Isoliquiritigenin (BioDeep_00000000063)
Secondary id: BioDeep_00000400506
human metabolite PANOMIX_OTCML-2023 natural product Volatile Flavor Compounds
代谢物信息卡片
化学式: C15H12O4 (256.0735552)
中文名称: 异甘草素
谱图信息:
最多检出来源 Viridiplantae(plant) 0.51%
Last reviewed on 2024-09-04.
Cite this Page
Isoliquiritigenin. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/isoliquiritigenin (retrieved
2024-11-21) (BioDeep RN: BioDeep_00000000063). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C1(O)=CC=C(C(=O)/C=C/C2C=CC(O)=CC=2)C(O)=C1
InChI: InChI=1S/C15H12O4/c16-11-4-1-10(2-5-11)3-8-14(18)13-7-6-12(17)9-15(13)19/h1-9,16-17,19H/b8-3+
描述信息
Isoliquiritigenin is a member of the class of chalcones that is trans-chalcone hydroxylated at C-2, -4 and -4. It has a role as an EC 1.14.18.1 (tyrosinase) inhibitor, a biological pigment, a NMDA receptor antagonist, a GABA modulator, a metabolite, an antineoplastic agent and a geroprotector. It is functionally related to a trans-chalcone. It is a conjugate acid of an isoliquiritigenin(1-).
Isoliquiritigenin is a precursor to several flavonones in many plants.
Isoliquiritigenin is a natural product found in Pterocarpus indicus, Dracaena draco, and other organisms with data available.
See also: Glycyrrhiza Glabra (part of); Glycyrrhiza uralensis Root (part of); Pterocarpus marsupium wood (part of).
Isolated from Medicago subspecies Isoliquiritigenin is found in many foods, some of which are cocoa bean, purple mangosteen, blackcurrant, and chives.
A member of the class of chalcones that is trans-chalcone hydroxylated at C-2, -4 and -4.
Isoliquiritigenin is found in pulses. Isoliquiritigenin is isolated from Medicago specie
D004791 - Enzyme Inhibitors
Isoliquiritigenin is an anti-tumor flavonoid from the root of Glycyrrhiza uralensis Fisch., which inhibits aldose reductase with an IC50 of 320 nM. Isoliquiritigenin is a potent inhibitor of influenza virus replication with an EC50 of 24.7 μM.
Isoliquiritigenin is an anti-tumor flavonoid from the root of Glycyrrhiza uralensis Fisch., which inhibits aldose reductase with an IC50 of 320 nM. Isoliquiritigenin is a potent inhibitor of influenza virus replication with an EC50 of 24.7 μM.
同义名列表
53 个代谢物同义名
InChI=1/C15H12O4/c16-11-4-1-10(2-5-11)3-8-14(18)13-7-6-12(17)9-15(13)19/h1-9,16-17,19H/b8-3; 2-Propen-1-one, 1-(2,4-dihydroxyphenyl)-3-(4-hydroxyphenyl)-, (2E)-; (E)-1-[2,4-bis(oxidanyl)phenyl]-3-(4-hydroxyphenyl)prop-2-en-1-one; 2-Propen-1-one, 1-(2,4-dihydroxyphenyl)-3-(4-hydroxyphenyl)-, (E)-; (2E)-1-(2,4-dihydroxyphenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one; (E)-1-(2,4-dihydroxyphenyl)-3-(4-hydroxyphenyl)-2-propene-1-one; (2E)-1-(2,4-Dihydroxyphenyl)-3-(4-hydroxyphenyl)-2-propen-1-one; (E)-1-(2,4-dihydroxyphenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one; (E)-1-(2,4-Dihydroxyphenyl)-3-(4-hydroxyphenyl)-2-propen-1-one; 2-PROPEN-1-ONE, 1-(2,4-DIHYDROXYPHENYL)-3-(4-HYDROXYPHENYL)-; 1-(2,4-Dihydroxyphenyl)-3-(4-hydroxyphenyl)-prop-2-en-1-one; (E)-1-(2,4-Dihydroxy-phenyl)-3-(4-hydroxy-phenyl)-propenone; 1-(2,4-Dihydroxyphenyl)-3-(4-hydroxyphenyl)-2-propen-1-one; 1-(2,4-Dihydroxyphenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one; 