is a hydroxycoumarin. Daphnetin is a natural product found in Euphorbia dracunculoides, Rhododendron lepidotum, and other organisms with data available. Acquisition and generation of the data is financially supported in part by CREST/JST. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research Daphnetin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=486-35-1 (retrieved 2024-09-04) (CAS RN: 486-35-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Vitexin 6'-O-malonyl 2'-O-xyloside

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-4H-chromen-4-one

C21H20O10 (432.1056)


Vitexin 6-o-malonyl 2-o-xyloside, also known as apigenin 8-C-glucoside or 8-glycosyl-apigenin, is a member of the class of compounds known as flavonoid 8-c-glycosides. Flavonoid 8-c-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to 8-position of a 2-phenylchromen-4-one flavonoid backbone. Vitexin 6-o-malonyl 2-o-xyloside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Vitexin 6-o-malonyl 2-o-xyloside can be synthesized from apigenin. Vitexin 6-o-malonyl 2-o-xyloside is also a parent compound for other transformation products, including but not limited to, vitexin 2-O-beta-L-rhamnoside, 7-O-methylvitexin 2-O-beta-L-rhamnoside, and vitexin 2-O-beta-D-glucoside. Vitexin 6-o-malonyl 2-o-xyloside can be found in common beet, which makes vitexin 6-o-malonyl 2-o-xyloside a potential biomarker for the consumption of this food product. Vitexin, also known as apigenin 8-C-glucoside or 8-glycosylapigenin, belongs to the class of organic compounds known as flavonoid 8-C-glycosides. Flavonoid 8-C-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to 8-position of a 2-phenylchromen-4-one flavonoid backbone. Vitexin is also described as an apigenin flavone glucoside. Vitexin has been found in passion flower, chasteberry, bamboo leaves, millet and Hawthorn. Vitexin has shown a wide range of pharmacological effects, such as antioxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects (PMID: 27693342). Vitexin has also been shown to directly inhibit thyroid peroxidase and potentially contributes to goiter (PMID: 1696490). It is sometimes called a goitrogen. Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA68_Vitexin_neg_10eV.txt [Raw Data] CBA68_Vitexin_neg_30eV.txt [Raw Data] CBA68_Vitexin_pos_20eV.txt [Raw Data] CBA68_Vitexin_neg_50eV.txt [Raw Data] CBA68_Vitexin_neg_40eV.txt [Raw Data] CBA68_Vitexin_pos_40eV.txt [Raw Data] CBA68_Vitexin_pos_30eV.txt [Raw Data] CBA68_Vitexin_pos_10eV.txt [Raw Data] CBA68_Vitexin_neg_20eV.txt Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2]. Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2].

   

Kaempferol

3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one

C15H10O6 (286.0477)


Kaempferol is a tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 5, 7 and 4. Acting as an antioxidant by reducing oxidative stress, it is currently under consideration as a possible cancer treatment. It has a role as an antibacterial agent, a plant metabolite, a human xenobiotic metabolite, a human urinary metabolite, a human blood serum metabolite and a geroprotector. It is a member of flavonols, a 7-hydroxyflavonol and a tetrahydroxyflavone. It is a conjugate acid of a kaempferol oxoanion. Kaempferol is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. Kaempferol is a natural flavonoid which has been isolated from Delphinium, Witch-hazel, grapefruit, and other plant sources. Kaempferol is a yellow crystalline solid with a melting point of 276-278 degree centigrade. It is slightly soluble in water, and well soluble in hot ethanol and diethyl ether. Kaempferol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Cannabis sativa subsp. indica top (part of); Tussilago farfara flower (part of). Kaempferol, also known as rhamnolutein or c.i. 75640, belongs to the class of organic compounds known as flavonols. Flavonols are compounds that contain a flavone (2-phenyl-1-benzopyran-4-one) backbone carrying a hydroxyl group at the 3-position. Thus, kaempferol is considered to be a flavonoid molecule. A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 5, 7 and 4. Kaempferol is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Kaempferol exists in all eukaryotes, ranging from yeast to humans. Kaempferol is a bitter tasting compound. Kaempferol is found, on average, in the highest concentration within a few different foods, such as saffrons, capers, and cumins and in a lower concentration in lovages, endives, and cloves. Kaempferol has also been detected, but not quantified, in several different foods, such as shallots, pine nuts, feijoa, kombus, and chicory leaves. This could make kaempferol a potential biomarker for the consumption of these foods. Kaempferol is a potentially toxic compound. Very widespread in the plant world, e.g. in Brassicaceae, Apocynaceae, Dilleniaceae, Ranunculaceae, Leguminosae, etc. Found especies in broccoli, capers, chives, kale, garden cress, fennel, lovage, dill weed and tarragon [CCD] A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 5, 7 and 4. Acting as an antioxidant by reducing oxidative stress, it is currently under consideration as a possible cancer treatment. CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3906; ORIGINAL_PRECURSOR_SCAN_NO 3905 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3916; ORIGINAL_PRECURSOR_SCAN_NO 3915 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3928; ORIGINAL_PRECURSOR_SCAN_NO 3927 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4291; ORIGINAL_PRECURSOR_SCAN_NO 4290 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3918; ORIGINAL_PRECURSOR_SCAN_NO 3917 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3915; ORIGINAL_PRECURSOR_SCAN_NO 3914 Acquisition and generation of the data is financially supported in part by CREST/JST. INTERNAL_ID 2358; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2358 CONFIDENCE standard compound; INTERNAL_ID 47 CONFIDENCE standard compound; ML_ID 45 Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4]. Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4].

   

Dioscin

(2S,3R,4R,5R,6S)-2-[(2R,3S,4S,5R,6R)-4-hydroxy-2-(hydroxymethyl)-6-[(1S,2S,4S,5R,6R,7S,8R,9S,12S,13R,16S)-5,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icos-18-ene-6,2-oxane]-16-yl]oxy-5-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-3-yl]oxy-6-methyloxane-3,4,5-triol

C45H72O16 (868.482)


Dioscin is a spirostanyl glycoside that consists of the trisaccharide alpha-L-Rha-(1->4)-[alpha-L-Rha-(1->2)]-beta-D-Glc attached to position 3 of diosgenin via a glycosidic linkage. It has a role as a metabolite, an antifungal agent, an antiviral agent, an antineoplastic agent, an anti-inflammatory agent, a hepatoprotective agent, an apoptosis inducer and an EC 1.14.18.1 (tyrosinase) inhibitor. It is a spirostanyl glycoside, a spiroketal, a hexacyclic triterpenoid and a trisaccharide derivative. It is functionally related to a diosgenin. It derives from a hydride of a spirostan. Dioscin is a natural product found in Ophiopogon intermedius, Dracaena draco, and other organisms with data available. See also: Dioscorea polystachya tuber (part of). A spirostanyl glycoside that consists of the trisaccharide alpha-L-Rha-(1->4)-[alpha-L-Rha-(1->2)]-beta-D-Glc attached to position 3 of diosgenin via a glycosidic linkage. Dioscin is a member of the class of compounds known as steroidal saponins. Steroidal saponins are saponins in which the aglycone moiety is a steroid. The steroidal aglycone is usually a spirostane, furostane, spirosolane, solanidane, or curcubitacin derivative. Dioscin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Dioscin can be found in fenugreek and yam, which makes dioscin a potential biomarker for the consumption of these food products. [Raw Data] CBA65_Dioscin_pos_30eV.txt [Raw Data] CBA65_Dioscin_pos_20eV.txt [Raw Data] CBA65_Dioscin_pos_10eV.txt [Raw Data] CBA65_Dioscin_pos_50eV.txt [Raw Data] CBA65_Dioscin_pos_40eV.txt Dioscin (CCRIS 4123; Collettiside III) is a natural plant-derived steroidal saponin that has good anti-cancer activity against a variety of cancer cells. Dioscin (CCRIS 4123; Collettiside III) is a natural plant-derived steroidal saponin that has good anti-cancer activity against a variety of cancer cells.

   

Morroniside

Methyl (1S,3R,4aS,8S,8aS)-3-hydroxy-1-methyl-8-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4,4a,8,8a-tetrahydro-1H,3H-pyrano[3,4-c]pyran-5-carboxylate

C17H26O11 (406.1475)


Morroniside is a glycoside. Morroniside is a natural product found in Lonicera japonica, Tripterospermum japonicum, and other organisms with data available. Morroniside has neuroprotective effect by inhibiting neuron apoptosis and MMP2/9 expression. Morroniside has neuroprotective effect by inhibiting neuron apoptosis and MMP2/9 expression.

   

OJV-VI

(2S,3R,4R,5R,6S)-2-[(2R,3R,4S,5S,6R)-5-hydroxy-2-[(1S,2S,4S,5R,6R,7S,8R,9S,12S,13R,14R,16R)-16-hydroxy-5,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icos-18-ene-6,2-oxane]-14-yl]oxy-6-methyl-4-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxyoxan-3-yl]oxy-6-methyloxane-3,4,5-triol

C44H70O16 (854.4664)


Ophiopogonin D is a steroid saponin. Ophiopogonin D is a natural product found in Ophiopogon jaburan, Ophiopogon japonicus, and Liriope muscari with data available. Ophiopogonin D, isolated from the tubers of Ophiopogon japonicus, is a rare naturally occurring C29 steroidal glycoside[1]. Ophiopogonin D is a CYP2J3 inducer that significantly inhibits Ang II induced NF-κB nuclear translocation, IκBα down-regulation, intracellular Ca2+ overload and activation of pro-inflammatory cytokines by increasing the expression of CYP2J2/EETs and PPARα in human umbilical vein endothelial cells (HUVECs). Ophiopogonin D has been used to treat inflammatory and cardiovascular diseases for thousands of years[2]. Ophiopogonin D, isolated from the tubers of Ophiopogon japonicus, is a rare naturally occurring C29 steroidal glycoside[1]. Ophiopogonin D is a CYP2J3 inducer that significantly inhibits Ang II induced NF-κB nuclear translocation, IκBα down-regulation, intracellular Ca2+ overload and activation of pro-inflammatory cytokines by increasing the expression of CYP2J2/EETs and PPARα in human umbilical vein endothelial cells (HUVECs). Ophiopogonin D has been used to treat inflammatory and cardiovascular diseases for thousands of years[2]. Ophiopogonin D, isolated from the tubers of Ophiopogon japonicus, is a rare naturally occurring C29 steroidal glycoside[1]. Ophiopogonin D is a CYP2J3 inducer that significantly inhibits Ang II induced NF-κB nuclear translocation, IκBα down-regulation, intracellular Ca2+ overload and activation of pro-inflammatory cytokines by increasing the expression of CYP2J2/EETs and PPARα in human umbilical vein endothelial cells (HUVECs). Ophiopogonin D has been used to treat inflammatory and cardiovascular diseases for thousands of years[2].

   

Citric acid

2-hydroxypropane-1,2,3-tricarboxylic acid

C6H8O7 (192.027)


Citric acid (citrate) is a tricarboxylic acid, an organic acid with three carboxylate groups. Citrate is an intermediate in the TCA cycle (also known as the Tricarboxylic Acid cycle, the Citric Acid cycle or Krebs cycle). The TCA cycle is a central metabolic pathway for all animals, plants, and bacteria. As a result, citrate is found in all living organisms, from bacteria to plants to animals. In the TCA cycle, the enzyme citrate synthase catalyzes the condensation of oxaloacetate with acetyl CoA to form citrate. Citrate then acts as the substrate for the enzyme known as aconitase and is then converted into aconitic acid. The TCA cycle ends with regeneration of oxaloacetate. This series of chemical reactions in the TCA cycle is the source of two-thirds of the food-derived energy in higher organisms. Citrate can be transported out of the mitochondria and into the cytoplasm, then broken down into acetyl-CoA for fatty acid synthesis, and into oxaloacetate. Citrate is a positive modulator of this conversion, and allosterically regulates the enzyme acetyl-CoA carboxylase, which is the regulating enzyme in the conversion of acetyl-CoA into malonyl-CoA (the commitment step in fatty acid synthesis). In short, citrate is transported into the cytoplasm, converted into acetyl CoA, which is then converted into malonyl CoA by acetyl CoA carboxylase, which is allosterically modulated by citrate. In mammals and other vertebrates, Citrate is a vital component of bone, helping to regulate the size of apatite crystals (PMID: 21127269). Citric acid is found in citrus fruits, most concentrated in lemons and limes, where it can comprise as much as 8\\\\\% of the dry weight of the fruit. Citric acid is a natural preservative and is also used to add an acidic (sour) taste to foods and carbonated drinks. Because it is one of the stronger edible acids, the dominant use of citric acid is as a flavoring and preservative in food and beverages, especially soft drinks and candies. Citric acid is an excellent chelating agent, binding metals by making them soluble. It is used to remove and discourage the buildup of limescale from boilers and evaporators. It can be used to treat water, which makes it useful in improving the effectiveness of soaps and laundry detergents. The salts of citric acid (citrates) can be used as anticoagulants due to their calcium chelating ability. Intolerance to citric acid in the diet is known to exist. Little information is available as the condition appears to be rare, but like other types of food intolerance it is often described as a "pseudo-allergic" reaction. Citric acid appears as colorless, odorless crystals with an acid taste. Denser than water. (USCG, 1999) Citric acid is a tricarboxylic acid that is propane-1,2,3-tricarboxylic acid bearing a hydroxy substituent at position 2. It is an important metabolite in the pathway of all aerobic organisms. It has a role as a food acidity regulator, a chelator, an antimicrobial agent and a fundamental metabolite. It is a conjugate acid of a citrate(1-) and a citrate anion. A key intermediate in metabolism. It is an acid compound found in citrus fruits. The salts of citric acid (citrates) can be used as anticoagulants due to their calcium-chelating ability. Citric acid is one of the active ingredients in Phexxi, a non-hormonal contraceptive agent that was approved by the FDA on May 2020. It is also used in combination with magnesium oxide to form magnesium citrate, an osmotic laxative. Citric acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Anhydrous citric acid is a Calculi Dissolution Agent and Anti-coagulant. The mechanism of action of anhydrous citric acid is as an Acidifying Activity and Calcium Chelating Activity. The physiologic effect of anhydrous citric acid is by means of Decreased Coagulation Factor Activity. Anhydrous Citric Acid is a tricarboxylic acid found in citrus fruits. Citric acid is used as an excipient in pharmaceutical preparations due to its antioxidant properties. It maintains stability of active ingredients and is used as a preservative. It is also used as an acidulant to control pH and acts as an anticoagulant by chelating calcium in blood. A key intermediate in metabolism. It is an acid compound found in citrus fruits. The salts of citric acid (citrates) can be used as anticoagulants due to their calcium chelating ability. See also: Citric Acid Monohydrate (related). Citrate, also known as anhydrous citric acid or 2-hydroxy-1,2,3-propanetricarboxylic acid, belongs to tricarboxylic acids and derivatives class of compounds. Those are carboxylic acids containing exactly three carboxyl groups. Citrate is soluble (in water) and a weakly acidic compound (based on its pKa). Citrate can be found in a number of food items such as ucuhuba, loquat, bayberry, and longan, which makes citrate a potential biomarker for the consumption of these food products. Citrate can be found primarily in most biofluids, including saliva, sweat, feces, and blood, as well as throughout all human tissues. Citrate exists in all living species, ranging from bacteria to humans. In humans, citrate is involved in several metabolic pathways, some of which include the oncogenic action of succinate, the oncogenic action of fumarate, the oncogenic action of 2-hydroxyglutarate, and congenital lactic acidosis. Citrate is also involved in several metabolic disorders, some of which include 2-ketoglutarate dehydrogenase complex deficiency, pyruvate dehydrogenase deficiency (E2), fumarase deficiency, and glutaminolysis and cancer. Moreover, citrate is found to be associated with lung Cancer, tyrosinemia I, maple syrup urine disease, and propionic acidemia. A citrate is a derivative of citric acid; that is, the salts, esters, and the polyatomic anion found in solution. An example of the former, a salt is trisodium citrate; an ester is triethyl citrate. When part of a salt, the formula of the citrate ion is written as C6H5O73− or C3H5O(COO)33− . A tricarboxylic acid that is propane-1,2,3-tricarboxylic acid bearing a hydroxy substituent at position 2. It is an important metabolite in the pathway of all aerobic organisms. Citric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=77-92-9 (retrieved 2024-07-01) (CAS RN: 77-92-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Citric acid is a natural preservative and food tartness enhancer. Citric acid induces apoptosis and cell cycle arrest at G2/M phase and S phase in HaCaT cells. Citric acid cause oxidative damage of the liver by means of the decrease of antioxidative enzyme activities. Citric acid causes renal toxicity in mice[1][2][3]. Citric acid is a natural preservative and food tartness enhancer. Citric acid induces apoptosis and cell cycle arrest at G2/M phase and S phase in HaCaT cells. Citric acid cause oxidative damage of the liver by means of the decrease of antioxidative enzyme activities. Citric acid causes renal toxicity in mice[1][2][3].

   

Epigallocatechin gallate

Benzoic acid, 3,4,5-trihydroxy-, 3,4-dihydro-5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)-2H-1-benzopyran-3-yl ester, (2R-cis)-

C22H18O11 (458.0849)


Epigallocatechin gallate (EGCG) is the principal catechin in tea from Camellia sinensis, the most consumed beverage worldwide (after water). Depending on brew time and temperature, a single cup of green tea may contain 100-200 mg EGCG. To control the dose of EGCG administered in experimental studies, green tea solids (GTS) or capsules of green tea extract standardized to EGCG content are often employed. However, there is considerable variability in the EGCG content of commercially available dietary supplements, ranging from 12-143\\\\\\\\% of the tablet or capsule weight. While standardizing tea preparations to EGCG or using highly purified EGCG for research presents an important strategy for the conduct of precise studies as well as the ability to replicate experiments, it is worth noting this approach limits the potential contributions and possible synergy with other bioactive tea ingredients, including caffeine and other flavonoids. Human studies of the bioavailability of green tea catechins reveal these compounds to be poorly absorbed, with <0.1\\\\\\\\% of ingested catechins appearing in blood. Most ingested EGCG is rapidly cleared from blood with an elimination half-life of {approx}3 h and preferentially excreted via bile to the colon. The growing interest in the role of EGCG in health promotion and disease prevention is reflected by an exponential growth of research publications in this field. (J Am Coll Nutr. 2007 Aug;26(4):362S-365S). (-)-epigallocatechin 3-gallate is a gallate ester obtained by the formal condensation of gallic acid with the (3R)-hydroxy group of (-)-epigallocatechin. It has a role as an antineoplastic agent, an antioxidant, a Hsp90 inhibitor, a neuroprotective agent, a plant metabolite, a geroprotector and an apoptosis inducer. It is a gallate ester, a polyphenol and a member of flavans. It is functionally related to a (-)-epigallocatechin. Epigallocatechin gallate has been investigated for the treatment of Hypertension and Diabetic Nephropathy. (-)-Epigallocatechin gallate is a natural product found in Limoniastrum guyonianum, Scurrula atropurpurea, and other organisms with data available. Epigallocatechin Gallate is a phenolic antioxidant found in a number of plants such as green and black tea. It inhibits cellular oxidation and prevents free radical damage to cells. It is under study as a potential cancer chemopreventive agent. (NCI) A gallate ester obtained by the formal condensation of gallic acid with the (3R)-hydroxy group of (-)-epigallocatechin. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D020011 - Protective Agents > D016587 - Antimutagenic Agents D020011 - Protective Agents > D000975 - Antioxidants D000970 - Antineoplastic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 808; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2759; ORIGINAL_PRECURSOR_SCAN_NO 2758 CONFIDENCE standard compound; INTERNAL_ID 808; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2748; ORIGINAL_PRECURSOR_SCAN_NO 2746 CONFIDENCE standard compound; INTERNAL_ID 808; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2762; ORIGINAL_PRECURSOR_SCAN_NO 2760 ORIGINAL_ACQUISITION_NO 2759; CONFIDENCE standard compound; INTERNAL_ID 808; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_PRECURSOR_SCAN_NO 2758 CONFIDENCE standard compound; INTERNAL_ID 808; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2759; ORIGINAL_PRECURSOR_SCAN_NO 2756 CONFIDENCE standard compound; INTERNAL_ID 808; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5920; ORIGINAL_PRECURSOR_SCAN_NO 5917 CONFIDENCE standard compound; INTERNAL_ID 808; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5910; ORIGINAL_PRECURSOR_SCAN_NO 5905 CONFIDENCE standard compound; INTERNAL_ID 808; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2828; ORIGINAL_PRECURSOR_SCAN_NO 2826 ORIGINAL_PRECURSOR_SCAN_NO 2760; CONFIDENCE standard compound; INTERNAL_ID 808; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2762 CONFIDENCE standard compound; INTERNAL_ID 808; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5924; ORIGINAL_PRECURSOR_SCAN_NO 5919 CONFIDENCE standard compound; INTERNAL_ID 808; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2754; ORIGINAL_PRECURSOR_SCAN_NO 2752 CONFIDENCE standard compound; INTERNAL_ID 179 Annotation level-1 (-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4]. (-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4]. (-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4]. (-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4]. (-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4]. (-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4].

   

trans-3,3',4',5,5',7-Hexahydroxyflavanone

4H-1-Benzopyran-4-one, 2,3-dihydro-3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-, (2R-trans)-

C15H12O8 (320.0532)


(+)-dihydromyricetin is an optically active form of dihydromyricetin having (2R,3R)-configuration. It has a role as a metabolite, an antioxidant and an antineoplastic agent. It is a secondary alpha-hydroxy ketone and a dihydromyricetin. It is an enantiomer of a (-)-dihydromyricetin. Dihydromyricetin is under investigation in clinical trial NCT03606694 (Effect of Dihydromirycetin on Glycemic Control, Insulin Sensitivity and Insulin Secretion in Type 2 Diabetes Mellitus). Dihydromyricetin is a naturally occurring flavonoid found in the many plant species and is thought to be the active ingredient of several traditional Japanese, Chinese, and Korean medicines that are used to treat fever, parasite infections, liver diseases, and hangovers. Dihydromyricetin preparations have not been linked to instances of serum enzyme elevations or clinically apparent liver injury with jaundice. Dihydromyricetin is a natural product found in Vitis rotundifolia, Catha edulis, and other organisms with data available. (±)-trans-3,3,4,5,5,7-Hexahydroxyflavanone is found in tea. (±)-trans-3,3,4,5,5,7-Hexahydroxyflavanone is a constituent of Camellia sinensis (Chinese green tea). Constituent of Camellia sinensis (Chinese green tea). (±)-Dihydromyricetin is found in tea. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM.

   

Ferulic acid

(E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoic acid

C10H10O4 (194.0579)


trans-Ferulic acid is a highly abundant phenolic phytochemical which is present in plant cell walls. Ferulic acid is a phenolic acid that can be absorbed by the small intestine and excreted through the urine. It is one of the most abundant phenolic acids in plants, varying from 5 g/kg in wheat bran to 9 g/kg in sugar-beet pulp and 50 g/kg in corn kernel. It occurs primarily in seeds and leaves both in its free form (albeit rarely) and covalently linked to lignin and other biopolymers. It is usually found as ester cross-links with polysaccharides in the cell wall, such as arabinoxylans in grasses, pectin in spinach and sugar beet, and xyloglucans in bamboo. It also can cross-link with proteins. Due to its phenolic nucleus and an extended side chain conjugation (carbohydrates and proteins), it readily forms a resonance-stabilized phenoxy radical which accounts for its potent antioxidant potential. Food supplementation with curcumin and ferulic acid is considered a nutritional approach to reducing oxidative damage and amyloid pathology in Alzheimer disease (PMID:17127365, 1398220, 15453708, 9878519). Ferulic acid can be found in Pseudomonas and Saccharomyces (PMID:8395165). Ferulic acid is a ferulic acid consisting of trans-cinnamic acid bearing methoxy and hydroxy substituents at positions 3 and 4 respectively on the phenyl ring. It has a role as an antioxidant, a MALDI matrix material, a plant metabolite, an anti-inflammatory agent, an apoptosis inhibitor and a cardioprotective agent. It is a conjugate acid of a ferulate. Ferulic acid is a natural product found in Haplophyllum griffithianum, Visnea mocanera, and other organisms with data available. Ferulic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Angelica sinensis root (part of). Widely distributed in plants, first isolated from Ferula foetida (asafoetida). Antioxidant used to inhibit oxidn. of fats, pastry products, etc. Antifungal agent used to prevent fruit spoilage. trans-Ferulic acid is found in many foods, some of which are deerberry, peach, shea tree, and common bean. A ferulic acid consisting of trans-cinnamic acid bearing methoxy and hydroxy substituents at positions 3 and 4 respectively on the phenyl ring. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D002491 - Central Nervous System Agents > D000700 - Analgesics D000975 - Antioxidants > D016166 - Free Radical Scavengers D006401 - Hematologic Agents > D000925 - Anticoagulants D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID H074 (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively.

   

Eldelin

[(1R,2S,3S,4S,5R,6S,8R,12S,16R,19S,20R,21S)-14-ethyl-2-hydroxy-4,6,19-trimethoxy-16-methyl-9,11-dioxa-14-azaheptacyclo[10.7.2.12,5.01,13.03,8.08,12.016,20]docosan-21-yl] acetate

C27H41NO8 (507.2832)


Deltaline is a diterpene alkaloid, a tertiary alcohol, a tertiary amino compound, an acetate ester, a cyclic acetal and an organic polycyclic compound. It derives from a hydride of an aconitane. Deltaline is a natural product found in Delphinium cheilanthum, Delphinium andersonii, and other organisms with data available. Deltaline. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=6836-11-9 (retrieved 2024-07-09) (CAS RN: 6836-11-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Deltaline is a diterpenoid alkaloid and isolated from plants of the genus Delphinium delavayi Franch. Deltaline itself has analgesic properties, and plants of the genus Delphinium delavayi Franch have also been therapeutically used to treat rheumaticpain, paralysis due to stroke, rheumatoid arthritis[1]. Deltaline is a diterpenoid alkaloid and isolated from plants of the genus Delphinium delavayi Franch. Deltaline itself has analgesic properties, and plants of the genus Delphinium delavayi Franch have also been therapeutically used to treat rheumaticpain, paralysis due to stroke, rheumatoid arthritis[1].

   

Poncirin

(2S)-7-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxy-tetrahydropyran-2-yl]oxy-5-hydroxy-2-(4-methoxyphenyl)chroman-4-one

C28H34O14 (594.1948)


(2S)-poncirin is a flavanone glycoside that is 4-methoxy-5,7-dihydroxyflavanone attached to a neohesperidose (alpha-L-rhamnopyranosyl-(1->2)-beta-D-glucopyranose) residue via a glycosidic linkage. It has been isolated from the fruits of Poncirus trifoliata and exhibits inhibitory activity against liopolysaccharide (LPS)-induced prostaglandin E2 and interleukin-6 (IL-6) production. It has a role as a plant metabolite. It is a monomethoxyflavanone, a flavanone glycoside, a disaccharide derivative, a neohesperidoside and a member of 4-methoxyflavanones. It is functionally related to a 4-methoxy-5,7-dihydroxyflavanone. Poncirin is a natural product found in Citrus medica, Micromeria graeca, and other organisms with data available. Isolated from Citrus subspecies Poncirin is found in many foods, some of which are citrus, grapefruit, lemon, and grapefruit/pummelo hybrid. Acquisition and generation of the data is financially supported in part by CREST/JST. Poncirin is found in citrus. Poncirin is isolated from Citrus specie Poncirin is isolated from?Poncirus trifoliata with anti-inflammory activites. Poncirin significantly reduces mechanical hyperalgesia and allodynia in Complete Freund’s Adjuvant (CFA)-induced inflammatory pain models[1]. Poncirin is isolated from?Poncirus trifoliata with anti-inflammory activites. Poncirin significantly reduces mechanical hyperalgesia and allodynia in Complete Freund’s Adjuvant (CFA)-induced inflammatory pain models[1].

   

Dihydrocapsaicin

Dihydrocapsaicin, Nonanamide, 8-methyl-N-vanillyl- (7CI,8CI); 6,7-Dihydrocapsaicin; Capsaicin, dihydro-; Dihydrocapsaicin

C18H29NO3 (307.2147)


Dihydrocapsaicin is found in pepper (C. annuum). It is a potential nutriceutical. Dihydrocapsaicin is a capsaicinoid and analog and congener of capsaicin in chili peppers (Capsicum). Like capsaicin it is an irritant. Dihydrocapsaicin accounts for about 22\\\\\% of the total capsaicinoids mixture and has about the same pungency as capsaicin. Pure dihydrocapsaicin is a lipophilic colorless odorless crystalline to waxy compound. It is soluble in dimethyl sulfoxide and 100 \\\\\% ethanol. Dihydrocapsaicin is a capsaicinoid. Dihydrocapsaicin is a natural product found in Capsicum pubescens, Capsicum annuum, and Ganoderma lucidum with data available. See also: Capsicum (part of); Paprika (part of); Habanero (part of) ... View More ... Potential nutriceutical Dihydrocapsaicin, a capsaicin, is a potent and selective TRPV1 (transient receptor potential vanilloid channel 1) agonist. Dihydrocapsaicin reduces AIF, Bax, and Caspase-3 expressions, and increased Bcl-2, Bcl-xL and p-Akt levels. Dihydrocapsaicin enhances the hypothermia-induced neuroprotection following ischemic stroke via PI3K/Akt regulation in rat[1][2][3]. Dihydrocapsaicin, a capsaicin, is a potent and selective TRPV1 (transient receptor potential vanilloid channel 1) agonist. Dihydrocapsaicin reduces AIF, Bax, and Caspase-3 expressions, and increased Bcl-2, Bcl-xL and p-Akt levels. Dihydrocapsaicin enhances the hypothermia-induced neuroprotection following ischemic stroke via PI3K/Akt regulation in rat[1][2][3]. Dihydrocapsaicin, a capsaicin, is a potent and selective TRPV1 (transient receptor potential vanilloid channel 1) agonist. Dihydrocapsaicin reduces AIF, Bax, and Caspase-3 expressions, and increased Bcl-2, Bcl-xL and p-Akt levels. Dihydrocapsaicin enhances the hypothermia-induced neuroprotection following ischemic stroke via PI3K/Akt regulation in rat[1][2][3].

   

Paeonolide

1-[4-methoxy-2-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2S,3R,4S,5S)-3,4,5-trihydroxy-2-tetrahydropyranyl]oxymethyl]-2-tetrahydropyranyl]oxy]phenyl]ethanone

C20H28O12 (460.1581)


Paeonolide is a glycoside. Paeonolide is a plant glycoside that contains a non-reducing end α-l-arabinopyranoside and is found in the roots of the widespread plant genus Paeonia[1]. Paeonolide is a plant glycoside that contains a non-reducing end α-l-arabinopyranoside and is found in the roots of the widespread plant genus Paeonia[1].

   

Ligusticide

3-Butylidene-4,5-dihydro-1(3H)-isobenzofuranone;1(3H)-Isobenzofuranone,3-butylidene-4,5-dihydro-;(3Z)-3-Butylidene-4,5-dihydroisobenzofuran-1(3H)-one

C12H14O2 (190.0994)


Ligusticide, also known as ligustilide, (E)-isomer or (Z)-ligustilide, is a member of the class of compounds known as isobenzofurans. Isobenzofurans are organic aromatic compounds containing an isobenzofuran moiety. Ligusticide is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Ligusticide can be found in lovage, which makes ligusticide a potential biomarker for the consumption of this food product. (Z)-ligustilide is a butenolide. It has a role as a metabolite. Ligustilide is a natural product found in Ligusticum striatum, Angelica sinensis, and other organisms with data available.

   

Isotetrandrine

(1S,14S)-9,20,21,25-tetramethoxy-15,30-dimethyl-7,23-dioxa-15,30-diazaheptacyc lo[22.6.2.2<3,6>.1<8,12>.1<14,18>.0<22,36>.0<27,31>]hexatriaconta-3(33),4,6(34 ),8(35),9,11,18(36),19,21,24,26,31-dodecaene

C38H42N2O6 (622.3043)


(+)-Tetrandrine is a member of isoquinolines and a bisbenzylisoquinoline alkaloid. Tetrandrine is a natural product found in Pachygone dasycarpa, Cyclea barbata, and other organisms with data available. Tetrandrine is a natural, bis-benzylisoquinoline alkaloid isolated from the root of the plant Radix stephania tetrandrae. Tetrandrine non-selectively inhibits calcium channel activity and induces G1 blockade of the G1 phase of the cell cycle and apoptosis in various cell types, resulting in immunosuppressive, anti-proliferative and free radical scavenging effects. This agent also increases glucose utilization by enhancing hepatocyte glycogen synthesis, resulting in the lowering of plasma glucose. (NCI04) C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C308 - Immunotherapeutic Agent > C574 - Immunosuppressant D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D000970 - Antineoplastic Agents C93038 - Cation Channel Blocker Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Tetrandrine (NSC-77037; d-Tetrandrine) is a bis-benzyl-isoquinoline alkaloid, which inhibits voltage-gated Ca2+ current (ICa) and Ca2+-activated K+ current. Tetrandrine (NSC-77037; d-Tetrandrine) is a bis-benzyl-isoquinoline alkaloid, which inhibits voltage-gated Ca2+ current (ICa) and Ca2+-activated K+ current.

   

Pachymic_acid

LANOST-8-EN-21-OIC ACID, 3-(ACETYLOXY)-16-HYDROXY-24-METHYLENE-, (3.BETA.,16.ALPHA.)-

C33H52O5 (528.3815)


Pachymic acid is a triterpenoid. Pachymic acid is a natural product found in Rhodofomitopsis feei, Rhodofomitopsis lilacinogilva, and other organisms with data available. See also: Smilax china root (part of). D004791 - Enzyme Inhibitors > D064801 - Phospholipase A2 Inhibitors Pachymic acid is a lanostrane-type triterpenoid from P. cocos. Pachymic acid inhibits Akt and ERK signaling pathways. Pachymic acid is a lanostrane-type triterpenoid from P. cocos. Pachymic acid inhibits Akt and ERK signaling pathways. Pachymic acid is a lanostrane-type triterpenoid from P. cocos. Pachymic acid inhibits Akt and ERK signaling pathways.

   

Phloretin

3-(4-hydroxyphenyl)-1-(2,4,6-trihydroxyphenyl)propan-1-one

C15H14O5 (274.0841)


Phloretin is the aglucone of phlorizin, a plant-derived dihydrochalcone phytochemical reported to promote potent antioxidative activities in peroxynitrite scavenging and the inhibition of lipid peroxidation. Phloretin, which is present in apples, pears and tomatoes, has been found to inhibit the growth of several cancer cells and induce apoptosis of B16 melanoma and HL60 human leukemia cells. Phloretin also inhibits HT-29 cell growth by inducing apoptosis, which may be mediated through changes in mitochondrial membrane permeability and activation of the caspase pathways. Phloretin is a well-known inhibitor of eukaryotic urea transporters, blocks VacA-mediated urea and ion transport (PMID:18158826, 11560962, 18063724, 15671209, 12083758). Phloretin is a biomarker for the consumption of apples. Phloretin has been found to be a metabolite of Escherichia (PMID:23542617). Phloretin is a member of the class of dihydrochalcones that is dihydrochalcone substituted by hydroxy groups at positions 4, 2, 4 and 6. It has a role as a plant metabolite and an antineoplastic agent. It is functionally related to a dihydrochalcone. Phloretin is a natural dihydrochalcone found in apples and many other fruits. Phloretin is a natural product found in Malus doumeri, Populus candicans, and other organisms with data available. A natural dihydrochalcone found in apples and many other fruits. Phloretin is a dihydrochalcone, a type of natural phenols. It is the phloroglucin ester of paraoxyhydratropic acid. It can be found in apple tree leaves. Phloretin is a biomarker for the consumption of apples. A member of the class of dihydrochalcones that is dihydrochalcone substituted by hydroxy groups at positions 4, 2, 4 and 6. IPB_RECORD: 341; CONFIDENCE confident structure Phloretin (NSC 407292; RJC 02792) is a flavonoid extracted from Malus pumila Mill., has anti-inflammatory activities. Phloridzin is a specific, competitive and orally active inhibitor of sodium/glucose cotransporters in the intestine (SGLT1) and kidney (SGLT2). Phloretin inhibits Yeast-made GLUT1 as well as Human erythrocyte GLUT1 with IC50values of 49 μM and 61 μM, respectively[1].Phloretin has the potential for the treatment of rheumatoid arthritis (RA)?and allergic airway inflammation[4]. Phloretin (NSC 407292; RJC 02792) is a flavonoid extracted from Malus pumila Mill., has anti-inflammatory activities. Phloridzin is a specific, competitive and orally active inhibitor of sodium/glucose cotransporters in the intestine (SGLT1) and kidney (SGLT2). Phloretin inhibits Yeast-made GLUT1 as well as Human erythrocyte GLUT1 with IC50values of 49 μM and 61 μM, respectively[1].Phloretin has the potential for the treatment of rheumatoid arthritis (RA)?and allergic airway inflammation[4]. Phloretin (NSC 407292; RJC 02792) is a flavonoid extracted from Malus pumila Mill., has anti-inflammatory activities. Phloridzin is a specific, competitive and orally active inhibitor of sodium/glucose cotransporters in the intestine (SGLT1) and kidney (SGLT2). Phloretin inhibits Yeast-made GLUT1 as well as Human erythrocyte GLUT1 with IC50values of 49 μM and 61 μM, respectively[1].Phloretin has the potential for the treatment of rheumatoid arthritis (RA)?and allergic airway inflammation[4].

   

Bergapten

4-methoxyfuro[3,2-g]chromen-7-one

C12H8O4 (216.0423)


Bergapten, also known as O-methylbergaptol or heraclin, belongs to the class of organic compounds known as 5-methoxypsoralens. These are psoralens containing a methoxy group attached at the C5 position of the psoralen group. Bergapten is found, on average, in the highest concentration within a few different foods, such as anises, figs, and parsnips and in a lower concentration in carrots, fennels, and celery stalks. Bergapten has also been detected, but not quantified, in several different foods, such as coconuts, pepper (c. frutescens), corianders, sesbania flowers, and cardamoms. This could make bergapten a potential biomarker for the consumption of these foods. It is also found in rose hip, sweet marjoram, greenthread tea, and tartary buckwheat. Bergapten is a potentially toxic compound. Bergapten is a major constituent of bergamot oil (Citrus bergamia). Present in celery, especially the outer leaves, and other common grocery vegetables. Implicated in photodermatitis among grocery workers. Bergapten was under investigation in clinical trial NCT00533195 "Comparison of UVA1 Phototherapy Versus Photochemotherapy for Patients With Severe Generalized Atopic Dermatitis". Grayish-white microcrystalline powder or yellow fluffy solid. (NTP, 1992) 5-methoxypsoralen is a 5-methoxyfurocoumarin that is psoralen substituted by a methoxy group at position 5. It has a role as a hepatoprotective agent and a plant metabolite. It is a member of psoralens, a 5-methoxyfurocoumarin and an organic heterotricyclic compound. It is functionally related to a psoralen. Bergapten is under investigation in clinical trial NCT00533195 (Comparison of UVA1 Phototherapy Versus Photochemotherapy for Patients With Severe Generalized Atopic Dermatitis). Bergapten is a natural product found in Ficus auriculata, Ficus virens, and other organisms with data available. A linear furanocoumarin that has phototoxic and anti-inflammatory properties, with effects similar to METHOXSALEN. It is used in PUVA THERAPY for the treatment of PSORIASIS. See also: Parsley (part of); Anise (part of); Angelica archangelica root (part of) ... View More ... Bergapten is a major constituent of bergamot oil (Citrus bergamia). Present in celery, esp. the outer leaves, and other common grocery vegetables. Implicated in photodermatitis among grocery workers. It is also found in rose hip, sweet marjoram, greenthread tea, and tartary buckwheat. D - Dermatologicals > D05 - Antipsoriatics > D05B - Antipsoriatics for systemic use > D05BA - Psoralens for systemic use D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins D000893 - Anti-Inflammatory Agents D003879 - Dermatologic Agents CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8020; ORIGINAL_PRECURSOR_SCAN_NO 8017 CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8002; ORIGINAL_PRECURSOR_SCAN_NO 8000 CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7952; ORIGINAL_PRECURSOR_SCAN_NO 7950 CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7968; ORIGINAL_PRECURSOR_SCAN_NO 7967 CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8005; ORIGINAL_PRECURSOR_SCAN_NO 8002 CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8376; ORIGINAL_PRECURSOR_SCAN_NO 8372 [Raw Data] CBA84_Bergapten_pos_20eV.txt [Raw Data] CBA84_Bergapten_pos_10eV.txt [Raw Data] CBA84_Bergapten_pos_30eV.txt [Raw Data] CBA84_Bergapten_pos_40eV.txt [Raw Data] CBA84_Bergapten_pos_50eV.txt Bergapten is a natural anti-inflammatory and anti-tumor agent. Bergapten is inhibitory towards mouse and human CYP isoforms. Bergapten is a natural anti-inflammatory and anti-tumor agent. Bergapten is inhibitory towards mouse and human CYP isoforms.

   

alpha-Allocryptopine

7,8-dimethoxy-11-methyl-17,19-dioxa-11-azatetracyclo[12.7.0.04,9.016,20]henicosa-1(21),4(9),5,7,14,16(20)-hexaen-2-one

C21H23NO5 (369.1576)


Alpha-allocryptopine, also known as alpha-fagarine or beta-homochelidonine, is a member of the class of compounds known as protopine alkaloids. Protopine alkaloids are alkaloids with a structure based on a tricyclic protopine formed by oxidative ring fission of protoberberine N-metho salts. Alpha-allocryptopine is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Alpha-allocryptopine can be found in barley, which makes alpha-allocryptopine a potential biomarker for the consumption of this food product. Allocryptopine is a dibenzazecine alkaloid, an organic heterotetracyclic compound, a tertiary amino compound, a cyclic ketone, a cyclic acetal and an aromatic ether. Allocryptopine is a natural product found in Zanthoxylum beecheyanum, Berberis integerrima, and other organisms with data available. See also: Sanguinaria canadensis root (part of). KEIO_ID A137; [MS2] KO008812 KEIO_ID A137; [MS3] KO008813 KEIO_ID A137 Allocryptopine, a derivative of tetrahydropalmatine, is extracted from Macleaya cordata (Thunb.) Pers. Papaveraceae. Allocryptopine has antiarrhythmic effects and potently blocks human ether-a-go-go related gene (hERG) current[1][2]. Allocryptopine, a derivative of tetrahydropalmatine, is extracted from Macleaya cordata (Thunb.) Pers. Papaveraceae. Allocryptopine has antiarrhythmic effects and potently blocks human ether-a-go-go related gene (hERG) current[1][2].

   

Atractylenolide

(4aS-trans)- 4a,5,6,7,8,8a-hexahydro-3,8a-dimethyl-5-methylenenaphtho[2,3-b]furan-2(4H)-one

C15H18O2 (230.1307)


Atractylenolide I is a natural product found in Solanum lyratum, Atractylodes japonica, and other organisms with data available. Atractylenolide I is a sesquiterpene derived from the rhizome of Atractylodes macrocephala, possesses diverse bioactivities, such as neuroprotective, anti-allergic, anti-inflammatory and anticancer properties. Atractylenolide I reduces protein levels of phosphorylated JAK2 and STAT3 in A375 cells, and acts as a TLR4-antagonizing agent. Atractylenolide I is a sesquiterpene derived from the rhizome of Atractylodes macrocephala, possesses diverse bioactivities, such as neuroprotective, anti-allergic, anti-inflammatory and anticancer properties. Atractylenolide I reduces protein levels of phosphorylated JAK2 and STAT3 in A375 cells, and acts as a TLR4-antagonizing agent.

   

Bergaptol

7H-Furo(3,2-g)(1)benzopyran-7-one, 4-hydroxy- (8CI)(9CI)

C11H6O4 (202.0266)


Bergaptol is a member of psoralens and a 5-hydroxyfurocoumarin. It is a conjugate acid of a bergaptol(1-). Bergaptol is a natural product found in Citrus canaliculata, Hansenia forbesii, and other organisms with data available. Bergaptol is a secondary metabolite of psoralen which has been hydroxylated by liver enzymes during phase I metabolism. Bergaptol is a biomarker for the consumption of citrus fruits. Present in various citrus subspecies Bergaptol is found in many foods, some of which are common hazelnut, hazelnut, alaska blueberry, and groundcherry. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Bergaptol is an inhibitor of debenzylation of the CYP3A4 enzyme with an IC50 of 24.92 uM. Recent studies have shown that it has anti-proliferative and anti-cancer properties. Bergaptol is an inhibitor of debenzylation of the CYP3A4 enzyme with an IC50 of 24.92 uM. Recent studies have shown that it has anti-proliferative and anti-cancer properties.

   

(+)-taxifolin

(2R,3R)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2H-1-benzopyran-4-one

C15H12O7 (304.0583)


Taxifolin, also known as dihydroquercetin or (+)-taxifolin, is a member of the class of compounds known as flavanonols. Flavanonols are compounds containing a flavan-3-one moiety, with a structure characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a hydroxyl group and a ketone at the carbon C2 and C3, respectively. Taxifolin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Taxifolin can be found in a number of food items such as sweet rowanberry, arrowroot, evening primrose, and walnut, which makes taxifolin a potential biomarker for the consumption of these food products. Taxifolin is a flavanonol, a type of flavonoid . D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Taxifolin ((+)-Dihydroquercetin) exhibits important anti-tyrosinase activity. Taxifolin exhibits significant inhibitory activity against collagenase with an IC50 value of 193.3 μM[1]. Taxifolin is an important natural compound with antifibrotic activity. Taxifolin is a free radical scavenger with antioxidant capacity[2]. Taxifolin ((+)-Dihydroquercetin) exhibits important anti-tyrosinase activity. Taxifolin exhibits significant inhibitory activity against collagenase with an IC50 value of 193.3 μM[1]. Taxifolin is an important natural compound with antifibrotic activity. Taxifolin is a free radical scavenger with antioxidant capacity[2].

   

Resveratrol

(E)-5-(2-(4-hydroxyphenyl)ethenyl)-1,3-benzenediol(E)-5-(2-(4-hydroxyphenyl)ethenyl)-1,3-benzenediol

C14H12O3 (228.0786)


Resveratrol is a stilbenol that is stilbene in which the phenyl groups are substituted at positions 3, 5, and 4 by hydroxy groups. It has a role as a phytoalexin, an antioxidant, a glioma-associated oncogene inhibitor and a geroprotector. It is a stilbenol, a polyphenol and a member of resorcinols. Resveratrol (3,5,4-trihydroxystilbene) is a polyphenolic phytoalexin. It is a stilbenoid, a derivate of stilbene, and is produced in plants with the help of the enzyme stilbene synthase. It exists as cis-(Z) and trans-(E) isomers. The trans- form can undergo isomerisation to the cis- form when heated or exposed to ultraviolet irradiation. In a 2004 issue of Science, Dr. Sinclair of Harvard University said resveratrol is not an easy molecule to protect from oxidation. It has been claimed that it is readily degraded by exposure to light, heat, and oxygen. However, studies find that Trans-resveratrol undergoes negligible oxidation in normal atmosphere at room temperature. Resveratrol is a plant polyphenol found in high concentrations in red grapes that has been proposed as a treatment for hyperlipidemia and to prevent fatty liver, diabetes, atherosclerosis and aging. Resveratrol use has not been associated with serum enzyme elevations or with clinically apparent liver injury. Resveratrol is a natural product found in Vitis rotundifolia, Vitis amurensis, and other organisms with data available. Resveratrol is a phytoalexin derived from grapes and other food products with antioxidant and potential chemopreventive activities. Resveratrol induces phase II drug-metabolizing enzymes (anti-initiation activity); mediates anti-inflammatory effects and inhibits cyclooxygenase and hydroperoxidase functions (anti-promotion activity); and induces promyelocytic leukemia cell differentiation (anti-progression activity), thereby exhibiting activities in three major steps of carcinogenesis. This agent may inhibit TNF-induced activation of NF-kappaB in a dose- and time-dependent manner. (NCI05) Resveratrol is a metabolite found in or produced by Saccharomyces cerevisiae. A stilbene and non-flavonoid polyphenol produced by various plants including grapes and blueberries. It has anti-oxidant, anti-inflammatory, cardioprotective, anti-mutagenic, and anti-carcinogenic properties. It also inhibits platelet aggregation and the activity of several DNA HELICASES in vitro. Resveratrol is a polyphenolic phytoalexin. It is also classified as a stilbenoid, a derivate of stilbene, and is produced in plants with the help of the enzyme stilbene synthase. The levels of resveratrol found in food vary greatly. Red wine contains between 0.2 and 5.8 mg/L depending on the grape variety, while white wine has much less. The reason for this difference is that red wine is fermented with grape skins, allowing the wine to absorb the resveratrol, whereas white wine is fermented after the skin has been removed. Resveratrol is also sold as a nutritional supplement. A number of beneficial health effects, such as anti-cancer, antiviral, neuroprotective, anti-aging, anti-inflammatory, and life-prolonging effects have been reported for resveratrol. The fact that resveratrol is found in the skin of red grapes and as a constituent of red wine may explain the "French paradox". This paradox is based on the observation that the incidence of coronary heart disease is relatively low in southern France despite high dietary intake of saturated fats. Resveratrol is thought to achieve these cardioprotective effects by a number of different routes: (1) inhibition of vascular cell adhesion molecule expression; (2) inhibition of vascular smooth muscle cell proliferation; (3) stimulation of endothelial nitric oxide synthase (eNOS) activity; (4) inhibition of platelet aggregation; and (5) inhibition of LDL peroxidation (PMID: 17875315, 14676260, 9678525). Resveratrol is a biomarker for the consumption of grapes and raisins. A stilbenol that is stilbene in which the phenyl groups are substituted at positions 3, 5, and 4 by hydroxy groups. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors C1892 - Chemopreventive Agent > C54630 - Phase II Enzymes Inducer D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9638; ORIGINAL_PRECURSOR_SCAN_NO 9635 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9646; ORIGINAL_PRECURSOR_SCAN_NO 9641 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4381; ORIGINAL_PRECURSOR_SCAN_NO 4379 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9607; ORIGINAL_PRECURSOR_SCAN_NO 9606 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9642; ORIGINAL_PRECURSOR_SCAN_NO 9638 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4383; ORIGINAL_PRECURSOR_SCAN_NO 4379 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4396; ORIGINAL_PRECURSOR_SCAN_NO 4394 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4381; ORIGINAL_PRECURSOR_SCAN_NO 4376 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9641; ORIGINAL_PRECURSOR_SCAN_NO 9638 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4375; ORIGINAL_PRECURSOR_SCAN_NO 4373 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9614; ORIGINAL_PRECURSOR_SCAN_NO 9611 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4398; ORIGINAL_PRECURSOR_SCAN_NO 4397 IPB_RECORD: 1781; CONFIDENCE confident structure IPB_RECORD: 321; CONFIDENCE confident structure Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7]. Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7]. Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7].

   

Hesperidin

(S)-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)chroman-4-one

C28H34O15 (610.1898)


Hesperidin is an abundant and inexpensive by-product of Citrus cultivation and is the major flavonoid in sweet orange and lemon. In young immature oranges it can account for up to 14\\\\% of the fresh weight of the fruit. Hesperidin is an abundant and inexpensive by-product of Citrus cultivation and is the major flavonoid in sweet orange and lemon. In young immature oranges it can account for up to 14\\\\% of the fresh weight of the fruit due to vitamin C deficiency such as bruising due to capillary fragility were found in early studies to be relieved by crude vitamin C extract but not by purified vitamin C. The bioflavonoids, formerly called "vitamin P", were found to be the essential components in correcting this bruising tendency and improving the permeability and integrity of the capillary lining. These bioflavonoids include hesperidin, citrin, rutin, flavones, flavonols, catechin and quercetin. Of historical importance is the observation that "citrin", a mixture of two flavonoids, eriodictyol and hesperidin, was considered to possess a vitamin-like activity, as early as in 1949. Hesperidin deficiency has since been linked with abnormal capillary leakiness as well as pain in the extremities causing aches, weakness and night leg cramps. Supplemental hesperidin also helps in reducing oedema or excess swelling in the legs due to fluid accumulation. As with other bioflavonoids, hesperidin works best when administered concomitantly with vitamin C. No signs of toxicity have been observed with normal intake of hesperidin. Hesperidin was first discovered in 1827, by Lebreton, but not in a pure state and has been under continuous investigation since then (PMID:11746857). Hesperidin is a disaccharide derivative that consists of hesperetin substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as a mutagen. It is a disaccharide derivative, a member of 3-hydroxyflavanones, a dihydroxyflavanone, a monomethoxyflavanone, a flavanone glycoside, a member of 4-methoxyflavanones and a rutinoside. It is functionally related to a hesperetin. Hesperidin is a flavan-on glycoside found in citrus fruits. Hesperidin is a natural product found in Ficus erecta var. beecheyana, Citrus tankan, and other organisms with data available. A flavanone glycoside found in CITRUS fruit peels. See also: Tangerine peel (part of). Found in most citrus fruits and other members of the Rutaceae, also in Mentha longifolia Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials relative retention time with respect to 9-anthracene Carboxylic Acid is 0.770 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.767 [Raw Data] CB217_Hesperidin_pos_50eV_CB000076.txt [Raw Data] CB217_Hesperidin_pos_20eV_CB000076.txt [Raw Data] CB217_Hesperidin_pos_30eV_CB000076.txt [Raw Data] CB217_Hesperidin_pos_10eV_CB000076.txt [Raw Data] CB217_Hesperidin_pos_40eV_CB000076.txt [Raw Data] CB217_Hesperidin_neg_20eV_000038.txt [Raw Data] CB217_Hesperidin_neg_50eV_000038.txt [Raw Data] CB217_Hesperidin_neg_10eV_000038.txt [Raw Data] CB217_Hesperidin_neg_30eV_000038.txt [Raw Data] CB217_Hesperidin_neg_40eV_000038.txt Annotation level-1 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Hesperidin (Hesperetin 7-rutinoside), a flavanone glycoside, is isolated from citrus fruits. Hesperidin has numerous biological properties, such as decreasing inflammatory mediators and exerting significant antioxidant effects. Hesperidin also exhibits antitumor and antiallergic activities[1][2]. Hesperidin (Hesperetin 7-rutinoside), a flavanone glycoside, is isolated from citrus fruits. Hesperidin has numerous biological properties, such as decreasing inflammatory mediators and exerting significant antioxidant effects. Hesperidin also exhibits antitumor and antiallergic activities[1][2].

   

Xanthotoxol

9-hydroxy-7H-furo[3,2-g]chromen-7-one

C11H6O4 (202.0266)


Isolated from Aegle marmelos (bael fruit), Angelica archangelica (angelica) and the seeds of Pastinaca sativa (parsnip). Xanthotoxol is found in many foods, some of which are fats and oils, green vegetables, herbs and spices, and fig. Xanthotoxol is found in fats and oils. Xanthotoxol is isolated from Aegle marmelos (bael fruit), Angelica archangelica (angelica) and the seeds of Pastinaca sativa (parsnip Xanthotoxol is an 8-hydroxyfurocoumarin. Xanthotoxol is a natural product found in Citrus canaliculata, Prangos tschimganica, and other organisms with data available. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Xanthotoxol (8-Hydroxypsoralen) is a biologically active linear furocoumarin, shows strong pharmacological activities as anti-inflammatory, antioxidant, 5-HT antagonistic, and neuroprotective effects. Xanthotoxol (8-Hydroxypsoralen) It is a kind of fragrant bean substance, and it is a CYP450 inhibitor. Xanthotoxol has anti-inflammatory, anti-inflammatory, and 5-HT antagonistic and protective effects. Xanthotoxol inhibited CYP3A4 sum CYP1A2 IC50s separation 7.43 μM sum 27.82 μM. Xanthotoxol can pass through MAPK and NF-κB, inhibiting inflammation[1][2][3][4]. Xanthotoxol (8-Hydroxypsoralen) is a biologically active linear furocoumarin, shows strong pharmacological activities as anti-inflammatory, antioxidant, 5-HT antagonistic, and neuroprotective effects.

   

Eleutheroside

(2S,3R,4S,5S,6R)-2-[4-[(3S,3aR,6R,6aS)-6-[3,5-dimethoxy-4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyphenyl]-1,3,3a,4,6,6a-hexahydrofuro[3,4-c]furan-3-yl]-2,6-dimethoxyphenoxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C34H46O18 (742.2684)


Eleutheroside E is a lignan and a glycoside. Eleutheroside E is a natural product found in Eleutherococcus senticosus with data available. Eleutheroside E is an important component of Acanthopanax, which has anti-inflammatory and protective effects on ischemic heart. Eleutheroside E is an important component of Acanthopanax, which has anti-inflammatory and protective effects on ischemic heart.

   

Esculentic acid (Diplazium)

(1S,2R,4aS,6aS,6bR,8aR,9R,10R,11R,12aR,12bR,14bS)-10,11-dihydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O5 (488.3502)


Asiatic acid is a pentacyclic triterpenoid that is ursane substituted by a carboxy group at position 28 and hydroxy groups at positions 2, 3 and 23 (the 2alpha,3beta stereoisomer). It is isolated from Symplocos lancifolia and Vateria indica and exhibits anti-angiogenic activity. It has a role as an angiogenesis modulating agent and a metabolite. It is a monocarboxylic acid, a triol and a pentacyclic triterpenoid. It derives from a hydride of an ursane. From Centella asiatica and other plants; shows a variety of bioactivities. Asiatic acid is a natural product found in Psidium guajava, Combretum fruticosum, and other organisms with data available. See also: Holy basil leaf (part of); Lagerstroemia speciosa leaf (part of); Centella asiatica flowering top (part of). Esculentic acid (Diplazium) is found in green vegetables. Esculentic acid (Diplazium) is a constituent of the edible fern Diplazium esculentum C1907 - Drug, Natural Product > C28269 - Phytochemical > C1905 - Triterpenoid Compound C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product Asiatic acid, a pentacyclic triterpene found in Centella asiatica, induces apoptosis in melanoma cells. Asiatic acid has the potential for skin cancer treatment[1]. Asiatic acid also has anti-inflammatory activities[2]. Asiatic acid, a pentacyclic triterpene found in Centella asiatica, induces apoptosis in melanoma cells. Asiatic acid has the potential for skin cancer treatment[1]. Asiatic acid also has anti-inflammatory activities[2].