1-(2,4-Dihydroxy-phenyl)-3-(4-hydroxy-phenyl)-propenone; Acrylophenone, 2,4-dihydroxy-3-(p-hydroxyphenyl)-; 2,4-Dihydroxy-3-(p-hydroxyphenyl)-Acrylophenone; 1-08-00-00707 (Beilstein Handbook Reference); Isoliquiritigenin, analytical standard; 2,4-dihydroxy-4-hydroxychalcone; trans-2,4,4-trihydroxychalcone; Chalcone, 2,4,4-trihydroxy-; 2,4,4-Trihydroxy-Chalcone; TRIHYDROXYCHALCONE [INCI]; Isoliquiritigenin, powder; 2,4,4-trihydroxychalcone; 4,2,4-Trihydroxychalcone; 2,4,4-Trihydroxychalcone; 424-trihydroxychalcone; iso-Liquiritigenin; Trihydroxychalcone; Isoliquiritigenin; Spectrum5_000612; 6-deoxychalcone; UNII-B9CTI9GB8F; Isoliquiritigen; Lopac0_000681; MEGxp0_001326; ACon1_000047; CMLD3_000056; Tox21_500681; B9CTI9GB8F; C15H12O4; GU-17; GU 17; ILTG; ISLQ; GU17; ILG; GU17;ISL;Isoliquiritigen; ISL; SJ000286237; Isoliquiritigenin
数据库引用编号
27 个数据库交叉引用编号
- ChEBI: CHEBI:310312
- ChEBI: CHEBI:94010
- KEGG: C08650
- PubChem: 638278
- HMDB: HMDB0037316
- Metlin: METLIN44115
- DrugBank: DB03285
- ChEMBL: CHEMBL129795
- Wikipedia: Isoliquiritigenin
- LipidMAPS: LMPK12120096
- MeSH: isoliquiritigenin
- ChemIDplus: 0000961295
- MetaCyc: CPD-3041
- KNApSAcK: C00006925
- foodb: FDB016335
- chemspider: 553829
- CAS: 961-29-5
- medchemexpress: HY-N0102
- PMhub: MS000004072
- MetaboLights: MTBLC310312
- PDB-CCD: HCC
- 3DMET: B01111
- NIKKAJI: J74.686J
- RefMet: Isoliquiritigenin
- LOTUS: LTS0135491
- PubChem: 10843
- KNApSAcK: 310312
分类词条
相关代谢途径
Reactome(0)
代谢反应
368 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(6)
- 6'-deoxychalcone metabolism:
UDP-α-D-glucose + butein ⟶ H+ + UDP + butein 4'-β-D-glucoside
- isoflavonoid biosynthesis I:
SAM + daidzein ⟶ H+ + SAH + isoformononetin
- hispidol and hispidol 4'-O-β-D-glucoside biosynthesis:
UDP-α-D-glucose + isoliquiritigenin ⟶ H+ + UDP + isoliquiritigenin 4'-glucoside
- flavonoid biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ (+)-dihydrokaempferol + CO2 + succinate
- echinatin biosynthesis:
isoliquiritigenin ⟶ (2S)-liquiritigenin
- flavonoid biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ (+)-dihydrokaempferol + CO2 + succinate
WikiPathways(0)
Plant Reactome(220)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
L-Phe ⟶ ammonia + trans-cinnamate
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Secondary metabolism:
GPP + H2O ⟶ PPi + geraniol
- Flavonoid biosynthesis:
4-coumarate + ATP + CoA-SH ⟶ 4-coumaroyl-CoA + AMP + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
- Flavonoid biosynthesis:
4-coumaroyl-CoA + Mal-CoA + coumaroyl-CoA ⟶ CoA-SH + apigenin + carbon dioxide
INOH(0)
PlantCyc(141)
- 6'-deoxychalcone metabolism:
UDP-α-D-glucose + butein ⟶ H+ + UDP + butein 4'-β-D-glucoside
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + NADPH + malonyl-CoA ⟶ CO2 + H2O + NADP+ + coenzyme A + isoliquiritigenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- echinatin biosynthesis:
isoliquiritigenin ⟶ (2S)-liquiritigenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- isoflavonoid biosynthesis I:
SAM + daidzein ⟶ H+ + SAH + isoformononetin
- hispidol and hispidol 4'-O-β-D-glucoside biosynthesis:
hydrogen peroxide + isoliquiritigenin ⟶ 2-[hydroperoxy(4-hydroxyphenyl)methyl]-6-hydroxy-1-benzofuran-3-one + H2O
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- hispidol and hispidol 4'-O-β-D-glucoside biosynthesis:
hydrogen peroxide + isoliquiritigenin ⟶ 2-[hydroperoxy(4-hydroxyphenyl)methyl]-6-hydroxy-1-benzofuran-3-one + H2O
- isoflavonoid biosynthesis I:
2,4',7-trihydroxyisoflavanone ⟶ H2O + daidzein
- echinatin biosynthesis:
(2S)-liquiritigenin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 2-hydroxyliquiritigenin + H2O + an oxidized [NADPH-hemoprotein reductase]
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- isoflavonoid biosynthesis I:
2,4',7-trihydroxyisoflavanone ⟶ H2O + daidzein
- hispidol and hispidol 4'-O-β-D-glucoside biosynthesis:
hydrogen peroxide + isoliquiritigenin ⟶ 2-[hydroperoxy(4-hydroxyphenyl)methyl]-6-hydroxy-1-benzofuran-3-one + H2O
- echinatin biosynthesis:
(2S)-liquiritigenin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 2-hydroxyliquiritigenin + H2O + an oxidized [NADPH-hemoprotein reductase]
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- isoflavonoid biosynthesis I:
2,4',7-trihydroxyisoflavanone ⟶ H2O + daidzein
- echinatin biosynthesis:
(2S)-liquiritigenin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 2-hydroxyliquiritigenin + H2O + an oxidized [NADPH-hemoprotein reductase]
- hispidol and hispidol 4'-O-β-D-glucoside biosynthesis:
2-(6-oxo-1-oxaspiro[2.5]octa-4-glucosyl)-6-hydroxy-1-benzofuran-3-one + O2 ⟶ 6-hydroxy-2-(4-glucosyl-phenoxymethylene)-benzofuran-3-one + hydrogen peroxide
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- echinatin biosynthesis:
SAM + licodione ⟶ 2'-O-methyllicodione + H+ + SAH
- isoflavonoid biosynthesis I:
2,4',7-trihydroxyisoflavanone ⟶ H2O + daidzein
- hispidol and hispidol 4'-O-β-D-glucoside biosynthesis:
UDP-α-D-glucose + isoliquiritigenin ⟶ H+ + UDP + isoliquiritigenin 4'-glucoside
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + NADPH + malonyl-CoA ⟶ CO2 + H2O + NADP+ + coenzyme A + isoliquiritigenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- isoflavonoid biosynthesis I:
SAM + daidzein ⟶ H+ + SAH + isoformononetin
- hispidol and hispidol 4'-O-β-D-glucoside biosynthesis:
hydrogen peroxide + isoliquiritigenin ⟶ 2-[hydroperoxy(4-hydroxyphenyl)methyl]-6-hydroxy-1-benzofuran-3-one + H2O
- echinatin biosynthesis:
isoliquiritigenin ⟶ (2S)-liquiritigenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- hispidol and hispidol 4'-O-β-D-glucoside biosynthesis:
2-(6-oxo-1-oxaspiro[2.5]octa-4-glucosyl)-6-hydroxy-1-benzofuran-3-one + O2 ⟶ 6-hydroxy-2-(4-glucosyl-phenoxymethylene)-benzofuran-3-one + hydrogen peroxide
- echinatin biosynthesis:
(2S)-liquiritigenin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 2-hydroxyliquiritigenin + H2O + an oxidized [NADPH-hemoprotein reductase]
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- isoflavonoid biosynthesis I:
2,4',7-trihydroxyisoflavanone ⟶ H2O + daidzein
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- echinatin biosynthesis:
(2S)-liquiritigenin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 2-hydroxyliquiritigenin + H2O + an oxidized [NADPH-hemoprotein reductase]
- isoflavonoid biosynthesis I:
2,4',7-trihydroxyisoflavanone ⟶ H2O + daidzein