   

Salidroside

(2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-[2-(4-hydroxyphenyl)ethoxy]tetrahydropyran-3,4,5-triol

C14H20O7 (300.1209)


Salidroside is a glycoside. Salidroside is a natural product found in Plantago australis, Plantago coronopus, and other organisms with data available. See also: Sedum roseum root (part of); Rhodiola crenulata root (part of). Salidroside is a prolyl endopeptidase inhibitor. Salidroside alleviates cachexia symptoms in mouse models of cancer cachexia via activating mTOR signalling. Salidroside protects dopaminergic neurons by enhancing PINK1/Parkin-mediated mitophagy. Salidroside is a prolyl endopeptidase inhibitor. Salidroside alleviates cachexia symptoms in mouse models of cancer cachexia via activating mTOR signalling. Salidroside protects dopaminergic neurons by enhancing PINK1/Parkin-mediated mitophagy.

   

Andrographolide

2(3H)-Furanone, 3-(2-(decahydro-6-hydroxy-5-(hydroxymethyl)-5,8a-dimethyl-2-methylene-1-naphthalenyl)ethylidene)dihydro-4-hydroxy-, (1R-(1-alpha(E(S*)),4a-beta,5-alpha,6-alpha,8a-alpha))-

C20H30O5 (350.2093)


Andrographolide is a labdane diterpenoid isolated from the leaves and roots of Andrographis paniculata that exhibits anti-HIV, anti-inflammatory and antineoplastic properties. It has a role as a metabolite, an anti-inflammatory drug, an anti-HIV agent and an antineoplastic agent. It is a gamma-lactone, a primary alcohol, a secondary alcohol, a labdane diterpenoid and a carbobicyclic compound. Andrographolide (HMPL-004) is a botanical product extracted from a herb that occurs naturally in China. The herb has an extensive history of use in TCM for the treatment of upper respiratory tract infections and other inflammatory and infectious diseases. Andrographolide is a natural product found in Andrographis paniculata, Ginkgo biloba, and Cymbopogon schoenanthus with data available. Andrographolide is a labdane diterpenoid that is produced by the Andrographis paniculata plant, which has a broad range of therapeutic applications including anti-inflammatory and anti-platelet aggregation activities and potential antineoplastic properties. Since andrographolide has multiple therapeutic activities there are several proposed mechanisms of action for this agent. The anti-inflammatory effects of this agent appear to be related to the inhibition of nitric oxide (NO) production by macrophages. This agent may activate the NO/cyclic GMP pathway and inhibit both the phospholipase C gamma 2 (PLC gamma2)/protein kinase C (PKC) and PI3K/AKT-MAPK signaling pathways in activated platelets to inhibit platelet aggregation. In activated platelets, these three signaling pathways are downstream of integrin activation mediated by collagen binding and influence the association of fibrinogen with its receptors. Additionally, andrographolide may exert its anti-cancer activity through the induction of cell cycle arrest at G0/G1 phase and the stimulation of lymphocyte proliferation and activation. These processes could result in decreased proliferation of and increased immunocytotoxicity against tumor cells. A labdane diterpenoid isolated from the leaves and roots of Andrographis paniculata that exhibits anti-HIV, anti-inflammatory and antineoplastic properties. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78275 - Agent Affecting Blood or Body Fluid > C1327 - Antiplatelet Agent D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Origin: Plant; SubCategory_DNP: Diterpenoids, Andrographolide diterpenoids relative retention time with respect to 9-anthracene Carboxylic Acid is 0.941 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.939 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.936 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.938 Andrographolide is a NF-κB inhibitor, which inhibits NF-κB activation through covalent modification of a cysteine residue on p50 in endothelial cells without affecting IκBα degradation or p50/p65 nuclear translocation. Andrographolide has antiviral effects. Andrographolide is a NF-κB inhibitor, which inhibits NF-κB activation through covalent modification of a cysteine residue on p50 in endothelial cells without affecting IκBα degradation or p50/p65 nuclear translocation. Andrographolide has antiviral effects.

   

Quercetin

2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one

C15H10O7 (302.0427)


Quercetin appears as yellow needles or yellow powder. Converts to anhydrous form at 203-207 °F. Alcoholic solutions taste very bitter. (NTP, 1992) Quercetin is a pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. It has a role as an antibacterial agent, an antioxidant, a protein kinase inhibitor, an antineoplastic agent, an EC 1.10.99.2 [ribosyldihydronicotinamide dehydrogenase (quinone)] inhibitor, a plant metabolite, a phytoestrogen, a radical scavenger, a chelator, an Aurora kinase inhibitor and a geroprotector. It is a pentahydroxyflavone and a 7-hydroxyflavonol. It is a conjugate acid of a quercetin-7-olate. Quercetin is a flavonol widely distributed in plants. It is an antioxidant, like many other phenolic heterocyclic compounds. Glycosylated forms include RUTIN and quercetrin. Quercetin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Quercetin is a flavonoid found in many foods and herbs and is a regular component of a normal diet. Extracts of quercetin have been used to treat or prevent diverse conditions including cardiovascular disease, hypercholesterolemia, rheumatic diseases, infections and cancer but have not been shown to be effective in clinical trials for any medical condition. Quercetin as a nutritional supplement is well tolerated and has not been linked to serum enzyme elevations or to episodes of clinically apparent liver injury. Quercetin is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. Quercetin is a polyphenolic flavonoid with potential chemopreventive activity. Quercetin, ubiquitous in plant food sources and a major bioflavonoid in the human diet, may produce antiproliferative effects resulting from the modulation of either EGFR or estrogen-receptor mediated signal transduction pathways. Although the mechanism of action of action is not fully known, the following effects have been described with this agent in vitro: decreased expression of mutant p53 protein and p21-ras oncogene, induction of cell cycle arrest at the G1 phase and inhibition of heat shock protein synthesis. This compound also demonstrates synergy and reversal of the multidrug resistance phenotype, when combined with chemotherapeutic drugs, in vitro. Quercetin also produces anti-inflammatory and anti-allergy effects mediated through the inhibition of the lipoxygenase and cyclooxygenase pathways, thereby preventing the production of pro-inflammatory mediators. Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercitin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adju... Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercetin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adjustment for known risk factors and other dietary components. A limited number of intervention studies with flavonoids and flavonoid containing foods and extracts has been performed in several pathological conditions (PMID:17015250). Quercetin is isolated from many plants, especially fruits, such as Helichrysum, Euphorbia and Karwinskia spp. Present in the Solanaceae, Rhamnaceae, Passifloraceae and many other families. For example detected in almost all studied Umbelliferae. Nutriceutical with antiinflammatory props. and a positive influence on the blood lipid profile. Found in a wide variety of foods especially apples, bee pollen, blackcurrants, capers, cocoa, cranberries, dock leaves, elderberries, fennel, lovage, red onions, ancho peppers, dill weed and tarragon. A pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4014; ORIGINAL_PRECURSOR_SCAN_NO 4012 INTERNAL_ID 298; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4019; ORIGINAL_PRECURSOR_SCAN_NO 4018 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4017; ORIGINAL_PRECURSOR_SCAN_NO 4016 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4096; ORIGINAL_PRECURSOR_SCAN_NO 4094 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4024; ORIGINAL_PRECURSOR_SCAN_NO 4023 Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB109_Quercetin_pos_30eV_CB000041.txt IPB_RECORD: 1761; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_pos_10eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_20eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_40eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_50eV_CB000041.txt IPB_RECORD: 161; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_neg_40eV_000027.txt [Raw Data] CB109_Quercetin_neg_50eV_000027.txt [Raw Data] CB109_Quercetin_neg_20eV_000027.txt [Raw Data] CB109_Quercetin_neg_30eV_000027.txt [Raw Data] CB109_Quercetin_neg_10eV_000027.txt CONFIDENCE standard compound; INTERNAL_ID 124 CONFIDENCE standard compound; ML_ID 54 Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

Cinobufagin

[(1R,2S,4R,5R,6R,7R,10S,11S,14S,16R)-14-hydroxy-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.02,4.02,7.011,16]octadecan-5-yl] acetate

C26H34O6 (442.2355)


Cinobufagin is a steroid lactone. It is functionally related to a bufanolide. Cinobufagin is a natural product found in Bufo gargarizans, Phrynoidis asper, and other organisms with data available. Cinobufagin is a bufadienolide compound extracted from the dried venom secreted by the parotid glands of toads and one of the glycosides in the traditional Chinese medicine ChanSu, with potential antineoplastic activity. Although the mechanism of action of cinobufagin is still under investigation, it has been found to suppress cancer cell proliferation and cause apoptosis in cancer cells via a sequence of apoptotic modulators that include mitochondrial Bax and cytosolic chromosome c, and caspases 3, 8, and 9. Possible upstream mediators of cinobufagin-induced apoptosis include Fas and p53. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides C274 - Antineoplastic Agent > C129839 - Apoptotic Pathway-targeting Antineoplastic Agent D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides Annotation level-1 Cinobufagin is an anticancer agent that can be secreted by the Asiatic toad Bufo gargarizans. Cinobufagin induces the cell cycle arrests in the G1 phase or G2/M phase, leading to apoptosis in cancer cells. Cinobufagin inhibits tumor growth in melanoma and glioblastoma multiforme xenograft mouse models[1][2][3]. Cinobufagin is an anticancer agent that can be secreted by the Asiatic toad Bufo gargarizans. Cinobufagin induces the cell cycle arrests in the G1 phase or G2/M phase, leading to apoptosis in cancer cells. Cinobufagin inhibits tumor growth in melanoma and glioblastoma multiforme xenograft mouse models[1][2][3].

   

Platycodin_D

Olean-12-en-28-oic acid, 3-(beta-D-glucopyranosyloxy)-2,16,23,24-tetrahydroxy-, O-D-apio-beta-D-furanosyl-(1-3)-O-beta-D-xylopyranosyl-(1-4)-O-6-deoxy-alpha-L-mannopyranosyl-(1-2)-L-arabinopyranosyl ester, (2beta,3beta,16alpha)-

C57H92O28 (1224.5775)


Platycodin D is a triterpenoid saponin. It has a role as a metabolite. Platycodin D is a natural product found in Platycodon grandiflorus with data available. A natural product found in Platycodon grandiflorum. Platycodin D is a saponin isolated from Platycodon grandiflorus, acts as an activator of AMPKα, with anti-obesity property. WNT/β-catenin pathway mediates the anti-adipogenic effect of platycodin D[1][2]. Platycodin D is a saponin isolated from Platycodon grandiflorus, acts as an activator of AMPKα, with anti-obesity property. WNT/β-catenin pathway mediates the anti-adipogenic effect of platycodin D[1][2]. Platycodin D is a saponin isolated from Platycodon grandiflorus, acts as an activator of AMPKα, with anti-obesity property. WNT/β-catenin pathway mediates the anti-adipogenic effect of platycodin D[1][2].

   

Methoxsalen

Methoxsalen, United States Pharmacopeia (USP) Reference Standard

C12H8O4 (216.0423)


8-methoxypsoralen is an odorless white to cream-colored crystalline solid. Bitter taste followed by tingling sensation. (NTP, 1992) Methoxsalen is a member of the class of psoralens that is 7H-furo[3,2-g]chromen-7-one in which the 9 position is substituted by a methoxy group. It is a constituent of the fruits of Ammi majus. Like other psoralens, trioxsalen causes photosensitization of the skin. It is administered topically or orally in conjunction with UV-A for phototherapy treatment of vitiligo and severe psoriasis. It has a role as a dermatologic drug, an antineoplastic agent, a photosensitizing agent, a cross-linking reagent and a plant metabolite. It is a member of psoralens and an aromatic ether. It is functionally related to a psoralen. A naturally occurring furocoumarin compound found in several species of plants, including Psoralea corylifolia. It is a photoactive substance that forms DNA adducts in the presence of ultraviolet A irradiation. Methoxsalen is a Photoactivated Radical Generator and Psoralen. The mechanism of action of methoxsalen is as a Photoabsorption. The physiologic effect of methoxsalen is by means of Photosensitizing Activity. Methoxsalen is a natural product found in Ammi visnaga, Zanthoxylum mayu, and other organisms with data available. Methoxsalen is a naturally occurring substance isolated from the seeds of the plant Ammi majus with photoactivating properties. As a member of the family of compounds known as psoralens or furocoumarins, methoxsalens exact mechanism of action is unknown; upon photoactivation, methoxsalen has been observed to bind covalently to and crosslink DNA. (NCI04) Methoxsalen is only found in individuals that have used or taken this drug. It is a naturally occurring furocoumarin compound found in several species of plants, including Psoralea corylifolia. It is a photoactive substance that forms DNA adducts in the presence of ultraviolet A irradiation. After activation Methoxsalen binds preferentially to the guanine and cytosine moieties of DNA, leading to cross-linking of DNA, thus inhibiting DNA synthesis and function. A naturally occurring furocoumarin compound found in several species of plants, including Psoralea corylifolia. It is a photoactive substance that forms DNA ADDUCTS in the presence of ultraviolet A irradiation. See also: Angelica archangelica root (part of); Ammi majus seed (part of); Angelica keiskei top (part of) ... View More ... Methoxsalen, also known as oxsoralen or 8-methoxypsoralen, belongs to the class of organic compounds known as 8-methoxypsoralens. These are psoralens containing a methoxy group attached at the C8 position of the psoralen group. Methoxsalen is a drug which is used for the treatment of psoriasis and vitiligo. Methoxsalen is a bitter tasting compound. Methoxsalen is found, on average, in the highest concentration within a few different foods, such as parsnips, parsley, and celery stalks and in a lower concentration in wild carrots, carrots, and fennels. Methoxsalen has also been detected, but not quantified, in several different foods, such as figs, green vegetables, corianders, dills, and fruits. Methoxsalen is a potentially toxic compound. A member of the class of psoralens that is 7H-furo[3,2-g]chromen-7-one in which the 9 position is substituted by a methoxy group. It is a constituent of the fruits of Ammi majus. Like other psoralens, trioxsalen causes photosensitization of the skin. It is administered topically or orally in conjunction with UV-A for phototherapy treatment of vitiligo and severe psoriasis. Present in celery, especies the outer leaves, and other common grocery vegetables. Implicated in photodermatitis among grocery workers. Isolated from Aegle marmelos (bael) D - Dermatologicals > D05 - Antipsoriatics > D05B - Antipsoriatics for systemic use > D05BA - Psoralens for systemic use D - Dermatologicals > D05 - Antipsoriatics > D05A - Antipsoriatics for topical use > D05AD - Psoralens for topical use D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D003432 - Cross-Linking Reagents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent C1420 - Photosensitizing Agent D003879 - Dermatologic Agents [Raw Data] CBA87_Xanthotoxin_pos_20eV.txt [Raw Data] CBA87_Xanthotoxin_pos_30eV.txt [Raw Data] CBA87_Xanthotoxin_pos_40eV.txt [Raw Data] CBA87_Xanthotoxin_pos_10eV.txt [Raw Data] CBA87_Xanthotoxin_pos_50eV.txt Methoxsalen (8-Methoxypsoralen) is a furanocoumarin compound used in psoralen, used in studies of psoriasis, eczema, vitiligo and some sun-exposed cutaneous lymphomas, and is a P450 inhibitor. Methoxsalen (8-Methoxypsoralen) is a furanocoumarin compound used in psoralen, used in studies of psoriasis, eczema, vitiligo and some sun-exposed cutaneous lymphomas, and is a P450 inhibitor.

   

Cucurbitacin B

(R,E)-6-((2S,8S,9R,10R,13R,14S,16R,17R)-2,16-dihydroxy-4,4,9,13,14-pentamethyl-3,11-dioxo-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)-6-hydroxy-2-methyl-5-oxohept-3-en-2-yl acetate

C32H46O8 (558.3193)


Together wth other cucurbitacins, is responsible for the bitter taste and toxic props. of spoilt cucumbers. Cucurbitacin B is found in many foods, some of which are muskmelon, bitter gourd, green vegetables, and cucumber. Cucurbitacin B is found in bitter gourd. Together wth other cucurbitacins, is responsible for the bitter taste and toxic properties of spoilt cucumber Cucurbitacin B is a cucurbitacin in which a lanostane skeleton is multi-substituted with hydroxy, methyl and oxo substituents, with unsaturation at positions 5 and 23; a hydroxy function at C-25 is acetylated. It is a cucurbitacin, a secondary alpha-hydroxy ketone and a tertiary alpha-hydroxy ketone. It derives from a hydride of a lanostane. Cucurbitacin B is a natural product found in Begonia plebeja, Trichosanthes miyagii, and other organisms with data available. Cucurbitacin B belongs to a class of highly oxidized tetracyclic triterpenoids and is oral active. Cucurbitacin B inhibits tumor cell growth, migration and invasion and cycle arrest, but induces cell apoptosis. Cucurbitacin B has potent anti-inflammatory, antioxidant, antiviral, hypoglycemic, hepatoprotective, neuroprotective activity[1][2][3][4][5]. Cucurbitacin B belongs to a class of highly oxidized tetracyclic triterpenoids and is oral active. Cucurbitacin B inhibits tumor cell growth, migration and invasion and cycle arrest, but induces cell apoptosis. Cucurbitacin B has potent anti-inflammatory, antioxidant, antiviral, hypoglycemic, hepatoprotective, neuroprotective activity[1][2][3][4][5]. (+)-Cucurbitacin B. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=6199-67-3 (retrieved 2024-08-12) (CAS RN: 6199-67-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Hordenine

4-[2-(dimethylamino)ethyl]phenol

C10H15NO (165.1154)


Hordenine is a potent phenylethylamine alkaloid with antibacterial and antibiotic properties produced in nature by several varieties of plants in the family Cactacea. The major source of hordenine in humans is beer brewed from barley. Hordenine in urine interferes with tests for morphine, heroin and other opioid drugs. Hordenine is a biomarker for the consumption of beer Hordenine is a phenethylamine alkaloid. It has a role as a human metabolite and a mouse metabolite. Hordenine is a natural product found in Cereus peruvianus, Mus musculus, and other organisms with data available. See also: Selenicereus grandiflorus stem (part of). Alkaloid from Hordeum vulgare (barley) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2289 Hordenine, an alkaloid found in plants, inhibits melanogenesis by suppression of cyclic adenosine monophosphate (cAMP) production[1]. Hordenine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=539-15-1 (retrieved 2024-10-24) (CAS RN: 539-15-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Piperine

(2E,4E)-5-(2H-1,3-benzodioxol-5-yl)-1-(piperidin-1-yl)penta-2,4-dien-1-one

C17H19NO3 (285.1365)


Piperine, also known as fema 2909, belongs to the class of organic compounds known as alkaloids and derivatives. These are naturally occurring chemical compounds that contain mostly basic nitrogen atoms. This group also includes some related compounds with neutral and even weakly acidic properties. Also some synthetic compounds of similar structure are attributed to alkaloids. In addition to carbon, hydrogen and nitrogen, alkaloids may also contain oxygen, sulfur and more rarely other elements such as chlorine, bromine, and phosphorus. Piperine is a pepper tasting compound. Piperine is found in the highest concentration within pepper (Piper nigrum) and many other Piper species. Piperine has also been detected, but not quantified, in dills and herbs and spices. Piperine is responsible for the hot taste of pepper. Piperine has been used in trials studying the treatment of Multiple Myeloma and Deglutition Disorders. It is used to impart pungent taste to brandy. Piperine is a N-acylpiperidine that is piperidine substituted by a (1E,3E)-1-(1,3-benzodioxol-5-yl)-5-oxopenta-1,3-dien-5-yl group at the nitrogen atom. It is an alkaloid isolated from the plant Piper nigrum. It has a role as a NF-kappaB inhibitor, a plant metabolite, a food component and a human blood serum metabolite. It is a member of benzodioxoles, a N-acylpiperidine, a piperidine alkaloid and a tertiary carboxamide. It is functionally related to an (E,E)-piperic acid. Bioperine has been used in trials studying the treatment of Multiple Myeloma and Deglutition Disorders. Piperine is a natural product found in Macropiper, Piper boehmeriifolium, and other organisms with data available. See also: Black Pepper (part of) ... View More ... Constituent of pepper (Piper nigrum) and many other Piper subspecies (Piperaceae). It is used to impart pungent taste to brandy. Responsible for the hot taste of pepper. Flavour ingredient. Piperine is found in dill, herbs and spices, and pepper (spice). A N-acylpiperidine that is piperidine substituted by a (1E,3E)-1-(1,3-benzodioxol-5-yl)-5-oxopenta-1,3-dien-5-yl group at the nitrogen atom. It is an alkaloid isolated from the plant Piper nigrum. Piperine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=94-62-2 (retrieved 2024-07-01) (CAS RN: 94-62-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Piperine, a natural alkaloid isolated from Piper nigrum L, inhibits P-glycoprotein and CYP3A4 activities with an IC50 value of 61.94±0.054 μg/mL in HeLa cell. Piperine, a natural alkaloid isolated from Piper nigrum L, inhibits P-glycoprotein and CYP3A4 activities with an IC50 value of 61.94±0.054 μg/mL in HeLa cell.

   

Obacunone

Oxireno(4,4a)-2-benzopyrano(6,5-g)(2)benzoxepin-3,5,9(3aH,4bH,6H)-trione, 1-(3-furanyl)-1,6a,7,11a,11b,12,13,13a-octahydro-4b,7,7,11a,13a-pentamethyl-, (1S,3aS,4aR,4bR,6aR,11aR,11bR,11bR,13aS)-

C26H30O7 (454.1991)


Constituent of Citrus subspecies, Fortunella margarita (oval kumquat) and Casimiroa edulis (Mexican apple). Obacunone is found in many foods, some of which are pomes, sweet orange, lemon, and fruits. Obacunone is found in fruits. Obacunone is a constituent of Citrus species, Fortunella margarita (oval kumquat) and Casimiroa edulis (Mexican apple) Obacunone is a limonoid. Obacunone is a natural product found in Limonia acidissima, Citrus latipes, and other organisms with data available. Obacunone, isolated from Citrus fruits, exhibits anti-tumor activity by the induction of apoptosis[1]. Obacunone, isolated from Citrus fruits, exhibits anti-tumor activity by the induction of apoptosis[1].

   

Bruceine

(1R,2S,3R,3aR,3a1R,4R,6aR,7aS,11S,11aS,11bR)-1,2,3a,4,11-pentahydroxy-3,8,11a-trimethyl-1,2,3,3a,4,7,7a,11,11a,11b-decahydro-5H-3,3a1-(epoxymethano)dibenzo[de,g]chromene-5,10(6aH)-dione

C20H26O9 (410.1577)


Bruceine D is a quassinoid that is 13,20-epoxypicras-3-ene substituted by hydroxy groups at positions 1, 11, 12, 14 and 15 and oxo groups at positions 2 and 16. Isolated from the ethanol extract of the stem of Brucea mollis, it exhibits cytotoxic activity. It has a role as a metabolite, an antineoplastic agent and a plant metabolite. It is a delta-lactone, a pentol, a quassinoid, an organic heteropentacyclic compound and a secondary alpha-hydroxy ketone. It derives from a hydride of a picrasane. Brucein D is a natural product found in Brucea javanica, Brucea mollis, and Samadera indica with data available. A quassinoid that is 13,20-epoxypicras-3-ene substituted by hydroxy groups at positions 1, 11, 12, 14 and 15 and oxo groups at positions 2 and 16. Isolated from the ethanol extract of the stem of Brucea mollis, it exhibits cytotoxic activity. Bruceine D is a Notch inhibitor with anti-cancer activity and induces apoptosis in several human cancer cells. Bruceine D is an effective botanical insect antifeedant with outstanding systemic properties, causing potent pest growth inhibitory activity[1][2]. Bruceine D has strong anthelmintic activity against D. intermedius with an EC50 value of 0.57 mg/L[3]. Bruceine D is a Notch inhibitor with anti-cancer activity and induces apoptosis in several human cancer cells. Bruceine D is an effective botanical insect antifeedant with outstanding systemic properties, causing potent pest growth inhibitory activity[1][2]. Bruceine D has strong anthelmintic activity against D. intermedius with an EC50 value of 0.57 mg/L[3].

   

Senecionine

(1,6)Dioxacyclododecino(2,3,4-gh)pyrrolizine-2,7-dione, 3-ethylidene-3,4,5,6,9,11,13,14,14a,14b-decahydro-6-hydroxy-5,6-dimethyl-, (3Z,5R,6R,14aR,14bR)-

C18H25NO5 (335.1733)


Senecionine is a pyrrolizidine alkaloid isolated from the plant species of the genus Senecio. It has a role as a plant metabolite. It is a lactone, a pyrrolizidine alkaloid and a tertiary alcohol. It is functionally related to a senecionan. It is a conjugate base of a senecionine(1+). Senecionine is a natural product found in Dorobaea pimpinellifolia, Crotalaria micans, and other organisms with data available. Senecionine is an organic compound with the chemical formula C18H25NO5. It is classified as a pyrrolizidine alkaloid. See also: Petasites hybridus root (part of); Tussilago farfara flower (part of); Tussilago farfara leaf (part of). A pyrrolizidine alkaloid isolated from the plant species of the genus Senecio. D000970 - Antineoplastic Agents Annotation level-1 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2251 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 122 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 102 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 142 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 152 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 162 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 172 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 132 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 112 [Raw Data] CB082a_Senecionine_pos_40eV_CB000034.txt [Raw Data] CB082a_Senecionine_pos_10eV_CB000034.txt [Raw Data] CB082a_Senecionine_pos_30eV_CB000034.txt [Raw Data] CB082a_Senecionine_pos_20eV_CB000034.txt [Raw Data] CB082a_Senecionine_pos_50eV_CB000034.txt Senecionine (Senecionan-11,16-dione, 12-hydroxy-) is a pyrrolizidine alkaloid could be isolated from Senecio vulgaris. Senecionine decreases the activities of glutathione S-transferase, aminopyrine demethylase and arylhydrocarbon hydroxylase (AHH)[1][2][3]. Senecionine (Senecionan-11,16-dione, 12-hydroxy-) is a pyrrolizidine alkaloid could be isolated from Senecio vulgaris. Senecionine decreases the activities of glutathione S-transferase, aminopyrine demethylase and arylhydrocarbon hydroxylase (AHH)[1][2][3].

   

Silicristin

(2R,3R)-3,5,7-trihydroxy-2-[(2R,3S)-7-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-2,3-dihydro-1-benzofuran-5-yl]-2,3-dihydro-4H-chromen-4-one

C25H22O10 (482.1213)


Silychristin is a flavonolignan isolated from Silybum marianum and has been shown to exhibit inhibitory activities against lipoxygenase and prostaglandin synthetase. It has a role as a radical scavenger, a lipoxygenase inhibitor, a prostaglandin antagonist and a metabolite. It is a flavonolignan, a member of 1-benzofurans, a polyphenol, an aromatic ether and a secondary alpha-hydroxy ketone. Silicristin is a natural product found in Cunila, Anastatica hierochuntica, and other organisms with data available. Isolated from fruits of Silybum marianum (milk thistle). Silicristin is found in coffee and coffee products and green vegetables. Silicristin is found in coffee and coffee products. Silicristin is isolated from fruits of Silybum marianum (milk thistle). C26170 - Protective Agent > C2081 - Hepatoprotective Agent Silychristin is an abundant flavonolignan present in the fruits of Silybum marianum, with antioxidant properties. Silychristin is a potent inhibitor of the thyroid hormone transporter MCT8, and elicits a strong inhibition of T3 uptake with an IC50 of 110 nM[1][2]. Silychristin is an abundant flavonolignan present in the fruits of Silybum marianum, with antioxidant properties. Silychristin is a potent inhibitor of the thyroid hormone transporter MCT8, and elicits a strong inhibition of T3 uptake with an IC50 of 110 nM[1][2].

   

Telobufotoxin

5-[(3S,5S,8R,9S,10R,13R,14S,17R)-3,5,14-trihydroxy-10,13-dimethyl-2,3,4,6,7,8,9,11,12,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl]pyran-2-one

C24H34O5 (402.2406)


Telocinobufagin is a steroid lactone. It is functionally related to a bufanolide. Telocinobufagin is a natural product found in Bufo gargarizans, Bufo bufo, and other organisms with data available. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides Telocinobufagin is one of anti-hepatoma constituent in Venenum Bufonis. Telocinobufagin is one of anti-hepatoma constituent in Venenum Bufonis.

   

Feretoside

(1S,4aS,5R,7aS)-5-hydroxy-7-(hydroxymethyl)-1-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-1,4a,5,7a-tetrahydrocyclopenta[d]pyran-4-carboxylic acid methyl ester

C17H24O11 (404.1319)


Scandoside methyl ester is a terpene glycoside. Scandoside methyl ester is a natural product found in Feretia apodanthera, Gardenia jasminoides, and other organisms with data available.

   

Sinapic acid

3,5-Dimethoxy-4-hydroxycinnamic acid, 4-Hydroxy-3,5-dimethoxy-cinnamic acid, Sinapinic acid

C11H12O5 (224.0685)


Sinapic acid, also known as sinapinate, belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. Sinapic acid has been detected, but not quantified, in several different foods, such as strawberry guava, purple lavers, common verbena, ryes, and lupines. This could make sinapic acid a potential biomarker for the consumption of these foods. A sinapic acid in which the double bond has trans-configuration. Trans-sinapic acid is a sinapic acid in which the double bond has trans-configuration. It has a role as a MALDI matrix material and a plant metabolite. It is a conjugate acid of a trans-sinapate. Sinapic acid is a matrix for matrix-assisted laser desorption technique for protein MW determination. It is also a constituent of propolis. Sinapic acid is a natural product found in Sida acuta, Limoniastrum guyonianum, and other organisms with data available. A common constituent of plants and fruits. trans-Sinapic acid is found in many foods, some of which are small-leaf linden, redcurrant, malabar spinach, and blackcurrant. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents A sinapic acid in which the double bond has trans-configuration. Acquisition and generation of the data is financially supported in part by CREST/JST. Profile spectrum of this record is given as a JPEG file.; [Profile] MCH00014.jpg Profile spectrum of this record is given as a JPEG file.; [Profile] MCH00015.jpg CONFIDENCE standard compound; INTERNAL_ID 174 Annotation level-1 Annotation level-2 KEIO_ID S028 Sinapinic acid (Sinapic acid) is a phenolic compound isolated from Hydnophytum formicarum Jack. Rhizome, acts as an inhibitor of HDAC, with an IC50 of 2.27 mM[1], and also inhibits ACE-I activity[2]. Sinapinic acid posssess potent anti-tumor activity, induces apoptosis of tumor cells[1]. Sinapinic acid shows antioxidant and antidiabetic activities[2]. Sinapinic acid reduces total cholesterol, triglyceride, and HOMA-IR index, and also normalizes some serum parameters of antioxidative abilities and oxidative damage in ovariectomized rats[3]. Sinapinic acid (Sinapic acid) is a phenolic compound isolated from Hydnophytum formicarum Jack. Rhizome, acts as an inhibitor of HDAC, with an IC50 of 2.27 mM[1], and also inhibits ACE-I activity[2]. Sinapinic acid posssess potent anti-tumor activity, induces apoptosis of tumor cells[1]. Sinapinic acid shows antioxidant and antidiabetic activities[2]. Sinapinic acid reduces total cholesterol, triglyceride, and HOMA-IR index, and also normalizes some serum parameters of antioxidative abilities and oxidative damage in ovariectomized rats[3].

   

Juglone

InChI=1/C10H6O3/c11-7-4-5-9(13)10-6(7)2-1-3-8(10)12/h1-5,12

C10H6O3 (174.0317)


Juglone is a hydroxy-1,4-naphthoquinone that is 1,4-naphthoquinone in which the hydrogen at position 5 has been replaced by a hydroxy group. A plant-derived 1,4-naphthoquinone with confirmed antibacterial and antitumor activities. It has a role as a herbicide, a reactive oxygen species generator and a geroprotector. Juglone is a natural product found in Talaromyces diversus, Carya alba, and other organisms with data available. Occurs in Juglans subspecies and pecan nuts (Carya illinoensis). Juglone is found in many foods, some of which are common walnut, liquor, black walnut, and nuts. Juglone is found in black walnut. Juglone occurs in Juglans species and pecan nuts (Carya illinoensis D000074385 - Food Ingredients > D005503 - Food Additives > D005520 - Food Preservatives D009676 - Noxae > D003603 - Cytotoxins D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors

   

Psoralen

7H-furo[3,2-g]chromen-7-one

C11H6O3 (186.0317)


Psoralen is the simplest member of the class of psoralens that is 7H-furo[3,2-g]chromene having a keto group at position 7. It has been found in plants like Psoralea corylifolia and Ficus salicifolia. It has a role as a plant metabolite. 8-methoxsalen and 5-methoxsalen are furocoumarins referred to collectively as psoralens that have photosensitizing activity and are used orally and topically in conjunction with ultraviolet irradiation for the therapy of psoriasis and vitiligo. Psoralens have been linked to a low rate of transient serum enzyme elevations during therapy and to rare instances of clinically apparent acute liver injury. Psoralen is a natural product found in Cullen cinereum, Ficus erecta var. beecheyana, and other organisms with data available. Psoralen is a furocoumarin that intercalates with DNA, inhibiting DNA synthesis and cell division. Psoralen is used in Photochemotherapy with high-intensity long-wavelength UVA irradiation. Psoralens are tricyclic furocumarins and have a strong tendency to intercalate with DNA base pairs. Irradiation of nucleic acids in the presence of psoralen with long wave UV (~360 nm) results in the 2+2 cyclo- addition of either of its two photoreactive sites with 5,6-carbon bonds of pyrimidines resulting in crosslinking double-stranded nucleic acids. Psoralen is found in carrot. Psoralen is found in common vegetables, e.g. parsnip, celery especially if diseased or `spoiled Psoralen is a significant mutagen and is used for this purpose in molecular biology research.Psoralen has been shown to exhibit anti-proliferative, anti-allergenic and anti-histamine functions (A7781, A7782, A7782).Psoralen belongs to the family of Furanocoumarins. These are polycyclic aromatic compounds containing a furan ring fused to a coumarin moeity. A naturally occurring furocoumarin, found in PSORALEA. After photoactivation with UV radiation, it binds DNA via single and double-stranded cross-linking. See also: Angelica keiskei top (part of); Cullen corylifolium fruit (part of). Psoralen, also known as psoralene, ficusin or manaderm, belongs to the class of organic compounds known as psoralens. These are organic compounds containing a psoralen moiety, which consists of a furan fused to a chromenone to for 7H-furo[3,2-g]chromen-7-one. Psoralen is the parent compound in a family of naturally occurring organic compounds known as the linear furanocoumarins. Psoralen is structurally related to coumarin by the addition of a fused furan ring and is considered as a derivative of umbelliferone. Biosynthetically, psoralen originates from coumarins in the shikimate pathway. Psoralen is produced exclusively by plants but can be found in animals that consume these plants. Psoralen can be found in several plant sources with Ficus carica (the common fig) being probably the most abundant source of psoralens. They are also found in small quantities in Ammi visnaga (bisnaga), Pastinaca sativa (parsnip), Petroselinum crispum (parsley), Levisticum officinale (lovage), Foeniculum vulgare (fruit, i.e., Fennel seeds), Daucus carota (carrot), Psoralea corylifolia (babchi), Apium graveolens (celery), and bergamot oil (bergapten, bergamottin). Psoralen is found in all citrus fruits. Psoralen is a well-known mutagen and is used for this purpose in molecular biology research. Psoralen intercalates into DNA and on exposure to ultraviolet (UVA) radiation can form monoadducts and covalent inter-strand cross-links (ICL) with thymines in the DNA molecule. Psoralen also functions as a drug. An important use of psoralen is in the treatment for skin problems such as psoriasis and, to a lesser extent, eczema and vitiligo. This treatment takes advantage of the high UV absorbance of psoralen. In treating these skin conditions psoralen is applied first to sensitise the skin, then UVA light is applied to clean up the skin problem. Psoralen has also been recommended for treating alopecia. The simplest member of the class of psoralens that is 7H-furo[3,2-g]chromene having a keto group at position 7. It has been found in plants like Psoralea corylifolia and Ficus salicifolia. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D003432 - Cross-Linking Reagents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics Found in common vegetables, e.g. parsnip, celery especies if diseased or `spoiled D003879 - Dermatologic Agents INTERNAL_ID 18; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 18 Psoralen (Ficusin) is a coumarin isolated from the seeds of Fructus Psoraleae. Psoralen exhibits a wide range of biological properties, including anti-cancer, antioxidant, antidepressant, anticancer, antibacterial, and antiviral, et al[1]. Psoralen. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=66-97-7 (retrieved 2024-10-18) (CAS RN: 66-97-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

L-Quebrachitol

(1R,2S,3S,4S,5R,6R)-6-Methoxycyclohexane-1,2,3,4,5-pentaol

C7H14O6 (194.079)


L-Quebrachitol is a member of cyclohexanols. L-Quebrachitol is a natural product found in Croton cortesianus, Hippophae rhamnoides, and other organisms with data available. Widely distributed in plants. L-Quebrachitol is found in mugwort and sea-buckthornberry. L-Quebrachitol is found in mugwort. L-Quebrachitol is widely distributed in plant L-Quebrachitol is a natural product isolated from many plants, promotes osteoblastogenesis by uppregulation of BMP-2, runt-related transcription factor-2 (Runx2), MAPK (ERK, JNK, p38α), and Wnt/β-catenin signaling pathway[1]. L-Quebrachitol is a natural product isolated from many plants, promotes osteoblastogenesis by uppregulation of BMP-2, runt-related transcription factor-2 (Runx2), MAPK (ERK, JNK, p38α), and Wnt/β-catenin signaling pathway[1].

   

Alantolactone

Naphtho(2,3-b)furan-2(3H)-one, 3a,5,6,7,8,8a,9,9a-octahydro-5,8a-dimethyl-3-methylene-, (3aR-(3a alpha,5beta,8a beta,9a alpha))-

C15H20O2 (232.1463)


Alantolactone is a sesquiterpene lactone that is 3a,5,6,7,8,8a,9,9a-octahydronaphtho[2,3-b]furan-2-one bearing two methyl substituents at positions 5 and 8a as well as a methylidene substituent at position 3. It has a role as a plant metabolite, an apoptosis inducer and an antineoplastic agent. It is a sesquiterpene lactone, a naphthofuran and an olefinic compound. Alantolactone is a natural product found in Eupatorium cannabinum, Pentanema britannicum, and other organisms with data available. Alantolactone is found in herbs and spices. Alantolactone is a constituent of Inula helenium (elecampane) Constituent of Inula helenium (elecampane). Alantolactone is found in herbs and spices. Alantolactone is a selective STAT3 inhibitor, with potent anticancer activity. Alantolactone induces apoptosis in cancer[1][2][3]. Alantolactone is a selective STAT3 inhibitor, with potent anticancer activity. Alantolactone induces apoptosis in cancer[1][2][3].

   

Costunolide

Cyclodeca[b]furan-2(3H)-one, 3a,4,5,8,9,11a-hexahydro-6,10-dimethyl-3-methylene-, (3aS,6E,10E,11aR)-

C15H20O2 (232.1463)


Costunolide is a germacranolide with anthelminthic, antiparasitic and antiviral activities. It has a role as an anthelminthic drug, an antiinfective agent, an antineoplastic agent, an antiparasitic agent, an antiviral drug and a metabolite. It is a germacranolide and a heterobicyclic compound. (+)-Costunolide is a natural product found in Magnolia garrettii, Critonia morifolia, and other organisms with data available. Constituent of costus root (Saussurea lappa). Costunolide is found in tarragon, sweet bay, and herbs and spices. Costunolide is found in herbs and spices. Costunolide is a constituent of costus root (Saussurea lappa) D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D000890 - Anti-Infective Agents > D000998 - Antiviral Agents INTERNAL_ID 2266; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2266 D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors Costunolide ((+)-Costunolide) is a naturally occurring sesquiterpene lactone, with antioxidative, anti-inflammatory, antiallergic, bone remodeling, neuroprotective, hair growth promoting, anticancer, and antidiabetic properties. Costunolide can induce cell cycle arrest and apoptosis on breast cancer cells[1][2][3]. Costunolide ((+)-Costunolide) is a naturally occurring sesquiterpene lactone, with antioxidative, anti-inflammatory, antiallergic, bone remodeling, neuroprotective, hair growth promoting, anticancer, and antidiabetic properties. Costunolide can induce cell cycle arrest and apoptosis on breast cancer cells[1][2][3].

   

8-Epixanthatin

2H-CYCLOHEPTA(B)FURAN-2-ONE, 3,3A,4,7,8,8A-HEXAHYDRO-7-METHYL-3-METHYLENE-6-((1E)-3-OXO-1-BUTEN-1-YL)-, (3AR,7S,8AS)-

C15H18O3 (246.1256)


Xanthatin is a sesquiterpene lactone. Xanthatin is a natural product found in Xanthium spinosum, Dittrichia graveolens, and other organisms with data available. 8-Epixanthatin is found in fats and oils. 8-Epixanthatin is a constituent of Helianthus annuus (sunflower). Constituent of Helianthus annuus (sunflower). 8-Epixanthatin is found in fats and oils. D000970 - Antineoplastic Agents

   

Shikonin

5,8-dihydroxy-2-[(1R)-1-hydroxy-4-methylpent-3-en-1-yl]-1,4-dihydronaphthalene-1,4-dione

C16H16O5 (288.0998)


Shikonin is a hydroxy-1,4-naphthoquinone. Shikonin is a natural product found in Echium plantagineum, Arnebia hispidissima, and other organisms with data available. See also: Arnebia guttata root (part of); Arnebia euchroma root (part of); Lithospermum erythrorhizon root (part of). D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Shikonin is a major component of a Chinese herbal medicine named zicao. Shikonin is a potent TMEM16A chloride channel inhibitor with an IC50 of 6.5 μM[1]. Shikonin is a specific pyruvate kinase M2 (PKM2) inhibitor[2] and can also inhibit TNF-α and NF-κB pathway[3]. Shikonin decreases exosome secretion through the inhibition of glycolysis[4]. Shikonin inhibits AIM2 inflammasome activation[7]. Shikonin is a major component of a Chinese herbal medicine named zicao. Shikonin is a potent TMEM16A chloride channel inhibitor with an IC50 of 6.5 μM[1]. Shikonin is a specific pyruvate kinase M2 (PKM2) inhibitor[2] and can also inhibit TNF-α and NF-κB pathway[3]. Shikonin decreases exosome secretion through the inhibition of glycolysis[4]. Shikonin inhibits AIM2 inflammasome activation[7].

   

febrifugine

3-[[(3aS,7aS)-2-hydroxy-3a,4,5,6,7,7a-hexahydro-3H-furo[3,2-b]pyridin-2-yl]methyl]quinazolin-4-one

C16H19N3O3 (301.1426)


Isofebrifugine is a member of quinazolines. Isofebrifugine is a natural product found in Hydrangea febrifuga and Hydrangea macrophylla with data available. Febrifugine is a quinazolinone alkaloid found in the roots and leaves of Dichroa febrifuga, with antimalarial activity [1]. Febrifugine is a quinazolinone alkaloid found in the roots and leaves of Dichroa febrifuga, with antimalarial activity [1].

   

Acetylshikonin

InChI=1/C18H18O6/c1-9(2)4-7-15(24-10(3)19)11-8-14(22)16-12(20)5-6-13(21)17(16)18(11)23/h4-6,8,15,20-21H,7H2,1-3H3

C18H18O6 (330.1103)


Acetylshikonin is an acetate ester and a hydroxy-1,4-naphthoquinone. Acetylshikonin is a natural product found in Echium plantagineum, Lithospermum erythrorhizon, and other organisms with data available. Acetylshikonin, derived from the root of Lithospermum erythrorhizon, has anti-cancer and antiinflammation activity. Acetylshikonin is a non-selective cytochrome P450 inhibitor against all P450s (IC50 values range from 1.4-4.0 μM). Acetylshikonin is an AChE inhibitor and exhibits potent antiapoptosis activity[1][2][3]. Acetylshikonin, derived from the root of Lithospermum erythrorhizon, has anti-cancer and antiinflammation activity. Acetylshikonin is a non-selective cytochrome P450 inhibitor against all P450s (IC50 values range from 1.4-4.0 μM). Acetylshikonin is an AChE inhibitor and exhibits potent antiapoptosis activity[1][2][3].

   

Sanguinarine

24-methyl-5,7,18,20-tetraoxa-24-azahexacyclo[11.11.0.0^{2,10}.0^{4,8}.0^{14,22}.0^{17,21}]tetracosa-1(13),2,4(8),9,11,14(22),15,17(21),23-nonaen-24-ium

[C20H14NO4]+ (332.0923)


Sanguinarine is a benzophenanthridine alkaloid, an alkaloid antibiotic and a botanical anti-fungal agent. Sanguinarine is a natural product found in Fumaria capreolata, Fumaria kralikii, and other organisms with data available. Sanguinarine is found in opium poppy. Consumption of Sanguinarine, present in poppy seeds and in the oil of Argemone mexicana which has been used as an adulterant for mustard oil in India, has been linked to development of glaucoma. Sanguinarine is banned by FDA. Sanguinarine is a quaternary ammonium salt from the group of benzylisoquinoline alkaloids. It is extracted from some plants, including bloodroot (Sanguinaria canadensis), Mexican prickly poppy Argemone mexicana, Chelidonium majus and Macleaya cordata. It is also found in the root, stem and leaves of the opium poppy but not in the capsule. Sanguinarine is a toxin that kills animal cells through its action on the Na+-K+-ATPase transmembrane protein. Epidemic dropsy is a disease that results from ingesting sanguinarine. Sanguinarine has been shown to exhibit antibiotic, anti-apoptotic, anti-fungal, anti-inflammatory and anti-angiogenic functions Sanguinarine belongs to the family of Benzoquinolines. These are organic compounds containing a benzene fused to a quinoline ring system. (A3208, A3209, A3208, A3208, A3208). See also: Sanguinaria canadensis root (part of); Chelidonium majus flowering top (part of). Sanguinarine is found in opium poppy. Consumption of Sanguinarine, present in poppy seeds and in the oil of Argemone mexicana which has been used as an adulterant for mustard oil in India, has been linked to development of glaucoma. Sanguinarine is banned by FDA. Sanguinarine is a quaternary ammonium salt from the group of benzylisoquinoline alkaloids. It is extracted from some plants, including bloodroot (Sanguinaria canadensis), Mexican prickly poppy Argemone mexicana, Chelidonium majus and Macleaya cordata. It is also found in the root, stem and leaves of the opium poppy but not in the capsule.[citation needed]; Sanguinarine is a toxin that kills animal cells through its action on the Na+-K+-ATPase transmembrane protein. Epidemic dropsy is a disease that results from ingesting sanguinarine Sanguinarine (13-methyl[1,3]benzodioxolo[5,6-c]-1,3-dioxolo[4,5-i]phenanthridinium) is derived from the root of Sanguinaria canadensis and other poppy-fumaria species (for references, see Ref. 1). This benzophenanthridine alkaloid is a structural homologue of chelerythrine, which is a potent inhibitor of protein kinase C (2). Sanguinarine has been shown to display antitumor (3) and anti-inflammatory properties in animals (4) and to inhibit neutrophil function, including degranulation and phagocytosis in vitro(5). It is also a potent inhibitor of Na-K-dependent ATPase (6, 7, 8) and cholinesterase (9).

   

Carnosic_acid

4a(2H)-Phenanthrenecarboxylic acid, 1,3,4,9,10,10a-hexahydro-5,6-dihydroxy-1,1-dimethyl-7-(1-methylethyl)-, (4aR,10aS)-rel-

C20H28O4 (332.1987)


Carnosic acid is an abietane diterpenoid that is abieta-8,11,13-triene substituted by hydroxy groups at positions 11 and 12 and a carboxy group at position 20. It is isolated from rosemary (Rosmarinus officinalis) and common sage (Salvia officinalis) and exhibits anti-angiogenic, antineoplastic, antioxidant and anti-HIV activity. It has a role as an antineoplastic agent, an antioxidant, a HIV protease inhibitor, an angiogenesis modulating agent, an apoptosis inducer, a plant metabolite, an anti-inflammatory agent and a food preservative. It is an abietane diterpenoid, a carbotricyclic compound, a member of catechols and a monocarboxylic acid. It is a conjugate acid of a carnosate. Carnosic acid is a natural product found in Salvia tomentosa, Illicium verum, and other organisms with data available. See also: Rosemary (part of). An abietane diterpenoid that is abieta-8,11,13-triene substituted by hydroxy groups at positions 11 and 12 and a carboxy group at position 20. It is isolated from rosemary (Rosmarinus officinalis) and common sage (Salvia officinalis) and exhibits anti-angiogenic, antineoplastic, antioxidant and anti-HIV activity. D020011 - Protective Agents > D000975 - Antioxidants D000890 - Anti-Infective Agents

   

Columbamine

2-Hydroxy-3,9,10-trimethoxy-5,6-dihydroisoquinolino[3,2-a]isoquinolin-7-ium

C20H20NO4+ (338.1392)


Columbamine is a berberine alkaloid and an organic heterotetracyclic compound. Columbamine is a natural product found in Thalictrum podocarpum, Berberis thunbergii, and other organisms with data available.

   

coniferylferulate

2-PROPENOIC ACID, 3-(4-HYDROXY-3-METHOXYPHENYL)-, 3-(4-HYDROXY-3-METHOXYPHENYL)-2-PROPEN-1-YL ESTER

C20H20O6 (356.126)


Coniferyl ferulate is a natural product found in Ligusticum striatum, Coreopsis venusta, and other organisms with data available. See also: Angelica sinensis root oil (part of). Coniferyl ferulate, a strong inhibitor of glutathione S-transferase (GST), reverses multidrug resistance and downregulates P-glycoprotein. Coniferyl ferulate shows strong inhibition of human placental GST with an IC50 of 0.3 μM. Coniferyl ferulate, a strong inhibitor of glutathione S-transferase (GST), reverses multidrug resistance and downregulates P-glycoprotein. Coniferyl ferulate shows strong inhibition of human placental GST with an IC50 of 0.3 μM.

   

Triptolide

Trisoxireno[4b,7:8a,9]phenanthro[1,2-c]furan-1(3H)-one, 3b,4,4a,6,6a,7a,7b,8b,9,10-decahydro-6-hydroxy-8b-methyl-6a-(1-methylethyl)-, [3bR-(3b.alpha.,4a.alpha.,5aS*,6.beta.,6a.beta.,7a.beta.,7b.alpha.,8aS*,8b.beta.)]-

C20H24O6 (360.1573)


Triptolide is an organic heteroheptacyclic compound, an epoxide, a gamma-lactam and a diterpenoid. It has a role as an antispermatogenic agent and a plant metabolite. Triptolide has been used in trials studying the treatment of HIV, Crohns Disease, Intestinal Diseases, Gastrointestinal Diseases, and Digestive System Diseases, among others. Triptolide is a natural product found in Tripterygium hypoglaucum, Celastraceae, and other organisms with data available. D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D009676 - Noxae > D000988 - Antispermatogenic Agents D009676 - Noxae > D000477 - Alkylating Agents D000970 - Antineoplastic Agents Triptolide is a diterpenoid triepoxide extracted from the root of Tripterygium wilfordii with immunosuppressive, anti-inflammatory, antiproliferative and antitumour effects. Triptolide is a NF-κB activation inhibitor[1][2][3][4][5][6]. Triptolide is a diterpenoid triepoxide extracted from the root of Tripterygium wilfordii with immunosuppressive, anti-inflammatory, antiproliferative and antitumour effects. Triptolide is a NF-κB activation inhibitor[1][2][3][4][5][6].

   

Dmask

2-Butenoic acid, 3-methyl-, 1-(1,4-dihydro-5,8-dihydroxy-1,4-dioxo-2-naphthalenyl)-4-methyl-3-pentenyl ester, (+)-

C21H22O6 (370.1416)


Dmask is a natural product found in Arnebia hispidissima with data available. Beta,beta-Dimethylacrylshikonin is a hydroxy-1,4-naphthoquinone. beta,beta-Dimethylacrylshikonin is a natural product found in Alkanna cappadocica, Lithospermum erythrorhizon, and other organisms with data available. (Rac)-Arnebin 1 ((Rac)-β,β-Dimethylacrylalkannin) is the racemate of β,β-Dimethylacrylalkannin and/or β,β-Dimethylacrylshikonin. β,β-Dimethylacrylalkannin and β,β-Dimethylacrylshikonin are napthoquinones isolated from Arnebia nobilis. β,β-Dimethylacrylshikonin has anti-tumor activity[1]. (Rac)-Arnebin 1 ((Rac)-β,β-Dimethylacrylalkannin) is the racemate of β,β-Dimethylacrylalkannin and/or β,β-Dimethylacrylshikonin. β,β-Dimethylacrylalkannin and β,β-Dimethylacrylshikonin are napthoquinones isolated from Arnebia nobilis. β,β-Dimethylacrylshikonin has anti-tumor activity[1]. (Rac)-Arnebin 1 ((Rac)-β,β-Dimethylacrylalkannin) is the racemate of β,β-Dimethylacrylalkannin and/or β,β-Dimethylacrylshikonin. β,β-Dimethylacrylalkannin and β,β-Dimethylacrylshikonin are napthoquinones isolated from Arnebia nobilis. β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylalkannin (Arnebin 1) is a napthoquinone isolated from Alkanna cappadocica , increases collagen and involucrin content in skin cells[1]. β,β-Dimethylacrylalkannin (Arnebin 1) is a napthoquinone isolated from Alkanna cappadocica , increases collagen and involucrin content in skin cells[1]. β,β-Dimethylacrylalkannin (Arnebin 1) is a napthoquinone isolated from Alkanna cappadocica , increases collagen and involucrin content in skin cells[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1].

   

alpha-Spinasterol

(3S,5S,9R,10S,13R,14R,17R)-17-((2R,5S,E)-5-ethyl-6-methylhept-3-en-2-yl)-10,13-dimethyl-2,3,4,5,6,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.3705)


Alpha-Spinasterol is a steroid. It derives from a hydride of a stigmastane. alpha-Spinasterol is a natural product found in Pandanus utilis, Benincasa hispida, and other organisms with data available. See also: Menyanthes trifoliata leaf (part of). Constituent of spinach (Spinacia oleracea) leaves, cucumber (Cucumis sativus), alfalfa meal, pumpkin seeds and senega root. alpha-Spinasterol is found in many foods, some of which are bitter gourd, towel gourd, muskmelon, and green vegetables. alpha-Spinasterol is found in alfalfa. alpha-Spinasterol is a constituent of spinach (Spinacia oleracea) leaves, cucumber (Cucumis sativus), alfalfa meal, pumpkin seeds and senega root. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2]. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2].

   

beta-Sitosterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


beta-Sitosterol, a main dietary phytosterol found in plants, may have the potential for prevention and therapy for human cancer. Phytosterols are plant sterols found in foods such as oils, nuts, and vegetables. Phytosterols, in the same way as cholesterol, contain a double bond and are susceptible to oxidation, and are characterized by anti-carcinogenic and anti-atherogenic properties (PMID:13129445, 11432711). beta-Sitosterol is a phytopharmacological extract containing a mixture of phytosterols, with smaller amounts of other sterols, bonded with glucosides. These phytosterols are commonly derived from the South African star grass, Hypoxis rooperi, or from species of Pinus and Picea. The purported active constituent is termed beta-sitosterol. Additionally, the quantity of beta-sitosterol-beta-D-glucoside is often reported. Although the exact mechanism of action of beta-sitosterols is unknown, it may be related to cholesterol metabolism or anti-inflammatory effects (via interference with prostaglandin metabolism). Compared with placebo, beta-sitosterol improved urinary symptom scores and flow measures (PMID:10368239). A plant food-based diet modifies the serum beta-sitosterol concentration in hyperandrogenic postmenopausal women. This finding indicates that beta-sitosterol can be used as a biomarker of exposure in observational studies or as a compliance indicator in dietary intervention studies of cancer prevention (PMID:14652381). beta-Sitosterol induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells (PMID:12579296). Sitosterol is a member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. It has a role as a sterol methyltransferase inhibitor, an anticholesteremic drug, an antioxidant, a plant metabolite and a mouse metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Active fraction of Solanum trilobatum; reduces side-effects of radiation-induced toxicity. Beta-Sitosterol is a natural product found in Elodea canadensis, Ophiopogon intermedius, and other organisms with data available. beta-Sitosterol is one of several phytosterols (plant sterols) with chemical structures similar to that of cholesterol. Sitosterols are white, waxy powders with a characteristic odor. They are hydrophobic and soluble in alcohols. beta-Sitosterol is found in many foods, some of which are ginseng, globe artichoke, sesbania flower, and common oregano. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Aloin

(10S)-1,8-dihydroxy-3-(hydroxymethyl)-10-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]-10H-anthracen-9-one;Aloin

C21H22O9 (418.1264)


C78276 - Agent Affecting Digestive System or Metabolism > C29697 - Laxative D005765 - Gastrointestinal Agents > D002400 - Cathartics Aloin A is a C-glycosyl compound that is beta-D-glucopyranose in which the anomeric hydroxy group is replaced by a 4,5-dihydroxy-2-(hydroxymethyl)-10-oxo-9,10-dihydroanthracen-9-yl moiety (the 9S diastereoisomer). It has a role as a metabolite and a laxative. It is a C-glycosyl compound, a member of anthracenes, a cyclic ketone and a member of phenols. Barbaloin is a natural product found in Aloe africana, Aloe castanea, and other organisms with data available. See also: Aloe Vera Leaf (part of); Frangula purshiana Bark (part of). A C-glycosyl compound that is beta-D-glucopyranose in which the anomeric hydroxy group is replaced by a 4,5-dihydroxy-2-(hydroxymethyl)-10-oxo-9,10-dihydroanthracen-9-yl moiety (the 9S diastereoisomer). Aloin B is a C-glycosyl compound that is beta-D-glucopyranose in which the anomeric hydroxy group is replaced by a 4,5-dihydroxy-2-(hydroxymethyl)-10-oxo-9,10-dihydroanthracen-9-yl moiety (the 9R diastereoisomer). It has a role as a metabolite and a laxative. It is a C-glycosyl compound, a member of anthracenes, a cyclic ketone and a member of phenols. Aloin is a natural product found in Aloe africana, Aloe castanea, and other organisms with data available. See also: Aloe Vera Leaf (part of); Frangula purshiana Bark (part of). A C-glycosyl compound that is beta-D-glucopyranose in which the anomeric hydroxy group is replaced by a 4,5-dihydroxy-2-(hydroxymethyl)-10-oxo-9,10-dihydroanthracen-9-yl moiety (the 9R diastereoisomer). IPB_RECORD: 1881; CONFIDENCE confident structure Aloin (Aloin-A; Barbaloin-A) is a natural anti-tumor anthraquinone glycoside with iron chelating activity. Aloin (Aloin-A; Barbaloin-A) is a natural anti-tumor anthraquinone glycoside with iron chelating activity. Aloin B is an isomer of aloin, a physiologically active anthraquinone compound in aloe. Aloin B is an isomer of aloin, a physiologically active anthraquinone compound in aloe. Aloin (mixture of A&B) is anthraquinone derivative isolated from Aloe vera. Aloin (mixture of A&B) has diverse biological activities such as anti-inflammatory, immunity, antidiabetic, antioxidant, antibacterial, antifungal, and antitumor activities. Aloin (mixture of A&B) also an effective inhibitor of stimulated granulocyte matrix metalloproteinases (MMPs)[1][2].