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ (+)-dihydrokaempferol + CO2 + succinate
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + NADPH + malonyl-CoA ⟶ CO2 + H2O + NADP+ + coenzyme A + isoliquiritigenin
- echinatin biosynthesis:
SAM + licodione ⟶ 2'-O-methyllicodione + H+ + SAH
- isoflavonoid biosynthesis I:
SAM + daidzein ⟶ H+ + SAH + isoformononetin
- flavonoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + NADPH + malonyl-CoA ⟶ CO2 + H2O + NADP+ + coenzyme A + isoliquiritigenin
COVID-19 Disease Map(0)
PharmGKB(0)
261 个相关的物种来源信息
- 51426 - Agapanthus: LTS0135491
- 51501 - Agapanthus africanus: 10.1016/J.PHYTOCHEM.2005.04.007
- 51501 - Agapanthus africanus: LTS0135491
- 3812 - Albizia: LTS0135491
- 3813 - Albizia julibrissin: 10.1248/CPB.60.129
- 3813 - Albizia julibrissin: LTS0135491
- 4678 - Allium: LTS0135491
- 130426 - Allium chinense: 10.1248/BPB.23.660
- 130426 - Allium chinense: LTS0135491
- 94326 - Alpinia: LTS0135491
- 105674 - Alpinia japonica: 10.1248/CPB.35.3568
- 105674 - Alpinia japonica: LTS0135491
- 4668 - Amaryllidaceae: LTS0135491
- 149627 - Amburana: LTS0135491
- 149628 - Amburana cearensis: 10.1590/S0103-50532011000200025
- 149628 - Amburana cearensis: LTS0135491
- 59044 - Anemarrhena: LTS0135491
- 59045 - Anemarrhena asphodeloides: 10.1021/NP900397F
- 59045 - Anemarrhena asphodeloides: LTS0135491
- 3702 - Arabidopsis thaliana: 10.1111/TPJ.14594
- 4219 - Artemisia: LTS0135491
- 86312 - Artemisia ludoviciana: 10.1007/BF00605215
- 401925 - Artemisia palustris: 10.1016/S0031-9422(00)83171-4
- 401925 - Artemisia palustris: LTS0135491
- 40552 - Asparagaceae: LTS0135491
- 4210 - Asteraceae: LTS0135491
- 20400 - Astragalus: LTS0135491
- 20401 - Astragalus adsurgens: 10.1016/J.FOODCHEM.2011.09.021
- 20401 - Astragalus adsurgens: LTS0135491
- 1234497 - Astragalus laxmannii: 10.1016/J.FOODCHEM.2011.09.021
- 1234497 - Astragalus laxmannii: LTS0135491
- 53830 - Ateleia: LTS0135491
- 53831 - Ateleia herbert-smithii: 10.1021/NP020425U
- 53831 - Ateleia herbert-smithii: LTS0135491
- 191145 - Bahiopsis laciniata: 10.1016/0305-1978(89)90096-3
- 191148 - Bahiopsis parishii: 10.1016/0305-1978(89)90096-3
- 191152 - Bahiopsis triangularis: 10.1016/0305-1978(89)90096-3
- 3805 - Bauhinia: LTS0135491
- 191885 - Biancaea decapetala: 10.1248/CPB.35.3568
- 194252 - Brosimum: LTS0135491
- 1835378 - Brosimum acutifolium: 10.1016/S0031-9422(99)00608-1
- 1835378 - Brosimum acutifolium: LTS0135491
- 172644 - Broussonetia papyrifera: 10.1246/CL.1984.689
- 12979 - Butea: LTS0135491
- 56060 - Butea monosperma: 10.1248/CPB.57.428
- 56060 - Butea monosperma: LTS0135491
- 53845 - Caesalpinia: LTS0135491
- 1048872 - Calanticaria bicolor: 10.1016/0305-1978(88)90036-1
- 191154 - Calanticaria brevifolia: 10.1016/0305-1978(88)90036-1
- 191155 - Calanticaria greggii: 10.1016/0305-1978(88)90036-1
- 53622 - Callerya: LTS0135491
- 347529 - Centaurea solstitialis: 10.1016/S0031-9422(98)00257-X
- 3827 - Cicer arietinum: 10.1515/ZNC-1987-11-1206
- 149357 - Cissus: LTS0135491
- 165299 - Cissus discolor: 10.1248/CPB.57.1089
- 289665 - Cissus verticillata: LTS0135491
- 76958 - Clausena: LTS0135491
- 76959 - Clausena excavata:
- 76959 - Clausena excavata: 10.1016/S0031-9422(96)00532-8
- 76959 - Clausena excavata: 10.1016/S0031-9422(99)00220-4
- 76959 - Clausena excavata: LTS0135491
- 3452 - Clematis: LTS0135491
- 174171 - Clematis hexapetala: 10.1515/ZNB-2007-0615
- 174171 - Clematis hexapetala: LTS0135491
- 16055 - Crinum: LTS0135491
- 209086 - Crinum bulbispermum: 10.1016/S0031-9422(00)00184-9
- 209086 - Crinum bulbispermum: LTS0135491
- 101596 - Dahlia pinnata: 10.1016/0031-9422(75)85362-3
- 101601 - Dahlia tenuicaulis: 10.1016/0031-9422(75)85362-3
- 53862 - Dalbergia: LTS0135491
- 450024 - Dalbergia ecastaphyllum: 10.1021/NP030008X
- 450024 - Dalbergia ecastaphyllum: LTS0135491
- 2805520 - Dalbergia louvelii:
- 2805520 - Dalbergia louvelii: 10.1021/NP030008X
- 2805520 - Dalbergia louvelii: LTS0135491
- 499988 - Dalbergia odorifera:
- 499988 - Dalbergia odorifera: 10.1021/NP030008X
- 499988 - Dalbergia odorifera: 10.1055/S-2006-957394
- 499988 - Dalbergia odorifera: 10.1248/CPB.37.979
- 499988 - Dalbergia odorifera: 10.1248/CPB.56.1722
- 499988 - Dalbergia odorifera: LTS0135491
- 1353466 - Dalbergia parviflora: 10.1021/NP900676Y
- 1353466 - Dalbergia parviflora: LTS0135491
- 466221 - Dalbergia retusa: 10.1016/S0031-9422(00)91322-0
- 466221 - Dalbergia retusa: LTS0135491
- 1353471 - Dalbergia sericea: 10.1021/NP030008X
- 1353471 - Dalbergia sericea: LTS0135491
- 2507847 - Dalbergia sissoides: 10.4268/CJCMM20140916
- 107308 - Dalbergia sissoo: 10.1021/NP070478H
- 107308 - Dalbergia sissoo: LTS0135491
- 1966414 - Dalbergia stevensonii: 10.1021/NP030008X
- 1966414 - Dalbergia stevensonii: LTS0135491
- 1048879 - Dendroviguiera adenophylla: 10.1016/0305-1978(88)90035-X
- 1048876 - Dendroviguiera eriophora: 10.1016/0305-1978(88)90035-X
- 1048877 - Dendroviguiera insignis: 10.1016/0305-1978(88)90035-X
- 1048873 - Dendroviguiera sphaerocephala: 10.1016/0305-1978(88)90035-X
- 1048880 - Dendroviguiera splendens: 10.1016/0305-1978(88)90035-X
- 2231446 - Dermatophyllum: LTS0135491
- 2932918 - Dermatophyllum gypsophilum: LTS0135491
- 53872 - Dipteryx: LTS0135491
- 54988 - Dipteryx alata: 10.3390/MOLECULES15118193
- 53873 - Dipteryx odorata: 10.1021/NP020522N
- 53873 - Dipteryx odorata: LTS0135491
- 106722 - Dorstenia: LTS0135491
- 2605001 - Dorstenia prorepens: 10.1016/S0031-9422(01)00483-6
- 2605016 - Dorstenia zenkeri: 10.1016/S0031-9422(01)00483-6
- 2605016 - Dorstenia zenkeri: LTS0135491
- 39502 - Dracaena: LTS0135491
- 580341 - Dracaena cambodiana: 10.1007/S10600-011-0012-4
- 580341 - Dracaena cambodiana: LTS0135491
- 100532 - Dracaena draco:
- 100532 - Dracaena draco: 10.1016/J.BMC.2004.06.009
- 100532 - Dracaena draco: 10.1021/NP000085H
- 100532 - Dracaena draco: LTS0135491
- 3841 - Erythrina: LTS0135491
- 556509 - Erythrina fusca: 10.1016/J.FITOTE.2010.01.009
- 556509 - Erythrina fusca: LTS0135491
- 3844 - Erythrina latissima:
- 2590713 - Erythrina pallida:
- 2759 - Eukaryota: LTS0135491
- 3803 - Fabaceae: LTS0135491
- 180109 - Garcinia nervosa: 10.3184/030823402103171799
- 3847 - Glycine max: 10.1128/AEM.58.5.1705-1710.1992
- 46347 - Glycyrrhiza: LTS0135491
- 74709 - Glycyrrhiza aspera: 10.1248/YAKUSHI1947.118.11_519
- 46348 - Glycyrrhiza echinata: 10.1016/0003-9861(88)90362-1
- 49827 - Glycyrrhiza glabra:
- 49827 - Glycyrrhiza glabra L.: -