   

Lupeol

(1R,3aR,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-3a,5a,5b,8,8,11a-hexamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O (426.3861)


Lupeol is a pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. It has a role as an anti-inflammatory drug and a plant metabolite. It is a secondary alcohol and a pentacyclic triterpenoid. It derives from a hydride of a lupane. Lupeol has been investigated for the treatment of Acne. Lupeol is a natural product found in Ficus auriculata, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of). A pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].

   

Betulinic acid

(1R,3aS,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-9-hydroxy-5a,5b,8,8,11a-pentamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid

C30H48O3 (456.3603)


Betulinic acid is a pentacyclic triterpenoid that is lupane having a double bond at position 20(29) as well as 3beta-hydroxy and 28-carboxy substituents. It is found in the bark and other plant parts of several species of plants including Syzygium claviflorum. It exhibits anti-HIV, antimalarial, antineoplastic and anti-inflammatory properties. It has a role as an EC 5.99.1.3 [DNA topoisomerase (ATP-hydrolysing)] inhibitor, an anti-HIV agent, an antimalarial, an anti-inflammatory agent, an antineoplastic agent and a plant metabolite. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It derives from a hydride of a lupane. Betulinic Acid has been used in trials studying the treatment of Dysplastic Nevus Syndrome. Betulinic acid is a natural product found in Ficus auriculata, Gladiolus italicus, and other organisms with data available. Betulinic Acid is a pentacyclic lupane-type triterpene derivative of betulin (isolated from the bark of Betula alba, the common white birch) with antiinflammatory, anti-HIV and antineoplastic activities. Betulinic acid induces apoptosis through induction of changes in mitochondrial membrane potential, production of reactive oxygen species, and opening of mitochondrial permeability transition pores, resulting in the release of mitochondrial apogenic factors, activation of caspases, and DNA fragmentation. Although originally thought to exhibit specific cytotoxicity against melanoma cells, this agent has been found to be cytotoxic against non-melanoma tumor cell types including neuroectodermal and brain tumor cells. A lupane-type triterpene derivative of betulin which was originally isolated from BETULA or birch tree. It has anti-inflammatory, anti-HIV and antineoplastic activities. See also: Jujube fruit (part of); Paeonia lactiflora root (part of). Betulinic acid is found in abiyuch. Betulinic acid is a naturally occurring pentacyclic triterpenoid which has anti-retroviral, anti-malarial, and anti-inflammatory properties, as well as a more recently discovered potential as an anticancer agent, by inhibition of topoisomerase. It is found in the bark of several species of plants, principally the white birch (Betula pubescens) from which it gets its name, but also the Ber tree (Ziziphus mauritiana), the tropical carnivorous plants Triphyophyllum peltatum and Ancistrocladus heyneanus, Diospyros leucomelas a member of the persimmon family, Tetracera boiviniana, the jambul (Syzygium formosanum), flowering quince (Chaenomeles sinensis), Rosemary, and Pulsatilla chinensis. Controversial is a role of p53 in betulinic acid-induced apoptosis. Fulda suggested p53-independent mechanism of the apoptosis, basing on fact of no accumulation of wild-type p53 detected upon treatment with the betulinic acid, whereas wild-type p53 protein strongly increased after treatment with doxorubicin. The suggestion is supported by study of Raisova. On the other hand Rieber suggested that betulinic acid exerts its inhibitory effect on human metastatic melanoma partly by increasing p53 A pentacyclic triterpenoid that is lupane having a double bond at position 20(29) as well as 3beta-hydroxy and 28-carboxy substituents. It is found in the bark and other plant parts of several species of plants including Syzygium claviflorum. It exhibits anti-HIV, antimalarial, antineoplastic and anti-inflammatory properties. C308 - Immunotherapeutic Agent > C2139 - Immunostimulant Betulinic acid is a natural pentacyclic triterpenoid, acts as a eukaryotic topoisomerase I inhibitor, with an IC50 of 5 μM, and possesses anti-HIV, anti-malarial, anti-inflammatory and anti-tumor properties[1][2][3][4]. Betulinic acid is a natural pentacyclic triterpenoid, acts as a eukaryotic topoisomerase I inhibitor, with an IC50 of 5 μM, and possesses anti-HIV, anti-malarial, anti-inflammatory and anti-tumor properties[1][2][3][4]. Epibetulinic acid exhibits potent inhibitory effects on NO and prostaglandin E2 (PGE2) production in mouse macrophages (RAW 264.7) stimulated with bacterial endotoxin with IC50s of 0.7 and 0.6 μM, respectively. Anti-inflammatory activity[1].

   

Ginsenoside K

(2s,3r,4s,5s,6r)-2-[(2s)-2-[(3s,5r,8r,9r,10r,12r,13r,14r,17s)-3,12-dihydroxy-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1h-cyclopenta[a]phenanthren-17-yl]-6-methylhept-5-en-2-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C36H62O8 (622.4444)


Ginsenoside C-K is a ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy group at position 20 has been converted to the corresponding beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. It has a role as a plant metabolite, an antineoplastic agent, a hepatoprotective agent, an anti-allergic agent and an anti-inflammatory agent. It is a beta-D-glucoside, a 12beta-hydroxy steroid, a ginsenoside, a tetracyclic triterpenoid, a 3beta-hydroxy steroid and a 3beta-hydroxy-4,4-dimethylsteroid. It derives from a hydride of a dammarane. ginsenoside C-K is a natural product found in Panax ginseng and Fusarium sacchari with data available. A ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy group at position 20 has been converted to the corresponding beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. Ginsenoside C-K, a bacterial metabolite of G-Rb1, exhibits anti-inflammatory effects by reducing iNOS and COX-2. Ginsenoside C-K exhibits an inhibition against the activity of CYP2C9 and CYP2A6 in human liver microsomes with IC50s of 32.0±3.6 μM and 63.6±4.2 μM, respectively. Ginsenoside K. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=39262-14-1 (retrieved 2024-10-17) (CAS RN: 39262-14-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Phytic acid

(2,3,4,5,6-pentaphosphonooxycyclohexyl) dihydrogen phosphate

C6H18O24P6 (659.8614)


myo-Inositol hexakisphosphate is an intermediate in inositol phosphate metabolism. It can be generated from D-myo-inositol 1,3,4,5,6-pentakisphosphate via the enzyme inositol-pentakisphosphate 2-kinase (EC 2.7.1.158). myo-Inositol hexakisphosphate is also known as phytic acid. It can be used clinically as a complexing agent for the removal of traces of heavy metal ions. It acts also as a hypocalcemic agent. Phytic acid is a strong chelator of important minerals such as calcium, magnesium, iron, and zinc and can, therefore, contribute to mineral deficiencies in developing countries. For people with a particularly low intake of essential minerals, especially young children and those in developing countries, this effect can be undesirable. However, dietary mineral chelators help prevent over-mineralization of joints, blood vessels, and other parts of the body, which is most common in older persons. Phytic acid is a plant antioxidant (PMID: 3040709). Myo-inositol hexakisphosphate is a myo-inositol hexakisphosphate in which each hydroxy group of myo-inositol is monophosphorylated. It has a role as an iron chelator, an antineoplastic agent, a signalling molecule, an Escherichia coli metabolite, a mouse metabolite and a cofactor. It is a conjugate acid of a myo-inositol hexakisphosphate(12-). Phytic acid is under investigation in clinical trial NCT01000233 (Value of Oral Phytate (InsP6) in the Prevention of Progression of the Cardiovascular Calcifications). Myo-inositol hexakisphosphate is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Phytic acid is a natural product found in Chloris gayana, Vachellia nilotica, and other organisms with data available. Myo-Inositol hexakisphosphate is a metabolite found in or produced by Saccharomyces cerevisiae. Complexing agent for removal of traces of heavy metal ions. It acts also as a hypocalcemic agent. Widely distributed in many higher plants. The Ca salt is used as a sequestrant in food flavouring C26170 - Protective Agent > C275 - Antioxidant

   

Jionoside B1

[(2R,3R,4R,5R,6R)-5-hydroxy-6-[2-(3-hydroxy-4-methoxy-phenyl)ethoxy]-2-[[(2R,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxymethyl]-4-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxy-tetrahydropyran-3-yl] (E)-3-(4-hydroxy-3-methoxy-phenyl)prop-2-enoate

C37H50O20 (814.2895)


Jionoside B1 is an oligosaccharide. Jionoside B1 is a natural product found in Lamium purpureum and Rehmannia glutinosa with data available. Jionoside B1 is a phenylpropanoid isolated from herbs of Eriophyton wallichii. Jionoside B1 is a phenylpropanoid isolated from herbs of Eriophyton wallichii.

   

Santonin

InChI=1/C15H18O3/c1-8-10-4-6-15(3)7-5-11(16)9(2)12(15)13(10)18-14(8)17/h5,7-8,10,13H,4,6H2,1-3H3/t8-,10-,13-,15-/m0/s

C15H18O3 (246.1256)


Alpha-santonin is a santonin that is 3a,5,5a,9b-tetrahydronaphtho[1,2-b]furan-2,8(3H,4H)-dione substituted by methyl groups at positions 3, 5a and 9. It has a role as a plant metabolite. It is a botanical anti-fungal agent and a santonin. Santonin is a natural product found in Artemisia spicigera, Artemisia diffusa, and other organisms with data available. Anthelmintic isolated from the dried unexpanded flower heads of Artemisia maritima and other species of Artemisia found principally in Russian and Chinese Turkestan and the Southern Ural region. (From Merck, 11th ed.) See also: ... View More ... A santonin that is 3a,5,5a,9b-tetrahydronaphtho[1,2-b]furan-2,8(3H,4H)-dione substituted by methyl groups at positions 3, 5a and 9. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent ADP-ribose 1"-2" cyclic phosphate is a cyclic phosphate nucleotide that arises from tRNA processing. In eukaryotic cells, pre-tRNAs spliced by a pathway that produces a 3,5-phosphodiester, 2-phosphomonoester linkage contain a 2-phosphate group adjacent to the tRNA anticodon. This 2-phosphate is transferred to NAD to give adenosine diphosphate (ADP)-ribose 1", 2"-cyclic phosphate (Appr>p), which is subsequently metabolized to ADP-ribose 1-phosphate (Appr-1p). The latter reaction is catalyzed by a cyclic phosphodiesterase (CPDase). (PMID: 9148938). One molecule of ADP-ribose 1",2"-cyclic phosphate (Appr>p) is formed during each of the approximately 500 000 tRNA splicing events. [HMDB] Constituent of Physalis peruviana (Cape gooseberry). Withaperuvin F is found in fruits. Alkaloid found on the leaf surfaces of Brassica oleracea cv. botrytis (cauliflower) [DFC]. Cabbage identification factor 1 is found in brassicas. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2267 INTERNAL_ID 2267; CONFIDENCE Reference Standard (Level 1) relative retention time with respect to 9-anthracene Carboxylic Acid is 0.918 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.917 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.915 [Raw Data] CB081_Santonin_pos_30eV_CB000033.txt [Raw Data] CB081_Santonin_pos_10eV_CB000033.txt [Raw Data] CB081_Santonin_pos_40eV_CB000033.txt [Raw Data] CB081_Santonin_pos_20eV_CB000033.txt [Raw Data] CB081_Santonin_pos_50eV_CB000033.txt Santonin is an active principle of the plant Artemisia cina, which is formely used to treat worms[1]. Santonin is an active principle of the plant Artemisia cina, which is formely used to treat worms[1].

   

Harmine

InChI=1/C13H12N2O/c1-8-13-11(5-6-14-8)10-4-3-9(16-2)7-12(10)15-13/h3-7,15H,1-2H

C13H12N2O (212.095)


Harmine is a harmala alkaloid in which the harman skeleton is methoxy-substituted at C-7. It has a role as a metabolite, an anti-HIV agent and an EC 1.4.3.4 (monoamine oxidase) inhibitor. It derives from a hydride of a harman. Harmine is a natural product found in Thalictrum foetidum, Acraea andromacha, and other organisms with data available. Alkaloid isolated from seeds of PEGANUM HARMALA; ZYGOPHYLLACEAE. It is identical to banisterine, or telepathine, from Banisteria caapi and is one of the active ingredients of hallucinogenic drinks made in the western Amazon region from related plants. It has no therapeutic use, but (as banisterine) was hailed as a cure for postencephalitic PARKINSON DISEASE in the 1920s. D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens Harmine is found in fruits. Harmine is an alkaloid from Passiflora edulis (passionfruit A harmala alkaloid in which the harman skeleton is methoxy-substituted at C-7. D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors C471 - Enzyme Inhibitor > C667 - Monoamine Oxidase Inhibitor CONFIDENCE Reference Standard (Level 1); NaToxAq - Natural Toxins and Drinking Water Quality - From Source to Tap (https://natoxaq.ku.dk) [Raw Data] CB043_Harmine_pos_40eV_CB000020.txt [Raw Data] CB043_Harmine_pos_50eV_CB000020.txt [Raw Data] CB043_Harmine_pos_10eV_CB000020.txt [Raw Data] CB043_Harmine_pos_30eV_CB000020.txt [Raw Data] CB043_Harmine_pos_20eV_CB000020.txt CONFIDENCE standard compound; INTERNAL_ID 2884 [Raw Data] CB043_Harmine_neg_50eV_000013.txt [Raw Data] CB043_Harmine_neg_30eV_000013.txt [Raw Data] CB043_Harmine_neg_10eV_000013.txt [Raw Data] CB043_Harmine_neg_20eV_000013.txt [Raw Data] CB043_Harmine_neg_40eV_000013.txt Harmine is a natural dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) inhibitor with anticancer and anti-inflammatory activities. Harmine has a high affinity of 5-HT2A serotonin receptor, with an Ki of 397 nM[1]. Harmine is a natural dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) inhibitor with anticancer and anti-inflammatory activities. Harmine has a high affinity of 5-HT2A serotonin receptor, with an Ki of 397 nM[1]. Harmine is a natural dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) inhibitor with anticancer and anti-inflammatory activities. Harmine has a high affinity of 5-HT2A serotonin receptor, with an Ki of 397 nM[1].

   

Glaucarubinone

Butyric acid, 4-ester with 1,3a.beta.,4,7,7a.alpha.,11,11a,11b.alpha.-octahydro-1.alpha.,2.alpha.,4.beta.,11.beta.-tetrahydroxy-3.alpha.,8,11a.beta.-trimethyl-2H-1,11c.beta.-(epoxymethano)phenanthro[10,1-bc]pyran-5,10(3H,6a.beta.H)-dione

C25H34O10 (494.2152)


Glaucarubinone is a quassinoid with formula C25H34O10. It is a natural product isolated from several plant species and exhibits anti-cancer and anti-malarial properties. It has a role as a geroprotector, a plant metabolite, an antineoplastic agent and an antimalarial. It is a carboxylic ester, a quassinoid, an organic heteropentacyclic compound, a tetrol, a secondary alpha-hydroxy ketone and a tertiary alpha-hydroxy ketone. Glaucarubinone is a natural product found in Simarouba amara, Cunila, and other organisms with data available. A quassinoid with formula C25H34O10. It is a natural product isolated from several plant species and exhibits anti-cancer and anti-malarial properties.

   

Pinostilbene

3-[2-(4-hydroxyphenyl)vinyl]-5-methoxy-phenol;Pinostilbene

C15H14O3 (242.0943)


3-methoxy-4,5-dihydroxy-trans-stilbene is a stilbenoid that is trans-resveratrol in which one of the meta-hydroxy groups is converted to the corresponding methyl ether. It is functionally related to a trans-resveratrol. 3-Methoxy-4,5-dihydroxy-trans-stilbene is a natural product found in Soymida febrifuga, Rumex bucephalophorus, and other organisms with data available. A stilbenoid that is trans-resveratrol in which one of the meta-hydroxy groups is converted to the corresponding methyl ether. Pinostilbene (trans-Pinostilbene) is a major metabolite of Pterostilbene. Pinostilbene exhibits inhibitory effects on colon cancer cells[1]. Pinostilbene (trans-Pinostilbene) is a major metabolite of Pterostilbene. Pinostilbene exhibits inhibitory effects on colon cancer cells[1].

   

Glycyrol

5,14-dihydroxy-3-methoxy-4-(3-methylbut-2-en-1-yl)-8,17-dioxatetracyclo[8.7.0.0²,⁷.0¹¹,¹⁶]heptadeca-1(10),2(7),3,5,11(16),12,14-heptaen-9-one

C21H18O6 (366.1103)


Glycyrol is a member of the class of coumestans that is coumestan substituted by hydroxy groups at positions 1 and 9, a methoxy group at position 3 and a prenyl group at position 2 respectively. It has a role as a plant metabolite and an antineoplastic agent. It is a member of coumestans, a polyphenol, a delta-lactone and an aromatic ether. It is functionally related to a coumestan. Glycyrol is a natural product found in Glycyrrhiza, Glycyrrhiza glabra, and other organisms with data available. See also: Glycyrrhiza uralensis Root (part of). A member of the class of coumestans that is coumestan substituted by hydroxy groups at positions 1 and 9, a methoxy group at position 3 and a prenyl group at position 2 respectively. Glycyrol is found in root vegetables. Glycyrol is isolated from Glycyrrhiza sp. root (licorice Isolated from Glycyrrhiza species root (licorice). Glycyrol is found in root vegetables. Neoglycyrol is isolated from the root of Glycyrrhiza uralensis Fisch[1]. Neoglycyrol is a potential myocardial protection active compound screened from traditional patent medicine Tongmai Yangxin pill (TMYXP)[2]. Neoglycyrol is isolated from the root of Glycyrrhiza uralensis Fisch[1]. Neoglycyrol is a potential myocardial protection active compound screened from traditional patent medicine Tongmai Yangxin pill (TMYXP)[2].

   

Isoflavone

3-phenyl-4H-1-benzopyran-4-one

C15H10O2 (222.0681)


Isoflavones are a class of phytochemicals related to the isoflavonoids. Isoflavones are produced almost exclusively by the members of the Fabaceae (i.e., Leguminosae, or bean) family. Soy isoflavones consumption has been related to a lower incidence of breast cancer and other common cancers. [Wikipedia]. Isoflavones is found in soy bean. Isoflavone, a soy phytoestrogen and a biologically active component, presents in several agriculturally important legumes such as soy, peanut, green peas, chick peas and alfalfa[1][2]. Isoflavone, a soy phytoestrogen and a biologically active component, presents in several agriculturally important legumes such as soy, peanut, green peas, chick peas and alfalfa[1][2].

   

Benzyl butyl phthalate

Butyl phenylmethyl 1,2-benzenedicarboxylic acid

C19H20O4 (312.1362)


CONFIDENCE standard compound; INTERNAL_ID 837; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10079; ORIGINAL_PRECURSOR_SCAN_NO 10074 CONFIDENCE standard compound; INTERNAL_ID 837; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10050; ORIGINAL_PRECURSOR_SCAN_NO 10045 CONFIDENCE standard compound; INTERNAL_ID 837; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10050; ORIGINAL_PRECURSOR_SCAN_NO 10048 CONFIDENCE standard compound; INTERNAL_ID 837; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10020; ORIGINAL_PRECURSOR_SCAN_NO 10018 CONFIDENCE standard compound; INTERNAL_ID 837; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10069; ORIGINAL_PRECURSOR_SCAN_NO 10066 CONFIDENCE standard compound; INTERNAL_ID 837; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9995; ORIGINAL_PRECURSOR_SCAN_NO 9990 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3597 CONFIDENCE standard compound; INTERNAL_ID 8369 D009676 - Noxae > D013723 - Teratogens

   

Cyprodinil

4-Cyclopropyl-6-methyl-N-phenyl-2-pyrimidinamine, 9ci

C14H15N3 (225.1266)


CONFIDENCE standard compound; INTERNAL_ID 810; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9314; ORIGINAL_PRECURSOR_SCAN_NO 9312 CONFIDENCE standard compound; INTERNAL_ID 810; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9293; ORIGINAL_PRECURSOR_SCAN_NO 9292 CONFIDENCE standard compound; INTERNAL_ID 810; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9313; ORIGINAL_PRECURSOR_SCAN_NO 9312 CONFIDENCE standard compound; INTERNAL_ID 810; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9269; ORIGINAL_PRECURSOR_SCAN_NO 9268 CONFIDENCE standard compound; INTERNAL_ID 810; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9257; ORIGINAL_PRECURSOR_SCAN_NO 9256 CONFIDENCE standard compound; INTERNAL_ID 810; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9258; ORIGINAL_PRECURSOR_SCAN_NO 9257 CONFIDENCE standard compound; EAWAG_UCHEM_ID 148 CONFIDENCE standard compound; INTERNAL_ID 2569 KEIO_ID C172; [MS2] KO008908 Cyprodinil is a fungicide. Cyprodinil is a fungicide KEIO_ID C172

   

5-Methylcytosine

6-amino-5-methyl-1,2-dihydropyrimidin-2-one

C5H7N3O (125.0589)


5-Methylcytosine is a methylated form of cytosine in which a methyl group is attached to carbon 5, altering its structure without altering its base-pairing properties.; 5-Methylcytosine is a methylated form of cytosine in which a methyl group is attached to carbon 5, altering its structure without altering its base-pairing properties. -- Wikipedia; 5-Methylcytosine is an epigenetic modification formed by the action of DNA methyltransferases. In bacteria, 5-methylcytosine can be found at a variety of sites, and is often used as a marker to protect DNA from being cut by native methylation-sensitive restriction enzymes. In plants, 5-methylcytosine occurs at both CpG and CpNpG sequences. In fungi and animals, 5-methylcytosine predominately occurs at CpG dinucleotides. Although most eukaryotes methylate only a small percentage of these sites, in vertebrates 70-80\\\% of CpG cytosines are methylated. -- Wikipedia; 5-Methylcytosine is an epigenetic modification formed by the action of DNA methyltransferases. Its function varies significantly among species:; A methylated nucleotide base found in eukaryotic DNA. In animals, the DNA methylation of cytosine to form 5-methylcytosine is found primarily in the palindromic sequence CpG. In plants, the methylated sequence is CpNpGp, where N can be any base. -- Pubchem. 5-Methylcytosine is a methylated nucleotide base found in eukaryotic DNA. In animals, the DNA methylation of cytosine to form 5-methylcytosine is found primarily in the palindromic sequence CpG. In plants, the methylated sequence is CpNpGp, where N can be any base. -- Pubchem; 5-Methylcytosine is a methylated form of cytosine in which a methyl group is attached to carbon 5, altering its structure without altering its base-pairing properties. -- Wikipedia; 5-Methylcytosine is an epigenetic modification formed by the action of DNA methyltransferases. In bacteria, 5-methylcytosine can be found at a variety of sites, and is often used as a marker to protect DNA from being cut by native methylation-sensitive restriction enzymes. In plants, 5-methylcytosine occurs at both CpG and CpNpG sequences. In fungi and animals, 5-methylcytosine predominately occurs at CpG dinucleotides. Although most eukaryotes methylate only a small percentage of these sites, in vertebrates 70-80\\\% of CpG cytosines are methylated. -- Wikipedia. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID M029 5-Methylcytosine is a well-characterized DNA modification, and is also predominantly in abundant non-coding RNAs in both prokaryotes and eukaryotes. 5-Methylcytosine in mRNA is a new epitranscriptome marker inArabidopsis, and that regulation of this modification is an integral part of gene regulatory networks underlying plant development[1].

   

AICA-riboside

5-amino-1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1H-imidazole-4-carboxamide

C9H14N4O5 (258.0964)


AICA-riboside, also known as acadesine or AICAR, is an AMP-activated protein kinase activator which is used for the treatment of acute lymphoblastic leukemia and may have applications in treating other disorders such as diabetes. AICA-riboside is an adenosine regulating agent developed by PeriCor Therapeutics and licensed to Schering-Plough in 2007 for phase III studies. The drug is a potential first-in-class agent for prevention of reperfusion injury in CABG surgery. Schering began patient enrollment in phase III studies in May, 2009. The trial was terminated in late 2010 based on an interim futility analysis (Wikipedia). AICA-riboside is a minor constituent found in human milk (PMID: 7702711). C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite C - Cardiovascular system > C01 - Cardiac therapy D007004 - Hypoglycemic Agents

   

Doxorubicin

(8S,10S)-10-{[(2R,4S,5S,6S)-4-amino-5-hydroxy-6-methyloxan-2-yl]oxy}-6,8,11-trihydroxy-8-(2-hydroxyacetyl)-1-methoxy-5,7,8,9,10,12-hexahydrotetracene-5,12-dione

C27H29NO11 (543.1741)


Doxorubicin is only found in individuals that have used or taken this drug. It is antineoplastic antibiotic obtained from Streptomyces peucetius. It is a hydroxy derivative of daunorubicin. [PubChem]Doxorubicin has antimitotic and cytotoxic activity through a number of proposed mechanisms of action: Doxorubicin forms complexes with DNA by intercalation between base pairs, and it inhibits topoisomerase II activity by stabilizing the DNA-topoisomerase II complex, preventing the religation portion of the ligation-religation reaction that topoisomerase II catalyzes. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01D - Cytotoxic antibiotics and related substances > L01DB - Anthracyclines and related substances C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor > C129824 - Antineoplastic Protein Inhibitor D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic C471 - Enzyme Inhibitor > C129825 - Antineoplastic Enzyme Inhibitor > C1748 - Topoisomerase Inhibitor C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D004791 - Enzyme Inhibitors KEIO_ID D064

   

Bicalutamide

4-Cyano-3-(4-fluorophenylsulfonyl)-2-hydroxy-2-methyl-3-(trifluoromethyl)propionanilide

C18H14F4N2O4S (430.061)


Bicalutamide is only found in individuals that have used or taken this drug. It is an oral non-steroidal anti-androgen for prostate cancer. It binds to the androgen receptor.Bicalutamide competes with androgen for the binding of androgen receptors, consequently blocking the action of androgens of adrenal and testicular origin which stimulate the growth of normal and malignant prostatic tissue. L - Antineoplastic and immunomodulating agents > L02 - Endocrine therapy > L02B - Hormone antagonists and related agents > L02BB - Anti-androgens D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D000726 - Androgen Antagonists C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C146993 - Androgen Receptor Inhibitor C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist > C242 - Anti-Androgen COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D000970 - Antineoplastic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

4-Oxoproline

4-oxopyrrolidine-2-carboxylic acid

C5H7NO3 (129.0426)


The 4-isomer of oxoproline.

   

Acridine orange

N,N,N,n-tetramethyl-3,6-acridinediamine hydrochloride

C17H19N3 (265.1579)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes D009676 - Noxae > D009153 - Mutagens

   

Ellagic acid

6,7,13,14-tetrahydroxy-2,9-dioxatetracyclo[6.6.2.0^{4,16}.0^{11,15}]hexadeca-1(14),4(16),5,7,11(15),12-hexaene-3,10-dione

C14H6O8 (302.0063)


Ellagic acid appears as cream-colored needles (from pyridine) or yellow powder. Odorless. (NTP, 1992) Ellagic acid is an organic heterotetracyclic compound resulting from the formal dimerisation of gallic acid by oxidative aromatic coupling with intramolecular lactonisation of both carboxylic acid groups of the resulting biaryl. It is found in many fruits and vegetables, including raspberries, strawberries, cranberries, and pomegranates. It has a role as an antioxidant, a food additive, a plant metabolite, an EC 5.99.1.2 (DNA topoisomerase) inhibitor, an EC 5.99.1.3 [DNA topoisomerase (ATP-hydrolysing)] inhibitor, an EC 1.14.18.1 (tyrosinase) inhibitor, an EC 2.3.1.5 (arylamine N-acetyltransferase) inhibitor, an EC 2.4.1.1 (glycogen phosphorylase) inhibitor, an EC 2.5.1.18 (glutathione transferase) inhibitor, an EC 2.7.1.127 (inositol-trisphosphate 3-kinase) inhibitor, an EC 2.7.1.151 (inositol-polyphosphate multikinase) inhibitor, an EC 2.7.4.6 (nucleoside-diphosphate kinase) inhibitor, a skin lightening agent, a fungal metabolite, an EC 2.7.7.7 (DNA-directed DNA polymerase) inhibitor and a geroprotector. It is an organic heterotetracyclic compound, a cyclic ketone, a lactone, a member of catechols and a polyphenol. It is functionally related to a gallic acid. Ellagic acid is present in several fruits such as cranberries, strawberries, raspberries, and pomegranates. In pomegranates, there are several therapeutic compounds but ellagic acid is the most active and abundant. Ellagic acid is also present in vegetables. Ellagic acid is an investigational drug studied for treatment of Follicular Lymphoma (phase 2 trial), protection from brain injury of intrauterine growth restricted babies (phase 1 and 2 trial), improvement of cardiovascular function in adolescents who are obese (phase 2 trial), and topical treatment of solar lentigines. Ellagic acids therapeutic action mostly involves antioxidant and anti-proliferative effects. Ellagic acid is a natural product found in Fragaria chiloensis, Metrosideros perforata, and other organisms with data available. Ellagic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A fused four ring compound occurring free or combined in galls. Isolated from the kino of Eucalyptus maculata Hook and E. Hemipholia F. Muell. Activates Factor XII of the blood clotting system which also causes kinin release; used in research and as a dye. Ellagic acid is an organic heterotetracyclic compound resulting from the formal dimerisation of gallic acid by oxidative aromatic coupling with intramolecular lactonisation of both carboxylic acid groups of the resulting biaryl. It is found in many fruits and vegetables, including raspberries, strawberries, cranberries, and pomegranates. It has a role as an antioxidant, a food additive, a plant metabolite, an EC 5.99.1.2 (DNA topoisomerase) inhibitor, an EC 5.99.1.3 [DNA topoisomerase (ATP-hydrolysing)] inhibitor, an EC 1.14.18.1 (tyrosinase) inhibitor, an EC 2.3.1.5 (arylamine N-acetyltransferase) inhibitor, an EC 2.4.1.1 (glycogen phosphorylase) inhibitor, an EC 2.5.1.18 (glutathione transferase) inhibitor, an EC 2.7.1.127 (inositol-trisphosphate 3-kinase) inhibitor, an EC 2.7.1.151 (inositol-polyphosphate multikinase) inhibitor, an EC 2.7.4.6 (nucleoside-diphosphate kinase) inhibitor, a skin lightening agent, a fungal metabolite and an EC 2.7.7.7 (DNA-directed DNA polymerase) inhibitor. It is an organic heterotetracyclic compound, a cyclic ketone, a lactone, a member of catechols and a polyphenol. It derives from a gallic acid. Ellagic acid, also known as ellagate, belongs to the class of organic compounds known as hydrolyzable tannins. These are tannins with a structure characterized by either of the following models. In model 1, the structure contains galloyl units (in some cases, shikimic acid units) that are linked to diverse polyol carbohydrate-, catechin-, or triterpenoid units. In model 2, contains at least two galloyl units C-C coupled to each other, and do not contain a glycosidically linked catechin unit. The antiproliferative and antioxidant properties of ellagic acid have spurred preliminary research into the potential health benefits of ellagic acid consumption. Ellagic acids therapeutic action mostly involves antioxidant and anti-proliferative/anti-cancer effects. Ellagic acid is found, on average, in the highest concentration within a few different foods, such as chestnuts, common walnuts, and japanese walnuts and in a lower concentration in whiskies, arctic blackberries, and cloudberries. Ellagic acid has also been detected, but not quantified in several different foods, such as lowbush blueberries, bilberries, guava, strawberry guava, and bog bilberries. An organic heterotetracyclic compound resulting from the formal dimerisation of gallic acid by oxidative aromatic coupling with intramolecular lactonisation of both carboxylic acid groups of the resulting biaryl. It is found in many fruits and vegetables, including raspberries, strawberries, cranberries, and pomegranates. Widely distributed in higher plants especies dicotyledons. Intestinal astringent, dietary role disputed. Nutriceutical with anticancer and antioxidation props. Ellagic acid is a natural antioxidant, and acts as a potent and ATP-competitive CK2 inhibitor, with an IC50 of 40 nM and a Ki of 20 nM. Ellagic acid is a natural antioxidant, and acts as a potent and ATP-competitive CK2 inhibitor, with an IC50 of 40 nM and a Ki of 20 nM.

   

Aminosalicylic Acid

p-Aminosalicylic acid, monosodium salt, dihydrate

C7H7NO3 (153.0426)


Aminosalicylic Acid is only found in individuals that have used or taken this drug. It is an antitubercular agent often administered in association with isoniazid. The sodium salt of the drug is better tolerated than the free acid. [PubChem]There are two mechanisms responsible for aminosalicylic acids bacteriostatic action against Mycobacterium tuberculosis. Firstly, aminosalicylic acid inhibits folic acid synthesis (without potentiation with antifolic compounds). The binding of para-aminobenzoic acid to pteridine synthetase acts as the first step in folic acid synthesis. Aminosalicylic acid binds pteridine synthetase with greater affinity than para-aminobenzoic acid, effectively inhibiting the synthesis of folic acid. As bacteria are unable to use external sources of folic acid, cell growth and multiplication slows. Secondly, aminosalicylic acid may inhibit the synthesis of the cell wall component, mycobactin, thus reducing iron uptake by M. tuberculosis. J - Antiinfectives for systemic use > J04 - Antimycobacterials > J04A - Drugs for treatment of tuberculosis > J04AA - Aminosalicylic acid and derivatives D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents C254 - Anti-Infective Agent > C52588 - Antibacterial Agent > C280 - Antitubercular Agent COVID info from PDB, Protein Data Bank KEIO_ID A129 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Silibinin

Silybin B, 2-(2,3-Dihydro-2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-1,4-benzodioxin-6-yl)-2,3-dihydro-3,5,7-trihydroxy-4H-1-benzopyran-4-one

C25H22O10 (482.1213)


A - Alimentary tract and metabolism > A05 - Bile and liver therapy > A05B - Liver therapy, lipotropics > A05BA - Liver therapy Silibinin is found in coffee and coffee products. Silibinin is isolated from Silybum marianum (milk thistle D020011 - Protective Agents > D000975 - Antioxidants [Raw Data] CBA85_Silybin-B_pos_30eV.txt [Raw Data] CBA85_Silybin-B_neg_30eV.txt [Raw Data] CBA85_Silybin-B_pos_50eV.txt [Raw Data] CBA85_Silybin-B_pos_20eV.txt [Raw Data] CBA85_Silybin-B_pos_40eV.txt [Raw Data] CBA85_Silybin-B_pos_10eV.txt [Raw Data] CBA85_Silybin-B_neg_40eV.txt [Raw Data] CBA85_Silybin-B_neg_10eV.txt [Raw Data] CBA85_Silybin-B_neg_50eV.txt [Raw Data] CBA85_Silybin-B_neg_20eV.txt Silybin is a flavonolignan isolated from milk thistle (Silybum marianum) seeds. Silybin induces apoptosis and exhibits hepatoprotective, antioxidant, anti-inflammatory, anti-cancer activity[1][2]. Silybin is a flavonolignan isolated from milk thistle (Silybum marianum) seeds. Silybin induces apoptosis and exhibits hepatoprotective, antioxidant, anti-inflammatory, anti-cancer activity[1][2]. Silybin A (Silibinin A), an effective anti-cancer and chemopreventive agent, has been shown to exert multiple effects on cancer cells, including inhibition of both cell proliferation and migration. Silybin A (Silibinin A), an effective anti-cancer and chemopreventive agent, has been shown to exert multiple effects on cancer cells, including inhibition of both cell proliferation and migration.

   

20-Hydroxyeicosatetraenoic acid

(5Z,8Z,11Z,14Z)-20-Hydroxyicosa-5,8,11,14-tetraenoic acid

C20H32O3 (320.2351)


20-Hydroxyeicosatetraenoic acid (20-HETE) is a metabolite of arachidonic acid. Cytochrome P450 enzymes of the 4A and 4F families catalyze the omega-hydroxylation of arachidonic acid and produce 20-HETE. 20-HETE is a potent constrictor of renal, cerebral, and mesenteric arteries. The vasoconstrictor response to 20-HETE is associated with activation of protein kinase, Rho kinase, and the mitogen-activated protein (MAP) kinase pathway C. 20-HETE also increases intracellular Ca2+ by causing the depolarization of vascular smooth muscle membrane secondary to blocking the large-conductance Ca2+-activated K+-channels and by a direct effect on L-type Ca channels. Elevations in the production of 20-HETE mediate the myogenic response of skeletal, renal, and cerebral arteries to elevations in transmural pressure. There is an important interaction between nitric oxide (NO) and the formation of 20-HETE production. NO inhibits the formation of 20-HETE formation in renal and cerebral arteries. A fall in levels of 20-HETE contributes to the cyclic GMP-independent dilator effect of NO to activate the large-conductance Ca2+-activated K+-channels and to dilate the cerebral arteries (PMID: 16258232). Metabolite produced during NADPH dependent enzymatic oxidation of arachidonic acid. Potent vasoconstrictor [CCD]

   

Etodolac

(1,8-Diethyl-1,3,4,9-tetrahydro-pyrano[3,4-b]indol-1-yl)-acetic acid

C17H21NO3 (287.1521)


Etodolac is only found in individuals that have used or taken this drug. It is a non-steroidal anti-inflammatory drug (NSAID) with anti-inflammatory, analgesic and antipyretic properties. Its therapeutic effects are due to its ability to inhibit prostaglandin synthesis. It is indicated for relief of signs and symptoms of rheumatoid arthritis and osteoarthritis. Similar to other NSAIDs, the anti-inflammatory effects of etodolac result from inhibition of the enzyme cycooxygenase (COX). This decreases the synthesis of peripheral prostaglandins involved in mediating inflammation. Etodolac binds to the upper portion of the COX enzyme active site and prevents its substrate, arachidonic acid, from entering the active site. Etodolac was previously thought to be a non-selective COX inhibitor, but it is now known to be 5 – 50 times more selective for COX-2 than COX-1. Antipyresis may occur by central action on the hypothalamus, resulting in peripheral dilation, increased cutaneous blood flow, and subsequent heat loss. M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AB - Acetic acid derivatives and related substances D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D004791 - Enzyme Inhibitors > D016861 - Cyclooxygenase Inhibitors > D052246 - Cyclooxygenase 2 Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D006133 - Growth Substances > D010937 - Plant Growth Regulators > D007210 - Indoleacetic Acids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents KEIO_ID E034; [MS2] KO008956 KEIO_ID E034

   

Testosterone enanthate

[(8R,9S,10R,13S,14S,17S)-10,13-dimethyl-3-oxo-1,2,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-17-yl] heptanoate

C26H40O3 (400.2977)


testosterone enanthate is used in androgen substitution to replace testosterone at levels as close to physiological levels as is possible. For some androgen-dependent functions testosterone is a pro-hormone, peripherally converted to 5alpha-dihydrotestosterone (DHT) and 17beta-estradiol (E2), of which the levels preferably should be within normal physiological ranges. Furthermore, androgens should have a good safety profile without adverse effects on the prostate, serum lipids, liver or respiratory function, and they must be convenient to use and patient-friendly, with a relative independence from medical services. Natural testosterone is viewed as the best androgen for substitution in hypogonadal men. testosterone enanthate is used to treat male hypogonadism. Male hypogonadism is one of the most common endocrinologic syndromes. The diagnosis is based on clinical signs and symptoms plus laboratory confirmation via the measurement of low morning testosterone levels on two different occasions. Serum luteinizing hormone and follicle-stimulating hormone levels distinguish between primary (hypergonadotropic) and secondary (hypogonadotropic) hypogonadism. Osteoporosis in male hypogonadism: responses to androgen substitution differ among men with primary and secondary hypogonadism. In primary hypogonadal men the on bone mineral density (BMD) responds dose dependently to testosterone substitution, whereas in secondary hypogonadism only testosterone enanthate treatment significantly increased the BMD. In all mammalian species studied to date, testosterone has been found to be the predominant intratesticular steroid. In volunteers receiving hormonal contraception by using a combination of testosterone enanthate and levonorgestrel, there is a profound reduction of both intratesticular testosterone concentration and androgen bioactivity. High doses of testosterone enanthate can normalize hematocrit values of maintenance hemodialysis patients with replenished bone marrow iron stores. testosterone enanthate is classified as a prohibited substance by the World Anti-Doping Agency (WADA) and its use may be detected by way of the urinary testosterone/epitestosterone (T/E) ratio. (PMID: 16185098, 16467270, 15329035, 17530941, 17484401, 4028529, 12792150) [HMDB] Testosterone enanthate is used in androgen substitution to replace testosterone at levels as close to physiological levels as is possible. For some androgen-dependent functions testosterone is a pro-hormone, peripherally converted to 5alpha-dihydrotestosterone (DHT) and 17beta-estradiol (E2), of which the levels preferably should be within normal physiological ranges. Furthermore, androgens should have a good safety profile without adverse effects on the prostate, serum lipids, liver or respiratory function, and they must be convenient to use and patient-friendly, with a relative independence from medical services. Natural testosterone is viewed as the best androgen for substitution in hypogonadal men. testosterone enanthate is used to treat male hypogonadism. Male hypogonadism is one of the most common endocrinologic syndromes. The diagnosis is based on clinical signs and symptoms plus laboratory confirmation via the measurement of low morning testosterone levels on two different occasions. Serum luteinizing hormone and follicle-stimulating hormone levels distinguish between primary (hypergonadotropic) and secondary (hypogonadotropic) hypogonadism. Osteoporosis in male hypogonadism: responses to androgen substitution differ among men with primary and secondary hypogonadism. In primary hypogonadal men the on bone mineral density (BMD) responds dose dependently to testosterone substitution, whereas in secondary hypogonadism only testosterone enanthate treatment significantly increased the BMD. In all mammalian species studied to date, testosterone has been found to be the predominant intratesticular steroid. In volunteers receiving hormonal contraception by using a combination of testosterone enanthate and levonorgestrel, there is a profound reduction of both intratesticular testosterone concentration and androgen bioactivity. High doses of testosterone enanthate can normalize hematocrit values of maintenance hemodialysis patients with replenished bone marrow iron stores. testosterone enanthate is classified as a prohibited substance by the World Anti-Doping Agency (WADA) and its use may be detected by way of the urinary testosterone/epitestosterone (T/E) ratio. (PMID: 16185098, 16467270, 15329035, 17530941, 17484401, 4028529, 12792150). D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D000728 - Androgens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid

   

Iproniazid

N-(propan-2-yl)pyridine-4-carbohydrazide

C9H13N3O (179.1059)


N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AF - Monoamine oxidase inhibitors, non-selective D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors C471 - Enzyme Inhibitor > C667 - Monoamine Oxidase Inhibitor

   

Pioglitazone

(+-)-5-((4-(2-(5-Ethyl-2-pyridinyl)ethoxy)phenyl)methyl)-2,4-thiazolidinedione

C19H20N2O3S (356.1195)


Pioglitazone is used for the treatment of diabetes mellitus type 2. Pioglitazone selectively stimulates nuclear receptor peroxisone proliferator-activated receptor gamma (PPAR-gamma). It modulates the transcription of the insulin-sensitive genes involved in the control of glucose and lipid metabolism in the lipidic, muscular tissues and in the liver. A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10B - Blood glucose lowering drugs, excl. insulins > A10BG - Thiazolidinediones C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent > C98241 - Thiazolidinedione Antidiabetic Agent COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D007004 - Hypoglycemic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Pioglitazone (U 72107) is an orally active and selective PPARγ (peroxisome proliferator-activated receptor) agonist with high affinity binding to the PPARγ ligand-binding domain with EC50 of 0.93 and 0.99 μM for human and mouse PPARγ, respectively. Pioglitazone can be used in diabetes research[2][3][4].

   

Phalloidine

Mast Cell Degranulating (MCD) Peptide

C35H48N8O11S (788.3163)


D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins

   

Aspirin

2-Acetoxybenzenecarboxylic acid

C9H8O4 (180.0423)


Aspirin is only found in individuals who have consumed this drug. Aspirin or acetylsalicylic acid (acetosal) is a drug in the family of salicylates, often used as an analgesic (against minor pains and aches), antipyretic (against fever), and anti-inflammatory. It has also an anticoagulant effect and is used in long-term low-doses to prevent heart attacks and cancer. It was isolated from meadowsweet (Filipendula ulmaria, formerly classified as Spiraea ulmaria) by German researchers in 1839. While their extract was somewhat effective, it also caused digestive problems such as irritated stomach and diarrhoea, and even death when consumed in high doses. In 1853, a French chemist named Charles Frederic Gerhardt neutralized salicylic acid by buffering it with sodium (sodium salicylate) and acetyl chloride, creating acetosalicylic anhydride. Gerhardts product worked, but he had no desire to market it and abandoned his discovery. In 1897, researcher Arthur Eichengrun and Felix Hoffmann, a research assistant at Friedrich Bayer & Co. in Germany, derivatized one of the hydroxyl functional groups in salicylic acid with an acetyl group (forming the acetyl ester), which greatly reduced the negative effects. This was the first synthetic drug, not a copy of something that existed in nature, and the start of the pharmaceuticals industry. The name aspirin is composed of a- (from the acetyl group) -spir- (from the plant genus Spiraea) and -in (a common ending for drugs at the time). It has also been stated that the name originated by another means. As referring to AcetylSalicylic and pir in reference to one of the scientists who was able to isolate it in crystalline form, Raffaele Piria. Finally in due to the same reasons as stated above. Salicylic acid (which is a naturally occurring substance found in many plants) can be acetylated using acetic anhydride, yielding aspirin and acetic acid as a byproduct. It is a common experiment performed in organic chemistry labs, and generally tends to produce low yields due to the relative difficulty of its extraction from an aqueous state. The trick to getting the reaction to work is to acidify with phosphoric acid and heat the reagents under reflux with a boiling water bath for between 40 minutes and an hour. Aspirin acts as an inhibitor of cyclooxygenase which results in the inhibition of the biosynthesis of prostaglandins. Aspirin also inhibits platelet aggregation and is used in the prevention of arterial and venous thrombosis. (From Martindale, The Extra Pharmacopoeia, 30th ed, p5). B - Blood and blood forming organs > B01 - Antithrombotic agents > B01A - Antithrombotic agents > B01AC - Platelet aggregation inhibitors excl. heparin N - Nervous system > N02 - Analgesics > N02B - Other analgesics and antipyretics > N02BA - Salicylic acid and derivatives D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors Constituent of Glycyrrhiza glabra variety typica (licorice) roots. Acetylsalicylic acid is found in herbs and spices. D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials, COVID-19 Disease Map C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor > C287 - Aspirin D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics D006401 - Hematologic Agents > D005343 - Fibrinolytic Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3578 D050299 - Fibrin Modulating Agents D002317 - Cardiovascular Agents D004791 - Enzyme Inhibitors D058633 - Antipyretics Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Doxycycline

(4S,4AR,5S,5ar,6R,12as)-4-(dimethylamino)-3,5,10,12,12a-pentahydroxy-6-methyl-1,11-dioxo-1,4,4a,5,5a,6,11,12a-octahydrotetracene-2-carboxamide

C22H24N2O8 (444.1533)


Doxycycline is only found in individuals that have used or taken this drug. It is a synthetic tetracycline derivative with similar antimicrobial activity. Animal studies suggest that it may cause less tooth staining than other tetracyclines. It is used in some areas for the treatment of chloroquine-resistant falciparum malaria (malaria, falciparum). [PubChem]Doxycycline, like minocycline, is lipophilic and can pass through the lipid bilayer of bacteria. Doxycycline reversibly binds to the 30 S ribosomal subunits and possibly the 50S ribosomal subunit(s), blocking the binding of aminoacyl tRNA to the mRNA and inhibiting bacterial protein synthesis. Doxycycline prevents the normal function of the apicoplast of Plasmodium falciparum, a malaria causing organism. A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AB - Antiinfectives and antiseptics for local oral treatment J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01A - Tetracyclines > J01AA - Tetracyclines D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C784 - Protein Synthesis Inhibitor > C1595 - Tetracycline Antibiotic D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

4,4'-Methylenedianiline

4,4-Diaminodiphenylmethane, sodium chloride (3:1)

C13H14N2 (198.1157)


4,4’-Methylenedianiline (MDA) is an industrial chemical that is produced and used industrially as a precursor to polyamides, epoxy resins, and polyurethane foams (PMID: 20621954). It is a primary aromatic amine, belonging to the family of compounds known as Diphenylmethanes. Diphenylmethanes are compounds consisting of methane with two of the hydrogen atoms replaced by phenyl groups. MDA is used mainly as a precursor to 4,4 ́-methylene diphenyl diisocyanate (MDI), which is a precursor to many polyurethane foams. To generate MDI, which is a highly reactive isocyanate, MDA is treated with phosgene. Workers exposed to MDI may develop sensitization, leading to occupational asthma. MDI is metabolized in the body and secreted in the urine as MDA, Therefore MDA is a urinary biomarker of MDI exposure. On its own, MDA is a known animal carcinogen, and human hepatotoxin. MDA produces genotoxic effects by forming DNA adducts in the liver and inducing DNA damage to hepatocytes (PMID: 32038824). The Occupational Safety and Health Administration has set a permissible exposure limit at 0.01 ppm over an eight-hour time-weighted average, and a short-term exposure limit at 0.10 ppm. D009676 - Noxae > D002273 - Carcinogens

   

Aflatoxin B1

(3S,7R)-11-methoxy-6,8,19-trioxapentacyclo[10.7.0.0^{2,9}.0^{3,7}.0^{13,17}]nonadeca-1(12),2(9),4,10,13(17)-pentaene-16,18-dione

C17H12O6 (312.0634)


Aflatoxins are naturally occurring mycotoxins that are produced by many species of Aspergillus, a fungus. At least 13 different types of aflatoxin are produced in nature. Aflatoxin B1 is considered the most toxic and is produced by both Aspergillus flavus and Aspergillus parasiticus. The native habitat of Aspergillus is in soil, decaying vegetation, hay, and grains undergoing microbiological deterioration and it invades all types of organic substrates whenever conditions are favourable for its growth. Favourable conditions include high moisture content (at least 7\\\%) and high temperature. Aflatoxins B1 (AFB1) are contaminants of improperly stored foods; they are potent genotoxic and carcinogenic compounds, exerting their effects through damage to DNA. They can also induce mutations that increase oxidative damage (PMID: 17214555). Crops which are frequently affected by Aspergillus contamination include cereals (maize, sorghum, pearl millet, rice, wheat), oilseeds (peanut, soybean, sunflower, cotton), spices (chile peppers, black pepper, coriander, turmeric, ginger), and tree nuts (almond, pistachio, walnut, coconut, brazil nut). Production by Aspergillus flavus and Aspergillus parasiticus. Toxin causing Turkey X disease. One of the most potent carcinogens known in animals. Potential food contaminant especies in grains and nuts D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D000348 - Aflatoxins Aflatoxin B1 (AFB1) is a Class 1A carcinogen, which is a secondary metabolite of Aspergillus flavus and A. parasiticus. Aflatoxin B1 (AFB1) mainly induces the transversion of G-->T in the third position of codon 249 of the p53 tumor suppressor gene, resulting in mutation[1][2].

   

Monoethylhexyl phthalic acid

1,2-Benzenedicarboxylic acid, mono(2-ethylhexyl) ester

C16H22O4 (278.1518)


Monoethylhexyl phthalic acid (MEHP) is an active metabolite of Bis(2-ethylhexyl)phthalate (DEHP). DEHP measured from the blood of pregnant women have been significantly associated with the decreased penis width, shorter anogenital distance, and the incomplete descent of testes of their newborn sons, replicating effects identified in animals(Wikipedia). DEHP hydrolyzes to MEHP via the enzyme Bis(2-ethylhexyl)phthalate acylhydrolase(3.1.1.60)and subsequently to phthalate salts. The released alcohol is susceptible to oxidation to the aldehyde and carboxylic acid. Monoethylhexyl phthalic acid (MEHP) is an active metabolite of Bis(2-ethylhexyl)phthalate (DEHP). DEHP measured from the blood of pregnant women have been significantly associated with the decreased penis width, shorter anogenital distance, and the incomplete descent of testes of their newborn sons, replicating effects identified in animals. DEHP hydrolyzes to MEHP via the enzyme Bis(2-ethylhexyl)phthalate acylhydrolase(3.1.1.60)and subsequently to phthalate salts. The released alcohol is susceptible to oxidation to the aldehyde and carboxylic acid. [HMDB] CONFIDENCE standard compound; INTERNAL_ID 1238; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10026; ORIGINAL_PRECURSOR_SCAN_NO 10023 CONFIDENCE standard compound; INTERNAL_ID 1238; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4968; ORIGINAL_PRECURSOR_SCAN_NO 4967 CONFIDENCE standard compound; INTERNAL_ID 1238; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4980; ORIGINAL_PRECURSOR_SCAN_NO 4979 CONFIDENCE standard compound; INTERNAL_ID 1238; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4973; ORIGINAL_PRECURSOR_SCAN_NO 4971 CONFIDENCE standard compound; INTERNAL_ID 1238; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9948; ORIGINAL_PRECURSOR_SCAN_NO 9944 CONFIDENCE standard compound; INTERNAL_ID 1238; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9960; ORIGINAL_PRECURSOR_SCAN_NO 9957 CONFIDENCE standard compound; INTERNAL_ID 1238; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9947; ORIGINAL_PRECURSOR_SCAN_NO 9946 CONFIDENCE standard compound; INTERNAL_ID 1238; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9930; ORIGINAL_PRECURSOR_SCAN_NO 9925 CONFIDENCE standard compound; INTERNAL_ID 1238; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4975; ORIGINAL_PRECURSOR_SCAN_NO 4972 CONFIDENCE standard compound; INTERNAL_ID 1238; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4995; ORIGINAL_PRECURSOR_SCAN_NO 4994 CONFIDENCE standard compound; INTERNAL_ID 1238; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4973; ORIGINAL_PRECURSOR_SCAN_NO 4969 Phthalic acid mono-2-ethylhexyl ester (MEHP) is a major bioactive metabolite of diethylhexyl phthalate (DEHP), which inhibits the 17, 20 lyase activity of CYP17[1]. Phthalic acid mono-2-ethylhexyl ester (MEHP) is a major bioactive metabolite of diethylhexyl phthalate (DEHP), which inhibits the 17, 20 lyase activity of CYP17[1].