- 74614 - Glycyrrhiza inflata:
- 74614 - Glycyrrhiza inflata: 10.1016/J.BMCL.2009.07.054
- 74614 - Glycyrrhiza inflata: 10.1016/J.BMCL.2010.11.016
- 74614 - Glycyrrhiza inflata: 10.1248/CPB.53.694
- 74614 - Glycyrrhiza inflata: LTS0135491
- 74614 - Glycyrrhiza inflata Bat.: -
- 74859 - Glycyrrhiza pallidiflora:
- 74859 - Glycyrrhiza pallidiflora: 10.1016/S0031-9422(01)00268-0
- 74859 - Glycyrrhiza pallidiflora: 10.3987/COM-89-5304
- 74859 - Glycyrrhiza pallidiflora: LTS0135491
- 74613 - Glycyrrhiza uralensis:
- 74613 - Glycyrrhiza uralensis: 10.1007/S10600-010-9668-4
- 74613 - Glycyrrhiza uralensis: 10.1016/J.BMCL.2009.12.106
- 74613 - Glycyrrhiza uralensis: 10.1016/J.BMCL.2010.07.110
- 74613 - Glycyrrhiza uralensis: 10.1016/J.FITOTE.2011.12.010
- 74613 - Glycyrrhiza uralensis: 10.1248/CPB.33.3811
- 74613 - Glycyrrhiza uralensis: 10.1248/CPB.51.1095
- 74613 - Glycyrrhiza uralensis: LTS0135491
- 74613 - Glycyrrhiza uralensis Fisch.: -
- 912971 - Glycyrrhiza yunnanensis:
- 47034 - Hedysarum: LTS0135491
- 119828 - Hedysarum polybotrys: 10.1248/CPB.32.3267
- 119828 - Hedysarum polybotrys: LTS0135491
- 73273 - Helianthus angustifolius: 10.1016/0305-1978(83)90034-0
- 4232 - Helianthus annuus: 10.1002/J.1537-2197.1987.TB08600.X
- 73279 - Helianthus carnosus: 10.1016/0305-1978(83)90034-0
- 73287 - Helianthus floridanus: 10.1016/0305-1978(83)90034-0
- 73292 - Helianthus heterophyllus: 10.1016/0305-1978(83)90034-0
- 73296 - Helianthus longifolius: 10.1016/0305-1978(83)90034-0
- 73308 - Helianthus radula: 10.1016/0305-1978(83)90034-0
- 53583 - Helianthus simulans: 10.1016/0305-1978(83)90034-0
- 9606 - Homo sapiens: -
- 25215 - Hydnophytum: LTS0135491
- 29797 - Hydnophytum formicarum: 10.3390/MOLECULES13040904
- 29797 - Hydnophytum formicarum: LTS0135491
- 161756 - Isatis tinctoria: 10.4268/CJCMM20130812
- 22788 - Lardizabalaceae: LTS0135491
- 53892 - Lespedeza: LTS0135491
- 556514 - Lespedeza bicolor: 10.1016/J.FITOTE.2003.07.012
- 556514 - Lespedeza bicolor: LTS0135491
- 701533 - Lespedeza cyrtobotrya: 10.1248/CPB.28.1172
- 701533 - Lespedeza cyrtobotrya: LTS0135491
- 4447 - Liliopsida: LTS0135491
- 486170 - Luxemburgia octandra: 10.1590/S0103-50532004000100023
- 3398 - Magnoliopsida: LTS0135491
- 3879 - Medicago sativa: 10.1271/BBB.57.1353
- 3880 - Medicago truncatula: 10.1016/J.PHYTOCHEM.2006.10.023
- 53625 - Millettia: LTS0135491
- 1712206 - Millettia leucantha: 10.1007/S12272-011-0603-4
- 1712206 - Millettia leucantha: LTS0135491
- 1258704 - Millettia usaramensis: 10.1016/S0031-9422(97)00424-X
- 1258704 - Millettia usaramensis: LTS0135491
- 21013 - Mimosa: LTS0135491
- 138060 - Mimosa tenuiflora: 10.1248/CPB.54.1728
- 138060 - Mimosa tenuiflora: LTS0135491
- 3487 - Moraceae: LTS0135491
- 43522 - Morinda citrifolia: 10.1021/NP070501Z
- 3497 - Morus: LTS0135491
- 226895 - Morus cathayana: 10.3987/COM-95-7310
- 226895 - Morus cathayana: LTS0135491
- 229049 - Morus mongolica: 10.3987/COM-88-4771
- 54459 - Mundulea: LTS0135491
- 54460 - Mundulea sericea: 10.1021/NP030008X
- 54460 - Mundulea sericea: LTS0135491
- 45163 - Muntingia: LTS0135491
- 45164 - Muntingia calabura: 10.1016/S0031-9422(03)00112-2
- 45164 - Muntingia calabura: LTS0135491
- 91852 - Muntingiaceae: LTS0135491