   

Testosterone Propionate

(1S,2R,10R,11S,14S,15S)-2,15-dimethyl-5-oxotetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-6-en-14-yl propanoate

C22H32O3 (344.2351)


Testosterone Propionate is only found in individuals that have used or taken this drug. It is an ester of testosterone with a propionate substitution at the 17-beta position. [PubChem]The effects of testosterone in humans and other vertebrates occur by way of two main mechanisms: by activation of the androgen receptor (directly or as DHT), and by conversion to estradiol and activation of certain estrogen receptors. Free testosterone (T) is transported into the cytoplasm of target tissue cells, where it can bind to the androgen receptor, or can be reduced to 5α-dihydrotestosterone (DHT) by the cytoplasmic enzyme 5α-reductase. DHT binds to the same androgen receptor even more strongly than T, so that its androgenic potency is about 2.5 times that of T. The T-receptor or DHT-receptor complex undergoes a structural change that allows it to move into the cell nucleus and bind directly to specific nucleotide sequences of the chromosomal DNA. The areas of binding are called hormone response elements (HREs), and influence transcriptional activity of certain genes, producing the androgen effects. C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

Raloxifene

(2-(4-Hydroxyphenyl)-6-hydroxybenzo(b)thien-3-yl)(4-(2-(1-piperidinyl)ethoxy)phenyl)methanone

C28H27NO4S (473.1661)


Raloxifene is only found in individuals that have used or taken this drug. It is a second generation selective estrogen receptor modulator (SERM) used to prevent osteoporosis in postmenopausal women. It has estrogen agonist effects on bone and cholesterol metabolism but behaves as a complete estrogen antagonist on mammary gland and uterine tissue. [PubChem]. Raloxifene binds to estrogen receptors, resulting in differential expression of multiple estrogen-regulated genes in different tissues. Raloxifene produces estrogen-like effects on bone, reducing resorption of bone and increasing bone mineral density in postmenopausal women, thus slowing the rate of bone loss. The maintenance of bone mass by raloxifene and estrogens is, in part, through the regulation of the gene-encoding transforming growth factor-β3 (TGF-β3), which is a bone matrix protein with antiosteoclastic properties. Raloxifene activates TGF-β3 through pathways that are estrogen receptor-mediated but involve DNA sequences distinct from the estrogen response element. The drug also binds to the estrogen receptor and acts as an estrogen agonist in preosteoclastic cells, which results in the inhibtion of their proliferative capacity. This inhibition is thought to contribute to the drugs effect on bone resorption. Other mechanisms include the suppression of activity of the bone-resorbing cytokine interleukin-6 promoter activity. Raloxifene also antagonizes the effects of estrogen on mammary tissue and blocks uterotrophic responses to estrogen. By competing with estrogens for the estrogen receptors in reproductive tissue, raloxifene prevents the transcriptional activation of genes containing the estrogen response element. As well, raloxifene inhibits the estradiol-dependent proliferation of MCF-7 human mammary tumor cells in vitro. The mechansim of action of raloxifene has not been fully determined, but evidence suggests that the drugs tissue-specific estrogen agonist or antagonist activity is related to the structural differences between the raloxifene-estrogen receptor complex (specifically the surface topography of AF-2) and the estrogen-estrogen receptor complex. Also, the existence of at least 2 estrogen receptors (ERα, ERβ) may contribute to the tissue specificity of raloxifene. CONFIDENCE standard compound; INTERNAL_ID 236; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3671; ORIGINAL_PRECURSOR_SCAN_NO 3667 CONFIDENCE standard compound; INTERNAL_ID 236; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7479; ORIGINAL_PRECURSOR_SCAN_NO 7477 CONFIDENCE standard compound; INTERNAL_ID 236; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3606; ORIGINAL_PRECURSOR_SCAN_NO 3604 CONFIDENCE standard compound; INTERNAL_ID 236; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3605; ORIGINAL_PRECURSOR_SCAN_NO 3603 CONFIDENCE standard compound; INTERNAL_ID 236; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7456; ORIGINAL_PRECURSOR_SCAN_NO 7455 CONFIDENCE standard compound; INTERNAL_ID 236; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7507; ORIGINAL_PRECURSOR_SCAN_NO 7505 CONFIDENCE standard compound; INTERNAL_ID 236; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7491; ORIGINAL_PRECURSOR_SCAN_NO 7487 CONFIDENCE standard compound; INTERNAL_ID 236; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7503; ORIGINAL_PRECURSOR_SCAN_NO 7502 CONFIDENCE standard compound; INTERNAL_ID 236; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7515; ORIGINAL_PRECURSOR_SCAN_NO 7513 CONFIDENCE standard compound; INTERNAL_ID 236; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3597; ORIGINAL_PRECURSOR_SCAN_NO 3594 CONFIDENCE standard compound; INTERNAL_ID 236; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3612; ORIGINAL_PRECURSOR_SCAN_NO 3610 CONFIDENCE standard compound; INTERNAL_ID 236; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3602; ORIGINAL_PRECURSOR_SCAN_NO 3597 G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03X - Other sex hormones and modulators of the genital system > G03XC - Selective estrogen receptor modulators D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D020847 - Estrogen Receptor Modulators D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1821 - Selective Estrogen Receptor Modulator C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist CONFIDENCE standard compound; INTERNAL_ID 2754 CONFIDENCE standard compound; INTERNAL_ID 8536 D050071 - Bone Density Conservation Agents C1892 - Chemopreventive Agent Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Raloxifene (Keoxifene) is a benzothiophene-derived selective estrogen receptor modulator (SERM). Raloxifene has estrogen-agonistic effects on bone and lipids and estrogen-antagonistic effects on the breast and uterus. Raloxifene is used for breast cancer and osteoporosis research[1].

   

Phenobarbital

5-Ethyl-5-phenylpyrimidine-2,4,6(1H,3H,5H)-trione

C12H12N2O3 (232.0848)


Phenobarbital is only found in individuals that have used or taken this drug. It is a barbituric acid derivative that acts as a nonselective central nervous system depressant.Phenobarbital acts on GABAA receptors, increasing synaptic inhibition. This has the effect of elevating seizure threshold and reducing the spread of seizure activity from a seizure focus. Phenobarbital may also inhibit calcium channels, resulting in a decrease in excitatory transmitter release. The sedative-hypnotic effects of phenobarbital are likely the result of its effect on the polysynaptic midbrain reticular formation, which controls CNS arousal. Phenobarbital appears as odorless white crystalline powder or colorless crystals. A saturated aqueous solution is acid to litmus (approximately pH 5). Slightly bitter taste. (NTP, 1992) Phenobarbital is a member of the class of barbiturates, the structure of which is that of barbituric acid substituted at C-5 by ethyl and phenyl groups. It has a role as an anticonvulsant, a sedative, an excitatory amino acid antagonist and a drug allergen. Phenobarbital is a DEA Schedule IV controlled substance. Substances in the DEA Schedule IV have a low potential for abuse relative to substances in Schedule III. It is a Depressants substance. A barbituric acid derivative that acts as a nonselective central nervous system depressant. It promotes binding to inhibitory gamma-aminobutyric acid subtype receptors, and modulates chloride currents through receptor channels. It also inhibits glutamate induced depolarizations. Phenobarbital is a barbiturate that is widely used as a sedative and an antiseizure medication. Phenobarbital has been linked to rare instances of idiosyncratic liver injury that can be severe and even fatal. Phenobarbital is a long-acting barbituric acid derivative with antipsychotic property. Phenobarbital binds to and activates the gamma-aminobutyric acid (GABA)-A receptor, thereby mimicking the inhibitory actions of GABA in the brain. The activation effects of the phenobarbital-receptor-ionophore complex include increased frequency of chloride channel openings, membrane hyperpolarization and ultimately synaptic inhibition and decreased neuronal excitability. In addition, this agent inhibits glutamate induced depolarization. Phenobarbital is only found in individuals that have used or taken this drug. It is a barbituric acid derivative that acts as a nonselective central nervous system depressant. It promotes binding to inhibitory gamma-aminobutyric acid subtype receptors, and modulates chloride currents through receptor channels. It also inhibits glutamate induced depolarizations. [PubChem] Phenobarbital acts on GABAA receptors, increasing synaptic inhibition. This has the effect of elevating seizure threshold and reducing the spread of seizure activity from a seizure focus. Phenobarbital may also inhibit calcium channels, resulting in a decrease in excitatory transmitter release. The sedative-hypnotic effects of phenobarbital are likely the result of its effect on the polysynaptic midbrain reticular formation, which controls CNS arousal. A barbituric acid derivative that acts as a nonselective central nervous system depressant. It potentiates GAMMA-AMINOBUTYRIC ACID action on GABA-A RECEPTORS, and modulates chloride currents through receptor channels. It also inhibits glutamate induced depolarizations.

   

4-Hydroxytamoxifen

4-[(1Z)-1-{4-[2-(dimethylamino)ethoxy]phenyl}-2-phenylbut-1-en-1-yl]phenol

C26H29NO2 (387.2198)


4-Hydroxytamoxifen (Afimoxifene) is a metabolite of Tamoxifen. Afimoxifene (4-hydroxytamoxifen) is a selective estrogen receptor modulator which is the active metabolite of tamoxifen. Afimoxifene is a transdermal gel formulation and is being developed by Ascend Therapeutics, Inc. under the trademark TamoGel. (Wikipedia) D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D020847 - Estrogen Receptor Modulators D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1821 - Selective Estrogen Receptor Modulator C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist D000970 - Antineoplastic Agents C1892 - Chemopreventive Agent

   

Naftifine

N-methyl-N-(1-naphthalenylmethyl)-3-phenyl-2-propen-1-amine

C21H21N (287.1674)


Naftifine is only found in individuals that have used or taken this drug. It is a synthetic, broad spectrum, antifungal agent and allylamine derivative for the topical treatment of tinea pedis, tinea cruris, and tinea corporis caused by the organisms Trichophyton rubrum, Trichophyton mentagrophytes, Trichophyton tonsurans and Epidermophyton floccosum.Although the exact mechanism of action against fungi is not known, naftifine appears to interfere with sterol biosynthesis by inhibiting the enzyme squalene 2,3-epoxidase. This inhibition of enzyme activity results in decreased amounts of sterols, especially ergosterol, and a corresponding accumulation of squalene in the cells. D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent

   

Estradiol

(1S,10R,11S,14S,15S)-15-methyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadeca-2(7),3,5-triene-5,14-diol

C18H24O2 (272.1776)


Estradiol is the most potent form of mammalian estrogenic steroids. Estradiol is produced in the ovaries. The ovary requires both luteinizing hormone (LH) and follicle-stimulating hormone (FSH) to produce sex steroids. LH stimulates the cells surrounding the follicle to produce progesterone and androgens. The androgens diffuse across the basement membrane to the granulosa cell layer, where, under the action of FSH, they are aromatized to estrogens, mainly estradiol. The ovary shows cyclical activity, unlike the testis that is maintained in a more or less constant state of activity. Hormone secretions vary according to the phase of the menstrual cycle. In the developing follicle LH receptors (LH-R) are only located on the thecal cells and FSH receptors (FSHR) on the granulosa cells. The dominant pre-ovulatory follicle develops LH-Rs on the granulosa cells prior to the LH surge. Thecal cells of the preovulatory follicle also develop the capacity to synthesize estradiol and this persists when the thecal cells become incorporated into the corpus luteum. After ovulation, the empty follicle is remodelled and plays an important role in the second half or luteal phase of the menstrual cycle. This phase is dominated by progesterone and, to a lesser extent, estradiol secretion by the corpus luteum. estradiol is also synthesized locally from cholesterol through testosterone in the hippocampus and acts rapidly to modulate neuronal synaptic plasticity. Localization of estrogen receptor alpha (ERalpha) in spines in addition to nuclei of principal neurons implies that synaptic ERalpha is responsible for rapid modulation of synaptic plasticity by endogenous estradiol. estradiol is a potent endogenous antioxidant which suppresses hepatic fibrosis in animal models, and attenuates induction of redox sensitive transcription factors, hepatocyte apoptosis and hepatic stellate cells activation by inhibiting a generation of reactive oxygen species in primary cultures. This suggests that the greater progression of hepatic fibrosis and hepatocellular carcinoma in men and postmenopausal women may be due, at least in part, to lower production of estradiol and a reduced response to the action of estradiol. estradiol has been reported to induce the production of interferon (INF)-gamma in lymphocytes, and augments an antigen-specific primary antibody response in human peripheral blood mononuclear cells. IFN-gamma is a potent cytokine with immunomodulatory and antiproliferative properties. Therefore, female subjects, particularly before menopause, may produce antibodies against hepatitis B virus e antigen and hepatitis B virus surface antigen at a higher frequency than males with chronic hepatitis B virus infection. The estradiol-Dihydrotestosterone model of prostate cancer (PC) proposes that the first step in the development of most PC and breast cancer (BC) occurs when aromatase converts testosterone to estradiol. (PMID: 17708600, 17678531, 17644764). G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03C - Estrogens > G03CA - Natural and semisynthetic estrogens, plain D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens COVID info from COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen Growth promoter for livestock. Permitted in the USA Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Estradiol (β-Estradiol) is a steroid hormone and the major female sex hormone. Estradiol can up-regulate the expression of neural markers of human endometrial stem cells (hEnSCs) and promote their neural differentiation. Estradiol can be used for the research of cancers, neurodegenerative diseases and neural tissue engineering[1][2]. Estradiol (β-Estradiol) is a steroid hormone and the major female sex hormone. Estradiol can up-regulate the expression of neural markers of human endometrial stem cells (hEnSCs) and promote their neural differentiation. Estradiol can be used for the research of cancers, neurodegenerative diseases and neural tissue engineering[1][2].

   

Quetiapine

2-[2-(4-{2-thia-9-azatricyclo[9.4.0.0³,⁸]pentadeca-1(15),3,5,7,9,11,13-heptaen-10-yl}piperazin-1-yl)ethoxy]ethan-1-ol

C21H25N3O2S (383.1667)


The most common side effect is sedation, and is prescribed specifically for this effect in patients with sleep disorders. Seroquel will put the patient into a drowsy state, and will help the patient fall asleep. It is one of the most sedating of all anti psychotic drugs, rivaling even the most sedating older antipsychotics. Many prescriptions call for the entire dose to be taken before bedtime because of its sedative effects. Although quetiapine is approved by the FDA for the treatment of schizophrenia and bipolar disorder, it is frequently prescribed for off-label purposes including insomnia or the treatment of anxiety disorders. Due to its sedative side effects, reports of quetiapine abuse (sometimes by insufflating crushed tablets) have emerged in medical literature; Quetiapine belongs to a series of neuroleptics known as "atypical antipsychotics", which have become increasingly popular alternatives to "typical antipsychotics" such as haloperidol. Quetiapine HAS approvals for the treatment of schizophrenia and acute mania in bipolar disorder. It is also used off-label to treat other disorders, such as post-traumatic stress disorder, alcoholism, obsessive compulsive disorder, anxiety disorders, hallucinations in Parkinsons disease patients using ropinirole, and as a sedative for those with sleep disorders. The most common side effect is sedation, and is prescribed specifically for this effect in patients with sleep disorders. Seroquel will put the patient into a drowsy state, and will help the patient fall asleep. It is one of the most sedating of all anti psychotic drugs, rivaling even the most sedating older antipsychotics. Many prescriptions call for the entire dose to be taken before bedtime because of its sedative effects. Although quetiapine is approved by the FDA for the treatment of schizophrenia and bipolar disorder, it is frequently prescribed for off-label purposes including insomnia or the treatment of anxiety disorders. Due to its sedative side effects, reports of quetiapine abuse (sometimes by insufflating crushed tablets) have emerged in medical literature; for the same reason, abuse of other antipsychotics, such as chlorpromazine (Thorazine), may occur as well, but research related to the abuse of typical antipsychotics is limited. for the same reason, abuse of other antipsychotics, such as chlorpromazine (Thorazine), may occur as well, but research related to the abuse of typical antipsychotics is limited. The most common side effect is sedation, and is prescribed specifically for this effect in patients with sleep disorders. Seroquel will put the patient into a drowsy state, and will help the patient fall asleep. It is one of the most sedating of all anti psychotic drugs, rivaling even the most sedating older antipsychotics. Many prescriptions call for the entire dose to be taken before bedtime because of its sedative effects. Although quetiapine is approved by the FDA for the treatment of schizophrenia and bipolar disorder, it is frequently prescribed for off-label purposes including insomnia or the treatment of anxiety disorders. Due to its sedative side effects, reports of quetiapine abuse (sometimes by insufflating crushed tablets) have emerged in medical literature; Quetiapine belongs to a series of neuroleptics known as "atypical antipsychotics", which have become increasingly popular alternatives to "typical antipsychotics" such as haloperidol. N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AH - Diazepines, oxazepines, thiazepines and oxepines D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Quetiapine (ICI204636) is a 5-HT receptors agonist with a pEC50 of 4.77 for human 5-HT1A receptor. Quetiapine is a dopamine receptor antagonist with a pIC50 of 6.33 for human D2 receptor. Quetiapine has moderate to high affinity for the human D2, HT1A, 5-HT2A, 5-HT2C receptor with pKis of 7.25, 5.74, 7.54, 5.55. Antidepressant and anxiolytic effects[1].

   

Tizanidine

5-chloro-N-(4,5-dihydro-1H-imidazol-2-yl)-2,1,3-benzothiadiazol-4-amine

C9H8ClN5S (253.0189)


Tizanidine is a short-acting drug for the management of spasticity. Tizanidine is an agonist at a2-adrenergic receptor sites and presumably reduces spasticity by increasing presynaptic inhibition of motor neurons. In animal models, tizanidine has no direct effect on skeletal muscle fibers or the neuromuscular junction, and no major effect on monosynaptic spinal reflexes. The effects of tizanidine are greatest on polysynaptic pathways. The overall effect of these actions is thought to reduce facilitation of spinal motor neurons. Tizanidine has two major metabolites: (1) 5-chloro-4-(2-imidazolin-4-on-2-ylamino)-2,1,3-benzothiazdiazole and (2) 5-chloro-4-(2-imidazolin-4-on-2-ylamino)-2,1,3-benzothiadiazole (PMID: 9929503, 19961320). M - Musculo-skeletal system > M03 - Muscle relaxants > M03B - Muscle relaxants, centrally acting agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D002491 - Central Nervous System Agents > D000700 - Analgesics Tizanidine is an α2-adrenergic receptor agonist and inhibits neurotransmitter release from CNS noradrenergic neurons. Target: α2-adrenergic receptor Tizanidine is a drug that is used as a muscle relaxant. It is a centrally acting α2 adrenergic agonist. It is used to treat the spasms, cramping, and tightness of muscles caused by medical problems such as multiple sclerosis, ALS, spastic diplegia, back pain, or certain other injuries to the spine or central nervous system. It is also prescribed off-label for migraine headaches, as a sleep aid, and as an anticonvulsant. It is also prescribed for some symptoms of fibromyalgia. Tizanidine has been found to be as effective as other antispasmodic drugs and has superior tolerability to that of baclofen and diazepam. Tizanidine can be very strong even at the 2 mg dose and may cause hypotension, so caution is advised when it is used in patients who have a history of orthostatic hypotension, or when switching from gel cap to tablet form and vice versa. Tizanidine can occasionally cause liver damage, generally the hepatocellular type. Clinical trials show that up to 5\% of patients treated with tizanidine had elevated liver function test values, though symptoms disappeared upon withdrawal of the drug. Care should be used when first beginning treatment with tizanidine with regular liver tests for the first 6 months of treatment.

   

Salinomycin

AKOS032949878

C42H70O11 (750.4918)


D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic Same as: D08502

   

Legumelin

(1S,14S)-17,18-dimethoxy-7,7-dimethyl-2,8,21-trioxapentacyclo[12.8.0.0³,¹².0⁴,⁹.0¹⁵,²⁰]docosa-3(12),4(9),5,10,15,17,19-heptaen-13-one

C23H22O6 (394.1416)


Legumelin, also known as (-)-cis-deguelin, is a member of the class of compounds known as rotenones. Rotenones are rotenoids with a structure based on a 6a,12a-dihydrochromeno[3,4-b]chromen-12(6H)-one skeleton. Thus, legumelin is considered to be a flavonoid lipid molecule. Legumelin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Legumelin can be found in soy bean, which makes legumelin a potential biomarker for the consumption of this food product. Deguelin, a naturally occurring rotenoid, acts as a chemopreventive agent by blocking multiple pathways like PI3K-Akt, IKK-NF-κB, and MAPK-mTOR-survivin-mediated apoptosis. Deguelin binding to Hsp90 leads to a decreased expression of numerous oncogenic proteins, including MEK1/2, Akt, HIF1α, COX-2, and NF-κB. Deguelin, a naturally occurring rotenoid, acts as a chemopreventive agent by blocking multiple pathways like PI3K-Akt, IKK-NF-κB, and MAPK-mTOR-survivin-mediated apoptosis. Deguelin binding to Hsp90 leads to a decreased expression of numerous oncogenic proteins, including MEK1/2, Akt, HIF1α, COX-2, and NF-κB. Deguelin, a naturally occurring rotenoid, acts as a chemopreventive agent by blocking multiple pathways like PI3K-Akt, IKK-NF-κB, and MAPK-mTOR-survivin-mediated apoptosis. Deguelin binding to Hsp90 leads to a decreased expression of numerous oncogenic proteins, including MEK1/2, Akt, HIF1α, COX-2, and NF-κB.

   

Coumesterol

5,14-dihydroxy-8,17-dioxatetracyclo[8.7.0.0^{2,7}.0^{11,16}]heptadeca-1(10),2,4,6,11(16),12,14-heptaen-9-one

C15H8O5 (268.0372)


Cumoesterol (or coumestrol), a coumestan isoflavone, has estrogenic properties (phytoestrogens are compounds structurally and functionally similar to 17-estradiol) and is an isoflavonoid phytoalexin produced by soybeans, a low molecular weight antimicrobial compound that is synthesized de novo and accumulates in plants after exposure to microorganisms (i.e.: phytoalexin induction and accumulation in soybean cotyledon tissue is observed with four species of Aspergillus: A. sojae, A. oryzae, A. niger, and A. flavus) (PMID: 10888516). Coumestrol is a naturally occurring plant coumarin that displays high affinity for the hormone-binding site of the human estrogen receptor (hER), for which it serves as a potent non-steroidal agonist. Coumestrol emits intense blue fluorescence when bound to this protein, making it ideally suited for use as a cytological stain to detect ER in fixed and intact cells. Such observations illustrate the potential for using coumestrol to investigate real-time effects of a variety of physiological stimuli on the subcellular distribution of hER in living cells (PMID: 8315272). Coumestrol is a member of the class of coumestans that is coumestan with hydroxy substituents at positions 3 and 9. It has a role as an anti-inflammatory agent, an antioxidant and a plant metabolite. It is a member of coumestans, a delta-lactone and a polyphenol. It is functionally related to a coumestan. Coumestrol is a natural product found in Campylotropis hirtella, Melilotus messanensis, and other organisms with data available. A daidzein derivative occurring naturally in forage crops which has some estrogenic activity. See also: Medicago sativa whole (part of). Isolated from Medicago subspecies, Glycine max (soybean), Pisum sativum (pea), Spinacia oleracea (spinach), Brassica oleracea (cabbage), Dolichos biflorus (papadi), Melilotus alba (white melilot), Phaseolus subspecies (inc. lima beans, pinto beans) and Vigna unguiculata (all Leguminosae). Potential nutriceutical D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens A member of the class of coumestans that is coumestan with hydroxy substituents at positions 3 and 9. Coumestrol, a phytoestrogen present in soybean products, exhibits activities against cancers, neurological disorders, and autoimmune diseases. It suppresses proliferation of ES2 cells with an IC50 of 50 μM. Coumestrol, a phytoestrogen present in soybean products, exhibits activities against cancers, neurological disorders, and autoimmune diseases. It suppresses proliferation of ES2 cells with an IC50 of 50 μM.

   

Gambogic acid

(2Z)-4-[12-hydroxy-8,21,21-trimethyl-5-(3-methylbut-2-en-1-yl)-8-(4-methylpent-3-en-1-yl)-14,18-dioxo-3,7,20-trioxahexacyclo[15.4.1.0²,¹⁵.0²,¹⁹.0⁴,¹³.0⁶,¹¹]docosa-4,6(11),9,12,15-pentaen-19-yl]-2-methylbut-2-enoic acid

C38H44O8 (628.3036)


Isolated from Gamboge resin (exudate of Garcinia morella). Gambogic acid is found in herbs and spices and fruits. Gambogic acid is found in fruits. Gambogic acid is isolated from Gamboge resin (exudate of Garcinia morella). Gambogic Acid (Beta-Guttiferrin) is derived from the gamboges resin of the tree Garcinia hanburyi. Gambogic Acid (Beta-Guttiferrin) inhibits Bcl-XL, Bcl-2, Bcl-W, Bcl-B, Bfl-1 and Mcl-1 with IC50s of 1.47 μM, 1.21 μM, 2.02 μM, 0.66 μM, 1.06 μM and 0.79 μM. Gambogic Acid (Beta-Guttiferrin) is derived from the gamboges resin of the tree Garcinia hanburyi. Gambogic Acid (Beta-Guttiferrin) inhibits Bcl-XL, Bcl-2, Bcl-W, Bcl-B, Bfl-1 and Mcl-1 with IC50s of 1.47 μM, 1.21 μM, 2.02 μM, 0.66 μM, 1.06 μM and 0.79 μM.

   

Cannabichromene

2-methyl-2-(4-methylpent-3-en-1-yl)-7-pentyl-2H-chromen-5-ol

C21H30O2 (314.2246)


   

Puerarin

InChI=1/C21H20O9/c22-7-14-17(26)18(27)19(28)21(30-14)15-13(24)6-5-11-16(25)12(8-29-20(11)15)9-1-3-10(23)4-2-9/h1-6,8,14,17-19,21-24,26-28H,7H2/t14-,17-,18+,19-,21+/m1/s1

C21H20O9 (416.1107)


Puerarin is a hydroxyisoflavone that is isoflavone substituted by hydroxy groups at positions 7 and 4 and a beta-D-glucopyranosyl residue at position 8 via a C-glycosidic linkage. It has a role as a plant metabolite. It is a C-glycosyl compound and a hydroxyisoflavone. It is functionally related to an isoflavone. Puerarin has been investigated for the treatment of Alcohol Abuse. Puerarin is a natural product found in Neustanthus phaseoloides, Clematis hexapetala, and other organisms with data available. Puerarin, also known as Kakonein, is a member of the class of compounds known as isoflavonoid C-glycosides. These compounds are C-glycosylated derivatives of isoflavonoids, which are natural products derived from 3-phenylchromen-4-one. Puerarin is considered a slightly soluble (in water), acidic compound. Puerarin can be synthesized into puerarin xyloside. Puerarin is found in a number of plants and herbs, such as the root of the kudzu plant. A hydroxyisoflavone that is isoflavone substituted by hydroxy groups at positions 7 and 4 and a beta-D-glucopyranosyl residue at position 8 via a C-glycosidic linkage. A polyphenol metabolite detected in biological fluids [PhenolExplorer] D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Acquisition and generation of the data is financially supported in part by CREST/JST. Puerarin, an isoflavone extracted from Radix puerariae, is a 5-HT2C receptor antagonist. Puerarin, an isoflavone extracted from Radix puerariae, is a 5-HT2C receptor antagonist. Puerarin, an isoflavone extracted from Radix puerariae, is a 5-HT2C receptor antagonist.

   

D-2-Hydroxyglutaric acid

alpha-Hydroxyglutarate, disodium salt

C5H8O5 (148.0372)


In humans, D-2-hydroxyglutaric acid is formed by a hydroxyacid-oxoacid transhydrogenase whereas in bacteria it is formed by a 2-hydroxyglutarate synthase. D-2-Hydroxyglutaric acid is also formed via the normal activity of hydroxyacid-oxoacid transhydrogenase during conversion of 4-hydroxybutyrate to succinate semialdehyde. The compound can be converted to alpha-ketoglutaric acid through the action of a 2-hydroxyglutarate dehydrogenase (EC 1.1.99.2). In humans, there are two such enzymes (D2HGDH and L2HGDH). Both the D and the L stereoisomers of hydroxyglutaric acid are found in body fluids. D-2-Hydroxyglutaric acid is a biochemical hallmark of the inherited neurometabolic disorder D-2-hydroxyglutaric aciduria (OMIM: 600721) and the genetic disorder glutaric aciduria II. D-2-Hydroxyglutaric aciduria (caused by loss of D2HGDH or gain of function of IDH) is rare, with symptoms including cancer, macrocephaly, cardiomyopathy, mental retardation, hypotonia, and cortical blindness. An elevated urine level of D-2-hydroxyglutaric acid has been reported in patients with spondyloenchondrodysplasia (OMIM: 271550). D-2-Hydroxyglutaric acid can be converted to alpha-ketoglutaric acid through the action of 2-hydroxyglutarate dehydrogenase (D2HGDH). Additionally, the enzyme D-3-phosphoglycerate dehydrogenase (PHGDH) can catalyze the NADH-dependent reduction of alpha-ketoglutarate (AKG) to D-2-hydroxyglutarate (D-2HG). Nyhan et al. (1995) described 3 female patients, 2 of them sibs, who were found to have excess accumulation of D-2-hydroxyglutaric acid in the urine. The phenotype was quite variable, even among the sibs, but included mental retardation, macrocephaly with cerebral atrophy, hypotonia, seizures, and involuntary movements. One of the patients developed severe intermittent vomiting and was given a pyloromyotomy. The electroencephalogram demonstrated hypsarrhythmia. There was an increased concentration of protein in cerebrospinal fluid, an unusual finding in inborn errors of metabolism. D-2-Hydroxyglutaric acid can also be produced via gain-of-function mutations in the cytosolic and mitochondrial isoforms of isocitrate dehydrogenase (IDH). IDH is part of the TCA cycle and this compound is generated in high abundance when IDH is mutated. Since D-2-hydroxyglutaric acid is sufficiently similar in structure to 2-oxoglutarate (2OG), it is able to inhibit a range of 2OG-dependent dioxygenases, including histone lysine demethylases (KDMs) and members of the ten-eleven translocation (TET) family of 5-methylcytosine (5mC) hydroxylases. This inhibitory effect leads to alterations in the hypoxia-inducible factor (HIF)-mediated hypoxic response and alterations in gene expression through global epigenetic remodeling. The net effect is that D-2-hydroxyglutaric acid causes a cascading effect that leads genetic perturbations and malignant transformation. Depending on the circumstances, D-2-hydroxyglutaric acid can act as an oncometabolite, a neurotoxin, an acidogen, and a metabotoxin. An oncometabolite is a compound that promotes tumour growth and survival. A neurotoxin is compound that is toxic to neurons or nerual tissue. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. As an oncometabolite, D-2-hydroxyglutaric acid is a competitive inhibitor of multiple alpha-ketoglutarate-dependent dioxygenases, including histone demethylases and the TET family of 5mC hydroxylases. As a result, high levels of 2-hydroxyglutarate lead to genome-wide histone and DNA methylation alterations, which in turn lead to mutations that ultimately cause cancer (PMID: 29038145). As a neurotoxin, D-2-hydroxyglutaric acid mediates its neurotoxicity through activation of N-methyl-D-aspartate receptors. D-2-Hydroxyglutaric acid is structurally similar to the excitatory amino acid glutamate and stimul... Tissue accumulation of high amounts of D 2 hydroxyglutaric acid is the biochemical hallmark of the inherited neurometabolic disorder D 2 hydroxyglutaric aciduria.

   

3,4-Dihydroxybenzaldehyde

protocatechualdehyde, formyl-14C-labeled

C7H6O3 (138.0317)


Protocatechualdehyde, also known as rancinamycin iv or 1,2-dihydroxy-4-formylbenzene, is a member of the class of compounds known as hydroxybenzaldehydes. Hydroxybenzaldehydes are organic aromatic compounds containing a benzene ring carrying an aldehyde group and a hydroxyl group. Protocatechualdehyde is soluble (in water) and a very weakly acidic compound (based on its pKa). Protocatechualdehyde is an almond, bitter, and dry tasting compound and can be found in a number of food items such as plains prickly pear, mugwort, silver linden, and cardamom, which makes protocatechualdehyde a potential biomarker for the consumption of these food products. Protocatechualdehyde can be found primarily in urine. This molecule can be used as a precursor in the vanillin synthesis by biotransformation by cell cultures of Capsicum frutescens, a type of Chili pepper. It is also found in the mushroom Phellinus linteus . 3,4-Dihydroxybenzaldehyde, also known as protocatechuic aldehyde, is a phenolic aldehyde, a compound released from cork stoppers into wine. This molecule can be used as a precursor in vanillin synthesis via biotransformation by cell cultures of Capsicum frutescens, a type of chili pepper. It is also found in the mushroom Phellinus linteus (Wikipedia). D006401 - Hematologic Agents > D000925 - Anticoagulants Protocatechualdehyde (Catechaldehyde), a natural polyphenol compound isolated from the roots of radix Salviae Miltiorrhizae, is associated with a wide variety of biological activities and has been widely used in medicine as an antioxidant, anti-aging, an antibacterial and anti-inflammatory agent[1]. Protocatechualdehyde (Catechaldehyde), a natural polyphenol compound isolated from the roots of radix Salviae Miltiorrhizae, is associated with a wide variety of biological activities and has been widely used in medicine as an antioxidant, anti-aging, an antibacterial and anti-inflammatory agent[1].

   

Ginkgolide C

8-tert-butyl-6,9,12,17-tetrahydroxy-16-methyl-2,4,14,19-tetraoxahexacyclo[8.7.2.0¹,¹¹.0³,⁷.0⁷,¹¹.0¹³,¹⁷]nonadecane-5,15,18-trione

C20H24O11 (440.1319)


Ginkgolide C is found in fats and oils. Ginkgolide C is a bitter principle from Ginkgo biloba (ginkgo). Bitter principle from Ginkgo biloba (ginkgo). Ginkgolide C is found in ginkgo nuts and fats and oils. Ginkgolide C is a flavone isolated from Ginkgo biloba leaves, possessing multiple biological functions, such as decreasing platelet aggregation and ameliorating Alzheimer disease. Ginkgolide C is a flavone isolated from Ginkgo biloba leaves, possessing multiple biological functions, such as decreasing platelet aggregation and ameliorating Alzheimer disease. Ginkgolide C is a flavone isolated from Ginkgo biloba leaves, possessing multiple biological functions, such as decreasing platelet aggregation and ameliorating Alzheimer disease. Ginkgolide C is a flavone isolated from Ginkgo biloba leaves, possessing multiple biological functions, such as decreasing platelet aggregation and ameliorating Alzheimer disease.

   

Ginkgolide B

(1R,3R,8S,10R,13S,16S,17R)-8-tert-butyl-6,12,17-trihydroxy-16-methyl-2,4,14,19-tetraoxahexacyclo[8.7.2.01,11.03,7.07,11.013,17]nonadecane-5,15,18-trione

C20H24O10 (424.1369)


Ginkgolide B is found in fats and oils. Ginkgolide B is isolated from Ginkgo biloba (ginkgo). Isolated from Ginkgo biloba (ginkgo). Ginkgolide B is found in ginkgo nuts and fats and oils. D006401 - Hematologic Agents > D005343 - Fibrinolytic Agents D050299 - Fibrin Modulating Agents D002317 - Cardiovascular Agents Ginkgolide B (BN-52021) is a terpenoid and one of the important active substances in Ginkgo leaves. Ginkgolide B (BN-52021) is a terpenoid and one of the important active substances in Ginkgo leaves.

   

Dichlorprop

2-Methyl-2-(2,4-dichlorophenoxy)acetic acid

C9H8Cl2O3 (233.985)


CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8393 CONFIDENCE standard compound; EAWAG_UCHEM_ID 270

   

Dibenz(a,h)acridine

Dibenz(a,h)acridine

C21H13N (279.1048)


D009676 - Noxae > D002273 - Carcinogens CONFIDENCE standard compound; INTERNAL_ID 8267

   

Clofazimine

(4-Chloro-phenyl)-[5-(4-chloro-phenyl)-3-isopropylimino-3,5-dihydro-phenazin-2-yl]-amine

C27H22Cl2N4 (472.1221)


A fat-soluble riminophenazine dye used for the treatment of leprosy. It has been used investigationally in combination with other antimycobacterial drugs to treat Mycobacterium avium infections in AIDS patients. Clofazimine also has a marked anti-inflammatory effect and is given to control the leprosy reaction, erythema nodosum leprosum. (From AMA Drug Evaluations Annual, 1993, p1619) J - Antiinfectives for systemic use > J04 - Antimycobacterials > J04B - Drugs for treatment of lepra > J04BA - Drugs for treatment of lepra D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007917 - Leprostatic Agents COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C254 - Anti-Infective Agent > C258 - Antibiotic D000893 - Anti-Inflammatory Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Lipoamide

5-(1,2-Dithiolan-3-yl)-pentanamide

C8H15NOS2 (205.0595)


Lipoamide is a trivial name for 6,8-dithiooctanoic amide. It is 6,8-dithiooctanoic acids functional form where the carboxyl group is attached to protein (or any other amine) by an amide linkage (containing -NH2) to an amino group. Lipoamide forms a thioester bond, oxidizing the disulfide bond, with acetaldehyde (pyruvate after it has been decarboxylated). It then transfers the acetaldehyde group to CoA which can then continue in the TCA cycle. Lipoamide is an intermediate in glycolysis/gluconeogenesis, citrate cycle (TCA cycle), alanine, aspartate and pyruvate metabolism, and valine, leucine and isoleucine degradation (KEGG:C00248). It is generated from dihydrolipoamide via the enzyme dihydrolipoamide dehydrogenase (EC:1.8.1.4) and then converted to S-glutaryl-dihydrolipoamide via the enzyme oxoglutarate dehydrogenase (EC:1.2.4.2). Lipoamide is the oxidized form of glutathione. (PMID:8957191) KEIO_ID L031; [MS2] KO009031 KEIO_ID L031

   

Compactin

2S-methyl-(1S,2,3,7S,8S,8aR)-hexahydro-7-methyl-8-[2-[(2R,4R)-tetrahydro-4-hydroxy-6-oxo-2-H-pyran-2-yl]ethyl]-1-naphthalenyl ester-butanoic acid

C23H34O5 (390.2406)


A carboxylic ester that is pravastatin that is lacking the allylic hydroxy group. A hydroxymethylglutaryl-CoA reductase inhibitor (statin) isolated from Penicillium citrinum and from Penicillium brevicompactum, its clinical use as a lipid-regulating drug ceased following reports of toxicity in animals. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D004791 - Enzyme Inhibitors > D019161 - Hydroxymethylglutaryl-CoA Reductase Inhibitors C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C471 - Enzyme Inhibitor > C1655 - HMG-CoA Reductase Inhibitor D009676 - Noxae > D000963 - Antimetabolites Mevastatin (Compactin) is a first HMG-CoA reductase inhibitor that belongs to the statins class. Mevastatin is a lipid-lowering agent, and induces apoptosis, arrests cancer cells in G0/G1 phase. Mevastatin also increases endothelial nitric oxide synthase (eNOS) mRNA and protein levels. Mevastatin has antitumor activity and has the potential for cardiovascular diseases treatment[1][2][3]. Mevastatin (Compactin) is a first HMG-CoA reductase inhibitor that belongs to the statins class. Mevastatin is a lipid-lowering agent, and induces apoptosis, arrests cancer cells in G0/G1 phase. Mevastatin also increases endothelial nitric oxide synthase (eNOS) mRNA and protein levels. Mevastatin has antitumor activity and has the potential for cardiovascular diseases treatment[1][2][3].

   

Aloin

(R)-1,8-Dihydroxy-3-(hydroxymethyl)-10-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl]anthracen-9(10H)-one

C21H22O9 (418.1264)


Aloin is a constituent of various Aloe species Aloin extracted from natural sources is a mixture of two diastereomers, termed aloin A (also called barbaloin) and aloin B (or isobarbaloin), which have similar chemical properties. Aloin is an anthraquinone glycoside, meaning that its anthraquinone skeleton has been modified by the addition of a sugar molecule. Anthraquinones are a common family of naturally occurring yellow, orange, and red pigments of which many have cathartic properties, attributes shared by aloin. Aloin is related to aloe emodin, which lacks a sugar group but shares aloins biological properties. Aloin, also known as Barbaloin [Reynolds, Aloes - The genus Aloe, 2004], is a bitter, yellow-brown colored compound noted in the exudate of at least 68 Aloe species at levels from 0.1 to 6.6\\\\\% of leaf dry weight (making between 3\\\\\% and 35\\\\\% of the toal exudate) (Groom & Reynolds, 1987), and in another 17 species at indeterminate levels [Reynolds, 1995b]. It is used as a stimulant-laxative, treating constipation by inducing bowel movements. The compound is present in what is commonly referred to as the aloe latex that exudes from cells adjacent to the vascular bundles, found under the rind of the leaf and in between it and the gel. When dried, it has been used as a bittering agent in commerce (alcoholic beverages) [21 CFR 172.510. Scientific names given include Aloe perryi, A. barbadensis (= A. vera), A. ferox, and hybrids of A. ferox with A. africana and A. spicata.]. Aloe is listed in federal regulations as a natural substance that may be safely used in food when used in the minimum quantity required to produce their intended physical or technical effect and in accordance with all the principles of good manufacturing practice. This food application is generally limited to use in quite small quantities as a flavoring in alcoholic beverages and may usually be identified only as a natural flavor. ; In May 2002, the U.S. Aloin is a food and Drug Administration (FDA) issued a ruling that aloe laxatives are no longer generally recognized as safe (GRAS) and effective, meaning that aloin-containing products are no longer available in over-the-counter drug products in the United States. Aloe vera leaf latex is a concentrate of an herb or other botanical, and so meets the statutory description of an ingredient that may be used in dietary supplements Aloin A is a natural product found in Aloe arborescens with data available. D005765 - Gastrointestinal Agents > D002400 - Cathartics Constituent of various Aloe subspecies CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 1 INTERNAL_ID 1; CONFIDENCE Reference Standard (Level 1) Aloin (Aloin-A; Barbaloin-A) is a natural anti-tumor anthraquinone glycoside with iron chelating activity. Aloin (Aloin-A; Barbaloin-A) is a natural anti-tumor anthraquinone glycoside with iron chelating activity. Aloin (mixture of A&B) is anthraquinone derivative isolated from Aloe vera. Aloin (mixture of A&B) has diverse biological activities such as anti-inflammatory, immunity, antidiabetic, antioxidant, antibacterial, antifungal, and antitumor activities. Aloin (mixture of A&B) also an effective inhibitor of stimulated granulocyte matrix metalloproteinases (MMPs)[1][2].

   

(-)-2-Difluoromethylornithine

Women first brand OF eflornithine hydrochloride

C6H12F2N2O2 (182.0867)


P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01C - Agents against leishmaniasis and trypanosomiasis C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor > C129824 - Antineoplastic Protein Inhibitor D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D004791 - Enzyme Inhibitors > D065108 - Ornithine Decarboxylase Inhibitors C471 - Enzyme Inhibitor > C2088 - Ornithine Decarboxylase Inhibitor D000970 - Antineoplastic Agents D - Dermatologicals KEIO_ID H097

   

Baicalin

(2S,3S,4S,5R,6R)-6-[(5,6-dihydroxy-4-oxo-2-phenyl-4H-chromen-7-yl)oxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C21H18O11 (446.0849)


Baicalin is a flavone, a type of flavonoid. It is found in several species in the genus Scutellaria, including Scutellaria lateriflora (blue skullcap). There are 10 mg/g baicalin in Scutellaria galericulata (common skullcap) leaves. Baicalin is the glucuronide of baicalein. It is a component of Chinese medicinal herb Huang-chin (Scutellaria baicalensis) and one of the chemical ingredients of Sho-Saiko-To, an herbal supplement. Acquisition and generation of the data is financially supported in part by CREST/JST. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D000890 - Anti-Infective Agents D018501 - Antirheumatic Agents D004791 - Enzyme Inhibitors Baicalin, as a flavonoid glycoside, is an allosteric carnitine palmityl transferase 1 (CPT1) activator. Baicalin reduces the expression of NF-κB[1][2][3]. Baicalin, as a flavonoid glycoside, is an allosteric carnitine palmityl transferase 1 (CPT1) activator. Baicalin reduces the expression of NF-κB[1][2][3].

   

Astragalin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O11 (448.1006)


Kaempferol 3-O-beta-D-glucoside is a kaempferol O-glucoside in which a glucosyl residue is attached at position 3 of kaempferol via a beta-glycosidic linkage. It has a role as a trypanocidal drug and a plant metabolite. It is a kaempferol O-glucoside, a monosaccharide derivative, a trihydroxyflavone and a beta-D-glucoside. It is a conjugate acid of a kaempferol 3-O-beta-D-glucoside(1-). Astragalin is a natural product found in Xylopia aromatica, Ficus virens, and other organisms with data available. See also: Moringa oleifera leaf (has part). Astragalin is found in alcoholic beverages. Astragalin is present in red wine. It is isolated from many plant species.Astragalin is a 3-O-glucoside of kaempferol. Astragalin is a chemical compound. It can be isolated from Phytolacca americana (the American pokeweed). A kaempferol O-glucoside in which a glucosyl residue is attached at position 3 of kaempferol via a beta-glycosidic linkage. Present in red wine. Isolated from many plant subspecies Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 173 Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1]. Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1].

   

beta-Glycerophosphoric acid

2-HYDROXY-1-(hydroxymethyl)ethyl dihydrogen phosphoric acid

C3H9O6P (172.0137)


beta-Glycerophosphoric acid, also known as BGA or glycerol 2-phosphate, is a component of glycerolipid metabolism. It is formed in minor quanitites because the alpha glycerophosphorate is preferentially formed in this manner. beta-Glycerophosphoric acid is used as a biological buffer (Sigma-Aldrich). Glycerol-2-phosphate is a component of glycerolipid metabolism. It is formed in minor quanitites, as the alpha glycerophosphorate is preferentially formed in this manner. Also used as a biological buffer (Sigma-Aldrich) [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Noroxylin

5,6,7-trihydroxy-2-phenylchromen-4-one

C15H10O5 (270.0528)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D011448 - Prostaglandin Antagonists D020011 - Protective Agents > D000975 - Antioxidants COVID info from PDB, Protein Data Bank D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Baicalein (5,6,7-Trihydroxyflavone) is a xanthine oxidase inhibitor with an IC50 value of 3.12 μM. Baicalein (5,6,7-Trihydroxyflavone) is a xanthine oxidase inhibitor with an IC50 value of 3.12 μM.

   

Vinblastine

methyl (1R,9R,10S,11R,12R,19R)-11-(acetyloxy)-12-ethyl-4-[(13S,15S,17S)-17-ethyl-17-hydroxy-13-(methoxycarbonyl)-1,11-diazatetracyclo[13.3.1.0⁴,¹².0⁵,¹⁰]nonadeca-4(12),5,7,9-tetraen-13-yl]-10-hydroxy-5-methoxy-8-methyl-8,16-diazapentacyclo[10.6.1.0¹,⁹.0²,⁷.0¹⁶,¹⁹]nonadeca-2(7),3,5,13-tetraene-10-carboxylate

C46H58N4O9 (810.4204)


Vinblastine is only found in individuals that have used or taken this drug. It is an antitumor alkaloid isolated from Vinca rosea. (Merck, 11th ed.)The antitumor activity of vinblastine is thought to be due primarily to inhibition of mitosis at metaphase through its interaction with tubulin. Vinblastine binds to the microtubular proteins of the mitotic spindle, leading to crystallization of the microtubule and mitotic arrest or cell death. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01C - Plant alkaloids and other natural products > L01CA - Vinca alkaloids and analogues D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents D000970 - Antineoplastic Agents > D014748 - Vinca Alkaloids

   

Chebulagic acid

chebulagic acid

C41H30O27 (954.0974)


D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059004 - Topoisomerase I Inhibitors D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors Chebulagic acid is a COX-LOX dual inhibitor isolated from the fruits of Terminalia chebula Retz, on angiogenesis. Chebulagic acid is a M2 serine to asparagine 31 mutation (S31N) inhibitor and influenza antiviral. Chebulagic acid also against SARS-CoV-2 viral replication with an EC50 of 9.76 μM. Chebulagic acid is a COX-LOX dual inhibitor isolated from the fruits of Terminalia chebula Retz, on angiogenesis. Chebulagic acid is a M2 serine to asparagine 31 mutation (S31N) inhibitor and influenza antiviral. Chebulagic acid also against SARS-CoV-2 viral replication with an EC50 of 9.76 μM. Chebulagic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=23094-71-5 (retrieved 2024-09-27) (CAS RN: 23094-71-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Oleuropein

Methyl (2S,4S,E)-4-(2-(3,4-dihydroxyphenethoxy)-2-oxoethyl)-3-ethylidene-2-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-3,4-dihydro-2H-pyran-5-carboxylate

C25H32O13 (540.1843)


Oleuropein is a secoiridoid glycoside that is the methyl ester of 3,4-dihydro-2H-pyran-5-carboxylic acid which is substituted at positions 2, 3, and 4 by hydroxy, ethylidene, and carboxymethyl groups, respectively and in which the anomeric hydroxy group at position 2 has been converted into its beta-D-glucoside and the carboxylic acid moiety of the carboxymethyl substituent has been converted to the corresponding 3,4-dihydroxyphenethyl ester (the 2S,3E,4S stereoisomer). The most important phenolic compound present in olive cultivars. It has a role as a plant metabolite, a radical scavenger, an anti-inflammatory agent, an antineoplastic agent, an antihypertensive agent, a NF-kappaB inhibitor, an apoptosis inducer, an antioxidant and a nutraceutical. It is a secoiridoid glycoside, a beta-D-glucoside, a methyl ester, a member of catechols, a diester and a member of pyrans. Oleuropein is a natural product found in Jasminum officinale, Olea capensis, and other organisms with data available. Oleuropein is found in fruits. Oleuropein is a bitter principle of olives. Nutriceutical with antioxidant properties.Oleuropein is a chemical compound found in olive leaf from the olive tree (and leaves of privet) together with other closely related compounds such as 10-hydroxyoleuropein, ligstroside, and 10-hydroxyligstroside. All these compounds are tyrosol esters of elenolic acid that are further hydroxylated and glycosylated. Oleuropein and its metabolite hydroxytyrosol have powerful antioxidant activity both in vivo and in vitro and give extra-virgin olive oil its bitter, pungent taste. Oleuropein preparations have been claimed to strengthen the immune system A secoiridoid glycoside that is the methyl ester of 3,4-dihydro-2H-pyran-5-carboxylic acid which is substituted at positions 2, 3, and 4 by hydroxy, ethylidene, and carboxymethyl groups, respectively and in which the anomeric hydroxy group at position 2 has been converted into its beta-D-glucoside and the carboxylic acid moiety of the carboxymethyl substituent has been converted to the corresponding 3,4-dihydroxyphenethyl ester (the 2S,3E,4S stereoisomer). The most important phenolic compound present in olive cultivars. D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000890 - Anti-Infective Agents Oleuropein, found in olive leaves and oil, exerts antioxidant, anti-inflammatory and anti-atherogenic effects through direct inhibition of PPARγ transcriptional activity[1]. Oleuropein induces apoptosis in breast cancer cells via the p53-dependent pathway and through the regulation of Bax and Bcl2 genes. Oleuropein also inhibits aromatase[2]. Oleuropein, found in olive leaves and oil, exerts antioxidant, anti-inflammatory and anti-atherogenic effects through direct inhibition of PPARγ transcriptional activity[1]. Oleuropein induces apoptosis in breast cancer cells via the p53-dependent pathway and through the regulation of Bax and Bcl2 genes. Oleuropein also inhibits aromatase[2]. Oleuropein, found in olive leaves and oil, exerts antioxidant, anti-inflammatory and anti-atherogenic effects through direct inhibition of PPARγ transcriptional activity[1]. Oleuropein induces apoptosis in breast cancer cells via the p53-dependent pathway and through the regulation of Bax and Bcl2 genes. Oleuropein also inhibits aromatase[2].

   

Matrine

1H,5H,10H-DIPYRIDO(2,1-F:3,2,1-IJ)(1,6)NAPHTHYRIDIN-10-ONE, DODECAHYDRO-, (7AR-(7A.ALPHA.,13A.ALPHA.,13B.BETA.,13C.BETA.))-

C15H24N2O (248.1889)


Matrine is an alkaloid. Matrine is a natural product found in Daphniphyllum oldhamii, Sophora viciifolia, and other organisms with data available. Matrine is an alkaloid found in plants from the Sophora genus. It has a variety of pharmacological effects, including anti-cancer effects, and action as a kappa opioid receptor and μ-receptor agonist. Tetracyclic bis-quinolizidine alkaloids found in the family LEGUMINOSAE, mainly in the genus SOPHORA. See also: Matrine; salicylic acid (component of). Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.230 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.224 Sophoridine is a natural product found in Sophora viciifolia, Leontice leontopetalum, and other organisms with data available. Tetracyclic bis-quinolizidine alkaloids found in the family LEGUMINOSAE, mainly in the genus SOPHORA. INTERNAL_ID 2268; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2268 Matrine (Matridin-15-one) is an alkaloid found in plants from the Sophora genus that can act as a kappa opioid receptor and u-receptor agonist. Matrine has a variety of pharmacological effects, including anti-cancer, anti-oxidative stress, anti-inflammation and anti-apoptosis effects. Matrine is potential in the research of disease like human non-small cell lung cancer, hepatoma, papillary thyroid cancer and acute kidney injury (AKI)[1][2][3][4][5]. Matrine (Matridin-15-one) is an alkaloid found in plants from the Sophora genus that can act as a kappa opioid receptor and u-receptor agonist. Matrine has a variety of pharmacological effects, including anti-cancer, anti-oxidative stress, anti-inflammation and anti-apoptosis effects. Matrine is potential in the research of disease like human non-small cell lung cancer, hepatoma, papillary thyroid cancer and acute kidney injury (AKI)[1][2][3][4][5]. Matrine (Matridin-15-one) is an alkaloid found in plants from the Sophora genus that can act as a kappa opioid receptor and u-receptor agonist. Matrine has a variety of pharmacological effects, including anti-cancer, anti-oxidative stress, anti-inflammation and anti-apoptosis effects. Matrine is potential in the research of disease like human non-small cell lung cancer, hepatoma, papillary thyroid cancer and acute kidney injury (AKI)[1][2][3][4][5]. Sophoridine is a quinolizidine alkaloid isolated from Leguminous plant Sophora flavescens. Sophoridine induces apoptosis. Sophoridine has the potential to be a novel, potent and selective antitumor agent candidate for pancreatic cancer with well-tolerated toxicity[1]. Sophoridine is a quinolizidine alkaloid isolated from Leguminous plant Sophora flavescens. Sophoridine induces apoptosis. Sophoridine has the potential to be a novel, potent and selective antitumor agent candidate for pancreatic cancer with well-tolerated toxicity[1].

   

Bufogein

5-[(1R,2S,4R,6R,7R,10S,11S,14S,16R)-14-hydroxy-7,11-dimethyl-3-oxapentacyclo[8.8.0.0(2),?.0(2),?.0(1)(1),(1)?]octadecan-6-yl]-2H-pyran-2-one

C24H32O4 (384.23)


Bufogenin is a steroid lactone of Chan su (toad venom), a Chinese medicine obtained from the skin venom gland of toads. A specific Na/K-ATPase protein inhibitor, it is used as a cardiotonic and central nervous system (CNS) respiratory agent, an analgesic and anesthetic, and as a remedy for ulcers. It has a role as an EC 3.6.3.9 (Na(+)/K(+)-transporting ATPase) inhibitor. It is a steroid lactone and an epoxy steroid. It is functionally related to a bufanolide. Resibufogenin is a natural product found in Sclerophrys mauritanica, Bufo gargarizans, and other organisms with data available. Bufogenin is a bufadienolide toxin originally isolated from the venom of the Chinese toad Bufo gargarizans; it is also one of the glycosides in the traditional Chinese medicine ChanSu, with potential cardiotonic activity. Although the mechanism of action of bufogenin is still under investigation, this agent is a specific Na+/K+-ATPase inhibitor and has been shown to reduce blood pressure in a rat model of preeclampsia. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides D002317 - Cardiovascular Agents C471 - Enzyme Inhibitor Resibufogenin is a component of cinobufogenin and has the function of inhibiting oxidative stress and tumor regeneration. Resibufogenin is a component of cinobufogenin and has the function of inhibiting oxidative stress and tumor regeneration.

   

Glycogen

(2R,3R,4S,5S,6R)-2-{[(2R,3S,4R,5R,6R)-4,5-dihydroxy-6-{[(2R,3S,4R,5R,6S)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-2-({[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C24H42O21 (666.2218)


Glycogen is a highly-branched polymer of about 30,000 glucose residues. The simplest structure of glycogen is made up of four units of glucose with an approximate molecular weight of 666 daltons. However, large molecules of glycogen can reach molecular weights in the order of 5 million Da. Most of the glucose units are linked together by alpha-1,4 glycosidic bonds, and approximately 1 in 12 glucose residues also form a 1,6 glycosidic bond with a second glucose, resulting in the creation of a branch. Glycogen only has one reducing end and a large number of non-reducing ends with a free hydroxyl group at carbon 4. The glycogen granules contain both glycogen and the enzymes of glycogen synthesis (glycogenesis) and degradation (glycogenolysis). The enzymes are nested between the outer branches of the glycogen molecules and act on the non-reducing ends. Therefore, the many non-reducing end-branches of glycogen facilitate its rapid synthesis and breakdown. In hypoglycemia caused by excessive insulin, liver glycogen levels are high, but the high insulin level prevents the necessary glycogenolysis to take place to maintain normal blood sugar levels. Glucagon is a common treatment for this type of hypoglycemia. Glycogen is a polysaccharide that is the principal storage form of glucose (Glc) in animal cells. Glycogen is found in the form of granules in the cytosol in many cell types. Hepatocytes (liver cells) have the highest concentration of it - up to 8\\% of the fresh weight in well fed state, or 100 to 120 g in an adult - giving liver a distinctive, starchy taste. In the muscles, glycogen is found in a much lower concentration (1\\% of the muscle mass), but the total amount exceeds that in liver. Small amounts of glycogen are found in the kidneys, and even smaller amounts in certain glial cells in the brain and white blood cells. Glycogen is a highly-branched polymer of about 30,000 glucose residues and has a molecular weight between 106 and 107 daltons (4.8 million approx.). Most of Glc units are linked by alpha-1,4 glycosidic bonds, approximately 1 in 12 Glc residues also makes -1,6 glycosidic bond with a second Glc which results in the creation of a branch. Glycogen only has one reducing end and a large number of non-reducing ends with a free hydroxyl group at carbon 4. The glycogen granules contain both glycogen and the enzymes of glycogen synthesis (glycogenesis) and degradation (glycogenolysis). The enzymes are nested between the outer branches of the glycogen molecules and act on the non-reducing ends. Therefore, the many non-reducing end-branches of glycogen facilitate its rapid synthesis and breakdown.