- 51089 - Myristica fragrans Houtt.: -
- 3882 - Onobrychis viciifolia: 10.1515/ZNC-1978-1-227
- 20802 - Oxytropis: LTS0135491
- 1479707 - Oxytropis falcata: 10.1007/S10600-009-9291-4
- 1479707 - Oxytropis falcata: LTS0135491
- 82238 - Pancratium: LTS0135491
- 644807 - Pancratium maritimum: 10.1016/S0031-9422(98)00429-4
- 644807 - Pancratium maritimum: LTS0135491
- 33090 - Plants: -
- 107372 - Platymiscium: LTS0135491
- 500185 - Platymiscium floribundum: 10.1021/NP049854D
- 500185 - Platymiscium floribundum: LTS0135491
- 557757 - Platymiscium yucatanum: 10.1515/HFSG.1998.52.5.459
- 248526 - Psorothamnus: LTS0135491
- 248527 - Psorothamnus arborescens: 10.1021/NP0502600
- 248527 - Psorothamnus arborescens: LTS0135491
- 248528 - Psorothamnus arborescens var. minutifolius: 10.1021/NP0502600
- 248528 - Psorothamnus arborescens var. minutifolius: LTS0135491
- 100169 - Pterocarpus: LTS0135491
- 100170 - Pterocarpus indicus: 10.1071/CH9640379
- 100170 - Pterocarpus indicus: LTS0135491
- 108278 - Pterocarpus macrocarpus: 10.1055/S-2007-969163
- 1071187 - Pterocarpus marsupium:
- 1071187 - Pterocarpus marsupium: 10.1016/S0031-9422(99)00526-9
- 1071199 - Pterocarpus santalinus: 10.1016/S0031-9422(99)00526-9
- 1071199 - Pterocarpus santalinus: LTS0135491
- 3892 - Pueraria: LTS0135491
- 132459 - Pueraria montana: LTS0135491
- 3893 - Pueraria montana var. lobata: 10.1248/CPB.35.4846
- 3893 - Pueraria montana var. lobata: LTS0135491
- 3440 - Ranunculaceae: LTS0135491
- 35937 - Robinia: LTS0135491
- 35938 - Robinia pseudoacacia:
- 35938 - Robinia pseudoacacia: 10.1246/NIKKASHI1948.87.11_1201
- 35938 - Robinia pseudoacacia: LTS0135491
- 24966 - Rubiaceae: LTS0135491
- 23513 - Rutaceae: LTS0135491
- 508984 - Schnella guianensis: 10.1016/0031-9422(88)80455-2
- 53922 - Senna: LTS0135491
- 162908 - Senna lindheimeriana: 10.1016/0031-9422(92)80483-U
- 162908 - Senna lindheimeriana: LTS0135491
- 41785 - Sinofranchetia: LTS0135491
- 41786 - Sinofranchetia chinensis: 10.1007/PL00000710
- 41786 - Sinofranchetia chinensis: LTS0135491
- 3896 - Sophora: 10.1016/S0031-9422(97)00802-9
- 3896 - Sophora: LTS0135491
- 171561 - Sophora chrysophylla: 10.1248/CPB.38.1712
- 171561 - Sophora chrysophylla: LTS0135491
- 3091532 - Sophora mollis: LTS0135491
- 256637 - Sophora tomentosa: 10.1016/S0031-9422(97)00802-9
- 35493 - Streptophyta: LTS0135491
- 47097 - Tephrosia: LTS0135491
- 1835418 - Tephrosia sinapou: LTS0135491
- 4013 - Toxicodendron vernicifluum: 10.1016/J.FCT.2012.03.052
- 58023 - Tracheophyta: LTS0135491
- 3900 - Trifolium subterraneum: 10.1016/0305-1978(78)90010-8
- 191178 - Viguiera dentata: 10.1016/0305-1978(88)90036-1
- 33090 - Viridiplantae: LTS0135491
- 3602 - Vitaceae: LTS0135491
- 54882 - Wisteriopsis reticulata: 10.1021/JF903216R
- 1592184 - Xanthorrhoea glauca: 10.1016/S0305-1978(97)00031-8
- 4642 - Zingiberaceae: LTS0135491
- 1231576 - Zollernia paraensis: 10.1016/0031-9422(83)80106-X
- 33090 - 甘草: -
- 33090 - 苦杏仁: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Shiwen Peng, Fangling Shu, Yanhui Lu, Dongsheng Fan, Dehong Zheng, Gaoqing Yuan. Quasi-targeted metabolomics revealed isoliquiritigenin and lauric acid associated with resistance to tobacco black shank.