   

Stearoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-[(2-{[2-(octadecanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C39H70N7O17P3S (1033.3762)


Stearoyl-CoA is a long-chain acyl CoA ester that acts as an intermediate metabolite in the biosynthesis of monounsaturated fatty acids; a critical committed step in the reaction is the introduction of the cis-configuration double bond into acyl-CoAs (between carbons 9 and 10). This oxidative reaction is catalyzed by the iron-containing, microsomal enzyme, stearoyl-CoA desaturase (SCD, EC 1.14.19.1). NADH supplies the reducing equivalents for the reaction, the flavoprotein is cytochrome b5-reductase and the electron carrier is the heme protein cytochrome b5. Stearoyl-CoA is converted into oleoyl-CoA and then used as a major substrate for the synthesis of various kinds of lipids including phospholipids, triglycerides, cholesteryl esters and wax esters. Oleic acid is the preferred substrate for acyl-CoA cholesterol acyltransferase (ACAT, EC 2.3.1.26) and diacylglycerol acyltransferase (DGAT, EC 2.3.1.20), the enzymes responsible for cholesteryl esters and triglycerides synthesis, respectively. In addition oleate is the major monounsaturated fatty acid in human adipose tissue and in the phospholipid of the red-blood-cell membrane. In the biosynthesis of sphinganine, stearoyl-CoA proceeds through the acyl-CoA + serine -> 3-keto-sphinganine -> sphinganine pathway, with the key enzyme being acyl-CoA serine acyltransferase (EC 2.3.1.50) to yield C20-(3-ketosphinganine) long-chain base. There is growing recognition that acyl-CoA esters could act as signaling molecules in cellular metabolism. (PMID: 12538075, 10998569, Prostaglandins Leukot Essent Fatty Acids. 2003 Feb;68(2):113-21.) [HMDB]. Stearoyl-CoA is found in many foods, some of which are romaine lettuce, grapefruit/pummelo hybrid, radish, and european cranberry. Stearoyl-CoA is a long-chain acyl CoA ester that acts as an intermediate metabolite in the biosynthesis of monounsaturated fatty acids; a critical committed step in the reaction is the introduction of the cis-configuration double bond into acyl-CoAs (between carbons 9 and 10). This oxidative reaction is catalyzed by the iron-containing, microsomal enzyme, stearoyl-CoA desaturase (SCD, EC 1.14.19.1). NADH supplies the reducing equivalents for the reaction, the flavoprotein is cytochrome b5-reductase and the electron carrier is the heme protein cytochrome b5. Stearoyl-CoA is converted into oleoyl-CoA and then used as a major substrate for the synthesis of various kinds of lipids including phospholipids, triglycerides, cholesteryl esters and wax esters. Oleic acid is the preferred substrate for acyl-CoA cholesterol acyltransferase (ACAT, EC 2.3.1.26) and diacylglycerol acyltransferase (DGAT, EC 2.3.1.20), the enzymes responsible for cholesteryl esters and triglycerides synthesis, respectively. In addition oleate is the major monounsaturated fatty acid in human adipose tissue and in the phospholipid of the red-blood-cell membrane. In the biosynthesis of sphinganine, stearoyl-CoA proceeds through the acyl-CoA + serine -> 3-keto-sphinganine -> sphinganine pathway, with the key enzyme being acyl-CoA serine acyltransferase (EC 2.3.1.50) to yield C20-(3-ketosphinganine) long-chain base. There is growing recognition that acyl-CoA esters could act as signaling molecules in cellular metabolism. (PMID: 12538075, 10998569, Prostaglandins Leukot Essent Fatty Acids. 2003 Feb;68(2):113-21.).

   

N1-Acetylspermidine

N-(3-((4-Aminobutyl)amino)propyl)-acetamide

C9H21N3O (187.1685)


N1-Acetylspermidine is a polyamine. In many organisms, polyamines originate from L-ornithine and methionine. Ornithine decarboxylase (EC 4.1.1.17), a key enzyme in polyamine metabolism, decarboxylates L-ornithine to yield putrescine which is then converted to higher polyamines spermidine and spermine by successive addition of aminopropyl groups derived from decarboxylated S-adenosylmethionine. Aliphatic polyamines occur ubiquitously in organisms and have important functions in the stabilization of cell membranes, biosynthesis of informing molecules, cell growth and differentiation, as well as adaptation to osmotic, ionic, pH and thermal stress. These cationic substances are implicated in multiple functions, therefore it is not surprising that intracellular levels of polyamines are regulated by different mechanisms. The inhibition of polyamine metabolism has important pharmacological and therapeutic implications for the control of physiological processes, reproduction, cancer and parasitic diseases. Recent reports have suggested the idea that parasites with an high turnover of Ornithine Decarboxilase (ODC) are resistant to Difluoromethyl ornithine (DFMO, the irreversible inhibitor of ornithine decarboxylase) because they always contain a fraction of newly synthesized and active enzyme, therefore not DFMO inhibited, sufficient to produce small amounts of putrescine rapidly converted into spermidine, which can support protozoan proliferation. DFMO has proved to be curative in trypanosomiasis, coccidiosis, and certain other protozoan infections. (PMID: 15490259). N1-Acetylspermidine is a polyamine. In many organisms, polyamines originate from L-ornithine and methionine. Ornithine decarboxylase (EC 4.1.1.17), a key enzyme in polyamine metabolism, decarboxylates L-ornithine to yield putrescine which is then converted to higher polyamines spermidine and spermine by successive addition of aminopropyl groups derived from decarboxylated S-adenosylmethionine.

   

3,5-Cyclic IMP

3,5-Cyclic Inosine monophosphate (cIMP)

C10H11N4O7P (330.0365)


A 3,5-cyclic purine nucleotide having hypoxanthine as the nucleobase.

   

(R)-5-Diphosphomevalonic acid

(3r)-3-Hydroxy-5-{[(R)-Hydroxy(Phosphonooxy)phosphoryl]oxy}-3-Methylpentanoic Acid

C6H14O10P2 (308.0062)


Mevalonate-diphosphate, also known as 5-diphosphomevalonic acid or mevelonic acid-5-diphosphoric acid, is a member of the class of compounds known as organic pyrophosphates. Organic pyrophosphates are organic compounds containing the pyrophosphate oxoanion, with the structure OP([O-])(=O)OP(O)([O-])=O. Thus, mevalonate-diphosphate is considered to be a fatty acid lipid molecule. Mevalonate-diphosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Mevalonate-diphosphate can be found in a number of food items such as kohlrabi, enokitake, avocado, and redcurrant, which makes mevalonate-diphosphate a potential biomarker for the consumption of these food products. Mevalonate-diphosphate exists in all eukaryotes, ranging from yeast to humans. In humans, mevalonate-diphosphate is involved in several metabolic pathways, some of which include zoledronate action pathway, lovastatin action pathway, pamidronate action pathway, and desmosterolosis. Mevalonate-diphosphate is also involved in several metabolic disorders, some of which include wolman disease, lysosomal acid lipase deficiency (wolman disease), cholesteryl ester storage disease, and CHILD syndrome. 5-Diphosphomevalonic acid (CAS: 1492-08-6) is a metabolic intermediate in the mevalonate pathway, catalyzed by the enzyme phosphomevalonate kinase from 5-phosphomevalonate (Wikipedia).

   

METHYLAZOXYMETHANOL

METHYLAZOXYMETHANOL

C2H6N2O2 (90.0429)


D009676 - Noxae > D000477 - Alkylating Agents D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D013723 - Teratogens

   

3-Amino-2-azepanone

L-2-Amino-hexano-6-lactam

C6H12N2O (128.095)


   

N5-methylglutamine

2-amino-5-(methylamino)-5-oxopentanoic acid

C6H12N2O3 (160.0848)


   

adenosine 5-phosphoramidate

adenosine 5-phosphoramidate

C10H15N6O6P (346.0791)


The phosphoramadite analogue of AMP.

   

Atovaquone

2-hydroxy-3-[(1r,4r)-4-(4-chlorophenyl)cyclohexyl]-1,4-dihydronaphthalene-1,4-dione

C22H19ClO3 (366.1023)


Atovaquone is only found in individuals that have used or taken this drug. It is a hydroxynaphthoquinone that has antimicrobial activity and is being used in antimalarial protocols. [PubChem]Atovaquone is a hydroxy- 1, 4- naphthoquinone, an analog of ubiquinone, with antipneumocystis activity. The mechanism of action against Pneumocystis carinii has not been fully elucidated. In Plasmodium species, the site of action appears to be the cytochrome bc1 complex (Complex III). Several metabolic enzymes are linked to the mitochondrial electron transport chain via ubiquinone. Inhibition of electron transport by atovaquone will result in indirect inhibition of these enzymes. The ultimate metabolic effects of such blockade may include inhibition of nucleic acid and ATP synthesis. Atovaquone also has been shown to have good in vitro activity against Toxoplasma gondii. P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01A - Agents against amoebiasis and other protozoal diseases D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent D004791 - Enzyme Inhibitors

   

azane;dichloroplatinum

trans-Dichlorodiamineplatinum(II)

H6Cl2N2Pt (298.9556)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01X - Other antineoplastic agents > L01XA - Platinum compounds D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D003432 - Cross-Linking Reagents

   

Streptozocin

3-methyl-3-nitroso-1-[(2S,3R,4R,5S,6R)-2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]urea

C8H15N3O7 (265.091)


Streptozocin is only found in individuals that have used or taken this drug.It is an antibiotic that is produced by Stretomyces achromogenes. It is used as an antineoplastic agent and to induce diabetes in experimental animals. [PubChem]Although its mechanism of action is not completely clear, streptozocin is known to inhibit DNA synthesis, interfere with biochemical reactions of NAD and NADH, and inhibit some enzymes involved in gluconeogenesis. Its activity appears to occur as a result of formation of methylcarbonium ions, which alkylate or bind with many intracellular molecular structures including nucleic acids. Its cytotoxic action is probably due to cross-linking of strands of DNA, resulting in inhibition of DNA synthesis. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01A - Alkylating agents > L01AD - Nitrosoureas D000970 - Antineoplastic Agents

   

Propofol

Fresenius kabi brand OF propofol

C12H18O (178.1358)


Propofol is an intravenous anaesthetic agent used for induction and maintenance of general anaesthesia. IV administration of propfol is used to induce unconsciousness after which anaesthesia may be maintained using a combination of medications. Recovery from propofol-induced anaesthesia is generally rapid and associated with less frequent side effects (e.g. drowsiness, nausea, vomiting) than with thiopental, methohexital, and etomidate. Propofol may be used prior to diagnostic procedures requiring anaesthesia, in the management of refractory status epilepticus, and for induction and/or maintenance of anaesthesia prior to and during surgeries. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Propofol potently and directly activates GABAA receptor and inhibits glutamate receptor mediated excitatory synaptic transmission. Propofol has antinociceptive properties and is used for sedation and hypnotic[1].

   

magnesium hydroxide

magnesium hydroxide

H2MgO2 (57.9905)


C78276 - Agent Affecting Digestive System or Metabolism > C29697 - Laxative D005765 - Gastrointestinal Agents > D000863 - Antacids

   

Lithium carbonate

Lithium carbonate

CLi2O3 (74.0168)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D018692 - Antimanic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent D004791 - Enzyme Inhibitors

   

Rifapentine

(7S,9Z,11S,12R,13S,14R,15R,16R,17S,18S,21Z)-26-[(1E)-[(4-cyclopentylpiperazin-1-yl)imino]methyl]-2,15,17,23,27,29-hexahydroxy-11-methoxy-3,7,12,14,16,18,22-heptamethyl-6-oxo-8,30-dioxa-24-azatetracyclo[23.3.1.1^{4,7}.0^{5,28}]triaconta-1(28),2,4,9,19,21,23,25(29),26-nonaen-13-yl acetate

C47H64N4O12 (876.4521)


Rifapentine is only found in individuals that have used or taken this drug. It is an antibiotic drug used in the treatment of tuberculosis.Rifapentine has shown higher bacteriostatic and bactericidal activities especially against intracellular bacteria growing in human monocyte-derived macrophages. Rifapentine inhibits DNA-dependent RNA polymerase in susceptible strains of M. tuberculosis. Rifapentine acts via the inhibition of DNA-dependent RNA polymerase, leading to a suppression of RNA synthesis and cell death. J - Antiinfectives for systemic use > J04 - Antimycobacterials > J04A - Drugs for treatment of tuberculosis > J04AB - Antibiotics D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007917 - Leprostatic Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D012294 - Rifamycins C254 - Anti-Infective Agent > C52588 - Antibacterial Agent > C280 - Antitubercular Agent

   

Risedronate

[1-hydroxy-1-phosphono-2-(pyridin-3-yl)ethyl]phosphonic acid

C7H11NO7P2 (283.0011)


Risedronate is only found in individuals that have used or taken this drug. It is a bisphosphonate used to strengthen bone, treat or prevent osteoporosis, and treat Pagets disease of bone.The action of risedronate on bone tissue is based partly on its affinity for hydroxyapatite, which is part of the mineral matrix of bone. Risedronate also targets farnesyl pyrophosphate (FPP) synthase. Nitrogen-containing bisphosphonates (such as pamidronate, alendronate, risedronate, ibandronate and zoledronate) appear to act as analogues of isoprenoid diphosphate lipids, thereby inhibiting FPP synthase, an enzyme in the mevalonate pathway. Inhibition of this enzyme in osteoclasts prevents the biosynthesis of isoprenoid lipids (FPP and GGPP) that are essential for the post-translational farnesylation and geranylgeranylation of small GTPase signalling proteins. This activity inhibits osteoclast activity and reduces bone resorption and turnover. In postmenopausal women, it reduces the elevated rate of bone turnover, leading to, on average, a net gain in bone mass. M - Musculo-skeletal system > M05 - Drugs for treatment of bone diseases > M05B - Drugs affecting bone structure and mineralization > M05BA - Bisphosphonates C78281 - Agent Affecting Musculoskeletal System > C67439 - Bone Resorption Inhibitor D050071 - Bone Density Conservation Agents > D004164 - Diphosphonates D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators

   

(Z)-N-Coumaroyl-5-hydroxyanthranilic acid

5-Hydroxy-2-[(2E)-3-(4-hydroxyphenyl)prop-2-enamido]benzoic acid

C16H13NO5 (299.0794)


(Z)-N-Coumaroyl-5-hydroxyanthranilic acid is found in cereals and cereal products. (Z)-N-Coumaroyl-5-hydroxyanthranilic acid is isolated from oats (Avena sativa).

   

Lathyrol

(1R,3Z,5R,7S,11R,12R,13S,14S)-1,11,13-Trihydroxy-3,6,6,14-tetramethyl-10-methylidenetricyclo[10.3.0.05,7]pentadec-3-en-2-one

C20H30O4 (334.2144)


Lathyrol is a natural product, and is used for cancer treatment. Lathyrol is a natural product, and is used for cancer treatment.

   

Butrin

(S) -7- (beta-D-Glucopyranosyloxy) -2- [ 3- (beta-D-glucopyranosyloxy) -4-hydroxyphenyl ] -2,3-dihydro-4H-1-benzopyran-4-one

C27H32O15 (596.1741)


A flavanone glycoside that is butin substituted by two beta-D-glucopyranosyl residues at positions 7 and 3 respectively.

   

Catalpol

(2S,3R,4S,5S,6R)-2-(((1aS,1bS,2S,5aR,6S,6aS)-6-hydroxy-1a-(hydroxymethyl)-1a,1b,2,5a,6,6a-hexahydrooxireno[2,3:4,5]cyclopenta[1,2-c]pyran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C15H22O10 (362.1213)


Catalpol is an organic molecular entity. It has a role as a metabolite. Catalpol is a natural product found in Verbascum lychnitis, Plantago atrata, and other organisms with data available. See also: Rehmannia glutinosa Root (part of). Catalpol (Catalpinoside), an iridoid glycoside found in Rehmannia glutinosa. Catalpol has neuroprotective, hypoglycemic, anti-inflammatory, anti-cancer, anti-spasmodic, anti-oxidant effects and anti-HBV effects[1][2][3]. Catalpol (Catalpinoside), an iridoid glycoside found in Rehmannia glutinosa. Catalpol has neuroprotective, hypoglycemic, anti-inflammatory, anti-cancer, anti-spasmodic, anti-oxidant effects and anti-HBV effects[1][2][3].

   

Ginkgetin

4H-1-Benzopyran-4-one, 5,7-dihydroxy-8-[5-(5-hydroxy-7-methoxy-4-oxo-4H-1-benzopyran-2-yl)-2-methoxyphenyl]-2-(4-hydroxyphenyl)-

C32H22O10 (566.1213)


Ginkgetin is a biflavonoid that is the 7,4-dimethyl ether derivative of amentoflavone. Isolated from Ginkgo biloba and Dioon, it exhibits anti-HSV-1, antineoplastic and inhibitory activities towards arachidonate 5-lipoxygenase and cyclooxygenase 2. It has a role as an anti-HSV-1 agent, a cyclooxygenase 2 inhibitor, an EC 1.13.11.34 (arachidonate 5-lipoxygenase) inhibitor, an antineoplastic agent and a metabolite. It is a biflavonoid, a hydroxyflavone, a methoxyflavone and a ring assembly. It is functionally related to an amentoflavone. Ginkgetin is a natural product found in Selaginella sinensis, Selaginella willdenowii, and other organisms with data available. A biflavonoid that is the 7,4-dimethyl ether derivative of amentoflavone. Isolated from Ginkgo biloba and Dioon, it exhibits anti-HSV-1, antineoplastic and inhibitory activities towards arachidonate 5-lipoxygenase and cyclooxygenase 2. From Ginkgo biloba (ginkgo). Ginkgetin is found in ginkgo nuts and fats and oils. Ginkgetin is found in fats and oils. Ginkgetin is from Ginkgo biloba (ginkgo Ginkgetin, a biflavone, is isolated from Ginkgo biloba leaves. Ginkgetin exhibit anti-tumor, anti-inflammatory, neuroprotective, anti-fungal activities. Ginkgetin is also a potent inhibitor of Wnt signaling, with an IC50 of 5.92 μΜ[1][2][3][4][5]. Ginkgetin, a biflavone, is isolated from Ginkgo biloba leaves. Ginkgetin exhibit anti-tumor, anti-inflammatory, neuroprotective, anti-fungal activities. Ginkgetin is also a potent inhibitor of Wnt signaling, with an IC50 of 5.92 μΜ[1][2][3][4][5].

   

Usnic acid

2,6-Diacetyl-3,7,9-trihydroxy-8,9b-dimethyldibenzofuran-1-one

C18H16O7 (344.0896)


A member of the class of dibenzofurans that is dibenzo[b,d]furan-1(9bH)-one substituted by acetyl groups at positions 2 and 6, hydroxy groups at positions 3 and 7 and methyl groups at positions 8 and 9b. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 1.457 D000890 - Anti-Infective Agents > D000935 - Antifungal Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 1.456 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.458 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.459 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.455 (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. Usnic acid, a lichen-derived secondary metabolite, has a unique dibenzofuran skeleton. Usnic acid has excellent anticancer and antimicrobial properties. Usnic acid significantly inhibits RANKL-mediated osteoclast formation and function by reducing the transcriptional and translational expression of NFATc1[1]. Usnic acid, a lichen-derived secondary metabolite, has a unique dibenzofuran skeleton. Usnic acid has excellent anticancer and antimicrobial properties. Usnic acid significantly inhibits RANKL-mediated osteoclast formation and function by reducing the transcriptional and translational expression of NFATc1[1].

   

Morindone

1,2,5-Trihydroxy-6-methyl-9,10-anthracenedione

C15H10O5 (270.0528)


   

Caffeic acid ester

(E)-3-(3,4-dihydroxyphenyl)-2-propenoic acid, 2-phenylethyl ester

C17H16O4 (284.1049)


Caffeic acid ester, also known as caffeic acid phenethyl ester or cape, belongs to coumaric acids and derivatives class of compounds. Those are aromatic compounds containing Aromatic compounds containing a cinnamic acid moiety (or a derivative thereof) hydroxylated at the C2 (ortho-), C3 (meta-), or C4 (para-) carbon atom of the benzene ring. Caffeic acid ester is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Caffeic acid ester can be found in corn, flaxseed, oat, and peach, which makes caffeic acid ester a potential biomarker for the consumption of these food products. C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor Caffeic acid phenethyl ester is a NF-κB inhibitor. Caffeic acid phenethyl ester is a NF-κB inhibitor.

   

Shekanin

5-hydroxy-3-(4-hydroxyphenyl)-6-methoxy-7-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone

C22H22O11 (462.1162)


Tectoridin is a isoflavone isolated from Maackia amurensis. Tectoridin is a phytoestrogen and activates estrogen and thyroid hormone receptors. Tectoridin exerts the estrogenic effects via ER-dependent genomic pathway and GPR30-dependent nongenomic pathway[1][2]. Tectoridin is a isoflavone isolated from Maackia amurensis. Tectoridin is a phytoestrogen and activates estrogen and thyroid hormone receptors. Tectoridin exerts the estrogenic effects via ER-dependent genomic pathway and GPR30-dependent nongenomic pathway[1][2].

   

nonactin

Upjohn 170t (high melting)

C40H64O12 (736.4398)


   

Pyricarbate

N-methyl[(6-{[(methyl-C-hydroxycarbonimidoyl)oxy]methyl}pyridin-2-yl)methoxy]carboximidic acid

C11H15N3O4 (253.1063)


C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Same as: D01396

   

24-Hydroxycholesterol

(1S,2R,5S,10S,11S,14R,15R)-14-[(2R,5S)-5-hydroxy-6-methylheptan-2-yl]-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-en-5-ol

C27H46O2 (402.3498)


24-Hydroxycholesterol (24OHC) is almost exclusively formed in the brain. The enzymatic conversion of CNS cholesterol to 24OHC, which readily crosses the blood-brain barrier, is the major pathway for brain cholesterol elimination and brain cholesterol homeostasis maintenance. The enzyme mediating this conversion has been characterized at the molecular level as cholesterol 24-hydroxylase (EC 1.14.13.98, CYP46) and is mainly located in neurons. Like other oxysterols, 24OHC is efficiently converted into normal bile acids or excreted in bile in its sulfated and glucuronidated form. Levels of 24OHC in the circulation decrease with age in infants and children. In adults, however, the levels appear to be stable. There is accumulating evidence pointing toward a potentially important link between cholesterol, beta-amyloid, and Alzheimers disease. Patients with active demyelinating diseases had increased levels of 24OHC in cerebrospinal fluid (CSF). Patients with Alzheimers disease have slightly increased levels of 24OHC in CSF. Patients with multiple sclerosis have a tendency to have higher levels of 24OHC during active periods. (PMID: 15061359, 14574622). 24-Hydroxycholesterol has been found to accumulate in hereditary hypercholesterolemia, an inborn error of metabolism. 24-Hydroxycholesterol (24OHC) is almost exclusively formed in the brain. The enzymatic conversion of CNS cholesterol to 24OHC, which readily crosses the blood-brain barrier, is the major pathway for brain cholesterol elimination and brain cholesterol homeostasis maintenance. The enzyme mediating this conversion has been characterized at the molecular level as cholesterol 24-hydroxylase (EC 1.14.13.98, CYP46) and is mainly located in neurons. Like other oxysterols, 24OHC is efficiently converted into normal bile acids or excreted in bile in its sulfated and glucuronidated form. Levels of 24OHC in the circulation decrease with age in infants and children. In adults, however, the levels appear to be stable. There is accumulating evidence pointing toward a potentially important link between cholesterol, beta-amyloid, and Alzheimers disease. Patients with active demyelinating diseases had increased levels of 24OHC in cerebrospinal fluid (CSF). Patients with Alzheimers disease have slightly increased levels of 24OHC in CSF. Patients with multiple sclerosis have a tendency to have higher levels of 24OHC during active periods. (PMID: 15061359, 14574622) [HMDB] 24(S)-Hydroxycholesterol (24S-OHC), the major brain cholesterol metabolite, plays an important role to maintain homeostasis of cholesterol in the brain. 24(S)-Hydroxycholesterol (24S-OHC) is one of the most efficient endogenous LXR agonist known and is present in the brain and in the circulation at relatively high levels. 24(S)-Hydroxycholesterol (24S-OHC) is a very potent, direct, and selective positive allosteric modulator of NMDARs with a mechanism that does not overlapthat of other allosteric modulators[1][2][3]. 24(S)-Hydroxycholesterol (24S-OHC), the major brain cholesterol metabolite, plays an important role to maintain homeostasis of cholesterol in the brain. 24(S)-Hydroxycholesterol (24S-OHC) is one of the most efficient endogenous LXR agonist known and is present in the brain and in the circulation at relatively high levels. 24(S)-Hydroxycholesterol (24S-OHC) is a very potent, direct, and selective positive allosteric modulator of NMDARs with a mechanism that does not overlapthat of other allosteric modulators[1][2][3].

   

Paxilline

2H-1-Benzopyrano(5,6:6,7)indeno(1,2-b)indol-3(4bh)-one, 5,6,6a,7,12,12b,12c,13,14,14a-decahydro-4b-hydroxy-2-(1-hydroxy-1-methylethyl)-12b,12c-dimethyl-, (2-alpha,4b-beta,6a-alpha,12b-beta,12c-alpha,14a-beta)-

C27H33NO4 (435.2409)


Paxilline is an indole diterpene alkaloid with formula C27H33NO4 isolated from Penicillium paxilli. It is a potent inhibitor of large conductance Ca2(+)- and voltage-activated K(+) (BK)-type channels. It has a role as a mycotoxin, a Penicillium metabolite, an anticonvulsant, an Aspergillus metabolite, a potassium channel blocker, a genotoxin, a geroprotector and an EC 3.6.3.8 (Ca(2+)-transporting ATPase) inhibitor. It is an organic heterohexacyclic compound, a tertiary alcohol, a terpenoid indole alkaloid, an enone and a diterpene alkaloid. Paxilline is a natural product found in Penicillium thiersii, Aspergillus foveolatus, and other organisms with data available. Tremorgenic agent from Penicillium paxilli, Acremonium lorii, Emericella foveolata, Emericella desertorum and Emericella striata Paxilline is a potassium channel blocker. Paxilline is a toxic, tremorgenic indole alkaloid produced by Penicillium paxilli An indole diterpene alkaloid with formula C27H33NO4 isolated from Penicillium paxilli. It is a potent inhibitor of large conductance Ca2(+)- and voltage-activated K(+) (BK)-type channels. Tremorgenic agent from Penicillium paxilli, Acremonium lorii, Emericella foveolata, Emericella desertorum and Emericella striata D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D049990 - Membrane Transport Modulators Paxilline is an indole alkaloid mycotoxin from Penicillium paxilli, acts as a potent BK channels inhibitor by an almost exclusively closed-channel block mechanism. Paxilline also inhibits the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) with IC50s between 5 μM and 50 μM for differing isoforms. Paxilline possesses significant anticonvulsant activity[1][2][3].

   

1-Methyl-2-nitro-1-nitrosoguanidine

N-Methyl-n,2-dioxohydrazinecarboximidohydrazide 2-oxide

C2H5N5O3 (147.0392)


D009676 - Noxae > D009153 - Mutagens > D009604 - Nitrosoguanidines

   

N-Methyl-N-nitrosourea

N-(C-hydroxycarbonimidoyl)-N-nitrosomethanamine

C2H5N3O2 (103.0382)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D009676 - Noxae > D000477 - Alkylating Agents

   

Lithium

Lithium, ion (li1+)

Li+ (7.016)


Lithium (Li) is an alkali metal. First described as a mood stabilizer in 1949, it remains an efficacious treatment for bipolar disorders. Recent emerging evidence of its neuroprotective and neurogenic effects alludes to lithiums potential therapeutic use in stroke and neurodegenerative diseases. One intriguing clinical application is in the treatment of Alzheimers disease. Ongoing clinical trials are evaluating lithiums abilities to lower tau and beta-amyloid levels in cerebrospinal fluid in Alzheimers patients. Lithium reduces brain inositol levels by inhibiting the enzyme inositol monophosphatase. This suggests that inositol monophosphatase inhibition is a key mechanism of Lis therapeutic action and that design of new inositol monophosphatase inhibitors may be a practical strategy to create new compounds with Li-like therapeutic effects. Lithium reduces the severity of some behavioral complications of Alzheimers disease (AD). And there are growing indications that Li may be of benefit to the underlying pathology of AD, as well as an array of other common CNS disorders, including stroke, Parkinsons disease, and Huntingtons disease. Physiologically, it exists as an ion in the body. Despite these demonstrated and prospective therapeutic benefits, Lis mechanism of action remains elusive, and opinions differ regarding the most relevant molecular targets. Lithium inhibits several enzymes; significant among these are inositol monophosphatase (IMPase), glycogen synthase kinase-3 (GSK-3), and the proteasome. Lithium has a narrow therapeutic range, and several well characterised adverse effects limit the potential usefulness of higher doses. Acute ingestion in Li-naive patients is generally associated with only short-lived exposure to high concentrations, due to extensive distribution of Li throughout the total body water compartment. Conversely, chronic toxicity and acute-on-therapeutic ingestion are associated with prolonged exposure to higher tissue concentrations and, therefore, greater toxicity. Lithium toxicity may be life threatening, or result in persistent cognitive and neurological impairment. Therefore, enhanced Li clearance has been explored as a means of minimizing exposure to high tissue concentrations. Although haemodialysis is highly effective in removing circulating Li, serum concentrations often rebound so repeated or prolonged treatment may be required. Continuous arteriovenous haemodiafiltration and continuous venovenous haemodiafiltration increase Li clearance, albeit to a lesser extent than haemodialysis, and are more widely accessible. Lithium reduces brain inositol levels by inhibiting IMPase, suggesting that IMPases inhibition is a key mechanism of Lis therapeutic action and that design of new IMPase inhibitors may be a practical strategy to create new compounds with Li-like therapeutic effects. (PMID: 17688381, 17316163, 8110911, 17288494). Lithium is found in many foods, some of which are endive, yellow zucchini, romaine lettuce, and common bean. Lithium (Li) is an alkali metal. First described as a mood stabilizer in 1949, it remains an efficacious treatment for bipolar disorders. Recent emerging evidence of its neuroprotective and neurogenic effects alludes to lithiums potential therapeutic use in stroke and neurodegenerative diseases. One intriguing clinical application is in the treatment of Alzheimers disease. Ongoing clinical trials are evaluating lithiums abilities to lower tau and beta-amyloid levels in cerebrospinal fluid in Alzheimers patients. Lithium reduces brain inositol levels by inhibiting the enzyme inositol monophosphatase. This suggests that inositol monophosphatase inhibition is a key mechanism of Lis therapeutic action and that design of new inositol monophosphatase inhibitors may be a practical strategy to create new compounds with Li-like therapeutic effects. Lithium reduces the severity of some behavioral complications of Alzheimers disease (AD). And there are growing indications that Li may be of benefit to the underlying pathology of AD, as well as an array of other common CNS disorders, including stroke, Parkinsons disease, and Huntingtons disease. Physiologically, it exists as an ion in the body. Despite these demonstrated and prospective therapeutic benefits, Lis mechanism of action remains elusive, and opinions differ regarding the most relevant molecular targets. Lithium inhibits several enzymes; significant among these are inositol monophosphatase (IMPase), glycogen synthase kinase-3 (GSK-3), and the proteasome. Lithium has a narrow therapeutic range, and several well characterised adverse effects limit the potential usefulness of higher doses. Acute ingestion in Li-naive patients is generally associated with only short-lived exposure to high concentrations, due to extensive distribution of Li throughout the total body water compartment. Conversely, chronic toxicity and acute-on-therapeutic ingestion are associated with prolonged exposure to higher tissue concentrations and, therefore, greater toxicity. Lithium toxicity may be life threatening, or result in persistent cognitive and neurological impairment. Therefore, enhanced Li clearance has been explored as a means of minimizing exposure to high tissue concentrations. Although haemodialysis is highly effective in removing circulating Li, serum concentrations often rebound so repeated or prolonged treatment may be required. Continuous arteriovenous haemodiafiltration and continuous venovenous haemodiafiltration increase Li clearance, albeit to a lesser extent than haemodialysis, and are more widely accessible. Lithium reduces brain inositol levels by inhibiting IMPase, suggesting that IMPases inhibition is a key mechanism of Lis therapeutic action and that design of new IMPase inhibitors may be a practical strategy to create new compounds with Li-like therapeutic effects. (PMID: 17688381, 17316163, 8110911, 17288494). N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AN - Lithium Same as: D08133

   

2-Chloro-5-nitro-N-phenylbenzamide

2-Chloro-5-nitro-N-phenylbenzene-1-carboximidate

C13H9ClN2O3 (276.0302)


CONFIDENCE standard compound; INTERNAL_ID 929; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4257; ORIGINAL_PRECURSOR_SCAN_NO 4255 CONFIDENCE standard compound; INTERNAL_ID 929; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3923; ORIGINAL_PRECURSOR_SCAN_NO 3921 CONFIDENCE standard compound; INTERNAL_ID 929; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4307; ORIGINAL_PRECURSOR_SCAN_NO 4305 CONFIDENCE standard compound; INTERNAL_ID 929; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3920; ORIGINAL_PRECURSOR_SCAN_NO 3918 GW9662 is a potent and selective PPARγ antagonist with an IC50 of 3.3 nM, showing 10 and 1000-fold selectivity over PPARα and PPARδ, respectively.

   

4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone

4-[methyl(nitroso)amino]-1-(pyridin-3-yl)butan-1-one

C10H13N3O2 (207.1008)


4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (also known as NNK) is a potent tobacco-specific nitrosamine derived from nicotine. It plays a key role in human tobacco-related cancers (PMID:24830349). NNK is found in cured tobacco and is also produced during its burning or combustion in cigarettes. NNK is abundantly present in cigarette smoke (20-280 ng/cigarette). Electronic cigarettes (e-cigarettes) do not convert nicotine to NNK due to their lower operating temperatures. NNK is a procarcinogen. This means it must be activated by cytochrome P450 enzymes (CYP2A6 and CYP2B6) to become a carcinogen (PMID:24830349). NNK can also be activated by myeloperoxidase (MPO) and epoxide hydrolase (EPHX1). All activation processes lead to the formation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol from NNK, which is called NNAL (PMID:24830349). NNAL can be detoxified via glucuronidation via glucuronidases. Once NNK is activated to NNAL, this compound initiates a cascade of signalling pathways (for example ERK1/2, NFκB, PI3K/Akt, MAPK, FasL, K-ras), resulting in uncontrolled cellular proliferation and tumorigenesis. NNK is known as a mutagen and can cause point mutations that affect cell growth proliferation and differentiation. NNK also targets the SULT1A1, TGF-beta, and angiotensin II genes. NNK plays a key role in gene silencing, gene modification, and carcinogenesis. NNK has been implicated in tumour promotion by activating nicotinic acetylcholine receptors (nAChRs) and β-adrenergic receptors (β-AdrRs), leading to downstream activation of parallel signal transduction pathways that facilitate tumour progression (PMID:24830349). Antioxidants such as EGCG (from green tea) inhibit lung tumorigenesis by NNK. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent tobacco-specific nitrosamine in animals. It has been suggested to play a role in human tobacco-related cancers. P450 1A2 catalyzed the formation of keto alcohol and 4-oxo-1-(3-pyridyl)-1-butanone (keto aldehyde) from NNK, with the keto alcohol being the major metabolite. Phenethyl isothiocyanate (PEITC0 is an effective inhibitor of the carcinogenicity or toxicity of chemicals that are activated by P450 1A2.( PMID: 8625495) [HMDB] D009676 - Noxae > D002273 - Carcinogens

   

Toxoflavin

Toxoflavine

C7H7N5O2 (193.06)


A pyrimidotriazine that is 1,6-dimethyl-1,5,6,7-tetrahydropyrimido[5,4-e][1,2,4]triazine with oxo groups at positions 5 and 7.

   

Latrunculin A

(4R)-4-[(1R,4E,8Z,10E,12S,15R,17R)-17-hydroxy-5,12-dimethyl-3-oxo-2,16-dioxabicyclo[13.3.1]nonadeca-4,8,10-trien-17-yl]-1,3-thiazolidin-2-one

C22H31NO5S (421.1923)


A bicyclic macrolide natural product consisting of a 16-membered bicyclic lactone attached to the rare 2-thiazolidinone moiety. It is obtained from the Red Sea sponge Latrunculia magnifica and from the Fiji Islands sponge Cacospongia mycofijiensis. Latrunculin A inhibits actin polymerisation, microfilament organsation and microfilament-mediated processes.

   

Alisol A

(5R,8S,9S,10S,11S,14R)-11-hydroxy-4,4,8,10,14-pentamethyl-17-[(4S,5R)-4,5,6-trihydroxy-6-methylheptan-2-yl]-1,2,5,6,7,9,11,12,15,16-decahydrocyclopenta[a]phenanthren-3-one

C30H50O5 (490.3658)


Alisol A is a natural product. Alisol A is a natural product.

   

2-Hydroxyglutarate

alpha-Hydroxyglutarate, disodium salt

C5H8O5 (148.0372)


2-Hydroxyglutarate exists in 2 isomers: L-2-hydroxyglutarate acid and D-2-hydroxyglutarate. Both the D and the L stereoisomers of hydroxyglutaric acid (EC 1.1.99.2) are found in body fluids. In humans it is part of butanoate metabolic pathway and can be produced by phosphoglycerate dehydrogenase (PHGDH). More specifically, the enzyme PHGDH catalyzes the NADH-dependent reduction of ?-ketoglutarate (AKG) to D-2-hydroxyglutarate (D-2HG). 2-hydroxyglutarate is also the product of gain-of-function mutations in the cytosolic and mitochondrial isoforms of isocitrate dehydrogenase (IDH). Additionally, 2-hydroxyglutarate can be converted to ?-ketoglutaric acid through the action of 2-hydroxyglutarate dehydrogenase (HGDH). Humans have to variants of this enzyme: D-2-hydroxyglutarate dehydrogenase (D2HGDH) and L-2-hydroxyglutarate dehydrogenase (L2HGDH). A deficiency in either of these two enzymes can lead to a disease known as 2-hydroxyglutaric aciduria. L-2-hydroxyglutaric aciduria (caused by loss of L2HGDH) is chronic, with early symptoms such as hypotonia, tremors, and epilepsy declining into spongiform leukoencephalopathy, muscular choreodystonia, mental retardation, and psychomotor regression. D-2-hydroxyglutaric aciduria (caused by loss of D2HGDH or gain of function of IDH) is rare, with symptoms including cancer, macrocephaly, cardiomyopathy, mental retardation, hypotonia, and cortical blindness. 2-hydroxyglutarate was the first oncometabolite (or cancer-causing metabolite) to be formally named or identified. In cancer it is either produced by overexpression of phosphoglycerate dehydrogenase (PHGDH) or is produced in excess by gain-of-function mutations in the cytosolic and mitochondrial isoforms of isocitrate dehydrogenase (IDH). IDH is part of TCA cycle and is generated in high abundance when IDH is mutated. 2-hydroxyglutarate is sufficiently similar in structure to 2-oxogluratate (2OG) that it is able to inhibit a range of 2OG-dependent dioxygenases, including histone lysine demethylases (KDMs) and members of the ten-eleven translocation (TET) family of 5-methylcytosine (5mC) hydroxylases. This inhibitory effect leads to alterations in the hypoxia induced factor (HIF)-mediated hypoxic response and alterations in gene expression through global epigenetic remodeling. The net effect is that 2-hydroxyglutarate causes a cascading effect that leads genetic perturbations and malignant transformation. Furthermore, 2-hydroxyglutarate is found to be associated with glutaric aciduria II, which is also an inborn error of metabolism. 2-Hydroxyglutarate has also been found to be a metabolite in Aspergillus (PMID: 6057807).

   

vinblastin

Vinblastine

C46H58N4O9 (810.4204)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01C - Plant alkaloids and other natural products > L01CA - Vinca alkaloids and analogues D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents D000970 - Antineoplastic Agents > D014748 - Vinca Alkaloids

   

Alizarin

1,2-dihydroxyanthracene-9,10-dione

C14H8O4 (240.0423)


Alizarin is a dihydroxyanthraquinone that is anthracene-9,10-dione in which the two hydroxy groups are located at positions 1 and 2. It has a role as a chromophore, a dye and a plant metabolite. Alizarin is a natural product found in Oldenlandia umbellata, Rubia alata, and other organisms with data available. See also: Rubia tinctorum root (part of). A dihydroxyanthraquinone that is anthracene-9,10-dione in which the two hydroxy groups are located at positions 1 and 2.

   

Isoorientin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-4H-chromen-4-one

C21H20O11 (448.1006)


Isoorientin is a flavone C-glycoside consisting of luteolin having a beta-D-glucosyl residue at the 6-position. It has a role as a radical scavenger and an antineoplastic agent. It is a tetrahydroxyflavone and a flavone C-glycoside. It is functionally related to a luteolin. It is a conjugate acid of an isoorientin(1-). Isoorientin is a natural product found in Carex fraseriana, Itea chinensis, and other organisms with data available. See also: Acai fruit pulp (part of). A C-glycosyl compound consisting of luteolin having a beta-D-glucosyl residue at the 6-position. Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM. Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM.

   

Vitexin

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-4H-chromen-4-one

C21H20O10 (432.1056)


Vitexin is an apigenin flavone glycoside, which is found in the passion flower, bamboo leaves and pearl millet It has a role as a platelet aggregation inhibitor, an EC 3.2.1.20 (alpha-glucosidase) inhibitor, an antineoplastic agent and a plant metabolite. It is a C-glycosyl compound and a trihydroxyflavone. It is functionally related to an apigenin. It is a conjugate acid of a vitexin-7-olate. Vitexin is a natural product found in Itea chinensis, Salacia chinensis, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of); Cytisus scoparius flowering top (part of); Fenugreek seed (part of) ... View More ... An apigenin flavone glycoside, which is found in the passion flower, bamboo leaves and pearl millet Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2]. Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2].

   

Taxifolin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-2,3-dihydro-3,5,7-trihydroxy-, trans-(+/-)-

C15H12O7 (304.0583)


(+)-taxifolin is a taxifolin that has (2R,3R)-configuration. It has a role as a metabolite. It is a conjugate acid of a (+)-taxifolin(1-). It is an enantiomer of a (-)-taxifolin. Taxifolin is a natural product found in Austrocedrus chilensis, Smilax corbularia, and other organisms with data available. See also: Milk Thistle (part of); Maritime Pine (part of). D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics A taxifolin that has (2R,3R)-configuration. D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Taxifolin ((+)-Dihydroquercetin) exhibits important anti-tyrosinase activity. Taxifolin exhibits significant inhibitory activity against collagenase with an IC50 value of 193.3 μM[1]. Taxifolin is an important natural compound with antifibrotic activity. Taxifolin is a free radical scavenger with antioxidant capacity[2]. Taxifolin ((+)-Dihydroquercetin) exhibits important anti-tyrosinase activity. Taxifolin exhibits significant inhibitory activity against collagenase with an IC50 value of 193.3 μM[1]. Taxifolin is an important natural compound with antifibrotic activity. Taxifolin is a free radical scavenger with antioxidant capacity[2].

   

isoflavon

B-D-Glucopyranoside,phenyl2,3-bis-O-(phenylmethyl)-4,6-O-[(R)-phenylmethylene]-1-thio-

C15H10O2 (222.0681)


Isoflavone is a simplest member of the class of isoflavones that is 4H-chromen-4-one in which the hydrogen at position 3 is replaced by a phenyl group. Isoflavone is a soy phytoestrogen and a biologically active component of several agriculturally important legumes such as soy, peanut, green peas, chick peas and alfalfa. Soybean is an exceptionally rich source of dietary isoflavones, where the average isoflavone content is 1-2 mg/gram. The main soy isoflavones are mostly present in glycosylated forms and include [DB01645], [DB13182], and glycitein, which accounts for approximately 50\\\\%, 40\\\\%, and 10\\\\%, respectively, of the total soybean isoflavone content. The clinical benefits of soy proteins have been studied and demonstrated for many years, with some evidence of soy products associated with a reduced incidences of coronary heart disease, atherosclerosis, type II diabetes mellitus, and breast and prostate cancer. While existing data are consistent or inadequate in supporting most of the suggested health benefits of consuming soy proteins and isoflavones, the trials investigating isoflavone as a potential treatment for atrophy, menopause, and postmenopausal symptoms are ongoing. Isoflavone is found as one of constituents in oral over-the-counter dietary supplements indicated for improved bone mass density and body fat regulation. Isoflavone is a natural product found in Astragalus mongholicus, Medicago sativa, and other organisms with data available. Isoflavone is a class of polyphenolic compounds derived from the Fabaceae family with potential phytoestrogenic, cholesterol-reducing, chemotherapeutic and antioxidant activity. In isoflavones the phenyl group on the benzopyran ring is in position 3 relative to the oxygen of the ring. Most isoflavones for human consumption and that are currently studied are derived from soy beans. 3-Phenylchromones. Isomeric form of FLAVONOIDS in which the benzene group is attached to the 3 position of the benzopyran ring instead of the 2 position. A simplest member of the class of isoflavones that is 4H-chromen-4-one in which the hydrogen at position 3 is replaced by a phenyl group. Isoflavone, a soy phytoestrogen and a biologically active component, presents in several agriculturally important legumes such as soy, peanut, green peas, chick peas and alfalfa[1][2]. Isoflavone, a soy phytoestrogen and a biologically active component, presents in several agriculturally important legumes such as soy, peanut, green peas, chick peas and alfalfa[1][2].

   

3b,12a-Dihydroxy-5a-cholanoic acid

(4R)-4-[(1S,2S,5S,7S,10R,11S,14R,15R,16S)-5,16-dihydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl]pentanoic acid

C24H40O4 (392.2926)


3b,12a-Dihydroxy-5a-cholanoic acid is a bile acid. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g., membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues. A bile acid. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. C78276 - Agent Affecting Digestive System or Metabolism > C66913 - Cholagogues or Choleretic Agents D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids D - Dermatologicals Deoxycholic acid (cholanoic acid), a bile acid, is a by-product of intestinal metabolism, that activates the G protein-coupled bile acid receptorTGR5[1][2]. Deoxycholic acid (cholanoic acid), a bile acid, is a by-product of intestinal metabolism, that activates the G protein-coupled bile acid receptorTGR5[1][2].

   

Taxifolin

dihydroquercetin

C15H12O7 (304.0583)


D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Taxifolin ((+)-Dihydroquercetin) exhibits important anti-tyrosinase activity. Taxifolin exhibits significant inhibitory activity against collagenase with an IC50 value of 193.3 μM[1]. Taxifolin is an important natural compound with antifibrotic activity. Taxifolin is a free radical scavenger with antioxidant capacity[2]. Taxifolin ((+)-Dihydroquercetin) exhibits important anti-tyrosinase activity. Taxifolin exhibits significant inhibitory activity against collagenase with an IC50 value of 193.3 μM[1]. Taxifolin is an important natural compound with antifibrotic activity. Taxifolin is a free radical scavenger with antioxidant capacity[2].

   

Limonin

19-(furan-3-yl)-9,9,13,20-tetramethyl-4,8,15,18-tetraoxahexacyclo[11.9.0.0²,⁷.0²,¹⁰.0¹⁴,¹⁶.0¹⁴,²⁰]docosane-5,12,17-trione

C26H30O8 (470.1941)


Limonin is found in citrus. Limonin is isolated from oranges and other citrus fruits (Citrus species). Limonin is a limonoid, and a bitter, white, crystalline substance found in orange and lemon seeds. It is also known as limonoate D-ring-lactone and limonoic acid di-delta-lactone. Chemically, it is a member of the class of compounds known as furanolactones Isolated from oranges and other citrus fruits (Citrus subspecies). Limonin is a triterpenoid compound rich in citrus fruits that has antiviral and antitumor activities. Limonin is a triterpenoid compound rich in citrus fruits that has antiviral and antitumor activities.

   

Vitexin

8-beta-D-Glucopyranosyl-5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one

C21H20O10 (432.1056)


Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2]. Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2].

   

Isoorientin

Luteolin 6-C-glucoside

C21H20O11 (448.1006)


Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM. Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM.

   

Ligustilide

(3E)-3-butylidene-1,3,4,5-tetrahydro-2-benzofuran-1-one

C12H14O2 (190.0994)


Constituent of Angelica subspecies Ligustilide is found in wild celery, lovage, and herbs and spices. Ligustilide is found in herbs and spices. Ligustilide is a constituent of Angelica specie

   

(-)-Haematoxylin

8-oxatetracyclo[8.7.0.0²,⁷.0¹²,¹⁷]heptadeca-2,4,6,12(17),13,15-hexaene-5,6,10,14,15-pentol

C16H14O6 (302.079)


D004396 - Coloring Agents

   

(-)-Parthenolide

4,8-dimethyl-12-methylidene-3,14-dioxatricyclo[9.3.0.0^{2,4}]tetradec-7-en-13-one

C15H20O3 (248.1412)


   

Astragaloside A

2-({14-hydroxy-15-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-6-[(3,4,5-trihydroxyoxan-2-yl)oxy]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-9-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol

C41H68O14 (784.4609)


Astragaloside IV, an active component isolated from Astragalus membranaceus, suppresses the activation of ERK1/2 and JNK, and downregulates matrix metalloproteases (MMP)-2, (MMP)-9 in MDA-MB-231 breast cancer cells. Astragaloside IV, an active component isolated from Astragalus membranaceus, suppresses the activation of ERK1/2 and JNK, and downregulates matrix metalloproteases (MMP)-2, (MMP)-9 in MDA-MB-231 breast cancer cells. Astragaloside IV, an active component isolated from Astragalus membranaceus, suppresses the activation of ERK1/2 and JNK, and downregulates matrix metalloproteases (MMP)-2, (MMP)-9 in MDA-MB-231 breast cancer cells.

   

Diosgenin

5,7,9,13-tetramethyl-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan]-18-en-16-ol

C27H42O3 (414.3134)


Diosgenin, a steroidal saponin, can inhibit STAT3 signaling pathway[1]. Diosgenin is an exogenous activator of Pdia3/ERp57[2]. Diosgenin inhibits aortic atherosclerosis progression by suppressing macrophage miR-19b expression[5]. Diosgenin, a steroidal saponin, can inhibit STAT3 signaling pathway[1]. Diosgenin is an exogenous activator of Pdia3/ERp57[2]. Diosgenin inhibits aortic atherosclerosis progression by suppressing macrophage miR-19b expression[5].

   

beta,beta-Dimethylacrylshikonin

1-(5,8-Dihydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)-4-methylpent-3-en-1-yl 3-methylbut-2-enoic acid

C21H22O6 (370.1416)


(Rac)-Arnebin 1 ((Rac)-β,β-Dimethylacrylalkannin) is the racemate of β,β-Dimethylacrylalkannin and/or β,β-Dimethylacrylshikonin. β,β-Dimethylacrylalkannin and β,β-Dimethylacrylshikonin are napthoquinones isolated from Arnebia nobilis. β,β-Dimethylacrylshikonin has anti-tumor activity[1]. (Rac)-Arnebin 1 ((Rac)-β,β-Dimethylacrylalkannin) is the racemate of β,β-Dimethylacrylalkannin and/or β,β-Dimethylacrylshikonin. β,β-Dimethylacrylalkannin and β,β-Dimethylacrylshikonin are napthoquinones isolated from Arnebia nobilis. β,β-Dimethylacrylshikonin has anti-tumor activity[1]. (Rac)-Arnebin 1 ((Rac)-β,β-Dimethylacrylalkannin) is the racemate of β,β-Dimethylacrylalkannin and/or β,β-Dimethylacrylshikonin. β,β-Dimethylacrylalkannin and β,β-Dimethylacrylshikonin are napthoquinones isolated from Arnebia nobilis. β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylalkannin (Arnebin 1) is a napthoquinone isolated from Alkanna cappadocica , increases collagen and involucrin content in skin cells[1]. β,β-Dimethylacrylalkannin (Arnebin 1) is a napthoquinone isolated from Alkanna cappadocica , increases collagen and involucrin content in skin cells[1]. β,β-Dimethylacrylalkannin (Arnebin 1) is a napthoquinone isolated from Alkanna cappadocica , increases collagen and involucrin content in skin cells[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1].

   

Loganoside

Methyl 6-hydroxy-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1H,4ah,5H,6H,7H,7ah-cyclopenta[c]pyran-4-carboxylic acid

C17H26O10 (390.1526)


Loganin is the main iridoid glycoside compound in Cornus officinalis and has anti-inflammatory and anti-shock effects. Loganin is the main iridoid glycoside compound in Cornus officinalis and has anti-inflammatory and anti-shock effects.

   

Aconine

11-ethyl-6,16,18-trimethoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecane-4,5,7,8,14-pentol

C25H41NO9 (499.2781)


Aconine inhibits receptor activator of nuclear factor (NF)-κB ligand (RANKL)-induced NF-κB activation. Aconine inhibits receptor activator of nuclear factor (NF)-κB ligand (RANKL)-induced NF-κB activation.

   

Aescin

6-{[9-(acetyloxy)-8-hydroxy-4,8a-bis(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-10-[(2-methylbut-2-enoyl)oxy]-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-yl]oxy}-4-hydroxy-3,5-bis({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})oxane-2-carboxylic acid

C55H86O24 (1130.5509)


   

Fasudil

5-(1,4-Diazepane-1-sulphonyl)isoquinoline

C14H17N3O2S (291.1041)


C - Cardiovascular system > C04 - Peripheral vasodilators > C04A - Peripheral vasodilators D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D004791 - Enzyme Inhibitors > D047428 - Protein Kinase Inhibitors D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators

   

1-(2,4-Dihydroxyphenyl)-3-[4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyphenyl]prop-2-en-1-one

1-(2,4-Dihydroxyphenyl)-3-[4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyphenyl]prop-2-en-1-one

C21H22O9 (418.1264)


   

Paeoniflorin

(6-Hydroxy-8-methyl-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-9,10-dioxatetracyclo[4.3.1.0²,⁵.0³,⁸]decan-2-yl)methyl benzoic acid

C23H28O11 (480.1632)


   

Rifapentina

26-{[(4-cyclopentylpiperazin-1-yl)imino]methyl}-2,15,17,27,29-pentahydroxy-11-methoxy-3,7,12,14,16,18,22-heptamethyl-6,23-dioxo-8,30-dioxa-24-azatetracyclo[23.3.1.1^{4,7}.0^{5,28}]triaconta-1(28),2,4,9,19,21,25(29),26-octaen-13-yl acetate

C47H64N4O12 (876.4521)


   

Spinosterol

(1R,2S,5S,7S,11R,14R,15R)-14-[(2R,3E,5S)-5-ethyl-6-methylhept-3-en-2-yl]-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-9-en-5-ol

C29H48O (412.3705)


Spinosterol, also known as spinasterol, (3beta,5alpha,22e,24r)-isomer, belongs to stigmastanes and derivatives class of compounds. Those are sterol lipids with a structure based on the stigmastane skeleton, which consists of a cholestane moiety bearing an ethyl group at the carbon atom C24. Thus, spinosterol is considered to be a sterol lipid molecule. Spinosterol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Spinosterol can be found in wild celery, which makes spinosterol a potential biomarker for the consumption of this food product. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2]. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2].

   

Deoxycholic Acid

3alpha,12alpha-Dihydroxy-5beta-cholan-24-oic acid

C24H40O4 (392.2926)


C78276 - Agent Affecting Digestive System or Metabolism > C66913 - Cholagogues or Choleretic Agents D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids D - Dermatologicals Deoxycholic acid (cholanoic acid), a bile acid, is a by-product of intestinal metabolism, that activates the G protein-coupled bile acid receptorTGR5[1][2]. Deoxycholic acid (cholanoic acid), a bile acid, is a by-product of intestinal metabolism, that activates the G protein-coupled bile acid receptorTGR5[1][2].

   

Threonine

L-THREONINE, [U-14C]

C4H9NO3 (119.0582)


COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS DL-Threonine, an essential amino acid, has the potential to treat hypostatic leg ulceration[1]. L-Threonine is a natural amino acid, can be produced by microbial fermentation, and is used in food, medicine, or feed[1]. L-Threonine is a natural amino acid, can be produced by microbial fermentation, and is used in food, medicine, or feed[1].

   

Tyrosine

L-Tyrosine

C9H11NO3 (181.0739)


COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS L-Tyrosine is a non-essential amino acid which can inhibit citrate synthase activity in the posterior cortex. L-Tyrosine is a non-essential amino acid which can inhibit citrate synthase activity in the posterior cortex.

   

Hydroxyproline

trans-4-hydroxy-L-proline

C5H9NO3 (131.0582)


L-Hydroxyproline, one of the hydroxyproline (Hyp) isomers, is a useful chiral building block in the production of many pharmaceuticals. L-Hydroxyproline, one of the hydroxyproline (Hyp) isomers, is a useful chiral building block in the production of many pharmaceuticals.

   

Resveratrol

3,4,5-Trihydroxystilbene

C14H12O3 (228.0786)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors C1892 - Chemopreventive Agent > C54630 - Phase II Enzymes Inducer D020011 - Protective Agents > D000975 - Antioxidants CONFIDENCE standard compound; EAWAG_UCHEM_ID 3241 C26170 - Protective Agent > C275 - Antioxidant D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7]. Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7]. Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7].

   

3,4-Dihydroxybenzaldehyde

3,4-Dihydroxybenzaldehyde, Vetec(TM) reagent grade, 97\\%

C7H6O3 (138.0317)


Protocatechualdehyde, also known as rancinamycin iv or 1,2-dihydroxy-4-formylbenzene, is a member of the class of compounds known as hydroxybenzaldehydes. Hydroxybenzaldehydes are organic aromatic compounds containing a benzene ring carrying an aldehyde group and a hydroxyl group. Protocatechualdehyde is soluble (in water) and a very weakly acidic compound (based on its pKa). Protocatechualdehyde is an almond, bitter, and dry tasting compound and can be found in a number of food items such as plains prickly pear, mugwort, silver linden, and cardamom, which makes protocatechualdehyde a potential biomarker for the consumption of these food products. Protocatechualdehyde can be found primarily in urine. This molecule can be used as a precursor in the vanillin synthesis by biotransformation by cell cultures of Capsicum frutescens, a type of Chili pepper. It is also found in the mushroom Phellinus linteus . 3,4-dihydroxybenzaldehyde is a dihydroxybenzaldehyde. Also known as protocatechuic aldehyde, protocatechualdehyde is a naturally-occuring phenolic aldehyde that is found in barley, green cavendish bananas, grapevine leaves and root of the herb S. miltiorrhiza. Protocatechualdehyde possesses antiproliferative and pro-apoptotic properties against human breast cancer cells and colorectal cancer cells by reducing the expression of pro-oncogenes β-catenin and cyclin D1. 3,4-Dihydroxybenzaldehyde is a natural product found in Visnea mocanera, Amomum subulatum, and other organisms with data available. See also: Black Cohosh (part of). 3,4-Dihydroxybenzaldehyde, also known as protocatechuic aldehyde, is a phenolic aldehyde, a compound released from cork stoppers into wine. This molecule can be used as a precursor in vanillin synthesis via biotransformation by cell cultures of Capsicum frutescens, a type of chili pepper. It is also found in the mushroom Phellinus linteus (Wikipedia). D006401 - Hematologic Agents > D000925 - Anticoagulants Protocatechualdehyde (Catechaldehyde), a natural polyphenol compound isolated from the roots of radix Salviae Miltiorrhizae, is associated with a wide variety of biological activities and has been widely used in medicine as an antioxidant, anti-aging, an antibacterial and anti-inflammatory agent[1]. Protocatechualdehyde (Catechaldehyde), a natural polyphenol compound isolated from the roots of radix Salviae Miltiorrhizae, is associated with a wide variety of biological activities and has been widely used in medicine as an antioxidant, anti-aging, an antibacterial and anti-inflammatory agent[1].

   

Baicalein

5,6,7-Trihydroxy-2-phenyl-(4H)-1-benzopyran-4-one

C15H10O5 (270.0528)


Baicalein is a trihydroxyflavone with the hydroxy groups at positions C-5, -6 and -7. It has a role as an antioxidant, a hormone antagonist, a prostaglandin antagonist, an EC 1.13.11.31 (arachidonate 12-lipoxygenase) inhibitor, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, a radical scavenger, an EC 3.4.21.26 (prolyl oligopeptidase) inhibitor, an anti-inflammatory agent, a plant metabolite, a ferroptosis inhibitor, an anticoronaviral agent, an EC 3.4.22.69 (SARS coronavirus main proteinase) inhibitor, an angiogenesis inhibitor, an antineoplastic agent, an EC 4.1.1.17 (ornithine decarboxylase) inhibitor, an antibacterial agent, an antifungal agent, an apoptosis inducer and a geroprotector. It is a conjugate acid of a baicalein(1-). Baicalein is under investigation in clinical trial NCT03830684 (A Randomized, Double-blind, Placebo-controlled, Multicenter and Phase ⅡA Clinical Trial for the Effectiveness and Safety of Baicalein Tablets in the Treatment of Improve Other Aspects of Healthy Adult With Influenza Fever). Baicalein is a natural product found in Stachys annua, Stellera chamaejasme, and other organisms with data available. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D011448 - Prostaglandin Antagonists A trihydroxyflavone with the hydroxy groups at positions C-5, -6 and -7. D020011 - Protective Agents > D000975 - Antioxidants COVID info from PDB, Protein Data Bank D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Baicalein, also known as 5,6,7-trihydroxyflavone or baicalein (old), is a member of the class of compounds known as flavones. Flavones are flavonoids with a structure based on the backbone of 2-phenylchromen-4-one (2-phenyl-1-benzopyran-4-one). Thus, baicalein is considered to be a flavonoid lipid molecule. Baicalein is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Baicalein can be found in welsh onion, which makes baicalein a potential biomarker for the consumption of this food product. Baicalein, along with its analogue baicalin, is a positive allosteric modulator of the benzodiazepine site and/or a non-benzodiazepine site of the GABAA receptor. It displays subtype selectivity for α2 and α3 subunit-containing GABAA receptors. In accordance, baicalein shows anxiolytic effects in mice without incidence of sedation or myorelaxation. It is thought that baicalein, along with other flavonoids, may underlie the anxiolytic effects of S. baicalensis and S. lateriflora. Baicalein is also an antagonist of the estrogen receptor, or an antiestrogen . Annotation level-1 Baicalein (5,6,7-Trihydroxyflavone) is a xanthine oxidase inhibitor with an IC50 value of 3.12 μM. Baicalein. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=491-67-8 (retrieved 2024-12-12) (CAS RN: 491-67-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Febrifugine

3-(3-(3-Hydroxypiperidin-2-yl)-2-oxopropyl)quinazolin-4(3H)-one

C16H19N3O3 (301.1426)


Febrifugine is a quinazolinone alkaloid found in the roots and leaves of Dichroa febrifuga, with antimalarial activity [1]. Febrifugine is a quinazolinone alkaloid found in the roots and leaves of Dichroa febrifuga, with antimalarial activity [1].

   

Deguelin

(1S,14S)-17,18-dimethoxy-7,7-dimethyl-2,8,21-trioxapentacyclo[12.8.0.03,12.04,9.015,20]docosa-3(12),4(9),5,10,15,17,19-heptaen-13-one

C23H22O6 (394.1416)


Deguelin is a rotenone that is 13,13a-dihydro-3H-chromeno[3,4-b]pyrano[2,3-h]chromen-7(7aH)-one substituted by methoxy groups at positions 9 and 10, and by two methyl groups at position 3 (the 7aS,13aS-stereoisomer). It exists in abundant quantities in the bark, roots, and leaves of the Leguminosae family of plants and reported to exert anti-tumour effects in various cancers. It has a role as an apoptosis inducer, an antineoplastic agent, a plant metabolite, an angiogenesis inhibitor, an antiviral agent, a mitochondrial NADH:ubiquinone reductase inhibitor, an anti-inflammatory agent and an EC 2.7.11.1 (non-specific serine/threonine protein kinase) inhibitor. It is a member of rotenones, an aromatic ether, an organic heteropentacyclic compound and a diether. Deguelin is a natural product found in Tephrosia vogelii, Derris montana, and other organisms with data available. A rotenone that is 13,13a-dihydro-3H-chromeno[3,4-b]pyrano[2,3-h]chromen-7(7aH)-one substituted by methoxy groups at positions 9 and 10, and by two methyl groups at position 3 (the 7aS,13aS-stereoisomer). It exists in abundant quantities in the bark, roots, and leaves of the Leguminosae family of plants and reported to exert anti-tumour effects in various cancers. Deguelin, a naturally occurring rotenoid, acts as a chemopreventive agent by blocking multiple pathways like PI3K-Akt, IKK-NF-κB, and MAPK-mTOR-survivin-mediated apoptosis. Deguelin binding to Hsp90 leads to a decreased expression of numerous oncogenic proteins, including MEK1/2, Akt, HIF1α, COX-2, and NF-κB. Deguelin, a naturally occurring rotenoid, acts as a chemopreventive agent by blocking multiple pathways like PI3K-Akt, IKK-NF-κB, and MAPK-mTOR-survivin-mediated apoptosis. Deguelin binding to Hsp90 leads to a decreased expression of numerous oncogenic proteins, including MEK1/2, Akt, HIF1α, COX-2, and NF-κB. Deguelin, a naturally occurring rotenoid, acts as a chemopreventive agent by blocking multiple pathways like PI3K-Akt, IKK-NF-κB, and MAPK-mTOR-survivin-mediated apoptosis. Deguelin binding to Hsp90 leads to a decreased expression of numerous oncogenic proteins, including MEK1/2, Akt, HIF1α, COX-2, and NF-κB.

   

Baicalin

(2S,3S,4S,5R,6S)-6-((5,6-dihydroxy-4-oxo-2-phenyl-4H-chromen-7-yl)oxy)-3,4,5-trihydroxytetrahydro-2H-pyran-2-carboxylic acid

C21H18O11 (446.0849)


Baicalin is the glycosyloxyflavone which is the 7-O-glucuronide of baicalein. It is an active ingredient of Chinese herbal medicine Scutellaria baicalensis. It has a role as a non-steroidal anti-inflammatory drug, an EC 3.4.21.26 (prolyl oligopeptidase) inhibitor, a prodrug, a plant metabolite, a ferroptosis inhibitor, a neuroprotective agent, an antineoplastic agent, a cardioprotective agent, an antiatherosclerotic agent, an antioxidant, an EC 2.7.7.48 (RNA-directed RNA polymerase) inhibitor, an anticoronaviral agent and an antibacterial agent. It is a glucosiduronic acid, a glycosyloxyflavone, a dihydroxyflavone and a monosaccharide derivative. It is functionally related to a baicalein. It is a conjugate acid of a baicalin(1-). Baicalin is a natural product found in Scutellaria amoena, Thalictrum baicalense, and other organisms with data available. See also: Scutellaria baicalensis Root (part of). The glycosyloxyflavone which is the 7-O-glucuronide of baicalein. It is an active ingredient of Chinese herbal medicine Scutellaria baicalensis. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D000890 - Anti-Infective Agents D018501 - Antirheumatic Agents D004791 - Enzyme Inhibitors Baicalin, as a flavonoid glycoside, is an allosteric carnitine palmityl transferase 1 (CPT1) activator. Baicalin reduces the expression of NF-κB[1][2][3]. Baicalin, as a flavonoid glycoside, is an allosteric carnitine palmityl transferase 1 (CPT1) activator. Baicalin reduces the expression of NF-κB[1][2][3].

   

Protopanaxadiol

(3S,5R,8R,9R,10R,12R,13R,14R,17S)-17-[(2R)-2-hydroxy-6-methylhept-5-en-2-yl]-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthrene-3,12-diol

C30H52O3 (460.3916)


(20R)-protopanaxadiol is a diastereomer of protopanaxadiol in which the 20-hydroxy substituent has been introduced at the pro-R position. 20(R)-Protopanaxadiol is a natural product found in Panax ginseng with data available. A diastereomer of protopanaxadiol in which the 20-hydroxy substituent has been introduced at the pro-R position. (20S)-protopanaxadiol is a diastereomer of protopanaxadiol in which the 20-hydroxy substituent has been introduced at the pro-S position. (20S)-Protopanaxadiol is a natural product found in Gynostemma pentaphyllum, Panax ginseng, and Aralia elata with data available. A diastereomer of protopanaxadiol in which the 20-hydroxy substituent has been introduced at the pro-S position. (20R)-Protopanaxadiol is a triterpenoid saponin metabolite of 20(R)-ginsenoside Rg3 in black ginseng. (20R)-Protopanaxadiol exhibits anti-tumor activity and cytotoxicity, and potently inhibits the growth of Helicobacter pylori[1][2][3]. (20R)-Protopanaxadiol is a triterpenoid saponin metabolite of 20(R)-ginsenoside Rg3 in black ginseng. (20R)-Protopanaxadiol exhibits anti-tumor activity and cytotoxicity, and potently inhibits the growth of Helicobacter pylori[1][2][3]. 20S-protopanaxadiol (aPPD) is a metabolite of ginseng saponins, inhibits Akt activity and induces apoptosis in various tumor cells[1]. 20S-protopanaxadiol (aPPD) is a metabolite of ginseng saponins, inhibits Akt activity and induces apoptosis in various tumor cells[1].

   

Tectoridin

5-Hydroxy-3-(4-hydroxyphenyl)-6-methoxy-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C22H22O11 (462.1162)


Tectoridin is a glycosyloxyisoflavone that is tectorigenin substituted by a beta-D-glucopyranosyl residue at position 7 via a glycosidic linkage. It has a role as a plant metabolite. It is a hydroxyisoflavone, a methoxyisoflavone, a monosaccharide derivative and a 7-hydroxyisoflavones 7-O-beta-D-glucoside. It is functionally related to a tectorigenin. Tectoridin is a natural product found in Iris milesii, Iris tectorum, and other organisms with data available. A glycosyloxyisoflavone that is tectorigenin substituted by a beta-D-glucopyranosyl residue at position 7 via a glycosidic linkage. A polyphenol metabolite detected in biological fluids [PhenolExplorer] Tectoridin is a isoflavone isolated from Maackia amurensis. Tectoridin is a phytoestrogen and activates estrogen and thyroid hormone receptors. Tectoridin exerts the estrogenic effects via ER-dependent genomic pathway and GPR30-dependent nongenomic pathway[1][2]. Tectoridin is a isoflavone isolated from Maackia amurensis. Tectoridin is a phytoestrogen and activates estrogen and thyroid hormone receptors. Tectoridin exerts the estrogenic effects via ER-dependent genomic pathway and GPR30-dependent nongenomic pathway[1][2].

   

AlisolA

(5R,8S,9S,10S,11S,14R)-11-hydroxy-4,4,8,10,14-pentamethyl-17-[(2R,4S,5R)-4,5,6-trihydroxy-6-methylheptan-2-yl]-1,2,5,6,7,9,11,12,15,16-decahydrocyclopenta[a]phenanthren-3-one

C30H50O5 (490.3658)


Alisol A is a natural product. Alisol A is a natural product.

   

Alisol

(5R,8S,9S,10S,11S,14R)-11-hydroxy-4,4,8,10,14-pentamethyl-17-[(2R,4S,5R)-4,5,6-trihydroxy-6-methylheptan-2-yl]-1,2,5,6,7,9,11,12,15,16-decahydrocyclopenta[a]phenanthren-3-one

C30H50O5 (490.3658)


Alisol A is a natural product. Alisol A is a natural product.

   

Caffeic_acid_phenethyl_ester

2-Propenoic acid, 3-(3,4-dihydroxyphenyl)-, 2-phenylethyl ester, (E)-

C17H16O4 (284.1049)


Phenethyl caffeate is an alkyl caffeate ester in which 2-phenylethyl is the alkyl component. It has a role as an antineoplastic agent, an anti-inflammatory agent, an immunomodulator, a metabolite, an antioxidant, a neuroprotective agent, an antiviral agent and an antibacterial agent. Caffeic acid phenethyl ester is a natural product found in Baccharis sarothroides, Populus deltoides, and other organisms with data available. Caffeic Acid Phenethyl Ester is the phenethyl alcohol ester of caffeic acid and a bioactive component of honeybee hive propolis, with antineoplastic, cytoprotective and immunomodulating activities. Upon administration, caffeic acid phenethyl ester (CAPE) inhibits the activation of nuclear transcription factor NF-kappa B and may suppress p70S6K and Akt-driven signaling pathways. In addition, CAPE inhibits PDGF-induced proliferation of vascular smooth muscle cells through the activation of p38 mitogen-activated protein kinase (MAPK) and hypoxia-inducible factor (HIF)-1alpha and subsequent induction of heme oxygenase-1 (HO-1). An alkyl caffeate ester in which 2-phenylethyl is the alkyl component. C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor Caffeic acid phenethyl ester is a NF-κB inhibitor. Caffeic acid phenethyl ester is a NF-κB inhibitor.

   

UsnicAcid

(2R)-4,10-diacetyl-3,11,13-trihydroxy-2,12-dimethyl-8-oxatricyclo[7.4.0.0^{2,7}]trideca-1(13),3,6,9,11-pentaen-5-one

C18H16O7 (344.0896)


(-)-usnic acid is the (-)-enantiomer of usnic acid. It has a role as an EC 1.13.11.27 (4-hydroxyphenylpyruvate dioxygenase) inhibitor. It is a conjugate acid of a (-)-usnic acid(2-). It is an enantiomer of a (+)-usnic acid. Usnic acid is a furandione found uniquely in lichen that is used widely in cosmetics, deodorants, toothpaste and medicinal creams as well as some herbal products. Taken orally, usnic acid can be toxic and has been linked to instances of clinically apparent, acute liver injury. (-)-Usnic acid is a natural product found in Dactylina arctica, Evernia divaricata, and other organisms with data available. The (-)-enantiomer of usnic acid. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2].

   

Astragalin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O11 (448.1006)


Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1]. Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1].

   

Asiatic Acid

(1S,2R,4aS,6aR,6aS,6bR,8aR,9R,10R,11R,12aR,14bS)-10,11-dihydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-2,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydro-1H-picene-4a-carboxylic acid

C30H48O5 (488.3502)


Esculentic acid (diplazium) is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Esculentic acid (diplazium) is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Esculentic acid (diplazium) can be found in green vegetables, which makes esculentic acid (diplazium) a potential biomarker for the consumption of this food product. C1907 - Drug, Natural Product > C28269 - Phytochemical > C1905 - Triterpenoid Compound C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product relative retention time with respect to 9-anthracene Carboxylic Acid is 1.377 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.378 Asiatic acid, a pentacyclic triterpene found in Centella asiatica, induces apoptosis in melanoma cells. Asiatic acid has the potential for skin cancer treatment[1]. Asiatic acid also has anti-inflammatory activities[2]. Asiatic acid, a pentacyclic triterpene found in Centella asiatica, induces apoptosis in melanoma cells. Asiatic acid has the potential for skin cancer treatment[1]. Asiatic acid also has anti-inflammatory activities[2].

   

2-hydroxyglutaric acid

alpha-Hydroxyglutaric acid

C5H8O5 (148.0372)


A 2-hydroxydicarboxylic acid that is glutaric acid in which one hydrogen alpha- to a carboxylic acid group is substituted by a hydroxy group.

   

sitosterol

17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Dehydrocorydaline

13-Methylpalmatine

C22H24NO4+ (366.1705)


Dehydrocorydaline (13-Methylpalmatine) is an alkaloid that regulates protein expression of Bax, Bcl-2; activates caspase-7, caspase-8, and inactivates PARP[1]. Dehydrocorydaline elevates p38 MAPK activation. Anti-inflammatory and anti-cancer activities[2]. Dehydrocorydaline shows strong anti-malarial effects (IC50=38 nM), and low cytotoxicity (cell viability?>?90\\%) using P. falciparum 3D7 strain[3]. Dehydrocorydaline (13-Methylpalmatine) is an alkaloid that regulates protein expression of Bax, Bcl-2; activates caspase-7, caspase-8, and inactivates PARP[1]. Dehydrocorydaline elevates p38 MAPK activation. Anti-inflammatory and anti-cancer activities[2]. Dehydrocorydaline shows strong anti-malarial effects (IC50=38 nM), and low cytotoxicity (cell viability?>?90\%) using P. falciparum 3D7 strain[3].

   

Hematoxylin

rel-7,11balpha*-Dihydrobenz [ b ] indeno [ 1,2-d ] pyran-3,4,6abeta,9,10 (6H) -pentol

C16H14O6 (302.079)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.308 D004396 - Coloring Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.309

   

Vitexin

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]chromen-4-one

C21H20O10 (432.1056)


Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2]. Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2].

   

Apigenin

5,7,4-Trihydroxyflavone

C15H10O5 (270.0528)


Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.061 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.062 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.058 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.059 Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM. Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM.

   

Astilbin

(2R,3R)-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxy-chroman-4-one

C21H22O11 (450.1162)


Neoisoastilbin is a natural product found in Smilax corbularia, Neolitsea sericea, and other organisms with data available. Astilbin is a flavonoid compound and enhances NRF2 activation. Astilbin also suppresses TNF-α expression and NF-κB activation. Astilbin is a flavonoid compound and enhances NRF2 activation. Astilbin also suppresses TNF-α expression and NF-κB activation. Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3]. Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3]. Neoisoastilbin possesses antioxidant, anti-hyperuricemic and anti-Inflammatory activities[1]. Neoisoastilbin possesses antioxidant, anti-hyperuricemic and anti-Inflammatory activities[1].

   

Luteolin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy- (9CI)

C15H10O6 (286.0477)


Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.976 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.975 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.968 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.971 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].

   

ampelopsin

4H-1-Benzopyran-4-one, 2,3-dihydro-3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-, (2R-trans)-

C15H12O8 (320.0532)


Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM.

   

Glycyrol

3,9-Dihydroxy-1-methoxy-2- (3-methyl-2-buten-1-yl) -6H-benzofuro [3,2-c] [1] benzopyran-6-one

C21H18O6 (366.1103)


Neoglycyrol is isolated from the root of Glycyrrhiza uralensis Fisch[1]. Neoglycyrol is a potential myocardial protection active compound screened from traditional patent medicine Tongmai Yangxin pill (TMYXP)[2]. Neoglycyrol is isolated from the root of Glycyrrhiza uralensis Fisch[1]. Neoglycyrol is a potential myocardial protection active compound screened from traditional patent medicine Tongmai Yangxin pill (TMYXP)[2].

   

Hirsutrin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O12 (464.0955)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor.

   

Isoorientin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]-4-chromenone

C21H20O11 (448.1006)


Isolated from wheat leaves (Triticum species). Isoorientin 6-diglucoside is found in wheat and cereals and cereal products. Isoorientin is a member of the class of compounds known as flavonoid c-glycosides. Flavonoid c-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to the 2-phenylchromen-4-one flavonoid backbone. Isoorientin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Isoorientin can be found in a number of food items such as oat, prairie turnip, common buckwheat, and common salsify, which makes isoorientin a potential biomarker for the consumption of these food products. Isoorientin (or homoorientin) is a flavone, a chemical flavonoid-like compound. It is the luteolin-6-C-glucoside. Bioassay-directed fractionation techniques led to isolation of isoorientin as the main hypoglycaemic component in Gentiana olivieri . Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM. Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM.

   

Swartziol

4H-1-Benzopyran-4-one, 3,5,7-trihydroxy-2-(4-hydroxyphenyl)-5,7,4-Trihydroxyflavonol

C15H10O6 (286.0477)


Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4]. Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4].

   

Phloretin

4,2,4,6-Tetrahydroxydihydroxychalcone

C15H14O5 (274.0841)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.912 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.909 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.910 Phloretin (NSC 407292; RJC 02792) is a flavonoid extracted from Malus pumila Mill., has anti-inflammatory activities. Phloridzin is a specific, competitive and orally active inhibitor of sodium/glucose cotransporters in the intestine (SGLT1) and kidney (SGLT2). Phloretin inhibits Yeast-made GLUT1 as well as Human erythrocyte GLUT1 with IC50values of 49 μM and 61 μM, respectively[1].Phloretin has the potential for the treatment of rheumatoid arthritis (RA)?and allergic airway inflammation[4]. Phloretin (NSC 407292; RJC 02792) is a flavonoid extracted from Malus pumila Mill., has anti-inflammatory activities. Phloridzin is a specific, competitive and orally active inhibitor of sodium/glucose cotransporters in the intestine (SGLT1) and kidney (SGLT2). Phloretin inhibits Yeast-made GLUT1 as well as Human erythrocyte GLUT1 with IC50values of 49 μM and 61 μM, respectively[1].Phloretin has the potential for the treatment of rheumatoid arthritis (RA)?and allergic airway inflammation[4]. Phloretin (NSC 407292; RJC 02792) is a flavonoid extracted from Malus pumila Mill., has anti-inflammatory activities. Phloridzin is a specific, competitive and orally active inhibitor of sodium/glucose cotransporters in the intestine (SGLT1) and kidney (SGLT2). Phloretin inhibits Yeast-made GLUT1 as well as Human erythrocyte GLUT1 with IC50values of 49 μM and 61 μM, respectively[1].Phloretin has the potential for the treatment of rheumatoid arthritis (RA)?and allergic airway inflammation[4].

   

Quercetin

2- (3,4-Dihydroxyphenyl) -3,5,7-trihydroxy-4H-1-benzopyran-4-one

C15H10O7 (302.0427)


Annotation level-1 COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials relative retention time with respect to 9-anthracene Carboxylic Acid is 0.898 D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.902 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 1981; CONFIDENCE confident structure IPB_RECORD: 3301; CONFIDENCE confident structure IPB_RECORD: 3283; CONFIDENCE confident structure Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

Irigenin

4H-1-Benzopyran-4-one,5,7-dihydroxy-3-(3-hydroxy-4,5-dimethoxyphenyl)-6-methoxy-

C18H16O8 (360.0845)


Irigenin is a hydroxyisoflavone that is isoflavone substituted by hydroxy groups at positions 5, 7 and 3 and methoxy groups at positions 6, 4 and 5 respectively. It has a role as a plant metabolite. It is a hydroxyisoflavone and a member of 4-methoxyisoflavones. It is functionally related to an isoflavone. Irigenin is a natural product found in Iris milesii, Iris tectorum, and other organisms with data available. A hydroxyisoflavone that is isoflavone substituted by hydroxy groups at positions 5, 7 and 3 and methoxy groups at positions 6, 4 and 5 respectively. Irigenin is a is a lead compound, and mediates its anti-metastatic effect by specifically and selectively blocking α9β1 and α4β1 integrins binding sites on C-C loop of Extra Domain A (EDA). Irigenin shows anti-cancer properties. It sensitizes TRAIL-induced apoptosis via enhancing pro-apoptotic molecules in gastric cancer cells[1]. Irigenin is a is a lead compound, and mediates its anti-metastatic effect by specifically and selectively blocking α9β1 and α4β1 integrins binding sites on C-C loop of Extra Domain A (EDA). Irigenin shows anti-cancer properties. It sensitizes TRAIL-induced apoptosis via enhancing pro-apoptotic molecules in gastric cancer cells[1].

   

Doxorubicin

7-(4-amino-5-hydroxy-6-methyloxan-2-yl)oxy-6,9,11-trihydroxy-9-(2-hydroxyacetyl)-4-methoxy-8,10-dihydro-7H-tetracene-5,12-dione

C27H29NO11 (543.1741)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01D - Cytotoxic antibiotics and related substances > L01DB - Anthracyclines and related substances C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor > C129824 - Antineoplastic Protein Inhibitor D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic C471 - Enzyme Inhibitor > C129825 - Antineoplastic Enzyme Inhibitor > C1748 - Topoisomerase Inhibitor C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D004791 - Enzyme Inhibitors

   

Gedunin

NCGC00179126-03_C28H34O7_(6R,6aS,6bR,7aS,10S,10aS,12bR)-10-(3-Furyl)-4,4,6a,10a,12b-pentamethyl-3,8-dioxo-3,4,4a,5,6,6a,7a,8,10,10a,11,12,12a,12b-tetradecahydronaphtho[2,1-f]oxireno[d]isochromen-6-yl acetate

C28H34O7 (482.2304)


A natural product found in Azadirachta indica. Gedunin is a pentacyclic triterpenoid natural product found particularly in Azadirachta indica and Cedrela odorata. It has a role as an antimalarial, an antineoplastic agent, a Hsp90 inhibitor and a plant metabolite. It is a limonoid, an acetate ester, an epoxide, an enone, a member of furans, a pentacyclic triterpenoid, an organic heteropentacyclic compound and a lactone. Gedunin is a natural product found in Azadirachta indica, Cedrela odorata, and other organisms with data available. A pentacyclic triterpenoid natural product found particularly in Azadirachta indica and Cedrela odorata.

   

Isoquercetin

3,3,4,5,7-Pentahydroxyflavone 3-β-glucoside

C21H20O12 (464.0955)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor.

   

Dtxcid6021115

Rifapentine (Priftin)

C47H64N4O12 (876.4521)


J - Antiinfectives for systemic use > J04 - Antimycobacterials > J04A - Drugs for treatment of tuberculosis > J04AB - Antibiotics D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007917 - Leprostatic Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D012294 - Rifamycins C254 - Anti-Infective Agent > C52588 - Antibacterial Agent > C280 - Antitubercular Agent

   

Chlorogenic Acid

Malonyl-caffeoylquinic acid

C16H18O9 (354.0951)


IPB_RECORD: 1901; CONFIDENCE confident structure Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb. It is an orally active antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension compound[1][2][3]. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension.

   

Kaempferol

Kaempferol

C15H10O6 (286.0477)


Annotation level-3 Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.010 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.011 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2141; CONFIDENCE confident structure IPB_RECORD: 3341; CONFIDENCE confident structure IPB_RECORD: 3321; CONFIDENCE confident structure CONFIDENCE confident structure; IPB_RECORD: 3321 IPB_RECORD: 141; CONFIDENCE confident structure Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4]. Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4].

   

lupeol

Lup-20(29)-en-3.beta.-ol

C30H50O (426.3861)


D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].

   

Piperine

Isopiperine

C17H19NO3 (285.1365)


Constituent of pepper (Piper nigrum) (Piperaceae). Isopiperine is found in herbs and spices and pepper (spice). C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic Origin: Plant; SubCategory_DNP: Alkaloids derived from lysine, Piperidine alkaloids D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors Annotation level-1 MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; MXXWOMGUGJBKIW-YPCIICBESA-N_STSL_0203_Piperine_0031fmol_180831_S2_L02M02_45; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. relative retention time with respect to 9-anthracene Carboxylic Acid is 1.245 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.243 Piperine, a natural alkaloid isolated from Piper nigrum L, inhibits P-glycoprotein and CYP3A4 activities with an IC50 value of 61.94±0.054 μg/mL in HeLa cell. Piperine, a natural alkaloid isolated from Piper nigrum L, inhibits P-glycoprotein and CYP3A4 activities with an IC50 value of 61.94±0.054 μg/mL in HeLa cell.

   

Naringin

(2S)-7-[[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-2-tetrahydropyranyl]oxy]-2-tetrahydropyranyl]oxy]-5-hydroxy-2-(4-hydroxyphenyl)-4-chromanone

C27H32O14 (580.1792)


Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.745 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.741 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.739 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2201; CONFIDENCE confident structure Naringin is a major flavanone glycoside obtained from tomatoes, grapefruits, and many other citrus fruits. Naringin exhibits biological properties such as antioxidant, anti-inflammatory, and antiapoptotic activities. Naringin is a major flavanone glycoside obtained from tomatoes, grapefruits, and many other citrus fruits. Naringin exhibits biological properties such as antioxidant, anti-inflammatory, and antiapoptotic activities.

   

Ginsenoside Rg1

(20E)-Ginsenoside F4

C42H72O14 (800.4922)


Isolated from ginseng. (20E)-Ginsenoside F4 is found in tea. D002491 - Central Nervous System Agents Ginsenoside Rg1 is one of the major active components of Panax ginseng. Ginsenoside Rg1 ameliorates the impaired cognitive function, displays promising effects by reducing cerebral Aβ levels. Ginsenoside Rg1 also reduces NF-κB nuclear translocation. Ginsenoside Rg1 is one of the major active components of Panax ginseng. Ginsenoside Rg1 ameliorates the impaired cognitive function, displays promising effects by reducing cerebral Aβ levels. Ginsenoside Rg1 also reduces NF-κB nuclear translocation.

   

Cucurbitacin E

acetic acid [(E,5R)-5-[(8S,9R,10R,13R,14S,16R,17R)-2,16-dihydroxy-3,11-diketo-4,4,9,13,14-pentamethyl-8,10,12,15,16,17-hexahydro-7H-cyclopenta[a]phenanthren-17-yl]-5-hydroxy-4-keto-1,1-dimethyl-hex-2-enyl] ester

C32H44O8 (556.3036)


Cucurbitacin e is a member of the class of compounds known as cucurbitacins. Cucurbitacins are polycyclic compounds containing the tetracyclic cucurbitane nucleus skeleton, 19-(10->9b)-abeo-10alanost-5-ene (also known as 9b-methyl-19-nor lanosta-5-ene), with a variety of oxygenation functionalities at different positions. Cucurbitacin e is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Cucurbitacin e is a bitter tasting compound found in cucumber, muskmelon, and watermelon, which makes cucurbitacin e a potential biomarker for the consumption of these food products. Cucurbitacin E is a natural compound which from Cucurbitaceae plants. Cucurbitacin E significantly suppresses the activity of the cyclin B1/CDC2 complex. Cucurbitacin E is a natural compound which from Cucurbitaceae plants. Cucurbitacin E significantly suppresses the activity of the cyclin B1/CDC2 complex.

   

Obacunone

Oxireno(4,4a)-2-benzopyrano(6,5-g)(2)benzoxepin-3,5,9(3aH,4bH,6H)-trione, 1-(3-furanyl)-1,6a,7,11a,11b,12,13,13a-octahydro-4b,7,7,11a,13a-pentamethyl-, (1S,3aS,4aR,4bR,6aR,11aR,11bR,11bR,13aS)-

C26H30O7 (454.1991)


Obacunone is a limonoid. Obacunone is a natural product found in Limonia acidissima, Citrus latipes, and other organisms with data available. Obacunone, isolated from Citrus fruits, exhibits anti-tumor activity by the induction of apoptosis[1]. Obacunone, isolated from Citrus fruits, exhibits anti-tumor activity by the induction of apoptosis[1].

   

Aucubin

(2S,3R,4S,5S,6R)-2-(((1S,4aR,5S,7aS)-5-hydroxy-7-(hydroxymethyl)-1,4a,5,7a-tetrahydrocyclopenta[c]pyran-1-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C15H22O9 (346.1264)


Aucubin is an organic molecular entity. It has a role as a metabolite. Aucubin is a natural product found in Verbascum lychnitis, Plantago media, and other organisms with data available. See also: Chaste tree fruit (part of); Rehmannia glutinosa Root (part of); Plantago ovata seed (part of). Origin: Plant; SubCategory_DNP: Monoterpenoids, Iridoid monoterpenoids SubCategory_DNP: Monoterpenoids, Iridoid monoterpenoids; Origin: Plant Aucubin, an iridoid glucoside, is isolated from Plantago asiatica, Eucommia ulmoides, the leaves of Aucuba japonica and more recently from butterfly larva. Aucubin has many biological activities, such as antioxidant, anti-aging, anti-inflammatory, antimicrobial, anti-fibrotic, anti-cancer, hepatoprotective, neuroprotective and osteoprotective effects[1][2][3]. Aucubin, an iridoid glucoside, is isolated from Plantago asiatica, Eucommia ulmoides, the leaves of Aucuba japonica and more recently from butterfly larva. Aucubin has many biological activities, such as antioxidant, anti-aging, anti-inflammatory, antimicrobial, anti-fibrotic, anti-cancer, hepatoprotective, neuroprotective and osteoprotective effects[1][2][3].

   

Rutin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-2-tetrahydropyranyl]oxymethyl]-2-tetrahydropyranyl]oxy]-4-chromenone

C27H30O16 (610.1534)


C - Cardiovascular system > C05 - Vasoprotectives > C05C - Capillary stabilizing agents > C05CA - Bioflavonoids CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2352 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.724 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.728 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 1921; CONFIDENCE confident structure Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3]. Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3].

   

Allocryptopine

7,8-DIMETHOXY-11-METHYL-17,19-DIOXA-11-AZATETRACYCLO[12.7.0.0?,?.0(1)?,(2)?]HENICOSA-1(14),4(9),5,7,15,20-HEXAEN-2-ONE

C21H23NO5 (369.1576)


Allocryptopine is a dibenzazecine alkaloid, an organic heterotetracyclic compound, a tertiary amino compound, a cyclic ketone, a cyclic acetal and an aromatic ether. Allocryptopine is a natural product found in Zanthoxylum beecheyanum, Berberis integerrima, and other organisms with data available. See also: Sanguinaria canadensis root (part of). IPB_RECORD: 788; CONFIDENCE confident structure Allocryptopine, a derivative of tetrahydropalmatine, is extracted from Macleaya cordata (Thunb.) Pers. Papaveraceae. Allocryptopine has antiarrhythmic effects and potently blocks human ether-a-go-go related gene (hERG) current[1][2]. Allocryptopine, a derivative of tetrahydropalmatine, is extracted from Macleaya cordata (Thunb.) Pers. Papaveraceae. Allocryptopine has antiarrhythmic effects and potently blocks human ether-a-go-go related gene (hERG) current[1][2].

   

Osthol

InChI=1/C15H16O3/c1-10(2)4-7-12-13(17-3)8-5-11-6-9-14(16)18-15(11)12/h4-6,8-9H,7H2,1-3H

C15H16O3 (244.1099)


Osthole is a member of coumarins and a botanical anti-fungal agent. It has a role as a metabolite. Osthole is a natural product found in Murraya alata, Pentaceras australe, and other organisms with data available. See also: Angelica pubescens root (part of). A natural product found in Peucedanum ostruthium and Angelica pubescens. D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D007155 - Immunologic Factors Origin: Plant, Coumarins Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells. Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells. Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells.

   

Hesperidin

(S)-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)chroman-4-one

C28H34O15 (610.1898)


Hesperidin is a disaccharide derivative that consists of hesperetin substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as a mutagen. It is a disaccharide derivative, a member of 3-hydroxyflavanones, a dihydroxyflavanone, a monomethoxyflavanone, a flavanone glycoside, a member of 4-methoxyflavanones and a rutinoside. It is functionally related to a hesperetin. Hesperidin is a flavan-on glycoside found in citrus fruits. Hesperidin is a natural product found in Ficus erecta var. beecheyana, Citrus tankan, and other organisms with data available. A flavanone glycoside found in CITRUS fruit peels. See also: Tangerine peel (part of). A disaccharide derivative that consists of hesperetin substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Hesperidin (Hesperetin 7-rutinoside), a flavanone glycoside, is isolated from citrus fruits. Hesperidin has numerous biological properties, such as decreasing inflammatory mediators and exerting significant antioxidant effects. Hesperidin also exhibits antitumor and antiallergic activities[1][2]. Hesperidin (Hesperetin 7-rutinoside), a flavanone glycoside, is isolated from citrus fruits. Hesperidin has numerous biological properties, such as decreasing inflammatory mediators and exerting significant antioxidant effects. Hesperidin also exhibits antitumor and antiallergic activities[1][2].

   

Cucurbitacin B

acetic acid [(E,5R)-5-[(2S,8S,9R,10R,13R,14S,16R,17R)-2,16-dihydroxy-3,11-diketo-4,4,9,13,14-pentamethyl-2,7,8,10,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthren-17-yl]-5-hydroxy-4-keto-1,1-dimethyl-hex-2-enyl] ester

C32H46O8 (558.3193)


Cucurbitacin B belongs to a class of highly oxidized tetracyclic triterpenoids and is oral active. Cucurbitacin B inhibits tumor cell growth, migration and invasion and cycle arrest, but induces cell apoptosis. Cucurbitacin B has potent anti-inflammatory, antioxidant, antiviral, hypoglycemic, hepatoprotective, neuroprotective activity[1][2][3][4][5]. Cucurbitacin B belongs to a class of highly oxidized tetracyclic triterpenoids and is oral active. Cucurbitacin B inhibits tumor cell growth, migration and invasion and cycle arrest, but induces cell apoptosis. Cucurbitacin B has potent anti-inflammatory, antioxidant, antiviral, hypoglycemic, hepatoprotective, neuroprotective activity[1][2][3][4][5].

   

Costunolide

NCGC00381718-02_C15H20O2_Cyclodeca[b]furan-2(3H)-one, 3a,4,5,8,9,11a-hexahydro-6,10-dimethyl-3-methylene-, (3aS,6E,10E,11aR)-

C15H20O2 (232.1463)


Costunolide is a germacranolide with anthelminthic, antiparasitic and antiviral activities. It has a role as an anthelminthic drug, an antiinfective agent, an antineoplastic agent, an antiparasitic agent, an antiviral drug and a metabolite. It is a germacranolide and a heterobicyclic compound. (+)-Costunolide is a natural product found in Magnolia garrettii, Critonia morifolia, and other organisms with data available. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics A germacranolide with anthelminthic, antiparasitic and antiviral activities. D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors Costunolide ((+)-Costunolide) is a naturally occurring sesquiterpene lactone, with antioxidative, anti-inflammatory, antiallergic, bone remodeling, neuroprotective, hair growth promoting, anticancer, and antidiabetic properties. Costunolide can induce cell cycle arrest and apoptosis on breast cancer cells[1][2][3]. Costunolide ((+)-Costunolide) is a naturally occurring sesquiterpene lactone, with antioxidative, anti-inflammatory, antiallergic, bone remodeling, neuroprotective, hair growth promoting, anticancer, and antidiabetic properties. Costunolide can induce cell cycle arrest and apoptosis on breast cancer cells[1][2][3].

   

Limonin

11H,13H-Oxireno(d)pyrano(4,3:3,3a)isobenzofuro(5,4-f)(2)benzopyran-4,6,13(2H,5aH)-trione, 8-(3-furanyl)decahydro-2,2,4a,8a-tetramethyl-, (2aR-(2aalpha,4abeta,4bR,5aalpha,8alpha,8aalpha,10aalpha,10bR*,14aalpha))-

C26H30O8 (470.1941)


Limonin is a limonoid, an epoxide, a hexacyclic triterpenoid, a member of furans, an organic heterohexacyclic compound and a lactone. It has a role as a metabolite, an inhibitor and a volatile oil component. Limonin is a natural product found in Citrus tankan, Flacourtia jangomas, and other organisms with data available. Limonin is a triterpenoid compound rich in citrus fruits that has antiviral and antitumor activities. Limonin is a triterpenoid compound rich in citrus fruits that has antiviral and antitumor activities.

   

Fasudil

Fasudil

C14H17N3O2S (291.1041)


C - Cardiovascular system > C04 - Peripheral vasodilators > C04A - Peripheral vasodilators D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D004791 - Enzyme Inhibitors > D047428 - Protein Kinase Inhibitors D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators

   

Milk Thistle Extract

Milk Thistle Extract

C25H22O10 (482.1213)


A - Alimentary tract and metabolism > A05 - Bile and liver therapy > A05B - Liver therapy, lipotropics > A05BA - Liver therapy D020011 - Protective Agents > D000975 - Antioxidants (±)-Silybin is the racemate of Silybin (HY-N0779A). Silybin induces apoptosis and exhibits hepatoprotective, antioxidant, anti-inflammatory, anti-cancer activity[1][2]. Silybin is a flavonolignan isolated from milk thistle (Silybum marianum) seeds. Silybin induces apoptosis and exhibits hepatoprotective, antioxidant, anti-inflammatory, anti-cancer activity[1][2]. Silybin is a flavonolignan isolated from milk thistle (Silybum marianum) seeds. Silybin induces apoptosis and exhibits hepatoprotective, antioxidant, anti-inflammatory, anti-cancer activity[1][2]. Silybin A (Silibinin A), an effective anti-cancer and chemopreventive agent, has been shown to exert multiple effects on cancer cells, including inhibition of both cell proliferation and migration. Silybin A (Silibinin A), an effective anti-cancer and chemopreventive agent, has been shown to exert multiple effects on cancer cells, including inhibition of both cell proliferation and migration.

   

Pioglitazone

5-(4-(2-(5-Ethylpyridin-2-yl)ethoxy)benzyl)thiazolidine-2,4-dione

C19H20N2O3S (356.1195)


A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10B - Blood glucose lowering drugs, excl. insulins > A10BG - Thiazolidinediones C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent > C98241 - Thiazolidinedione Antidiabetic Agent COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D007004 - Hypoglycemic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 289; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3418; ORIGINAL_PRECURSOR_SCAN_NO 3417 CONFIDENCE standard compound; INTERNAL_ID 289; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3413; ORIGINAL_PRECURSOR_SCAN_NO 3410 CONFIDENCE standard compound; INTERNAL_ID 289; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3422; ORIGINAL_PRECURSOR_SCAN_NO 3421 CONFIDENCE standard compound; INTERNAL_ID 289; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3410; ORIGINAL_PRECURSOR_SCAN_NO 3408 CONFIDENCE standard compound; INTERNAL_ID 289; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3260; ORIGINAL_PRECURSOR_SCAN_NO 3258 CONFIDENCE standard compound; INTERNAL_ID 289; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3419; ORIGINAL_PRECURSOR_SCAN_NO 3417 CONFIDENCE standard compound; INTERNAL_ID 289; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7098; ORIGINAL_PRECURSOR_SCAN_NO 7097 CONFIDENCE standard compound; INTERNAL_ID 289; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7118; ORIGINAL_PRECURSOR_SCAN_NO 7116 CONFIDENCE standard compound; INTERNAL_ID 289; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7127; ORIGINAL_PRECURSOR_SCAN_NO 7125 CONFIDENCE standard compound; INTERNAL_ID 289; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7146; ORIGINAL_PRECURSOR_SCAN_NO 7145 CONFIDENCE standard compound; INTERNAL_ID 289; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7154; ORIGINAL_PRECURSOR_SCAN_NO 7153 CONFIDENCE standard compound; INTERNAL_ID 289; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7069; ORIGINAL_PRECURSOR_SCAN_NO 7068 CONFIDENCE standard compound; INTERNAL_ID 2358 CONFIDENCE standard compound; INTERNAL_ID 2203 CONFIDENCE standard compound; INTERNAL_ID 8526 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3286 Pioglitazone (U 72107) is an orally active and selective PPARγ (peroxisome proliferator-activated receptor) agonist with high affinity binding to the PPARγ ligand-binding domain with EC50 of 0.93 and 0.99 μM for human and mouse PPARγ, respectively. Pioglitazone can be used in diabetes research[2][3][4].

   

Bicalutamide

(2R)-N-[4-cyano-3-(trifluoromethyl)phenyl]-3-[(4-fluorophenyl)sulfonyl]-2-hydroxy-2-methylpropanamide

C18H14F4N2O4S (430.061)


L - Antineoplastic and immunomodulating agents > L02 - Endocrine therapy > L02B - Hormone antagonists and related agents > L02BB - Anti-androgens D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D000726 - Androgen Antagonists C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C146993 - Androgen Receptor Inhibitor C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist > C242 - Anti-Androgen COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D000970 - Antineoplastic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 519; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4405; ORIGINAL_PRECURSOR_SCAN_NO 4401 CONFIDENCE standard compound; INTERNAL_ID 519; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4432; ORIGINAL_PRECURSOR_SCAN_NO 4429 CONFIDENCE standard compound; INTERNAL_ID 519; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4382; ORIGINAL_PRECURSOR_SCAN_NO 4377 CONFIDENCE standard compound; INTERNAL_ID 519; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4426; ORIGINAL_PRECURSOR_SCAN_NO 4422 CONFIDENCE standard compound; INTERNAL_ID 519; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4399; ORIGINAL_PRECURSOR_SCAN_NO 4398 CONFIDENCE standard compound; INTERNAL_ID 519; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4400; ORIGINAL_PRECURSOR_SCAN_NO 4397 CONFIDENCE standard compound; INTERNAL_ID 2349 CONFIDENCE standard compound; INTERNAL_ID 8615 CONFIDENCE standard compound; EAWAG_UCHEM_ID 2809

   

etodolac

etodolac

C17H21NO3 (287.1521)


M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AB - Acetic acid derivatives and related substances D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D004791 - Enzyme Inhibitors > D016861 - Cyclooxygenase Inhibitors > D052246 - Cyclooxygenase 2 Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D006133 - Growth Substances > D010937 - Plant Growth Regulators > D007210 - Indoleacetic Acids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3308

   

naftifine

naftifine

C21H21N (287.1674)


D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent CONFIDENCE standard compound; EAWAG_UCHEM_ID 3581

   

Doxycycline

Doxycycline

C22H24N2O8 (444.1533)


Tetracycline in which the 5beta-hydrogen is replaced by a hydroxy group, while the 6alpha-hydroxy group is replaced by hydrogen. A semi-synthetic tetracycline antibiotic, it is used to inhibit bacterial protein synthesis and treat non-gonococcal urethritis and cervicitis, exacerbations of bronchitis in patients with chronic obstructive pulmonary disease (COPD), and adult periodontitis. A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AB - Antiinfectives and antiseptics for local oral treatment J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01A - Tetracyclines > J01AA - Tetracyclines D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C784 - Protein Synthesis Inhibitor > C1595 - Tetracycline Antibiotic D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; EAWAG_UCHEM_ID 3678

   

Berberine

Berberine

[C20H18NO4]+ (336.1236)


Origin: Plant; SubCategory_DNP: Isoquinoline alkaloids, Benzylisoquinoline alkaloids COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2521; CONFIDENCE confident structure IPB_RECORD: 821; CONFIDENCE confident structure

   

Boldine

4H-Dibenzo[de,g]quinoline-2,9-diol, 5,6,6a,7-tetrahydro-1,10-dimethoxy-6-methyl-, (6aS)-

C19H21NO4 (327.1471)


Boldine is an aporphine alkaloid. Boldine is a natural product found in Lindera umbellata, Damburneya salicifolia, and other organisms with data available. See also: Peumus boldus leaf (part of). D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents (s)-boldine is a member of the class of compounds known as aporphines. Aporphines are quinoline alkaloids containing the dibenzo[de,g]quinoline ring system or a dehydrogenated derivative thereof (s)-boldine is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (s)-boldine can be found in sweet bay, which makes (s)-boldine a potential biomarker for the consumption of this food product. Origin: Plant; Formula(Parent): C19H21NO4; Bottle Name:Boldine hydrochloride; PRIME Parent Name:Boldine; PRIME in-house No.:V0322; SubCategory_DNP: Isoquinoline alkaloids, Benzylisoquinoline alkaloids Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.487 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.480 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.482 IPB_RECORD: 841; CONFIDENCE confident structure Boldine is an aporphine isoquinoline alkaloid extracted from the root of Litsea cubeba and also possesses these properties, including antioxidant, anti-inflammatory and cytoprotective effects. Boldine suppresses osteoclastogenesis, improves bone destruction by down-regulating the OPG/RANKL/RANK signal pathway and may be a potential therapeutic agent for rheumatoid arthritis[1]. Boldine is an aporphine isoquinoline alkaloid extracted from the root of Litsea cubeba and also possesses these properties, including antioxidant, anti-inflammatory and cytoprotective effects. Boldine suppresses osteoclastogenesis, improves bone destruction by down-regulating the OPG/RANKL/RANK signal pathway and may be a potential therapeutic agent for rheumatoid arthritis[1].

   

sanguinarine

sanguinarine

[C20H14NO4]+ (332.0923)


Origin: Plant; SubCategory_DNP: Isoquinoline alkaloids, Benzylisoquinoline alkaloids D020011 - Protective Agents > D002316 - Cardiotonic Agents D000890 - Anti-Infective Agents D002317 - Cardiovascular Agents Annotation level-1 IPB_RECORD: 1581; CONFIDENCE confident structure

   

Resveratrol

trans-resveratrol

C14H12O3 (228.0786)


Resveratrol, also known as 3,4,5-trihydroxystilbene or trans-resveratrol, is a member of the class of compounds known as stilbenes. Stilbenes are organic compounds containing a 1,2-diphenylethylene moiety. Stilbenes (C6-C2-C6 ) are derived from the common phenylpropene (C6-C3) skeleton building block. The introduction of one or more hydroxyl groups to a phenyl ring lead to stilbenoids. Thus, resveratrol is considered to be an aromatic polyketide lipid molecule. Resveratrol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Resveratrol is a bitter tasting compound and can be found in a number of food items such as broccoli, yellow wax bean, bilberry, and turnip, which makes resveratrol a potential biomarker for the consumption of these food products. Resveratrol can be found primarily in urine, as well as throughout most human tissues. Resveratrol exists in all eukaryotes, ranging from yeast to humans. Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a stilbenoid, a type of natural phenol, and a phytoalexin produced by several plants in response to injury or, when the plant is under attack by pathogens such as bacteria or fungi. Sources of resveratrol in food include the skin of grapes, blueberries, raspberries, mulberries . Resveratrol suppresses NF-kappaB (NF-kappaB) activation in HSV infected cells. Reports have indicated that HSV activates NF-kappaB during productive infection and this may be an essential aspect of its replication scheme [PMID: 9705914] (DrugBank). relative retention time with respect to 9-anthracene Carboxylic Acid is 0.738 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.740 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.730 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.733 Acquisition and generation of the data is financially supported by the Max-Planck-Society COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors C1892 - Chemopreventive Agent > C54630 - Phase II Enzymes Inducer D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS IPB_RECORD: 2101; CONFIDENCE confident structure IPB_RECORD: 2901; CONFIDENCE confident structure Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7]. Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7]. Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7].

   

Genistein

Sophoricol

C15H10O5 (270.0528)


C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1821 - Selective Estrogen Receptor Modulator D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D004791 - Enzyme Inhibitors > D047428 - Protein Kinase Inhibitors D020011 - Protective Agents > D016588 - Anticarcinogenic Agents C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist D000970 - Antineoplastic Agents C1892 - Chemopreventive Agent Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2181; CONFIDENCE confident structure Genistein, a soy isoflavone, is a multiple tyrosine kinases (e.g., EGFR) inhibitor which acts as a chemotherapeutic agent against different types of cancer, mainly by altering apoptosis, the cell cycle, and angiogenesis and inhibiting metastasis. Genistein, a soy isoflavone, is a multiple tyrosine kinases (e.g., EGFR) inhibitor which acts as a chemotherapeutic agent against different types of cancer, mainly by altering apoptosis, the cell cycle, and angiogenesis and inhibiting metastasis.

   

Bergapten

Bergapten

C12H8O4 (216.0423)


D - Dermatologicals > D05 - Antipsoriatics > D05B - Antipsoriatics for systemic use > D05BA - Psoralens for systemic use D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins relative retention time with respect to 9-anthracene Carboxylic Acid is 0.998 D000893 - Anti-Inflammatory Agents D003879 - Dermatologic Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.995 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2841; CONFIDENCE confident structure Bergapten is a natural anti-inflammatory and anti-tumor agent. Bergapten is inhibitory towards mouse and human CYP isoforms. Bergapten is a natural anti-inflammatory and anti-tumor agent. Bergapten is inhibitory towards mouse and human CYP isoforms.

   

Tyrosine

L-(-)-Tyrosine

C9H11NO3 (181.0739)


An alpha-amino acid that is phenylalanine bearing a hydroxy substituent at position 4 on the phenyl ring. Annotation level-2 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 56 COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 3 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053 Acquisition and generation of the data is financially supported by the Max-Planck-Society L-Tyrosine is a non-essential amino acid which can inhibit citrate synthase activity in the posterior cortex. L-Tyrosine is a non-essential amino acid which can inhibit citrate synthase activity in the posterior cortex.

   

Estradiol

3,17b-Dihydroxyestra-1,3,5(10)-triene

C18H24O2 (272.1776)


A 3-hydroxy steroid that is estra-1,3,5(10)-triene substituted by hydroxy groups at positions 3 and 17. G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03C - Estrogens > G03CA - Natural and semisynthetic estrogens, plain D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens COVID info from COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 2797 CONFIDENCE standard compound; INTERNAL_ID 303 CONFIDENCE standard compound; INTERNAL_ID 4149 Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Estradiol (β-Estradiol) is a steroid hormone and the major female sex hormone. Estradiol can up-regulate the expression of neural markers of human endometrial stem cells (hEnSCs) and promote their neural differentiation. Estradiol can be used for the research of cancers, neurodegenerative diseases and neural tissue engineering[1][2]. Estradiol (β-Estradiol) is a steroid hormone and the major female sex hormone. Estradiol can up-regulate the expression of neural markers of human endometrial stem cells (hEnSCs) and promote their neural differentiation. Estradiol can be used for the research of cancers, neurodegenerative diseases and neural tissue engineering[1][2].

   

Dihydrocapsaicin

Dihydrocapsaicin

C18H29NO3 (307.2147)


relative retention time with respect to 9-anthracene Carboxylic Acid is 1.274 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.271 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.269 Acquisition and generation of the data is financially supported in part by CREST/JST. Dihydrocapsaicin, a capsaicin, is a potent and selective TRPV1 (transient receptor potential vanilloid channel 1) agonist. Dihydrocapsaicin reduces AIF, Bax, and Caspase-3 expressions, and increased Bcl-2, Bcl-xL and p-Akt levels. Dihydrocapsaicin enhances the hypothermia-induced neuroprotection following ischemic stroke via PI3K/Akt regulation in rat[1][2][3]. Dihydrocapsaicin, a capsaicin, is a potent and selective TRPV1 (transient receptor potential vanilloid channel 1) agonist. Dihydrocapsaicin reduces AIF, Bax, and Caspase-3 expressions, and increased Bcl-2, Bcl-xL and p-Akt levels. Dihydrocapsaicin enhances the hypothermia-induced neuroprotection following ischemic stroke via PI3K/Akt regulation in rat[1][2][3]. Dihydrocapsaicin, a capsaicin, is a potent and selective TRPV1 (transient receptor potential vanilloid channel 1) agonist. Dihydrocapsaicin reduces AIF, Bax, and Caspase-3 expressions, and increased Bcl-2, Bcl-xL and p-Akt levels. Dihydrocapsaicin enhances the hypothermia-induced neuroprotection following ischemic stroke via PI3K/Akt regulation in rat[1][2][3].

   

Hymecromone

7-HYDROXY-4-METHYLCOUMARIN

C10H8O3 (176.0473)


CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3335; ORIGINAL_PRECURSOR_SCAN_NO 3333 A - Alimentary tract and metabolism > A05 - Bile and liver therapy > A05A - Bile therapy COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78272 - Agent Affecting Nervous System > C29698 - Antispasmodic Agent D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3322; ORIGINAL_PRECURSOR_SCAN_NO 3320 CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3312; ORIGINAL_PRECURSOR_SCAN_NO 3309 CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3317; ORIGINAL_PRECURSOR_SCAN_NO 3316 CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3331; ORIGINAL_PRECURSOR_SCAN_NO 3329 CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3329; ORIGINAL_PRECURSOR_SCAN_NO 3326 CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7326; ORIGINAL_PRECURSOR_SCAN_NO 7323 CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7324; ORIGINAL_PRECURSOR_SCAN_NO 7320 CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7332; ORIGINAL_PRECURSOR_SCAN_NO 7328 CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7358; ORIGINAL_PRECURSOR_SCAN_NO 7356 CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7358; ORIGINAL_PRECURSOR_SCAN_NO 7355 CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7342; ORIGINAL_PRECURSOR_SCAN_NO 7340 CONFIDENCE standard compound; INTERNAL_ID 207; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3396; ORIGINAL_PRECURSOR_SCAN_NO 3391 CONFIDENCE standard compound; INTERNAL_ID 207; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3389; ORIGINAL_PRECURSOR_SCAN_NO 3387 CONFIDENCE standard compound; INTERNAL_ID 207; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3360; ORIGINAL_PRECURSOR_SCAN_NO 3358 CONFIDENCE standard compound; INTERNAL_ID 207; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3383; ORIGINAL_PRECURSOR_SCAN_NO 3380 CONFIDENCE standard compound; INTERNAL_ID 207; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3365; ORIGINAL_PRECURSOR_SCAN_NO 3363 CONFIDENCE standard compound; INTERNAL_ID 207; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3363; ORIGINAL_PRECURSOR_SCAN_NO 3361 CONFIDENCE standard compound; INTERNAL_ID 207; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7291; ORIGINAL_PRECURSOR_SCAN_NO 7286 CONFIDENCE standard compound; INTERNAL_ID 207; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7335; ORIGINAL_PRECURSOR_SCAN_NO 7331 CONFIDENCE standard compound; INTERNAL_ID 207; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7307; ORIGINAL_PRECURSOR_SCAN_NO 7303 CONFIDENCE standard compound; INTERNAL_ID 207; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7337; ORIGINAL_PRECURSOR_SCAN_NO 7335 CONFIDENCE standard compound; INTERNAL_ID 207; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7336; ORIGINAL_PRECURSOR_SCAN_NO 7332 CONFIDENCE standard compound; INTERNAL_ID 4193 4-Methylumbelliferone is a hyaluronic acid biosynthesis inhibitor with antitumoral and antimetastatic effects. 4-Methylumbelliferone is a hyaluronic acid biosynthesis inhibitor with antitumoral and antimetastatic effects.

   

Gingerol

3-Decanone, 5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-, (S)-(+)-

C17H26O4 (294.1831)


Gingerol is a beta-hydroxy ketone that is 5-hydroxydecan-3-one substituted by a 4-hydroxy-3-methoxyphenyl moiety at position 1; believed to inhibit adipogenesis. It is a constituent of fresh ginger. It has a role as an antineoplastic agent and a plant metabolite. It is a beta-hydroxy ketone and a member of guaiacols. Gingerol is a natural product found in Illicium verum, Piper nigrum, and other organisms with data available. See also: Ginger (part of). A beta-hydroxy ketone that is 5-hydroxydecan-3-one substituted by a 4-hydroxy-3-methoxyphenyl moiety at position 1; believed to inhibit adipogenesis. It is a constituent of fresh ginger. Annotation level-1 [6]-Gingerol is an active compound isolated from Ginger (Zingiber officinale), exhibits a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation. [6]-Gingerol is an active compound isolated from Ginger (Zingiber officinale), exhibits a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation. [6]-Gingerol is an active compound isolated from Ginger (Zingiber officinale), exhibits a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation.

   

Puerarin

7-hydroxy-3-(4-hydroxyphenyl)-8-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]-4-chromenone

C21H20O9 (416.1107)


D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Puerarin, an isoflavone extracted from Radix puerariae, is a 5-HT2C receptor antagonist. Puerarin, an isoflavone extracted from Radix puerariae, is a 5-HT2C receptor antagonist. Puerarin, an isoflavone extracted from Radix puerariae, is a 5-HT2C receptor antagonist.

   

Dehydrocorydaline

Dehydrocorydaline

[C22H24NO4]+ (366.1705)


Annotation level-1 Dehydrocorydaline (13-Methylpalmatine) is an alkaloid that regulates protein expression of Bax, Bcl-2; activates caspase-7, caspase-8, and inactivates PARP[1]. Dehydrocorydaline elevates p38 MAPK activation. Anti-inflammatory and anti-cancer activities[2]. Dehydrocorydaline shows strong anti-malarial effects (IC50=38 nM), and low cytotoxicity (cell viability?>?90\\%) using P. falciparum 3D7 strain[3]. Dehydrocorydaline (13-Methylpalmatine) is an alkaloid that regulates protein expression of Bax, Bcl-2; activates caspase-7, caspase-8, and inactivates PARP[1]. Dehydrocorydaline elevates p38 MAPK activation. Anti-inflammatory and anti-cancer activities[2]. Dehydrocorydaline shows strong anti-malarial effects (IC50=38 nM), and low cytotoxicity (cell viability?>?90\%) using P. falciparum 3D7 strain[3].

   

Resibufogenin

Resibufogenin

C24H32O4 (384.23)


Annotation level-1 Resibufogenin is a component of cinobufogenin and has the function of inhibiting oxidative stress and tumor regeneration. Resibufogenin is a component of cinobufogenin and has the function of inhibiting oxidative stress and tumor regeneration.

   

Scoparone

6,7-dimethoxycoumarin

C11H10O4 (206.0579)


Annotation level-1 D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Scoparone is isolated from Artemisia capillaris Thunb., has anticoagulant, vasorelaxant antioxidant, anti-inflammatory activities[1]. Scoparone is isolated from Artemisia capillaris Thunb., has anticoagulant, vasorelaxant antioxidant, anti-inflammatory activities[1].

   

Peoniflorin

Paeoniflorin

C23H28O11 (480.1632)


D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Annotation level-1 Paeoniflorin is a heat shock protein-inducing compound and commonly exists in the plants of Paeoniaceae family, with various biological activities, including anticancer activity, anti-inflammatory activity, enhancing cognition and attenuating learning impairment, anti-oxidative stress, antiplatelet aggregation, expansion of blood vessels, and reducing blood viscosity[1][2][3]. Paeoniflorin is a heat shock protein-inducing compound and commonly exists in the plants of Paeoniaceae family, with various biological activities, including anticancer activity, anti-inflammatory activity, enhancing cognition and attenuating learning impairment, anti-oxidative stress, antiplatelet aggregation, expansion of blood vessels, and reducing blood viscosity[1][2][3].

   

Ginkgolide B

NCGC00384675-01_C20H24O10_6H-9,4a-(Epoxymethano)-3aH,9H-cyclopenta[c]furo[2,3-b]furo[3,2:3,4]cyclopenta[1,2-d]furan-2,6,13(1H)-trione, 11-(1,1-dimethylethyl)hexahydro-1,4b,8-trihydroxy-5-methyl-, (3aR,4aR,4bR,5S,7aS,9R,11S)-

C20H24O10 (424.1369)


D006401 - Hematologic Agents > D005343 - Fibrinolytic Agents D050299 - Fibrin Modulating Agents D002317 - Cardiovascular Agents Origin: Plant; SubCategory_DNP: Diterpenoids, Ginkgolide diterpenoids Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.734 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.729 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.731 Ginkgolide B (BN-52021) is a terpenoid and one of the important active substances in Ginkgo leaves. Ginkgolide B (BN-52021) is a terpenoid and one of the important active substances in Ginkgo leaves.

   

Psoralen

Psoralen

C11H6O3 (186.0317)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D003432 - Cross-Linking Reagents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics relative retention time with respect to 9-anthracene Carboxylic Acid is 0.856 D003879 - Dermatologic Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.851 Psoralen (Ficusin) is a coumarin isolated from the seeds of Fructus Psoraleae. Psoralen exhibits a wide range of biological properties, including anti-cancer, antioxidant, antidepressant, anticancer, antibacterial, and antiviral, et al[1]. Psoralen (Ficusin) is a coumarin isolated from the seeds of Fructus Psoraleae. Psoralen exhibits a wide range of biological properties, including anti-cancer, antioxidant, antidepressant, anticancer, antibacterial, and antiviral, et al[1].

   

Methoxsalen

8-Methoxypsoralen

C12H8O4 (216.0423)


D - Dermatologicals > D05 - Antipsoriatics > D05B - Antipsoriatics for systemic use > D05BA - Psoralens for systemic use D - Dermatologicals > D05 - Antipsoriatics > D05A - Antipsoriatics for topical use > D05AD - Psoralens for topical use D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D003432 - Cross-Linking Reagents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent relative retention time with respect to 9-anthracene Carboxylic Acid is 0.910 C1420 - Photosensitizing Agent D003879 - Dermatologic Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.909 Methoxsalen (8-Methoxypsoralen) is a furanocoumarin compound used in psoralen, used in studies of psoriasis, eczema, vitiligo and some sun-exposed cutaneous lymphomas, and is a P450 inhibitor. Methoxsalen (8-Methoxypsoralen) is a furanocoumarin compound used in psoralen, used in studies of psoriasis, eczema, vitiligo and some sun-exposed cutaneous lymphomas, and is a P450 inhibitor.

   

Taxifolin

(2R,3R)-2-(3,4-dihydroxyphenyl)-2,3-dihydro-3,5,7-trihydroxy-4H-1-benzopyran-4-one

C15H12O7 (304.0583)


A pentahydroxyflavanone that is the 2,3-dihydro derivative of quercetin. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Origin: Plant; Formula(Parent): C15H12O7; Bottle Name:(+-)-Taxifolin; PRIME Parent Name:Dihydroquercetin; PRIME in-house No.:S0088, Pyrans relative retention time with respect to 9-anthracene Carboxylic Acid is 0.594 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.596 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.590 Taxifolin ((+)-Dihydroquercetin) exhibits important anti-tyrosinase activity. Taxifolin exhibits significant inhibitory activity against collagenase with an IC50 value of 193.3 μM[1]. Taxifolin is an important natural compound with antifibrotic activity. Taxifolin is a free radical scavenger with antioxidant capacity[2]. Taxifolin ((+)-Dihydroquercetin) exhibits important anti-tyrosinase activity. Taxifolin exhibits significant inhibitory activity against collagenase with an IC50 value of 193.3 μM[1]. Taxifolin is an important natural compound with antifibrotic activity. Taxifolin is a free radical scavenger with antioxidant capacity[2].

   

Esculetin

InChI=1\C9H6O4\c10-6-3-5-1-2-9(12)13-8(5)4-7(6)11\h1-4,10-11

C9H6O4 (178.0266)


D020011 - Protective Agents > D000975 - Antioxidants relative retention time with respect to 9-anthracene Carboxylic Acid is 0.434 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.428 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.430 Esculetin is an active ingredient extracted mainly from the bark of Fraxinus rhynchophylla. Esculetin inhibits platelet-derived growth factor (PDGF)-induced airway smooth muscle cells (ASMCs) phenotype switching through inhibition of PI3K/Akt pathway. Esculetin has antioxidant, antiinflammatory, and antitumor activities[1]. Esculetin is an active ingredient extracted mainly from the bark of Fraxinus rhynchophylla. Esculetin inhibits platelet-derived growth factor (PDGF)-induced airway smooth muscle cells (ASMCs) phenotype switching through inhibition of PI3K/Akt pathway. Esculetin has antioxidant, antiinflammatory, and antitumor activities[1]. Esculetin is an active ingredient extracted mainly from the bark of Fraxinus rhynchophylla. Esculetin inhibits platelet-derived growth factor (PDGF)-induced airway smooth muscle cells (ASMCs) phenotype switching through inhibition of PI3K/Akt pathway. Esculetin has antioxidant, antiinflammatory, and antitumor activities[1].

   

Tetrandrine

(1S,14S)-9,20,21,25-tetramethoxy-15,30-dimethyl-7,23-dioxa-15,30-diazaheptacyc lo[22.6.2.2<3,6>.1<8,12>.1<14,18>.0<22,36>.0<27,31>]hexatriaconta-3(33),4,6(34 ),8(35),9,11,18(36),19,21,24,26,31-dodecaene

C38H42N2O6 (622.3043)


(+)-Tetrandrine is a member of isoquinolines and a bisbenzylisoquinoline alkaloid. Tetrandrine is a natural product found in Pachygone dasycarpa, Cyclea barbata, and other organisms with data available. Tetrandrine is a natural, bis-benzylisoquinoline alkaloid isolated from the root of the plant Radix stephania tetrandrae. Tetrandrine non-selectively inhibits calcium channel activity and induces G1 blockade of the G1 phase of the cell cycle and apoptosis in various cell types, resulting in immunosuppressive, anti-proliferative and free radical scavenging effects. This agent also increases glucose utilization by enhancing hepatocyte glycogen synthesis, resulting in the lowering of plasma glucose. (NCI04) C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C308 - Immunotherapeutic Agent > C574 - Immunosuppressant D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D000970 - Antineoplastic Agents C93038 - Cation Channel Blocker Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.689 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.683 Tetrandrine (NSC-77037; d-Tetrandrine) is a bis-benzyl-isoquinoline alkaloid, which inhibits voltage-gated Ca2+ current (ICa) and Ca2+-activated K+ current. Tetrandrine (NSC-77037; d-Tetrandrine) is a bis-benzyl-isoquinoline alkaloid, which inhibits voltage-gated Ca2+ current (ICa) and Ca2+-activated K+ current.

   

triptolide

triptolide

C20H24O6 (360.1573)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.848 D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D009676 - Noxae > D000988 - Antispermatogenic Agents D009676 - Noxae > D000477 - Alkylating Agents D000970 - Antineoplastic Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.842 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.835 Triptolide is a diterpenoid triepoxide extracted from the root of Tripterygium wilfordii with immunosuppressive, anti-inflammatory, antiproliferative and antitumour effects. Triptolide is a NF-κB activation inhibitor[1][2][3][4][5][6]. Triptolide is a diterpenoid triepoxide extracted from the root of Tripterygium wilfordii with immunosuppressive, anti-inflammatory, antiproliferative and antitumour effects. Triptolide is a NF-κB activation inhibitor[1][2][3][4][5][6].

   

Ellagic Acid

Ellagic Acid

C14H6O8 (302.0063)


Origin: Plant, Ellagic acids, Benzopyranoids, Pyrans Ellagic acid is a natural antioxidant, and acts as a potent and ATP-competitive CK2 inhibitor, with an IC50 of 40 nM and a Ki of 20 nM. Ellagic acid is a natural antioxidant, and acts as a potent and ATP-competitive CK2 inhibitor, with an IC50 of 40 nM and a Ki of 20 nM.

   

ATOVAQUONE

Atovaquone (Atavaquone)

C22H19ClO3 (366.1023)


P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01A - Agents against amoebiasis and other protozoal diseases D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent D004791 - Enzyme Inhibitors

   

Aflatoxin B1

Aflatoxin B1 (putative_Observed from A. flavus)

C17H12O6 (312.0634)


An aflatoxin having a tetrahydrocyclopenta[c]furo[3,2:4,5]furo[2,3-h]chromene skeleton with oxygen functionality at positions 1, 4 and 11. D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D000348 - Aflatoxins CONFIDENCE standard compound; INTERNAL_ID 5962 CONFIDENCE Reference Standard (Level 1) Aflatoxin B1 (AFB1) is a Class 1A carcinogen, which is a secondary metabolite of Aspergillus flavus and A. parasiticus. Aflatoxin B1 (AFB1) mainly induces the transversion of G-->T in the third position of codon 249 of the p53 tumor suppressor gene, resulting in mutation[1][2].

   

Mevastatin

[(1S,7S,8S,8aR)-8-[2-[(2R,4R)-4-hydroxy-6-oxooxan-2-yl]ethyl]-7-methyl-1,2,3,7,8,8a-hexahydronaphthalen-1-yl] (2S)-2-methylbutanoate

C23H34O5 (390.2406)


Mevastatin is a carboxylic ester that is pravastatin that is lacking the allylic hydroxy group. A hydroxymethylglutaryl-CoA reductase inhibitor (statin) isolated from Penicillium citrinum and from Penicillium brevicompactum, its clinical use as a lipid-regulating drug ceased following reports of toxicity in animals. It has a role as a fungal metabolite, an EC 3.4.24.83 (anthrax lethal factor endopeptidase) inhibitor, an antifungal agent, a Penicillium metabolite and an apoptosis inducer. It is a carboxylic ester, a statin (naturally occurring), a member of hexahydronaphthalenes, a member of 2-pyranones and a polyketide. Mevastatin (Compactin) is a first HMG-CoA reductase inhibitor that belongs to the statins class. Mevastatin is a lipid-lowering agent, and induces apoptosis, arrests cancer cells in G0/G1 phase. Mevastatin also increases endothelial nitric oxide synthase (eNOS) mRNA and protein levels. Mevastatin has antitumor activity and has the potential for cardiovascular diseases treatment. Mevastatin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=73573-88-3 (retrieved 2024-10-09) (CAS RN: 73573-88-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

ferulate

InChI=1\C10H10O4\c1-14-9-6-7(2-4-8(9)11)3-5-10(12)13\h2-6,11H,1H3,(H,12,13

C10H10O4 (194.0579)


Ferulic acid, also known as 4-hydroxy-3-methoxycinnamic acid or 3-methoxy-4-hydroxy-trans-cinnamic acid, is a member of the class of compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. Ferulic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Ferulic acid can be found in a number of food items such as flaxseed, pepper (c. chinense), chinese cinnamon, and wakame, which makes ferulic acid a potential biomarker for the consumption of these food products. Ferulic acid can be found primarily in blood, feces, and urine, as well as in human fibroblasts and stratum corneum tissues. Ferulic acid exists in all eukaryotes, ranging from yeast to humans. Ferulic acid is a hydroxycinnamic acid, a type of organic compound. It is an abundant phenolic phytochemical found in plant cell walls, covalently bonded as side chains to molecules such as arabinoxylans. As a component of lignin, ferulic acid is a precursor in the manufacture of other aromatic compounds. The name is derived from the genus Ferula, referring to the giant fennel (Ferula communis) . D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D002491 - Central Nervous System Agents > D000700 - Analgesics D000975 - Antioxidants > D016166 - Free Radical Scavengers D006401 - Hematologic Agents > D000925 - Anticoagulants D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively.

   

Isovitexin

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-4H-chromen-4-one

C21H20O10 (432.1056)


Isovitexin is a C-glycosyl compound that consists of apigenin substituted by a 1,5-anhydro-D-glucitol moiety at position 6. It has a role as an EC 3.2.1.20 (alpha-glucosidase) inhibitor and a metabolite. It is a C-glycosyl compound and a trihydroxyflavone. It is functionally related to an apigenin. It is a conjugate acid of an isovitexin-7-olate. Isovitexin is a natural product found in Carex fraseriana, Rauhiella, and other organisms with data available. See also: Fenugreek seed (part of); Acai (part of); Crataegus monogyna flowering top (part of). A C-glycosyl compound that consists of apigenin substituted by a 1,5-anhydro-D-glucitol moiety at position 6. Isovitexin is a member of the class of compounds known as flavonoid c-glycosides. Flavonoid c-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to the 2-phenylchromen-4-one flavonoid backbone. Isovitexin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Isovitexin can be found in a number of food items such as common salsify, winged bean, flaxseed, and common buckwheat, which makes isovitexin a potential biomarker for the consumption of these food products. Isovitexin (or homovitexin, saponaretin) is a flavone. the apigenin-6-C-glucoside. It can be found in the passion flower, Cannabis, and the açaí palm . Constituent of Cucumis sativus (cucumber). Isovitexin 2-(6-p-coumaroylglucoside) 4-glucoside is found in cucumber and fruits. Constituent of young green barley leaves (Hordeum vulgare variety nudum). Isovitexin 7-(6-sinapoylglucoside) is found in barley and cereals and cereal products. Isovitexin is a flavonoid isolated from passion flower, Cannabis and, and the palm, possesses anti-inflammatory and anti-oxidant activities; Isovitexin acts like a JNK1/2 inhibitor and inhibits the activation of NF-κB. Isovitexin is a flavonoid isolated from passion flower, Cannabis and, and the palm, possesses anti-inflammatory and anti-oxidant activities; Isovitexin acts like a JNK1/2 inhibitor and inhibits the activation of NF-κB.

   

5-Methylcytosine

2-Pyrimidinol, 4-amino-5-methyl- (9CI)

C5H7N3O (125.0589)


A pyrimidine that is a derivative of cytosine, having a methyl group at the 5-position. 5-Methylcytosine is a well-characterized DNA modification, and is also predominantly in abundant non-coding RNAs in both prokaryotes and eukaryotes. 5-Methylcytosine in mRNA is a new epitranscriptome marker inArabidopsis, and that regulation of this modification is an integral part of gene regulatory networks underlying plant development[1].

   

Poncirin

(2S)-7-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxy-tetrahydropyran-2-yl]oxy-5-hydroxy-2-(4-methoxyphenyl)chroman-4-one

C28H34O14 (594.1948)


(2S)-poncirin is a flavanone glycoside that is 4-methoxy-5,7-dihydroxyflavanone attached to a neohesperidose (alpha-L-rhamnopyranosyl-(1->2)-beta-D-glucopyranose) residue via a glycosidic linkage. It has been isolated from the fruits of Poncirus trifoliata and exhibits inhibitory activity against liopolysaccharide (LPS)-induced prostaglandin E2 and interleukin-6 (IL-6) production. It has a role as a plant metabolite. It is a monomethoxyflavanone, a flavanone glycoside, a disaccharide derivative, a neohesperidoside and a member of 4-methoxyflavanones. It is functionally related to a 4-methoxy-5,7-dihydroxyflavanone. Poncirin is a natural product found in Citrus medica, Micromeria graeca, and other organisms with data available. A flavanone glycoside that is 4-methoxy-5,7-dihydroxyflavanone attached to a neohesperidose (alpha-L-rhamnopyranosyl-(1->2)-beta-D-glucopyranose) residue via a glycosidic linkage. It has been isolated from the fruits of Poncirus trifoliata and exhibits inhibitory activity against liopolysaccharide (LPS)-induced prostaglandin E2 and interleukin-6 (IL-6) production. Poncirin is isolated from?Poncirus trifoliata with anti-inflammory activites. Poncirin significantly reduces mechanical hyperalgesia and allodynia in Complete Freund’s Adjuvant (CFA)-induced inflammatory pain models[1]. Poncirin is isolated from?Poncirus trifoliata with anti-inflammory activites. Poncirin significantly reduces mechanical hyperalgesia and allodynia in Complete Freund’s Adjuvant (CFA)-induced inflammatory pain models[1].

   

Daphnetin

Daphnetin

C9H6O4 (178.0266)


7,8-dihydroxy-2h-chromen-2-one, also known as daphnetin or 7,8-dihydroxycoumarin, is a member of the class of compounds known as 7,8-dihydroxycoumarins. 7,8-dihydroxycoumarins are coumarins bearing two hydroxyl groups at the C7- and C8-positions of the coumarin skeleton, respectively. 7,8-dihydroxy-2h-chromen-2-one is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 7,8-dihydroxy-2h-chromen-2-one can be found in chickpea and watermelon, which makes 7,8-dihydroxy-2h-chromen-2-one a potential biomarker for the consumption of these food products. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 15 INTERNAL_ID 15; CONFIDENCE Reference Standard (Level 1) Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4].

   

Coumestrol

Coumestrol

C15H8O5 (268.0372)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens Coumestrol, a phytoestrogen present in soybean products, exhibits activities against cancers, neurological disorders, and autoimmune diseases. It suppresses proliferation of ES2 cells with an IC50 of 50 μM. Coumestrol, a phytoestrogen present in soybean products, exhibits activities against cancers, neurological disorders, and autoimmune diseases. It suppresses proliferation of ES2 cells with an IC50 of 50 μM.

   

Neohesperidin

(S)-7-(((2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)tetrahydro-2H-pyran-2-yl)oxy)-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)chroman-4-one

C28H34O15 (610.1898)


Neohesperidin is a flavanone glycoside that is hesperitin having an 2-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety attached to the 7-hydroxy group. It has a role as an antineoplastic agent and a plant metabolite. It is a neohesperidoside, a disaccharide derivative, a dihydroxyflavanone, a member of 3-hydroxyflavanones, a monomethoxyflavanone, a flavanone glycoside and a member of 4-methoxyflavanones. It is functionally related to a hesperetin. (S)-7-(((2-O-6-Deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl)oxy)-2,3-dihydro-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-4H-1-benzopyran-4-one is a natural product found in Citrus medica, Arabidopsis thaliana, and other organisms with data available. A flavanone glycoside that is hesperitin having an 2-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety attached to the 7-hydroxy group. Neohesperidin is a flavonoid compound found in high amounts in citrus fruits with anti-oxidant and anti-inflammatory effects. Neohesperidin is a flavonoid compound found in high amounts in citrus fruits with anti-oxidant and anti-inflammatory effects.

   

Arctiin

(3R,4R)-4-[(3,4-dimethoxyphenyl)methyl]-3-[[3-methoxy-4-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]phenyl]methyl]-2-tetrahydrofuranone

C27H34O11 (534.2101)


Annotation level-1 Arctiin (NSC 315527) is a plant lignan extracted from burdock seeds and has anti-cancer activity. Arctiin (NSC 315527) is a plant lignan extracted from burdock seeds and has anti-cancer activity.

   

Calycosin

4H-1-Benzopyran-4-one, 7-hydroxy-3-(3-hydroxy-4-methoxyphenyl)-

C16H12O5 (284.0685)


Calycosin is a member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone which is substituted by an additional hydroxy group at the 3 position and a methoxy group at the 4 position. It has a role as a metabolite and an antioxidant. It is a member of 7-hydroxyisoflavones and a member of 4-methoxyisoflavones. It is functionally related to an isoflavone. It is a conjugate acid of a calycosin(1-). Calycosin is a natural product found in Thermopsis lanceolata, Hedysarum polybotrys, and other organisms with data available. A member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone which is substituted by an additional hydroxy group at the 3 position and a methoxy group at the 4 position. Calycosin is a natural compound with antioxidant and anti-inflammatory activity. Calycosin is a natural compound with antioxidant and anti-inflammatory activity.

   

Angelicin

Isopsoralen

C11H6O3 (186.0317)


D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D007364 - Intercalating Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D002491 - Central Nervous System Agents > D000927 - Anticonvulsants Origin: Plant, Coumarins Angelicin is a natural tricyclic aromatic hydrocarbon compound that is structurally related to psoralen and has anti-cancer, anti-inflammatory, anti-viral and other activities. Cytotoxic, IC50: 49.56 μM; inhibits MHV-68, IC50: 5.39 μg/ml (28.95 μM). Angelicin is a natural tricyclic aromatic hydrocarbon compound that is structurally related to psoralen and has anti-cancer, anti-inflammatory, anti-viral and other activities. Cytotoxic, IC50: 49.56 μM; inhibits MHV-68, IC50: 5.39 μg/ml (28.95 μM).

   

Hordenine

N,N-Dimethyl-2-(4-hydroxyphenyl)ethylamine

C10H15NO (165.1154)


Annotation level-1 Hordenine, an alkaloid found in plants, inhibits melanogenesis by suppression of cyclic adenosine monophosphate (cAMP) production[1]. Hordenine, an alkaloid found in plants, inhibits melanogenesis by suppression of cyclic adenosine monophosphate (cAMP) production[1].

   

aspirin

Acetylsaliycilic acid

C9H8O4 (180.0423)


B - Blood and blood forming organs > B01 - Antithrombotic agents > B01A - Antithrombotic agents > B01AC - Platelet aggregation inhibitors excl. heparin N - Nervous system > N02 - Analgesics > N02B - Other analgesics and antipyretics > N02BA - Salicylic acid and derivatives D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials, COVID-19 Disease Map C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor > C287 - Aspirin D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics D006401 - Hematologic Agents > D005343 - Fibrinolytic Agents D050299 - Fibrin Modulating Agents D002317 - Cardiovascular Agents D004791 - Enzyme Inhibitors D058633 - Antipyretics Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 112

   

clofazimine

clofazimine

C27H22Cl2N4 (472.1221)


J - Antiinfectives for systemic use > J04 - Antimycobacterials > J04B - Drugs for treatment of lepra > J04BA - Drugs for treatment of lepra D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007917 - Leprostatic Agents COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C254 - Anti-Infective Agent > C258 - Antibiotic D000893 - Anti-Inflammatory Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   
   

quetiapine

quetiapine

C21H25N3O2S (383.1667)


N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AH - Diazepines, oxazepines, thiazepines and oxepines D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Quetiapine (ICI204636) is a 5-HT receptors agonist with a pEC50 of 4.77 for human 5-HT1A receptor. Quetiapine is a dopamine receptor antagonist with a pIC50 of 6.33 for human D2 receptor. Quetiapine has moderate to high affinity for the human D2, HT1A, 5-HT2A, 5-HT2C receptor with pKis of 7.25, 5.74, 7.54, 5.55. Antidepressant and anxiolytic effects[1].

   

Alizarin

InChI=1\C14H8O4\c15-10-6-5-9-11(14(10)18)13(17)8-4-2-1-3-7(8)12(9)16\h1-6,15,18

C14H8O4 (240.0423)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Carnosic acid

(4aR,10aS)-5,6-dihydroxy-1,1-dimethyl-7-propan-2-yl-2,3,4,9,10,10a-hexahydrophenanthrene-4a-carboxylic acid

C20H28O4 (332.1987)


D020011 - Protective Agents > D000975 - Antioxidants D000890 - Anti-Infective Agents

   

Ligustilide

(1E)-2-(4-Chlorophenyl)-3-(4-morpholinyl)-N-[(Z)-4-pyridinylmethylidene]-3-thioxo-1-propen-1-amine

C12H14O2 (190.0994)


   

Dichlorprop

Dichlorprop

C9H8Cl2O3 (233.985)


   

phenobarbital

phenobarbital

C12H12N2O3 (232.0848)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AA - Barbiturates and derivatives C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C67084 - Barbiturate D065693 - Cytochrome P-450 Enzyme Inducers > D065695 - Cytochrome P-450 CYP2B6 Inducers D065693 - Cytochrome P-450 Enzyme Inducers > D065701 - Cytochrome P-450 CYP3A Inducers D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants

   

iproniazid

N-propan-2-ylpyridine-4-carbohydrazide

C9H13N3O (179.1059)


N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AF - Monoamine oxidase inhibitors, non-selective D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors C471 - Enzyme Inhibitor > C667 - Monoamine Oxidase Inhibitor

   

4-Aminosalicylic acid

4-Aminosalicylic acid

C7H7NO3 (153.0426)


J - Antiinfectives for systemic use > J04 - Antimycobacterials > J04A - Drugs for treatment of tuberculosis > J04AA - Aminosalicylic acid and derivatives D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents C254 - Anti-Infective Agent > C52588 - Antibacterial Agent > C280 - Antitubercular Agent COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; WUBBRNOQWQTFEX-UHFFFAOYSA-N_STSL_0188_4-Aminosalicylic Acid_0125fmol_180831_S2_L02M02_81; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I.

   

Crocetin

(2E,4E,6E,8E,10E,12E,14E)-2,6,11,15-tetramethylhexadeca-2,4,6,8,10,12,14-heptaenedioic acid8,8-diapocarotene-8,8-dioic acid

C20H24O4 (328.1675)


Crocetin is a 20-carbon dicarboxylic acid which is a diterpenoid and natural carotenoid. Found in the crocus flower, it has been administered as an anti-fatigue dietary supplement. It has a role as a nutraceutical, a metabolite and an antioxidant. It is a carotenoic acid, a diterpenoid and a polyunsaturated dicarboxylic acid. It is a conjugate acid of a crocetin(2-). Vitamin A-analog that increases diffusivity of oxygen in aqueous solutions, including plasma. Crocetin is a natural product found in Verbascum lychnitis, Gardenia jasminoides, and other organisms with data available. A 20-carbon dicarboxylic acid which is a diterpenoid and natural carotenoid. Found in the crocus flower, it has been administered as an anti-fatigue dietary supplement. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000970 - Antineoplastic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Crocetin is a natural carotenoid dicarboxylic acid that is found in the crocus flower and Gardenia jasminoides (fruits).

   

ST 22:3;O3

(6alpha)-17-hydroxy-6-methylpregn-4-ene-3,20-dione

C22H32O3 (344.2351)


CONFIDENCE standard compound; INTERNAL_ID 1391; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10301; ORIGINAL_PRECURSOR_SCAN_NO 10299 C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones CONFIDENCE standard compound; INTERNAL_ID 1391; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10334; ORIGINAL_PRECURSOR_SCAN_NO 10329 CONFIDENCE standard compound; INTERNAL_ID 1391; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10348; ORIGINAL_PRECURSOR_SCAN_NO 10343 CONFIDENCE standard compound; INTERNAL_ID 1391; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10391; ORIGINAL_PRECURSOR_SCAN_NO 10386 CONFIDENCE standard compound; INTERNAL_ID 1391; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10401; ORIGINAL_PRECURSOR_SCAN_NO 10399 CONFIDENCE standard compound; INTERNAL_ID 1391; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10415; ORIGINAL_PRECURSOR_SCAN_NO 10413 G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03A - Hormonal contraceptives for systemic use > G03AC - Progestogens G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03D - Progestogens > G03DA - Pregnen (4) derivatives L - Antineoplastic and immunomodulating agents > L02 - Endocrine therapy > L02A - Hormones and related agents > L02AB - Progestogens D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents CONFIDENCE standard compound; INTERNAL_ID 2395 INTERNAL_ID 2395; CONFIDENCE standard compound

   

Anhalin

Hordenine

C10H15NO (165.1154)


Origin: Plant; Formula(Parent): C10H15NO; Bottle Name:Hordenine sulfate; PRIME Parent Name:Hordenine; PRIME in-house No.:V0301; SubCategory_DNP: Alkaloids derived wholly or in part from phenylalanine or tyrosine, Cactus alkaloids Hordenine, an alkaloid found in plants, inhibits melanogenesis by suppression of cyclic adenosine monophosphate (cAMP) production[1]. Hordenine, an alkaloid found in plants, inhibits melanogenesis by suppression of cyclic adenosine monophosphate (cAMP) production[1].

   

Fagarine I

Allocryptopine

C21H23NO5 (369.1576)


Origin: Plant; SubCategory_DNP: Isoquinoline alkaloids, Morphine alkaloids, Cryptopine alkaloids Allocryptopine, a derivative of tetrahydropalmatine, is extracted from Macleaya cordata (Thunb.) Pers. Papaveraceae. Allocryptopine has antiarrhythmic effects and potently blocks human ether-a-go-go related gene (hERG) current[1][2]. Allocryptopine, a derivative of tetrahydropalmatine, is extracted from Macleaya cordata (Thunb.) Pers. Papaveraceae. Allocryptopine has antiarrhythmic effects and potently blocks human ether-a-go-go related gene (hERG) current[1][2].

   

Phytic acid

1D-myo-Inositol 1,2,3,4,5,6-hexakisphosphate

C6H18O24P6 (659.8614)


1d-myo-inositol 1,2,3,4,5,6-hexakisphosphate, also known as phytate or phytic acid, is a member of the class of compounds known as inositol phosphates. Inositol phosphates are compounds containing a phosphate group attached to an inositol (or cyclohexanehexol) moiety. 1d-myo-inositol 1,2,3,4,5,6-hexakisphosphate is soluble (in water) and an extremely strong acidic compound (based on its pKa). 1d-myo-inositol 1,2,3,4,5,6-hexakisphosphate can be found in a number of food items such as scarlet bean, arrowroot, salmonberry, and roman camomile, which makes 1d-myo-inositol 1,2,3,4,5,6-hexakisphosphate a potential biomarker for the consumption of these food products. 1d-myo-inositol 1,2,3,4,5,6-hexakisphosphate can be found primarily in blood and urine, as well as throughout most human tissues. In humans, 1d-myo-inositol 1,2,3,4,5,6-hexakisphosphate is involved in a couple of metabolic pathways, which include inositol metabolism and inositol phosphate metabolism. C26170 - Protective Agent > C275 - Antioxidant

   

Cyprodinil

Pesticide4_Cyprodinil_C14H15N3_2-Pyrimidinamine, 4-cyclopropyl-6-methyl-N-phenyl-

C14H15N3 (225.1266)


   

Piperin

InChI=1\C17H19NO3\c19-17(18-10-4-1-5-11-18)7-3-2-6-14-8-9-15-16(12-14)21-13-20-15\h2-3,6-9,12H,1,4-5,10-11,13H2\b6-2+,7-3

C17H19NO3 (285.1365)


C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors Piperine, a natural alkaloid isolated from Piper nigrum L, inhibits P-glycoprotein and CYP3A4 activities with an IC50 value of 61.94±0.054 μg/mL in HeLa cell. Piperine, a natural alkaloid isolated from Piper nigrum L, inhibits P-glycoprotein and CYP3A4 activities with an IC50 value of 61.94±0.054 μg/mL in HeLa cell.

   

Acadesine

5-amino-1-[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]imidazole-4-carboxamide

C9H14N4O5 (258.0964)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite C - Cardiovascular system > C01 - Cardiac therapy

   

Ginsenoside Rh2

(2R,3R,4S,5S,6R)-2-[[(3S,5R,8R,9R,10R,12R,13R,14R,17S)-12-hydroxy-17-[(1S)-1-hydroxy-1,5-dimethylhex-4-enyl]-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]-6-(hydroxymethyl)tetrahydropyran-3,4,5-tri

C36H62O8 (622.4444)


20(R)-Ginsenoside Rh2, a matrix metalloproteinase (MMP) inhibitor, acts as a cell antiproliferator. It has anticancer effects via blocking cell proliferation and causing G1 phase arrest. 20(R)-Ginsenoside Rh2 induces apoptosis, and has anti-inflammatory and antioxidative activity[1][2][3]. 20(R)-Ginsenoside Rh2 inhibits the replication and proliferation of mouse and human gammaherpesvirus 68 (MHV-68) with an IC50 of 2.77 μM for murine MHV-68[4]. 20(R)-Ginsenoside Rh2, a matrix metalloproteinase (MMP) inhibitor, acts as a cell antiproliferator. It has anticancer effects via blocking cell proliferation and causing G1 phase arrest. 20(R)-Ginsenoside Rh2 induces apoptosis, and has anti-inflammatory and antioxidative activity[1][2][3]. 20(R)-Ginsenoside Rh2 inhibits the replication and proliferation of mouse and human gammaherpesvirus 68 (MHV-68) with an IC50 of 2.77 μM for murine MHV-68[4]. Ginsenoside Rh2 induces the activation of caspase-8 and caspase-9. Ginsenoside Rh2 induces cancer cell apoptosis in a multi-path manner. Ginsenoside Rh2 induces the activation of caspase-8 and caspase-9. Ginsenoside Rh2 induces cancer cell apoptosis in a multi-path manner.

   

FA 5:1;O3

2-Dehydro-3-deoxy-D-arabinonate;2-Dehydro-3-deoxy-D-pentonate;2-Dehydro-3-deoxy-D-xylonate

C5H8O5 (148.0372)


   

CoA 18:0

C18:0-CoA;C18:0-coenzyme A;S-stearoyl-CoA;S-stearoylcoenzyme A;octadecanoyl-CoA;octadecanoyl-coenzyme A;stearoyl-coenzyme A

C39H70N7O17P3S (1033.3762)


   

spinasterol

(3S,5S,9R,10S,13R,14R,17R)-17-[(E,1R,4S)-4-ethyl-1,5-dimethyl-hex-2-enyl]-10,13-dimethyl-2,3,4,5,6,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.3705)


α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2]. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2].

   

ST 26:3;O3

17-heptanoyl-17beta-hydroxyandrost-4-en-3-one

C26H40O3 (400.2977)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D000728 - Androgens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid

   

Lithium

Lithium

Li (7.016)


Same as: D08133 N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AN - Lithium

   

Pyricarbate

Pyridinol carbamate

C11H15N3O4 (253.1063)


C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Same as: D01396

   

Versulin

4H-1-Benzopyran-4-one, 5,7-dihydroxy-2-(4-hydroxyphenyl)- (9CI)

C15H10O5 (270.0528)


Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM. Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM.

   

Atractylenolide I

(4aS,8aS)-3,8a-dimethyl-5-methylidene-4a,6,7,8-tetrahydro-4H-benzo[f][1]benzoxol-2-one

C15H18O2 (230.1307)


Atractylenolide I is a sesquiterpene derived from the rhizome of Atractylodes macrocephala, possesses diverse bioactivities, such as neuroprotective, anti-allergic, anti-inflammatory and anticancer properties. Atractylenolide I reduces protein levels of phosphorylated JAK2 and STAT3 in A375 cells, and acts as a TLR4-antagonizing agent. Atractylenolide I is a sesquiterpene derived from the rhizome of Atractylodes macrocephala, possesses diverse bioactivities, such as neuroprotective, anti-allergic, anti-inflammatory and anticancer properties. Atractylenolide I reduces protein levels of phosphorylated JAK2 and STAT3 in A375 cells, and acts as a TLR4-antagonizing agent.

   

Quertin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-

C15H10O7 (302.0427)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

Mairin

(1R,3aS,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-9-Hydroxy-1-isopropenyl-5a,5b,8,8,11a-pentamethyl-eicosahydro-cyclopenta[a]chrysene-3a-carboxylic acid

C30H48O3 (456.3603)


C308 - Immunotherapeutic Agent > C2139 - Immunostimulant Betulinic acid is a natural pentacyclic triterpenoid, acts as a eukaryotic topoisomerase I inhibitor, with an IC50 of 5 μM, and possesses anti-HIV, anti-malarial, anti-inflammatory and anti-tumor properties[1][2][3][4]. Betulinic acid is a natural pentacyclic triterpenoid, acts as a eukaryotic topoisomerase I inhibitor, with an IC50 of 5 μM, and possesses anti-HIV, anti-malarial, anti-inflammatory and anti-tumor properties[1][2][3][4].

   

Harzol

(3S,8S,9S,10R,13R,14S,17R)-17-[(2R,5R)-5-ethyl-6-methyl-heptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

NPI 031L

4H-1-Benzopyran-4-one, 5,7-dihydroxy-3-(4-hydroxyphenyl)-

C15H10O5 (270.0528)


C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1821 - Selective Estrogen Receptor Modulator D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D004791 - Enzyme Inhibitors > D047428 - Protein Kinase Inhibitors D020011 - Protective Agents > D016588 - Anticarcinogenic Agents C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist D000970 - Antineoplastic Agents C1892 - Chemopreventive Agent Genistein, a soy isoflavone, is a multiple tyrosine kinases (e.g., EGFR) inhibitor which acts as a chemotherapeutic agent against different types of cancer, mainly by altering apoptosis, the cell cycle, and angiogenesis and inhibiting metastasis. Genistein, a soy isoflavone, is a multiple tyrosine kinases (e.g., EGFR) inhibitor which acts as a chemotherapeutic agent against different types of cancer, mainly by altering apoptosis, the cell cycle, and angiogenesis and inhibiting metastasis.

   

Urson

(1S,2R,4aS,6aR,6aS,6bR,8aR,10S,12aR,14bS)-10-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydro-1H-picene-4a-carboxylic acid

C30H48O3 (456.3603)


D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C274 - Antineoplastic Agent > C129839 - Apoptotic Pathway-targeting Antineoplastic Agent D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents D000890 - Anti-Infective Agents D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy.

   

GALOP

InChI=1\C7H6O5\c8-4-1-3(7(11)12)2-5(9)6(4)10\h1-2,8-10H,(H,11,12

C7H6O5 (170.0215)


C26170 - Protective Agent > C275 - Antioxidant Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2]. Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2].

   

Ostol

InChI=1\C15H16O3\c1-10(2)4-7-12-13(17-3)8-5-11-6-9-14(16)18-15(11)12\h4-6,8-9H,7H2,1-3H

C15H16O3 (244.1099)


D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D007155 - Immunologic Factors Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells. Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells. Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells.

   

Gentiopicrin

(5R,6S)-6-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-5-vinyl-5,6-dihydro-3H-pyrano[5,4-c]pyran-1-one

C16H20O9 (356.1107)


Gentiopicroside, a naturally occurring iridoid glycoside, inhibits P450 activity, with an IC50 and a Ki of 61 μM and 22.8 μM for CYP2A6; Gentiopicroside has anti-inflammatoryand antioxidative effects. Gentiopicroside, a naturally occurring iridoid glycoside, inhibits P450 activity, with an IC50 and a Ki of 61 μM and 22.8 μM for CYP2A6; Gentiopicroside has anti-inflammatoryand antioxidative effects.

   

Coumarate

InChI=1\C9H8O3\c10-8-4-1-7(2-5-8)3-6-9(11)12\h1-6,10H,(H,11,12)\b6-3

C9H8O3 (164.0473)


D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants D000890 - Anti-Infective Agents p-Coumaric acid is the abundant isomer of cinnamic acid which has antitumor and anti-mutagenic activities. p-Coumaric acid is the abundant isomer of cinnamic acid which has antitumor and anti-mutagenic activities. p-Hydroxycinnamic acid, a common dietary phenol, could inhibit platelet activity, with IC50s of 371 μM, 126 μM for thromboxane B2 production and lipopolysaccharide-induced prostaglandin E2 generation, respectively. p-Hydroxycinnamic acid, a common dietary phenol, could inhibit platelet activity, with IC50s of 371 μM, 126 μM for thromboxane B2 production and lipopolysaccharide-induced prostaglandin E2 generation, respectively.

   

jatrorrizine

Jatrorrhizine

C20H20NO4+ (338.1392)


   

LM-94

5-18-01-00439 (Beilstein Handbook Reference)

C10H8O3 (176.0473)


A - Alimentary tract and metabolism > A05 - Bile and liver therapy > A05A - Bile therapy COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78272 - Agent Affecting Nervous System > C29698 - Antispasmodic Agent D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 4-Methylumbelliferone is a hyaluronic acid biosynthesis inhibitor with antitumoral and antimetastatic effects. 4-Methylumbelliferone is a hyaluronic acid biosynthesis inhibitor with antitumoral and antimetastatic effects.

   

139-85-5

InChI=1\C7H6O3\c8-4-5-1-2-6(9)7(10)3-5\h1-4,9-10

C7H6O3 (138.0317)


D006401 - Hematologic Agents > D000925 - Anticoagulants Protocatechualdehyde (Catechaldehyde), a natural polyphenol compound isolated from the roots of radix Salviae Miltiorrhizae, is associated with a wide variety of biological activities and has been widely used in medicine as an antioxidant, anti-aging, an antibacterial and anti-inflammatory agent[1]. Protocatechualdehyde (Catechaldehyde), a natural polyphenol compound isolated from the roots of radix Salviae Miltiorrhizae, is associated with a wide variety of biological activities and has been widely used in medicine as an antioxidant, anti-aging, an antibacterial and anti-inflammatory agent[1].

   

Luteanin

4H-Dibenzo(de,g)quinolin-11-ol, 5,6,6a,7-tetrahydro-1,2,10-trimethoxy-6-methyl-, (S)- (9CI)

C20H23NO4 (341.1627)


Isocorydine is isolated from Dicranostigma leptopodum (Maxim.) Fedde (DLF). Isocorydine combines with Doxorubicin (DOX) has a promising potential to eradicate hepatocellular carcinoma (HCC)[1]. Isocorydine is isolated from Dicranostigma leptopodum (Maxim.) Fedde (DLF). Isocorydine combines with Doxorubicin (DOX) has a promising potential to eradicate hepatocellular carcinoma (HCC)[1].

   

Phloretol

3-(4-Hydroxy-phenyl)-1-(2,4,6-trihydroxy-phenyl)-propan-1-one

C15H14O5 (274.0841)


Phloretin (NSC 407292; RJC 02792) is a flavonoid extracted from Malus pumila Mill., has anti-inflammatory activities. Phloridzin is a specific, competitive and orally active inhibitor of sodium/glucose cotransporters in the intestine (SGLT1) and kidney (SGLT2). Phloretin inhibits Yeast-made GLUT1 as well as Human erythrocyte GLUT1 with IC50values of 49 μM and 61 μM, respectively[1].Phloretin has the potential for the treatment of rheumatoid arthritis (RA)?and allergic airway inflammation[4]. Phloretin (NSC 407292; RJC 02792) is a flavonoid extracted from Malus pumila Mill., has anti-inflammatory activities. Phloridzin is a specific, competitive and orally active inhibitor of sodium/glucose cotransporters in the intestine (SGLT1) and kidney (SGLT2). Phloretin inhibits Yeast-made GLUT1 as well as Human erythrocyte GLUT1 with IC50values of 49 μM and 61 μM, respectively[1].Phloretin has the potential for the treatment of rheumatoid arthritis (RA)?and allergic airway inflammation[4]. Phloretin (NSC 407292; RJC 02792) is a flavonoid extracted from Malus pumila Mill., has anti-inflammatory activities. Phloridzin is a specific, competitive and orally active inhibitor of sodium/glucose cotransporters in the intestine (SGLT1) and kidney (SGLT2). Phloretin inhibits Yeast-made GLUT1 as well as Human erythrocyte GLUT1 with IC50values of 49 μM and 61 μM, respectively[1].Phloretin has the potential for the treatment of rheumatoid arthritis (RA)?and allergic airway inflammation[4].

   

5-Mop

InChI=1\C12H8O4\c1-14-12-7-2-3-11(13)16-10(7)6-9-8(12)4-5-15-9\h2-6H,1H

C12H8O4 (216.0423)


D - Dermatologicals > D05 - Antipsoriatics > D05B - Antipsoriatics for systemic use > D05BA - Psoralens for systemic use D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins D000893 - Anti-Inflammatory Agents D003879 - Dermatologic Agents Bergapten is a natural anti-inflammatory and anti-tumor agent. Bergapten is inhibitory towards mouse and human CYP isoforms. Bergapten is a natural anti-inflammatory and anti-tumor agent. Bergapten is inhibitory towards mouse and human CYP isoforms.

   

Ficusin

2-Propenoic acid, 3-(6-hydroxy-5-benzofuranyl)-, .delta.-lactone

C11H6O3 (186.0317)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D003432 - Cross-Linking Reagents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D003879 - Dermatologic Agents Psoralen (Ficusin) is a coumarin isolated from the seeds of Fructus Psoraleae. Psoralen exhibits a wide range of biological properties, including anti-cancer, antioxidant, antidepressant, anticancer, antibacterial, and antiviral, et al[1]. Psoralen (Ficusin) is a coumarin isolated from the seeds of Fructus Psoraleae. Psoralen exhibits a wide range of biological properties, including anti-cancer, antioxidant, antidepressant, anticancer, antibacterial, and antiviral, et al[1].

   

Uvadex

5-Benzofuranacrylic acid, 6-hydroxy-7-methoxy-, .delta.-lactone

C12H8O4 (216.0423)


D - Dermatologicals > D05 - Antipsoriatics > D05B - Antipsoriatics for systemic use > D05BA - Psoralens for systemic use D - Dermatologicals > D05 - Antipsoriatics > D05A - Antipsoriatics for topical use > D05AD - Psoralens for topical use D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D003432 - Cross-Linking Reagents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent C1420 - Photosensitizing Agent D003879 - Dermatologic Agents Methoxsalen (8-Methoxypsoralen) is a furanocoumarin compound used in psoralen, used in studies of psoriasis, eczema, vitiligo and some sun-exposed cutaneous lymphomas, and is a P450 inhibitor. Methoxsalen (8-Methoxypsoralen) is a furanocoumarin compound used in psoralen, used in studies of psoriasis, eczema, vitiligo and some sun-exposed cutaneous lymphomas, and is a P450 inhibitor.

   

Xanthotoxol

2-Propenoic acid, 3-(6,7-dihydroxy-5-benzofuranyl)-, .delta.-lactone

C11H6O4 (202.0266)


D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Xanthotoxol (8-Hydroxypsoralen) is a biologically active linear furocoumarin, shows strong pharmacological activities as anti-inflammatory, antioxidant, 5-HT antagonistic, and neuroprotective effects. Xanthotoxol (8-Hydroxypsoralen) It is a kind of fragrant bean substance, and it is a CYP450 inhibitor. Xanthotoxol has anti-inflammatory, anti-inflammatory, and 5-HT antagonistic and protective effects. Xanthotoxol inhibited CYP3A4 sum CYP1A2 IC50s separation 7.43 μM sum 27.82 μM. Xanthotoxol can pass through MAPK and NF-κB, inhibiting inflammation[1][2][3][4]. Xanthotoxol (8-Hydroxypsoralen) is a biologically active linear furocoumarin, shows strong pharmacological activities as anti-inflammatory, antioxidant, 5-HT antagonistic, and neuroprotective effects.

   

Heriguard

Cyclohexanecarboxylic acid, 3-[[3-(3,4-dihydroxyphenyl)-1-oxo-2-propenyl]oxy]-1,4,5-trihydroxy-, [1S-(1.alpha.,3.beta.,4.alpha.,5.alpha.)]-

C16H18O9 (354.0951)


Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb. It is an orally active antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension compound[1][2][3]. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension.

   

Scoparon

5-18-03-00204 (Beilstein Handbook Reference)

C11H10O4 (206.0579)


D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Scoparone is isolated from Artemisia capillaris Thunb., has anticoagulant, vasorelaxant antioxidant, anti-inflammatory activities[1]. Scoparone is isolated from Artemisia capillaris Thunb., has anticoagulant, vasorelaxant antioxidant, anti-inflammatory activities[1].

   

Senkyunolide A

1(3H)-Isobenzofuranone, 3-butyl-4,5-dihydro-, (S)-

C12H16O2 (192.115)


Senkyunolide A, isolated from Ligusticum chuanxiong Hort, has cytoprotective and antiproliferative activities. Anti-tumor activity[1][2]. Senkyunolide A, isolated from Ligusticum chuanxiong Hort, has cytoprotective and antiproliferative activities. Anti-tumor activity[1][2].

   

8-methoxy-6-nitronaphtho[2,1-g][1,3]benzodioxole-5-carboxylic acid

8-methoxy-6-nitronaphtho[2,1-g][1,3]benzodioxole-5-carboxylic acid

C17H11NO7 (341.0535)


D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens Aristolochic acid A (Aristolochic acid I; TR 1736) is the main component of plant extract Aristolochic acids, which are found in various herbal plants of genus Aristolochia and Asarum. Aristolochic acid A significantly reduces both activator protein 1 (AP-1) and NF-κB activities. Aristolochic acid A reduces BLCAP gene expression in human cell lines[1]. Aristolochic acid A (Aristolochic acid I; TR 1736) is the main component of plant extract Aristolochic acids, which are found in various herbal plants of genus Aristolochia and Asarum. Aristolochic acid A significantly reduces both activator protein 1 (AP-1) and NF-κB activities. Aristolochic acid A reduces BLCAP gene expression in human cell lines[1].

   

Ginkgetin

4H-1-Benzopyran-4-one, 5,7-dihydroxy-8-[5-(5-hydroxy-7-methoxy-4-oxo-4H-1-benzopyran-2-yl)-2-methoxyphenyl]-2-(4-hydroxyphenyl)-

C32H22O10 (566.1213)


Ginkgetin, a biflavone, is isolated from Ginkgo biloba leaves. Ginkgetin exhibit anti-tumor, anti-inflammatory, neuroprotective, anti-fungal activities. Ginkgetin is also a potent inhibitor of Wnt signaling, with an IC50 of 5.92 μΜ[1][2][3][4][5]. Ginkgetin, a biflavone, is isolated from Ginkgo biloba leaves. Ginkgetin exhibit anti-tumor, anti-inflammatory, neuroprotective, anti-fungal activities. Ginkgetin is also a potent inhibitor of Wnt signaling, with an IC50 of 5.92 μΜ[1][2][3][4][5].

   

Skimmetin

InChI=1\C9H6O3\c10-7-3-1-6-2-4-9(11)12-8(6)5-7\h1-5,10

C9H6O3 (162.0317)


COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Umbelliferone (7-Hydroxycoumarin), a natural product of the coumarin family, is a fluorescing compound which can be used as a sunscreen agent. Umbelliferone (7-Hydroxycoumarin), a natural product of the coumarin family, is a fluorescing compound which can be used as a sunscreen agent.

   

Biacalein

5,6,7-Trihydroxy-2-phenyl-4H-1-benzopyran-4-one

C15H10O5 (270.0528)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D011448 - Prostaglandin Antagonists D020011 - Protective Agents > D000975 - Antioxidants COVID info from PDB, Protein Data Bank D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Baicalein (5,6,7-Trihydroxyflavone) is a xanthine oxidase inhibitor with an IC50 value of 3.12 μM. Baicalein (5,6,7-Trihydroxyflavone) is a xanthine oxidase inhibitor with an IC50 value of 3.12 μM.

   

rhodosin

(2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-[2-(4-hydroxyphenyl)ethoxy]tetrahydropyran-3,4,5-triol

C14H20O7 (300.1209)


Salidroside is a prolyl endopeptidase inhibitor. Salidroside alleviates cachexia symptoms in mouse models of cancer cachexia via activating mTOR signalling. Salidroside protects dopaminergic neurons by enhancing PINK1/Parkin-mediated mitophagy. Salidroside is a prolyl endopeptidase inhibitor. Salidroside alleviates cachexia symptoms in mouse models of cancer cachexia via activating mTOR signalling. Salidroside protects dopaminergic neurons by enhancing PINK1/Parkin-mediated mitophagy.

   

Isopimpinellin

7H-Furo(3,2-g)(1)benzopyran-7-one, 4,9-dimethoxy- (8CI)(9CI)

C13H10O5 (246.0528)


Isopimpinellin is found in angelica. Isopimpinellin is present in the seeds of Pastinaca sativa (parsnip) Isopimpinellin belongs to the family of Furanocoumarins. These are polycyclic aromatic compounds containing a furan ring fused to a coumarin moeity. Isopimpinellin, an orally active compound isolated from Glomerella cingulata. Isopimpinellin blocks DNA adduct formation and skin tumor initiation by 7,12-dimethylbenz[a]anthracene. Isopimpinellin possesses anti-leishmania effect[1]. Isopimpinellin, an orally active compound isolated from Glomerella cingulata. Isopimpinellin blocks DNA adduct formation and skin tumor initiation by 7,12-dimethylbenz[a]anthracene. Isopimpinellin possesses anti-leishmania effect[1].

   

Angecin

2-Propenoic acid, 3-(4-hydroxy-5-benzofuranyl)-, .delta.-lactone

C11H6O3 (186.0317)


D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D007364 - Intercalating Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D002491 - Central Nervous System Agents > D000927 - Anticonvulsants Angelicin is a natural tricyclic aromatic hydrocarbon compound that is structurally related to psoralen and has anti-cancer, anti-inflammatory, anti-viral and other activities. Cytotoxic, IC50: 49.56 μM; inhibits MHV-68, IC50: 5.39 μg/ml (28.95 μM). Angelicin is a natural tricyclic aromatic hydrocarbon compound that is structurally related to psoralen and has anti-cancer, anti-inflammatory, anti-viral and other activities. Cytotoxic, IC50: 49.56 μM; inhibits MHV-68, IC50: 5.39 μg/ml (28.95 μM).

   

Morindon

9,10-Anthracenedione, 1,2,5-trihydroxy-6-methyl-

C15H10O5 (270.0528)


   

Isobergapten

2H-Furo[2,3-h]-1-benzopyran-2-one, 5-methoxy-

C12H8O4 (216.0423)


Isobergapten is an allelopathic inhibitor isolated from seeds of Hevacleum laciniatum[1]. Isobergapten is an allelopathic inhibitor isolated from seeds of Hevacleum laciniatum[1].

   

Daphnetol

InChI=1/C9H6O4/c10-6-3-1-5-2-4-7(11)13-9(5)8(6)12/h1-4,10,12

C9H6O4 (178.0266)


7,8-dihydroxycoumarin is a hydroxycoumarin. Daphnetin is a natural product found in Euphorbia dracunculoides, Rhododendron lepidotum, and other organisms with data available. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4].

   

Bergaptol

7H-Furo(3,2-g)(1)benzopyran-7-one, 4-hydroxy- (8CI)(9CI)

C11H6O4 (202.0266)


D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Bergaptol is an inhibitor of debenzylation of the CYP3A4 enzyme with an IC50 of 24.92 uM. Recent studies have shown that it has anti-proliferative and anti-cancer properties. Bergaptol is an inhibitor of debenzylation of the CYP3A4 enzyme with an IC50 of 24.92 uM. Recent studies have shown that it has anti-proliferative and anti-cancer properties.

   

Teavigo

(-)-Epigallocatechin gallate (85\\% (-)-epigallocatechin gallate, 10\\% (-)-epigallocatechin, 5\\% (-)- epicatechin gallate)

C22H18O11 (458.0849)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D020011 - Protective Agents > D016587 - Antimutagenic Agents D020011 - Protective Agents > D000975 - Antioxidants D000970 - Antineoplastic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS (-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4]. (-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4]. (-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4]. (-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4]. (-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4]. (-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4].

   

Ciratin

(2S)-5-hydroxy-2-(3-hydroxy-4-methoxy-phenyl)-7-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxymethyl]tetrahydropyran-2-yl]oxy-chroman-4-one

C28H34O15 (610.1898)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Hesperidin (Hesperetin 7-rutinoside), a flavanone glycoside, is isolated from citrus fruits. Hesperidin has numerous biological properties, such as decreasing inflammatory mediators and exerting significant antioxidant effects. Hesperidin also exhibits antitumor and antiallergic activities[1][2]. Hesperidin (Hesperetin 7-rutinoside), a flavanone glycoside, is isolated from citrus fruits. Hesperidin has numerous biological properties, such as decreasing inflammatory mediators and exerting significant antioxidant effects. Hesperidin also exhibits antitumor and antiallergic activities[1][2].

   

63644-62-2

(E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoic acid [(E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enyl] ester

C20H20O6 (356.126)


Coniferyl ferulate, a strong inhibitor of glutathione S-transferase (GST), reverses multidrug resistance and downregulates P-glycoprotein. Coniferyl ferulate shows strong inhibition of human placental GST with an IC50 of 0.3 μM. Coniferyl ferulate, a strong inhibitor of glutathione S-transferase (GST), reverses multidrug resistance and downregulates P-glycoprotein. Coniferyl ferulate shows strong inhibition of human placental GST with an IC50 of 0.3 μM.

   

EU-0100782

Nonanamide, N-((4-hydroxy-3-methoxyphenyl)methyl)-8-methyl- (9CI)

C18H29NO3 (307.2147)


Dihydrocapsaicin, a capsaicin, is a potent and selective TRPV1 (transient receptor potential vanilloid channel 1) agonist. Dihydrocapsaicin reduces AIF, Bax, and Caspase-3 expressions, and increased Bcl-2, Bcl-xL and p-Akt levels. Dihydrocapsaicin enhances the hypothermia-induced neuroprotection following ischemic stroke via PI3K/Akt regulation in rat[1][2][3]. Dihydrocapsaicin, a capsaicin, is a potent and selective TRPV1 (transient receptor potential vanilloid channel 1) agonist. Dihydrocapsaicin reduces AIF, Bax, and Caspase-3 expressions, and increased Bcl-2, Bcl-xL and p-Akt levels. Dihydrocapsaicin enhances the hypothermia-induced neuroprotection following ischemic stroke via PI3K/Akt regulation in rat[1][2][3]. Dihydrocapsaicin, a capsaicin, is a potent and selective TRPV1 (transient receptor potential vanilloid channel 1) agonist. Dihydrocapsaicin reduces AIF, Bax, and Caspase-3 expressions, and increased Bcl-2, Bcl-xL and p-Akt levels. Dihydrocapsaicin enhances the hypothermia-induced neuroprotection following ischemic stroke via PI3K/Akt regulation in rat[1][2][3].

   

Nucin

InChI=1\C10H6O3\c11-7-4-5-9(13)10-6(7)2-1-3-8(10)12\h1-5,12

C10H6O3 (174.0317)


D000074385 - Food Ingredients > D005503 - Food Additives > D005520 - Food Preservatives D009676 - Noxae > D003603 - Cytotoxins D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors

   

Alora

(8S,9S,13S,14S,17S)-13-methyl-6,7,8,9,11,12,14,15,16,17-decahydrocyclopenta[a]phenanthrene-3,17-diol

C18H24O2 (272.1776)


G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03C - Estrogens > G03CA - Natural and semisynthetic estrogens, plain D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens COVID info from COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Estradiol (β-Estradiol) is a steroid hormone and the major female sex hormone. Estradiol can up-regulate the expression of neural markers of human endometrial stem cells (hEnSCs) and promote their neural differentiation. Estradiol can be used for the research of cancers, neurodegenerative diseases and neural tissue engineering[1][2]. Estradiol (β-Estradiol) is a steroid hormone and the major female sex hormone. Estradiol can up-regulate the expression of neural markers of human endometrial stem cells (hEnSCs) and promote their neural differentiation. Estradiol can be used for the research of cancers, neurodegenerative diseases and neural tissue engineering[1][2].

   

603-56-5

4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3,6,7-trimethoxy-

C19H18O8 (374.1002)


Chrysosplenetin is one of the polymethoxylated flavonoids in Artemisia annua L. (Compositae) and other several Chinese herbs. Chrysosplenetin inhibits P-gp activity and reverses the up-regulated P-gp and MDR1 levels induced by artemisinin (ART). Chrysosplenetin significantly augments the rat plasma level and anti-malarial efficacy of ART, partially due to the uncompetitive inhibition effect of Chrysosplenetin on rat CYP3A[1]. Chrysosplenetin is one of the polymethoxylated flavonoids in Artemisia annua L. (Compositae) and other several Chinese herbs. Chrysosplenetin inhibits P-gp activity and reverses the up-regulated P-gp and MDR1 levels induced by artemisinin (ART). Chrysosplenetin significantly augments the rat plasma level and anti-malarial efficacy of ART, partially due to the uncompetitive inhibition effect of Chrysosplenetin on rat CYP3A[1].

   

isoflavon

4H-1-Benzopyran-4-one, 3-phenyl- (9CI)

C15H10O2 (222.0681)


Isoflavone, a soy phytoestrogen and a biologically active component, presents in several agriculturally important legumes such as soy, peanut, green peas, chick peas and alfalfa[1][2]. Isoflavone, a soy phytoestrogen and a biologically active component, presents in several agriculturally important legumes such as soy, peanut, green peas, chick peas and alfalfa[1][2].

   

SRT-501

InChI=1\C14H12O3\c15-12-5-3-10(4-6-12)1-2-11-7-13(16)9-14(17)8-11\h1-9,15-17H\b2-1

C14H12O3 (228.0786)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors C1892 - Chemopreventive Agent > C54630 - Phase II Enzymes Inducer D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7]. Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7]. Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7].

   

Sanchinoside R1

(2S,3R,4S,5S,6R)-2-[(1S)-1-[(3S,5R,6S,8R,9R,10R,12R,13R,14R,17S)-6-[(2R,3R,4S,5S,6R)-4,5-dihydroxy-6-methylol-3-[(2S,3R,4S,5R)-3,4,5-trihydroxytetrahydropyran-2-yl]oxy-tetrahydropyran-2-yl]oxy-3,12-dihydroxy-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15

C47H80O18 (932.5344)


Notoginsenoside R1 (Sanchinoside R1), a saponin, is isolated from P. notoginseng. Notoginsenoside R1 exhibits anti-oxidation, anti-inflammatory, anti-angiogenic, and anti-apoptosis activities. Notoginsenoside R1 provides cardioprotection against ischemia/reperfusion (I/R) injury. Notoginsenoside R1 also provides neuroprotection in H2O2-induced oxidative damage in PC12 cells[1][2][3]. Notoginsenoside R1 (Sanchinoside R1), a saponin, is isolated from P. notoginseng. Notoginsenoside R1 exhibits anti-oxidation, anti-inflammatory, anti-angiogenic, and anti-apoptosis activities. Notoginsenoside R1 provides cardioprotection against ischemia/reperfusion (I/R) injury. Notoginsenoside R1 also provides neuroprotection in H2O2-induced oxidative damage in PC12 cells[1][2][3].

   

Cumostrol

3-Benzofurancarboxylic acid, 2-(2,4-dihydroxyphenyl)-6-hydroxy-, delta-lactone (6CI)

C15H8O5 (268.0372)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens Coumestrol, a phytoestrogen present in soybean products, exhibits activities against cancers, neurological disorders, and autoimmune diseases. It suppresses proliferation of ES2 cells with an IC50 of 50 μM. Coumestrol, a phytoestrogen present in soybean products, exhibits activities against cancers, neurological disorders, and autoimmune diseases. It suppresses proliferation of ES2 cells with an IC50 of 50 μM.

   

Viset

InChI=1\C15H10O6\c16-8-2-3-9-12(6-8)21-15(14(20)13(9)19)7-1-4-10(17)11(18)5-7\h1-6,16-18,20

C15H10O6 (286.0477)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor C26170 - Protective Agent > C1509 - Neuroprotective Agent C26170 - Protective Agent > C275 - Antioxidant Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Fisetin is a natural flavonol found in many fruits and vegetables with various benefits, such as antioxidant, anticancer, neuroprotection effects. Fisetin is a natural flavonol found in many fruits and vegetables with various benefits, such as antioxidant, anticancer, neuroprotection effects. Fisetin is a natural flavonol found in many fruits and vegetables with various benefits, such as antioxidant, anticancer, neuroprotection effects.

   

alpha-Spinasterol

14-[(3E)-5-ethyl-6-methylhept-3-en-2-yl]-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-9-en-5-ol

C29H48O (412.3705)


Constituent of spinach (Spinacia oleracea) leaves, cucumber (Cucumis sativus), alfalfa meal, pumpkin seeds and senega root. alpha-Spinasterol is found in many foods, some of which are bitter gourd, towel gourd, muskmelon, and green vegetables. alpha-Spinasterol is found in alfalfa. alpha-Spinasterol is a constituent of spinach (Spinacia oleracea) leaves, cucumber (Cucumis sativus), alfalfa meal, pumpkin seeds and senega root. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2]. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2].

   

Ginsenoside_Rb1

.BETA.-D-GLUCOPYRANOSIDE, (3.BETA.,12.BETA.)-20-((6-O-.BETA.-D-GLUCOPYRANOSYL-.BETA.-D-GLUCOPYRANOSYL)OXY)-12-HYDROXYDAMMAR-24-EN-3-YL 2-O-.BETA.-D-GLUCOPYRANOSYL-

C54H92O23 (1108.6029)


Ginsenoside Rb1 is a ginsenoside found in Panax ginseng and Panax japonicus var. major that is ginsenoside Rd in which the beta-D-glucopyranoside group at position 20 is replaced by a beta-D-glucopyranosyl-beta-D-glucopyranoside group. It has a role as a neuroprotective agent, an anti-obesity agent, an anti-inflammatory drug, an apoptosis inhibitor, a radical scavenger and a plant metabolite. It is a ginsenoside, a glycoside and a tetracyclic triterpenoid. It is functionally related to a ginsenoside Rd. Ginsenosides are a class of steroid glycosides, and triterpene saponins, found exclusively in the plant genus Panax (ginseng). Ginsenosides have been the target of research, as they are viewed as the active compounds behind the claims of ginsengs efficacy. Because ginsenosides appear to affect multiple pathways, their effects are complex and difficult to isolate. Rb1 appears to be most abundant in Panax quinquefolius (American Ginseng). Rb1 seems to affect the reproductive system in animal testicles. Recent research shows that Rb1 affects rat embryo development and has teratogenic effects, causing birth defects. Another study shows that Rb1 may increase testosterone production in male rats indirectly through the stimulation of the luteinizing hormone. Ginsenoside rb1 is a natural product found in Panax vietnamensis, Gynostemma pentaphyllum, and other organisms with data available. See also: Asian Ginseng (part of); American Ginseng (part of); Panax notoginseng root (part of). A ginsenoside found in Panax ginseng and Panax japonicus var. major that is ginsenoside Rd in which the beta-D-glucopyranoside group at position 20 is replaced by a beta-D-glucopyranosyl-beta-D-glucopyranoside group. Ginsenoside Rb1, a main constituent of the root of Panax ginseng, inhibits Na+, K+-ATPase activity with an IC50 of 6.3±1.0 μM. Ginsenoside also inhibits IRAK-1 activation and phosphorylation of NF-κB p65 . Ginsenoside Rb1, a main constituent of the root of Panax ginseng, inhibits Na+, K+-ATPase activity with an IC50 of 6.3±1.0 μM. Ginsenoside also inhibits IRAK-1 activation and phosphorylation of NF-κB p65 .

   

Notoginsenoside

.BETA.-D-GLUCOPYRANOSIDE, (3.BETA.,6.ALPHA.,12.BETA.)-20-(.BETA.-D-GLUCOPYRANOSYLOXY)-3,12-DIHYDROXYDAMMAR-24-EN-6-YL 2-O-.BETA.-D-XYLOPYRANOSYL-

C47H80O18 (932.5344)


Notoginsenoside R1 is a ginsenoside found in Panax notoginseng that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 6 and 20 have been converted to the corresponding beta-D-xylopyranosyl-(1->2)-beta-D-glucopyranoside and beta-D-glucopyranoside respectively, and in which a double bond has been introduced at the 24-25 position. It has a role as a plant metabolite, an antioxidant, a neuroprotective agent, an apoptosis inducer and a phytoestrogen. It is a beta-D-glucoside, a 12beta-hydroxy steroid, a 3beta-hydroxy steroid, a disaccharide derivative, a ginsenoside, a tetracyclic triterpenoid and a 3beta-hydroxy-4,4-dimethylsteroid. It derives from a hydride of a dammarane. Notoginsenoside R1 is a natural product found in Panax ginseng, Panax notoginseng, and other organisms with data available. See also: Panax notoginseng root (part of). A ginsenoside found in Panax notoginseng that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 6 and 20 have been converted to the corresponding beta-D-xylopyranosyl-(1->2)-beta-D-glucopyranoside and beta-D-glucopyranoside respectively, and in which a double bond has been introduced at the 24-25 position. Notoginsenoside R1 (Sanchinoside R1), a saponin, is isolated from P. notoginseng. Notoginsenoside R1 exhibits anti-oxidation, anti-inflammatory, anti-angiogenic, and anti-apoptosis activities. Notoginsenoside R1 provides cardioprotection against ischemia/reperfusion (I/R) injury. Notoginsenoside R1 also provides neuroprotection in H2O2-induced oxidative damage in PC12 cells[1][2][3]. Notoginsenoside R1 (Sanchinoside R1), a saponin, is isolated from P. notoginseng. Notoginsenoside R1 exhibits anti-oxidation, anti-inflammatory, anti-angiogenic, and anti-apoptosis activities. Notoginsenoside R1 provides cardioprotection against ischemia/reperfusion (I/R) injury. Notoginsenoside R1 also provides neuroprotection in H2O2-induced oxidative damage in PC12 cells[1][2][3].

   

Ginsenoside

.BETA.-D-GLUCOPYRANOSIDE, (3.BETA.,6.ALPHA.,12.BETA.)-20-(.BETA.-D-GLUCOPYRANOSYLOXY)-3,12-DIHYDROXYDAMMAR-24-EN-6-YL 2-O-(6-DEOXY-.ALPHA.-L-MANNOPYRANOSYL)-

C48H82O18 (946.5501)


Ginsenoside Re is a ginsenoside found in Panax ginseng that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 6 and 20 have been converted to the corresponding alpha-L-rhamnopyranosyl-(1->2)-beta-D-glucopyranoside and beta-D-glucopyranoside respectively, and in which a double bond has been introduced at the 24-25 position. It has a role as a plant metabolite, an antioxidant, a neuroprotective agent, an anti-inflammatory agent, an antineoplastic agent and a nephroprotective agent. It is a 12beta-hydroxy steroid, a 3beta-hydroxy steroid, a beta-D-glucoside, a ginsenoside, a tetracyclic triterpenoid, a disaccharide derivative and a 3beta-hydroxy-4,4-dimethylsteroid. It derives from a hydride of a dammarane. Ginsenoside B2 is under investigation in clinical trial NCT00781534 (A Clinical Trial of Ginseng in Diabetes). Ginsenoside Re is a natural product found in Panax vietnamensis, Luffa aegyptiaca, and other organisms with data available. See also: Asian Ginseng (part of); American Ginseng (part of); Panax notoginseng root (part of). A ginsenoside found in Panax ginseng that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 6 and 20 have been converted to the corresponding alpha-L-rhamnopyranosyl-(1->2)-beta-D-glucopyranoside and beta-D-glucopyranoside respectively, and in which a double bond has been introduced at the 24-25 position. Ginsenoside Re (Ginsenoside B2) is an extract from Panax notoginseng. Ginsenoside Re decreases the β-amyloid protein (Aβ). Ginsenoside Re plays a role in antiinflammation through inhibition of JNK and NF-κB. Ginsenoside Re (Ginsenoside B2) is an extract from Panax notoginseng. Ginsenoside Re decreases the β-amyloid protein (Aβ). Ginsenoside Re plays a role in antiinflammation through inhibition of JNK and NF-κB.

   

Berberine

16,17-dimethoxy-5,7-dioxa-13lambda5-azapentacyclo[11.8.0.0^{2,10}.0^{4,8}.0^{15,20}]henicosa-1(21),2,4(8),9,13,15,17,19-octaen-13-ylium

C20H18NO4+ (336.1236)


Berberine is an organic heteropentacyclic compound, an alkaloid antibiotic, a botanical anti-fungal agent and a berberine alkaloid. It has a role as an antilipemic drug, a hypoglycemic agent, an antioxidant, a potassium channel blocker, an antineoplastic agent, an EC 1.1.1.21 (aldehyde reductase) inhibitor, an EC 1.1.1.141 [15-hydroxyprostaglandin dehydrogenase (NAD(+))] inhibitor, an EC 1.13.11.52 (indoleamine 2,3-dioxygenase) inhibitor, an EC 1.21.3.3 (reticuline oxidase) inhibitor, an EC 2.1.1.116 [3-hydroxy-N-methyl-(S)-coclaurine 4-O-methyltransferase] inhibitor, an EC 3.1.1.4 (phospholipase A2) inhibitor, an EC 3.4.21.26 (prolyl oligopeptidase) inhibitor, an EC 3.4.14.5 (dipeptidyl-peptidase IV) inhibitor, an EC 3.1.3.48 (protein-tyrosine-phosphatase) inhibitor, an EC 3.1.1.7 (acetylcholinesterase) inhibitor, an EC 3.1.1.8 (cholinesterase) inhibitor, an EC 2.7.11.10 (IkappaB kinase) inhibitor, an EC 2.1.1.122 [(S)-tetrahydroprotoberberine N-methyltransferase] inhibitor, a geroprotector and a metabolite. An alkaloid from Hydrastis canadensis L., Berberidaceae. It is also found in many other plants. It is relatively toxic parenterally, but has been used orally for various parasitic and fungal infections and as antidiarrheal. Berberine is a quaternary ammonia compound found in many botanical products, including goldenseal, barberry and Oregon grape, which is used for its purported antioxidant and antimicrobial properties for a host of conditions, including obesity, diabetes, hyperlipidemia, heart failure, H. pylori infection and colonic adenoma prevention. Berberine has not been linked to serum aminotransferase elevations during therapy nor to instances of clinically apparent liver injury. Berberine is a natural product found in Berberis poiretii, Thalictrum delavayi, and other organisms with data available. Berberine is a quaternary ammonium salt of an isoquinoline alkaloid and active component of various Chinese herbs, with potential antineoplastic, radiosensitizing, anti-inflammatory, anti-lipidemic and antidiabetic activities. Although the mechanisms of action through which berberine exerts its effects are not yet fully elucidated, upon administration this agent appears to suppress the activation of various proteins and/or modulate the expression of a variety of genes involved in tumorigenesis and inflammation, including, but not limited to transcription factor nuclear factor-kappa B (NF-kB), myeloid cell leukemia 1 (Mcl-1), B-cell lymphoma 2 (Bcl-2), B-cell lymphoma-extra large (Bcl-xl), cyclooxygenase (COX)-2, tumor necrosis factor (TNF), interleukin (IL)-6, IL-12, inducible nitric oxide synthase (iNOS), intercellular adhesion molecule-1 (ICAM-1), E-selectin, monocyte chemoattractant protein-1 (MCP-1), C-X-C motif chemokine 2 (CXCL2), cyclin D1, activator protein (AP-1), hypoxia-inducible factor 1 (HIF-1), signal transducer and activator of transcription 3 (STAT3), peroxisome proliferator-activated receptor (PPAR), arylamine N-acetyltransferase (NAT), and DNA topoisomerase I and II. The modulation of gene expression may induce cell cycle arrest and apoptosis, and inhibit cancer cell proliferation. In addition, berberine modulates lipid and glucose metabolism. An alkaloid from Hydrastis canadensis L., Berberidaceae. It is also found in many other plants. It is relatively toxic parenterally, but has been used orally for various parasitic and fungal infections and as antidiarrheal. See also: Goldenseal (part of); Berberis aristata stem (part of). Berberine is a quaternary ammonium salt that belongs to the protoberberine group of benzylisoquinoline alkaloids. Chemically, berberine is classified as an isoquinoline alkaloid. More specifically, berberine is a plant alkaloid derived from tyrosine through a complex 8 step biosynthetic process. Berberine is found in plants such as Berberis vulgaris (barberry), Berberis aristata (tree turmeric), Mahonia aquifolium (Oregon grape) and Hydrastis canadensis (goldenseal). Two other known berberine-containing plants are Phellodendron chinense and Phellodendron amurense. Berberine is usually found in the roots, rhizomes, stems, and bark of Berberis plants. Due to berberines intense yellow color, plants that contain berberine were traditionally used to dye wool, leather, and wood. Under ultraviolet light, berberine shows a strong yellow fluorescence, making it useful in histology for staining heparin in mast cells. Berberine is a bioactive plant compound that has been frequently used in traditional medicine. Among the known physiological effects or bioactivities are: 1) Antimicrobial action against bacteria, fungi, protozoa, viruses, helminthes, and Chlamydia; 2) Antagonism against the effects of cholera and E coli heat-stable enterotoxin; 3) Inhibition of intestinal ion secretion and of smooth muscle contraction; 4) Reduction of inflammation and 5) Stimulation of bile secretion and bilirubin discharge (PMID:32335802). Berberine can inhibit bacterial growth in the gut, including Helicobacter pylori, protect the intestinal epithelial barrier from injury, and ameliorate liver injury. Currently, berberine is sold as an Over-the-Counter (OTC) drug for treating gastrointestinal infections in China (PMID:18442638). Berberine also inhibits the proliferation of various types of cancer cells and impedes invasion and metastasis (PMID:32335802). Recent evidence has also confirmed that berberine improves the efficacy and safety of both chemo and radiotherapies for cancer treatment (PMID:32335802). Berberine has also been shown to regulate glucose and lipid metabolism in vitro and in vivo (PMID:18442638). In fact, berberine is the main active component of an ancient Chinese herb Coptis chinensis French, which has been used to treat diabetes for thousands of years. As an anti-diabetic, berberine increases glucose uptake by muscle fibers independent of insulin levels. It triggers AMPK activation and increases glycolysis, leading to decreased insulin resistance and decreased oxygen respiration. The same mechanism leads to a reduction in gluconeogenesis in the liver. AMPK activation by berberine also leads to an antiatherosclerotic effect in mice. Berberines AMPK activation may also underlie berberines anti-obesity effects and favorable influence on weight loss (PMID:18442638). While its use as a medication is widely touted, it is important to remember that berberine inhibits CYP2D6 and CYP3A4 enzymes, both of which are involved in the metabolism of many endogenous substances and xenobiotics, including a number of prescription drugs. An alkaloid from Hydrastis canadensis L., Berberidaceae. It is also found in many other plants. It is relatively toxic parenterally, but has been used orally for various parasitic and fungal infections and as antidiarrheal. [HMDB] COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Aristolochic_acid

8-methoxy-6-nitro-naphtho[2,1-g][1,3]benzodioxole-5-carboxylic acid

C17H11NO7 (341.0535)


Aristolochic acid A is an aristolochic acid that is phenanthrene-1-carboxylic acid that is substituted by a methylenedioxy group at the 3,4 positions, by a methoxy group at position 8, and by a nitro group at position 10. It is the most abundant of the aristolochic acids and is found in almost all Aristolochia (birthworts or pipevines) species. It has been tried in a number of treatments for inflammatory disorders, mainly in Chinese and folk medicine. However, there is concern over their use as aristolochic acid is both carcinogenic and nephrotoxic. It has a role as a nephrotoxin, a carcinogenic agent, a mutagen, a toxin and a metabolite. It is a monocarboxylic acid, a C-nitro compound, a cyclic acetal, an organic heterotetracyclic compound, an aromatic ether and a member of aristolochic acids. Aristolochic acid is a natural product found in Thottea duchartrei, Aristolochia, and other organisms with data available. Aristolochic acids are a family of carcinogenic, mutagenic, and nephrotoxic compounds commonly found in the Aristolochiaceae family of plants, including Aristolochia and Asarum (wild ginger), which are commonly used in Chinese herbal medicine. Aristolochic acid I is the most abundant of the aristolochic acids and is found in almost all Aristolochia species. Aristolochic acids are often accompanied by aristolactams. See also: Aristolochia fangchi root (part of). An aristolochic acid that is phenanthrene-1-carboxylic acid that is substituted by a methylenedioxy group at the 3,4 positions, by a methoxy group at position 8, and by a nitro group at position 10. It is the most abundant of the aristolochic acids and is found in almost all Aristolochia (birthworts or pipevines) species. It has been tried in a number of treatments for inflammatory disorders, mainly in Chinese and folk medicine. However, there is concern over their use as aristolochic acid is both carcinogenic and nephrotoxic. D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens Aristolochic acid A (Aristolochic acid I; TR 1736) is the main component of plant extract Aristolochic acids, which are found in various herbal plants of genus Aristolochia and Asarum. Aristolochic acid A significantly reduces both activator protein 1 (AP-1) and NF-κB activities. Aristolochic acid A reduces BLCAP gene expression in human cell lines[1]. Aristolochic acid A (Aristolochic acid I; TR 1736) is the main component of plant extract Aristolochic acids, which are found in various herbal plants of genus Aristolochia and Asarum. Aristolochic acid A significantly reduces both activator protein 1 (AP-1) and NF-κB activities. Aristolochic acid A reduces BLCAP gene expression in human cell lines[1].

   

Isobergapten

5-BENZOFURANACRYLIC ACID, 4-HYDROXY-6-METHOXY-, .DELTA.-LACTONE

C12H8O4 (216.0423)


Isobergapten is a furanocoumarin. Isobergapten is a natural product found in Dorstenia psilurus, Saposhnikovia divaricata, and other organisms with data available. Isobergapten is a furocoumarin. Furocoumarins, are phototoxic and photocarcinogenic. They intercalate DNA and photochemically induce mutations. Furocoumarins are botanical phytoalexins found to varying extents in a variety of vegetables and fruits, notably citrus fruits. The levels of furocoumarins present in our diets, while normally well below that causing evident acute phototoxicity, do cause pharmacologically relevant drug interactions. Some are particularly active against cytochrome P450s. For example, in humans, bergamottin and dihydroxybergamottin are responsible for the grapefruit juice effect, in which these furanocoumarins affect the metabolism of certain drugs. Isobergapten is an allelopathic inhibitor isolated from seeds of Hevacleum laciniatum[1]. Isobergapten is an allelopathic inhibitor isolated from seeds of Hevacleum laciniatum[1].

   

Chrysosplenetin

4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3,6,7-trimethoxy-

C19H18O8 (374.1002)


Chrysosplenetin is a tetramethoxyflavone that is the 3,6,7,3-tetramethyl ether derivative of quercetagetin. It has a role as an antiviral agent and a plant metabolite. It is a tetramethoxyflavone and a dihydroxyflavone. It is functionally related to a quercetagetin. Chrysosplenetin is a natural product found in Haplophyllum myrtifolium, Cleome amblyocarpa, and other organisms with data available. A tetramethoxyflavone that is the 3,6,7,3-tetramethyl ether derivative of quercetagetin. Chrysosplenetin is one of the polymethoxylated flavonoids in Artemisia annua L. (Compositae) and other several Chinese herbs. Chrysosplenetin inhibits P-gp activity and reverses the up-regulated P-gp and MDR1 levels induced by artemisinin (ART). Chrysosplenetin significantly augments the rat plasma level and anti-malarial efficacy of ART, partially due to the uncompetitive inhibition effect of Chrysosplenetin on rat CYP3A[1]. Chrysosplenetin is one of the polymethoxylated flavonoids in Artemisia annua L. (Compositae) and other several Chinese herbs. Chrysosplenetin inhibits P-gp activity and reverses the up-regulated P-gp and MDR1 levels induced by artemisinin (ART). Chrysosplenetin significantly augments the rat plasma level and anti-malarial efficacy of ART, partially due to the uncompetitive inhibition effect of Chrysosplenetin on rat CYP3A[1].

   

Jujuboside

alpha-L-Arabinopyranoside, (3beta,16beta,23R)-16,23:16,30-diepoxy-20-hydroxydammar-24-en-3-yl O-6-deoxy-alpha-L-mannopyranosyl-(1-->2)-O-[O-beta-D-glucopyranosyl-(1-->6)-O-[beta-D-xylopyranosyl-(1-->2)]-beta-D-glucopyranosyl-(1-->3)]-

C58H94O26 (1206.6033)


Jujuboside A is a triterpenoid. (2S,3R,4R,5R,6S)-2-[(2S,3R,4S,5S)-4-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-[[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]-3-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxyoxan-2-yl]oxy-5-hydroxy-2-[[(1S,2R,5R,7S,10R,11R,14R,15S,16S,18R,20S)-16-hydroxy-2,6,6,10,16-pentamethyl-18-(2-methylprop-1-enyl)-19,21-dioxahexacyclo[18.2.1.01,14.02,11.05,10.015,20]tricosan-7-yl]oxy]oxan-3-yl]oxy-6-methyloxane-3,4,5-triol is a natural product found in Ziziphus jujuba, Ziziphus lotus, and Ziziphus jujuba var. spinosa with data available. Jujuboside A is a glycoside extracted from Semen Ziziphi Spinosae, a Chinese herbal medicine used to treat insomnia and anxiety. Jujuboside A is a glycoside extracted from Semen Ziziphi Spinosae, a Chinese herbal medicine used to treat insomnia and anxiety. Jujuboside A is a glycoside extracted from Semen Ziziphi Spinosae, a Chinese herbal medicine used to treat insomnia and anxiety.

   

Ginsenoside

(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-4,5-dihydroxy-2-[[(3S,5R,8R,9R,10R,12R,13R,14R,17S)-12-hydroxy-17-[(2S)-2-hydroxy-6-methylhept-5-en-2-yl]-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]-6-(hydroxymethyl)oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O13 (784.4973)


(20S)-ginsenoside Rg3 is a ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy group at position 3 has been converted to the corresponding beta-D-glucopyranosyl-beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. It has a role as an apoptosis inducer, an antineoplastic agent, a plant metabolite and an angiogenesis modulating agent. It is a ginsenoside, a tetracyclic triterpenoid and a glycoside. It is functionally related to a (20S)-protopanaxadiol. It derives from a hydride of a dammarane. Ginsenoside Rg3 is a natural product found in Panax ginseng, Panax notoginseng, and other organisms with data available. A ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy group at position 3 has been converted to the corresponding beta-D-glucopyranosyl-beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. D000970 - Antineoplastic Agents Ginsenoside F2 is a ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 3 and 20 have been converted to the corresponding beta-D-glucopyranosides, and in which a double bond has been introduced at the 24-25 position. It has a role as an apoptosis inducer, an antineoplastic agent and a plant metabolite. It is a ginsenoside, a tetracyclic triterpenoid, a 12beta-hydroxy steroid and a beta-D-glucoside. It derives from a hydride of a dammarane. ginsenoside F2 is a natural product found in Panax ginseng, Panax notoginseng, and Aralia elata with data available. A ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 3 and 20 have been converted to the corresponding beta-D-glucopyranosides, and in which a double bond has been introduced at the 24-25 position. 20(S)-Ginsenoside Rg3 is the main component of Panax ginseng C. A. Meyer. Ginsenoside Rg3 inhibits Na+ and hKv1.4 channel with IC50s of 32.2±4.5 and 32.6±2.2 μM, respectively. 20(S)-Ginsenoside Rg3 also inhibits Aβ levels, NF-κB activity, and COX-2 expression. 20(S)-Ginsenoside Rg3 is the main component of Panax ginseng C. A. Meyer. Ginsenoside Rg3 inhibits Na+ and hKv1.4 channel with IC50s of 32.2±4.5 and 32.6±2.2 μM, respectively. 20(S)-Ginsenoside Rg3 also inhibits Aβ levels, NF-κB activity, and COX-2 expression. Ginsenoside F2, a metabolite from Ginsenoside Rb1, induces apoptosis accompanied by protective autophagy in breast cancer stem cells[1]. Ginsenoside F2, a metabolite from Ginsenoside Rb1, induces apoptosis accompanied by protective autophagy in breast cancer stem cells[1].

   

Ampelopsin

4H-1-Benzopyran-4-one, 2,3-dihydro-3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-, (2R-trans)-

C15H12O8 (320.0532)


(+)-dihydromyricetin is an optically active form of dihydromyricetin having (2R,3R)-configuration. It has a role as a metabolite, an antioxidant and an antineoplastic agent. It is a secondary alpha-hydroxy ketone and a dihydromyricetin. It is an enantiomer of a (-)-dihydromyricetin. Dihydromyricetin is under investigation in clinical trial NCT03606694 (Effect of Dihydromirycetin on Glycemic Control, Insulin Sensitivity and Insulin Secretion in Type 2 Diabetes Mellitus). Dihydromyricetin is a naturally occurring flavonoid found in the many plant species and is thought to be the active ingredient of several traditional Japanese, Chinese, and Korean medicines that are used to treat fever, parasite infections, liver diseases, and hangovers. Dihydromyricetin preparations have not been linked to instances of serum enzyme elevations or clinically apparent liver injury with jaundice. Dihydromyricetin is a natural product found in Vitis rotundifolia, Catha edulis, and other organisms with data available. An optically active form of dihydromyricetin having (2R,3R)-configuration. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM.

   

Ligusticide

3-Butylidene-4,5-dihydro-1(3H)-isobenzofuranone;1(3H)-Isobenzofuranone,3-butylidene-4,5-dihydro-;(3Z)-3-Butylidene-4,5-dihydroisobenzofuran-1(3H)-one

C12H14O2 (190.0994)


(Z)-ligustilide is a butenolide. It has a role as a metabolite. Ligustilide is a natural product found in Ligusticum striatum, Angelica sinensis, and other organisms with data available. A natural product found in Ligusticum porteri.

   

Asiatic

(1S,2R,4aS,6aS,6bR,8aR,9R,10R,11R,12aR,12bR,14bS)-10,11-dihydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O5 (488.3502)


Asiatic acid is a pentacyclic triterpenoid that is ursane substituted by a carboxy group at position 28 and hydroxy groups at positions 2, 3 and 23 (the 2alpha,3beta stereoisomer). It is isolated from Symplocos lancifolia and Vateria indica and exhibits anti-angiogenic activity. It has a role as an angiogenesis modulating agent and a metabolite. It is a monocarboxylic acid, a triol and a pentacyclic triterpenoid. It derives from a hydride of an ursane. From Centella asiatica and other plants; shows a variety of bioactivities. Asiatic acid is a natural product found in Psidium guajava, Combretum fruticosum, and other organisms with data available. See also: Holy basil leaf (part of); Lagerstroemia speciosa leaf (part of); Centella asiatica flowering top (part of). A pentacyclic triterpenoid that is ursane substituted by a carboxy group at position 28 and hydroxy groups at positions 2, 3 and 23 (the 2alpha,3beta stereoisomer). It is isolated from Symplocos lancifolia and Vateria indica and exhibits anti-angiogenic activity. C1907 - Drug, Natural Product > C28269 - Phytochemical > C1905 - Triterpenoid Compound C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product Asiatic acid, a pentacyclic triterpene found in Centella asiatica, induces apoptosis in melanoma cells. Asiatic acid has the potential for skin cancer treatment[1]. Asiatic acid also has anti-inflammatory activities[2]. Asiatic acid, a pentacyclic triterpene found in Centella asiatica, induces apoptosis in melanoma cells. Asiatic acid has the potential for skin cancer treatment[1]. Asiatic acid also has anti-inflammatory activities[2].

   

Cuc B

(R,E)-6-((2S,8S,9R,10R,13R,14S,16R,17R)-2,16-dihydroxy-4,4,9,13,14-pentamethyl-3,11-dioxo-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)-6-hydroxy-2-methyl-5-oxohept-3-en-2-yl acetate

C32H46O8 (558.3193)


Cucurbitacin B is a cucurbitacin in which a lanostane skeleton is multi-substituted with hydroxy, methyl and oxo substituents, with unsaturation at positions 5 and 23; a hydroxy function at C-25 is acetylated. It is a cucurbitacin, a secondary alpha-hydroxy ketone and a tertiary alpha-hydroxy ketone. It derives from a hydride of a lanostane. Cucurbitacin B is a natural product found in Begonia plebeja, Trichosanthes miyagii, and other organisms with data available. A cucurbitacin in which a lanostane skeleton is multi-substituted with hydroxy, methyl and oxo substituents, with unsaturation at positions 5 and 23; a hydroxy function at C-25 is acetylated. Cucurbitacin B belongs to a class of highly oxidized tetracyclic triterpenoids and is oral active. Cucurbitacin B inhibits tumor cell growth, migration and invasion and cycle arrest, but induces cell apoptosis. Cucurbitacin B has potent anti-inflammatory, antioxidant, antiviral, hypoglycemic, hepatoprotective, neuroprotective activity[1][2][3][4][5]. Cucurbitacin B belongs to a class of highly oxidized tetracyclic triterpenoids and is oral active. Cucurbitacin B inhibits tumor cell growth, migration and invasion and cycle arrest, but induces cell apoptosis. Cucurbitacin B has potent anti-inflammatory, antioxidant, antiviral, hypoglycemic, hepatoprotective, neuroprotective activity[1][2][3][4][5].

   

Silychristin

(2R,3R)-3,5,7-trihydroxy-2-[(2R,3S)-7-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-2,3-dihydro-1-benzofuran-5-yl]-2,3-dihydro-4H-chromen-4-one

C25H22O10 (482.1213)


A flavonolignan isolated from Silybum marianum and has been shown to exhibit inhibitory activities against lipoxygenase and prostaglandin synthetase. Silychristin is a flavonolignan isolated from Silybum marianum and has been shown to exhibit inhibitory activities against lipoxygenase and prostaglandin synthetase. It has a role as a radical scavenger, a lipoxygenase inhibitor, a prostaglandin antagonist and a metabolite. It is a flavonolignan, a member of 1-benzofurans, a polyphenol, an aromatic ether and a secondary alpha-hydroxy ketone. Silicristin is a natural product found in Cunila, Anastatica hierochuntica, and other organisms with data available. C26170 - Protective Agent > C2081 - Hepatoprotective Agent Silychristin is an abundant flavonolignan present in the fruits of Silybum marianum, with antioxidant properties. Silychristin is a potent inhibitor of the thyroid hormone transporter MCT8, and elicits a strong inhibition of T3 uptake with an IC50 of 110 nM[1][2]. Silychristin is an abundant flavonolignan present in the fruits of Silybum marianum, with antioxidant properties. Silychristin is a potent inhibitor of the thyroid hormone transporter MCT8, and elicits a strong inhibition of T3 uptake with an IC50 of 110 nM[1][2].

   

Quebrachitol

(1R,2S,3S,4S,5R,6R)-6-Methoxycyclohexane-1,2,3,4,5-pentaol

C7H14O6 (194.079)


L-Quebrachitol is a member of cyclohexanols. L-Quebrachitol is a natural product found in Croton cortesianus, Hippophae rhamnoides, and other organisms with data available. L-Quebrachitol is a natural product isolated from many plants, promotes osteoblastogenesis by uppregulation of BMP-2, runt-related transcription factor-2 (Runx2), MAPK (ERK, JNK, p38α), and Wnt/β-catenin signaling pathway[1]. L-Quebrachitol is a natural product isolated from many plants, promotes osteoblastogenesis by uppregulation of BMP-2, runt-related transcription factor-2 (Runx2), MAPK (ERK, JNK, p38α), and Wnt/β-catenin signaling pathway[1].

   

Helenin

Naphtho(2,3-b)furan-2(3H)-one, 3a,5,6,7,8,8a,9,9a-octahydro-5,8a-dimethyl-3-methylene-, (3aR-(3a alpha,5beta,8a beta,9a alpha))-

C15H20O2 (232.1463)


Alantolactone is a sesquiterpene lactone that is 3a,5,6,7,8,8a,9,9a-octahydronaphtho[2,3-b]furan-2-one bearing two methyl substituents at positions 5 and 8a as well as a methylidene substituent at position 3. It has a role as a plant metabolite, an apoptosis inducer and an antineoplastic agent. It is a sesquiterpene lactone, a naphthofuran and an olefinic compound. Alantolactone is a natural product found in Eupatorium cannabinum, Pentanema britannicum, and other organisms with data available. A sesquiterpene lactone that is 3a,5,6,7,8,8a,9,9a-octahydronaphtho[2,3-b]furan-2-one bearing two methyl substituents at positions 5 and 8a as well as a methylidene substituent at position 3. Alantolactone is a selective STAT3 inhibitor, with potent anticancer activity. Alantolactone induces apoptosis in cancer[1][2][3]. Alantolactone is a selective STAT3 inhibitor, with potent anticancer activity. Alantolactone induces apoptosis in cancer[1][2][3].

   

Xanthatin

2H-CYCLOHEPTA(B)FURAN-2-ONE, 3,3A,4,7,8,8A-HEXAHYDRO-7-METHYL-3-METHYLENE-6-((1E)-3-OXO-1-BUTEN-1-YL)-, (3AR,7S,8AS)-

C15H18O3 (246.1256)


Xanthatin is a sesquiterpene lactone. Xanthatin is a natural product found in Xanthium spinosum, Dittrichia graveolens, and other organisms with data available. D000970 - Antineoplastic Agents

   

ARNEBIN-3

InChI=1/C18H18O6/c1-9(2)4-7-15(24-10(3)19)11-8-14(22)16-12(20)5-6-13(21)17(16)18(11)23/h4-6,8,15,20-21H,7H2,1-3H3

C18H18O6 (330.1103)


Acetylshikonin is an acetate ester and a hydroxy-1,4-naphthoquinone. Acetylshikonin is a natural product found in Echium plantagineum, Lithospermum erythrorhizon, and other organisms with data available. Acetylshikonin, derived from the root of Lithospermum erythrorhizon, has anti-cancer and antiinflammation activity. Acetylshikonin is a non-selective cytochrome P450 inhibitor against all P450s (IC50 values range from 1.4-4.0 μM). Acetylshikonin is an AChE inhibitor and exhibits potent antiapoptosis activity[1][2][3]. Acetylshikonin, derived from the root of Lithospermum erythrorhizon, has anti-cancer and antiinflammation activity. Acetylshikonin is a non-selective cytochrome P450 inhibitor against all P450s (IC50 values range from 1.4-4.0 μM). Acetylshikonin is an AChE inhibitor and exhibits potent antiapoptosis activity[1][2][3].

   

Pseudochelerythrine

24-methyl-5,7,18,20-tetraoxa-24-azahexacyclo[11.11.0.0²,¹⁰.0⁴,⁸.0¹⁴,²².0¹⁷,²¹]tetracosa-1(24),2,4(8),9,11,13,15,17(21),22-nonaen-24-ium

C20H14NO4+ (332.0923)


Sanguinarine is a benzophenanthridine alkaloid, an alkaloid antibiotic and a botanical anti-fungal agent. Sanguinarine is a natural product found in Fumaria capreolata, Fumaria kralikii, and other organisms with data available. Sanguinarine is found in opium poppy. Consumption of Sanguinarine, present in poppy seeds and in the oil of Argemone mexicana which has been used as an adulterant for mustard oil in India, has been linked to development of glaucoma. Sanguinarine is banned by FDA. Sanguinarine is a quaternary ammonium salt from the group of benzylisoquinoline alkaloids. It is extracted from some plants, including bloodroot (Sanguinaria canadensis), Mexican prickly poppy Argemone mexicana, Chelidonium majus and Macleaya cordata. It is also found in the root, stem and leaves of the opium poppy but not in the capsule. Sanguinarine is a toxin that kills animal cells through its action on the Na+-K+-ATPase transmembrane protein. Epidemic dropsy is a disease that results from ingesting sanguinarine. Sanguinarine has been shown to exhibit antibiotic, anti-apoptotic, anti-fungal, anti-inflammatory and anti-angiogenic functions Sanguinarine belongs to the family of Benzoquinolines. These are organic compounds containing a benzene fused to a quinoline ring system. (A3208, A3209, A3208, A3208, A3208). See also: Sanguinaria canadensis root (part of); Chelidonium majus flowering top (part of). Sanguinarine is found in opium poppy. Consumption of Sanguinarine, present in poppy seeds and in the oil of Argemone mexicana which has been used as an adulterant for mustard oil in India, has been linked to development of glaucoma. Sanguinarine is banned by FDA. Sanguinarine is a quaternary ammonium salt from the group of benzylisoquinoline alkaloids. It is extracted from some plants, including bloodroot (Sanguinaria canadensis), Mexican prickly poppy Argemone mexicana, Chelidonium majus and Macleaya cordata. It is also found in the root, stem and leaves of the opium poppy but not in the capsule.[citation needed]; Sanguinarine is a toxin that kills animal cells through its action on the Na+-K+-ATPase transmembrane protein. Epidemic dropsy is a disease that results from ingesting sanguinarine Sanguinarine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2447-54-3 (retrieved 2024-06-29) (CAS RN: 2447-54-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Isoarnebin I

2-Butenoic acid, 3-methyl-, 1-(1,4-dihydro-5,8-dihydroxy-1,4-dioxo-2-naphthalenyl)-4-methyl-3-pentenyl ester, (+)-

C21H22O6 (370.1416)


Beta,beta-Dimethylacrylshikonin is a hydroxy-1,4-naphthoquinone. beta,beta-Dimethylacrylshikonin is a natural product found in Alkanna cappadocica, Lithospermum erythrorhizon, and other organisms with data available. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1].

   

Spinasterol

(3S,5S,9R,10S,13R,14R,17R)-17-((2R,5S,E)-5-ethyl-6-methylhept-3-en-2-yl)-10,13-dimethyl-2,3,4,5,6,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.3705)


Alpha-Spinasterol is a steroid. It derives from a hydride of a stigmastane. alpha-Spinasterol is a natural product found in Pandanus utilis, Benincasa hispida, and other organisms with data available. See also: Menyanthes trifoliata leaf (part of). α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2]. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2].

   

Phytic_acid

1,2,3,4,5,6-cyclohexanehexol, hexakis(dihydrogen phosphate), (1alpha,2alpha,3alpha,4beta,5alpha,6beta)-

C6H18O24P6 (659.8614)


Myo-inositol hexakisphosphate is a myo-inositol hexakisphosphate in which each hydroxy group of myo-inositol is monophosphorylated. It has a role as an iron chelator, an antineoplastic agent, a signalling molecule, an Escherichia coli metabolite, a mouse metabolite and a cofactor. It is a conjugate acid of a myo-inositol hexakisphosphate(12-). Phytic acid is under investigation in clinical trial NCT01000233 (Value of Oral Phytate (InsP6) in the Prevention of Progression of the Cardiovascular Calcifications). Myo-inositol hexakisphosphate is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Phytic acid is a natural product found in Chloris gayana, Vachellia nilotica, and other organisms with data available. Myo-Inositol hexakisphosphate is a metabolite found in or produced by Saccharomyces cerevisiae. Complexing agent for removal of traces of heavy metal ions. It acts also as a hypocalcemic agent. C26170 - Protective Agent > C275 - Antioxidant

   

Streptozocin

Streptozocin

C8H15N3O7 (265.091)


An N-nitrosourea that is an antibiotic produced by Streptomyces achromogenes. It is used as an antineoplastic agent and to induce diabetes in experimental animals. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01A - Alkylating agents > L01AD - Nitrosoureas D000970 - Antineoplastic Agents

   

Raloxifene

Raloxifene

C28H27NO4S (473.1661)


G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03X - Other sex hormones and modulators of the genital system > G03XC - Selective estrogen receptor modulators D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D020847 - Estrogen Receptor Modulators D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1821 - Selective Estrogen Receptor Modulator C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist D050071 - Bone Density Conservation Agents C1892 - Chemopreventive Agent Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Raloxifene (Keoxifene) is a benzothiophene-derived selective estrogen receptor modulator (SERM). Raloxifene has estrogen-agonistic effects on bone and lipids and estrogen-antagonistic effects on the breast and uterus. Raloxifene is used for breast cancer and osteoporosis research[1].

   

Testosterone propionate

Testosterone propionate

C22H32O3 (344.2351)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

Testosterone Enanthate

Testosterone Enanthate

C26H40O3 (400.2977)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D000728 - Androgens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid

   

propofol

propofol

C12H18O (178.1358)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Propofol potently and directly activates GABAA receptor and inhibits glutamate receptor mediated excitatory synaptic transmission. Propofol has antinociceptive properties and is used for sedation and hypnotic[1].

   

tizanidine

tizanidine

C9H8ClN5S (253.0189)


M - Musculo-skeletal system > M03 - Muscle relaxants > M03B - Muscle relaxants, centrally acting agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D002491 - Central Nervous System Agents > D000700 - Analgesics Tizanidine is an α2-adrenergic receptor agonist and inhibits neurotransmitter release from CNS noradrenergic neurons. Target: α2-adrenergic receptor Tizanidine is a drug that is used as a muscle relaxant. It is a centrally acting α2 adrenergic agonist. It is used to treat the spasms, cramping, and tightness of muscles caused by medical problems such as multiple sclerosis, ALS, spastic diplegia, back pain, or certain other injuries to the spine or central nervous system. It is also prescribed off-label for migraine headaches, as a sleep aid, and as an anticonvulsant. It is also prescribed for some symptoms of fibromyalgia. Tizanidine has been found to be as effective as other antispasmodic drugs and has superior tolerability to that of baclofen and diazepam. Tizanidine can be very strong even at the 2 mg dose and may cause hypotension, so caution is advised when it is used in patients who have a history of orthostatic hypotension, or when switching from gel cap to tablet form and vice versa. Tizanidine can occasionally cause liver damage, generally the hepatocellular type. Clinical trials show that up to 5\% of patients treated with tizanidine had elevated liver function test values, though symptoms disappeared upon withdrawal of the drug. Care should be used when first beginning treatment with tizanidine with regular liver tests for the first 6 months of treatment.

   

Risedronic acid

Risedronic acid

C7H11NO7P2 (283.0011)


M - Musculo-skeletal system > M05 - Drugs for treatment of bone diseases > M05B - Drugs affecting bone structure and mineralization > M05BA - Bisphosphonates C78281 - Agent Affecting Musculoskeletal System > C67439 - Bone Resorption Inhibitor D050071 - Bone Density Conservation Agents > D004164 - Diphosphonates D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators

   

EFLORNITHINE

2-(Difluoromethyl)-DL-ornithine

C6H12F2N2O2 (182.0867)


P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01C - Agents against leishmaniasis and trypanosomiasis C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor > C129824 - Antineoplastic Protein Inhibitor D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D004791 - Enzyme Inhibitors > D065108 - Ornithine Decarboxylase Inhibitors C471 - Enzyme Inhibitor > C2088 - Ornithine Decarboxylase Inhibitor D000970 - Antineoplastic Agents D - Dermatologicals

   

Afimoxifene

(E/Z)-4-hydroxy Tamoxifen

C26H29NO2 (387.2198)


A tertiary amino compound that is tamoxifen in which the phenyl group which is in a Z- relationship to the ethyl substituent is hydroxylated at the para- position. It is the active metabolite of tamoxifen. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D020847 - Estrogen Receptor Modulators D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1821 - Selective Estrogen Receptor Modulator C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist D000970 - Antineoplastic Agents C1892 - Chemopreventive Agent

   

Acridine orange

N3,N3,N6,N6-Tetramethylacridine-3,6-diamine

C17H19N3 (265.1579)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes D009676 - Noxae > D009153 - Mutagens

   

UNII:FU2EWB60RT

2-(((2-Ethylhexyl)oxy)carbonyl)benzoic acid

C16H22O4 (278.1518)


Phthalic acid mono-2-ethylhexyl ester (MEHP) is a major bioactive metabolite of diethylhexyl phthalate (DEHP), which inhibits the 17, 20 lyase activity of CYP17[1]. Phthalic acid mono-2-ethylhexyl ester (MEHP) is a major bioactive metabolite of diethylhexyl phthalate (DEHP), which inhibits the 17, 20 lyase activity of CYP17[1].

   

CANNABICHROMENE

CANNABICHROMENE

C21H30O2 (314.2246)


   

beta-Glycerophosphoric acid

beta-Glycerophosphoric acid

C3H9O6P (172.0137)


   

N1-Acetylspermidine

N1-Acetylspermidine

C9H21N3O (187.1685)


   

(R)-5-Diphosphomevalonic acid

(3r)-3-Hydroxy-5-{[(R)-Hydroxy(Phosphonooxy)phosphoryl]oxy}-3-Methylpentanoic Acid

C6H14O10P2 (308.0062)


The 5-diphospho derivative of (R)-mevalonic acid.

   

4-(Methyloxy)-2,3,6a,9a-tetrahydrocyclopenta[c]furo[3,2:4,5]furo[2,3-h]chromene-1,11-dione

4-(Methyloxy)-2,3,6a,9a-tetrahydrocyclopenta[c]furo[3,2:4,5]furo[2,3-h]chromene-1,11-dione

C17H12O6 (312.0634)


D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D000348 - Aflatoxins Aflatoxin B1 (AFB1) is a Class 1A carcinogen, which is a secondary metabolite of Aspergillus flavus and A. parasiticus. Aflatoxin B1 (AFB1) mainly induces the transversion of G-->T in the third position of codon 249 of the p53 tumor suppressor gene, resulting in mutation[1][2].

   

stearoyl-CoA

stearoyl-CoA

C39H70N7O17P3S (1033.3762)


A long-chain fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of stearic acid.

   

Avenanthramide a

Avenanthramide a

C16H13NO5 (299.0794)


   

4-oxo-L-proline

4-oxo-L-proline

C5H7NO3 (129.0426)


The L-enantiomer of 4-oxoproline.

   

GW 9662

2-Chloro-5-nitro-N-phenylbenzamide

C13H9ClN2O3 (276.0302)


GW9662 is a potent and selective PPARγ antagonist with an IC50 of 3.3 nM, showing 10 and 1000-fold selectivity over PPARα and PPARδ, respectively.

   

2,4-DP

2-(2,4-Dichlorophenoxy)propionic acid

C9H8Cl2O3 (233.985)


   

Methylnitronitrosoguanidine

N-Methyl-n-nitro-N-nitrosoguanidine

C2H5N5O3 (147.0392)


D009676 - Noxae > D009153 - Mutagens > D009604 - Nitrosoguanidines

   

nnk

4-(N-Nitrosomethylamino)-1-(3-pyridyl)-1-butanone

C10H13N3O2 (207.1008)


D009676 - Noxae > D002273 - Carcinogens

   

Cerebrosterol

(24S)-Cholest-5-ene-3beta,24-diol

C27H46O2 (402.3498)


A 24-hydroxycholesterol that has S configuration at position 24. It is the major metabolic breakdown product of cholesterol in the brain. 24(S)-Hydroxycholesterol (24S-OHC), the major brain cholesterol metabolite, plays an important role to maintain homeostasis of cholesterol in the brain. 24(S)-Hydroxycholesterol (24S-OHC) is one of the most efficient endogenous LXR agonist known and is present in the brain and in the circulation at relatively high levels. 24(S)-Hydroxycholesterol (24S-OHC) is a very potent, direct, and selective positive allosteric modulator of NMDARs with a mechanism that does not overlapthat of other allosteric modulators[1][2][3]. 24(S)-Hydroxycholesterol (24S-OHC), the major brain cholesterol metabolite, plays an important role to maintain homeostasis of cholesterol in the brain. 24(S)-Hydroxycholesterol (24S-OHC) is one of the most efficient endogenous LXR agonist known and is present in the brain and in the circulation at relatively high levels. 24(S)-Hydroxycholesterol (24S-OHC) is a very potent, direct, and selective positive allosteric modulator of NMDARs with a mechanism that does not overlapthat of other allosteric modulators[1][2][3].

   

4,4-Methylenedianiline

4,4′-methylenedianiline

C13H14N2 (198.1157)


D009676 - Noxae > D002273 - Carcinogens

   

Butylbenzyl phthalate

Butyl phenylmethyl 1,2-benzenedicarboxylate

C19H20O4 (312.1362)


D009676 - Noxae > D013723 - Teratogens

   

Methylnitrosourea

N-Methyl-N-nitrosourea

C2H5N3O2 (103.0382)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D009676 - Noxae > D000477 - Alkylating Agents