Plant signaling & behavior.
2024 Dec; 19(1):2332019. doi:
10.1080/15592324.2024.2332019
. [PMID: 38527068] - Peijun Sun, Huixian Chen, Xiaoyu Fan, Jiayi Wang, Lujie Lu, Guangchao Yang, Jining Liu, Weifeng Yao, Feng Ding, Jie Ding, Jianmei Liu, Tulin Lu, Lihong Chen. Exploring the effective components of honey-processed licorice (Glycyrrhiza uralensis Fisch.) in attenuating Doxorubicin-induced myocardial cytotoxicity by combining network pharmacology and in vitro experiments.
Journal of ethnopharmacology.
2024 Jul; 329(?):118178. doi:
10.1016/j.jep.2024.118178
. [PMID: 38604511] - Jingjing Shi, Ke Zhang, Ting Li, Lijuan Wu, Yang Yang, Yuan Zhang, Pengfei Tu, Wenjing Liu, Yuelin Song. Differentiation of isomeric chalcone and dihydroflavone using liquid chromatography coupled with hydrogen-deuterium exchange tandem mass spectrometry (HDX-MS/MS): An application for flavonoids-focused characterization of Snow chrysanthemum.
Journal of chromatography. A.
2024 Apr; 1720(?):464773. doi:
10.1016/j.chroma.2024.464773
. [PMID: 38432106] - Xiang Xiao, Duoyong Lang, Jingjiao Yong, Xinhui Zhang. Bacillus cereus G2 alleviate salt stress in Glycyrrhiza uralensis Fisch. by balancing the downstream branches of phenylpropanoids and activating flavonoid biosynthesis.
Ecotoxicology and environmental safety.
2024 Mar; 273(?):116129. doi:
10.1016/j.ecoenv.2024.116129
. [PMID: 38430580] - Wenjie He, Ying Sun, Sai Zhang, Jiawen Li, Jixing Feng, Yun Yang, Hui Meng, Zheng Zhang. Correlation between Colour Traits and Intrinsic Quality of Dalbergiae Odoriferae Lignum.
Molecules (Basel, Switzerland).
2023 Nov; 28(22):. doi:
10.3390/molecules28227635
. [PMID: 38005357] - Kun Ren, Xuanmeng Zhang, Ruijie Wang, Shumeng Ren, Huiming Hua, Dongmei Wang, Yingni Pan, Xiaoqiu Liu. The inhibitory effect of licorice on the hepatotoxicity induced by the metabolic activation of Euodiae Fructus.
Journal of ethnopharmacology.
2023 Oct; 319(Pt 2):117233. doi:
10.1016/j.jep.2023.117233
. [PMID: 37793580] - Dennis Jine Yuan Hsieh, Md Nazmul Islam, Wei-Wen Kuo, Marthandam Asokan Shibu, Chin-Hu Lai, Pi-Yu Lin, Shinn-Zong Lin, Michael Yu-Chih Chen, Chih-Yang Huang. A combination of isoliquiritigenin with Artemisia argyi and Ohwia caudata water extracts attenuates oxidative stress, inflammation, and apoptosis by modulating Nrf2/Ho-1 signaling pathways in SD rats with doxorubicin-induced acute cardiotoxicity.
Environmental toxicology.
2023 Sep; ?(?):. doi:
10.1002/tox.23936
. [PMID: 37661764] - Mingzhu Yu, Qiaoling Pan, Wenbiao Li, Tingting Du, Fei Huang, Hui Wu, Yixin He, Xiaojun Wu, Hailian Shi. Isoliquiritigenin inhibits gastric cancer growth through suppressing GLUT4 mediated glucose uptake and inducing PDHK1/PGC-1α mediated energy metabolic collapse.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2023 Sep; 121(?):155045. doi:
10.1016/j.phymed.2023.155045
. [PMID: 37742526] - Ziyi Chen, Wenwen Ding, Xiaoxue Yang, Tiangong Lu, Ying Liu. Isoliquiritigenin, a potential therapeutic agent for treatment of inflammation-associated diseases.
Journal of ethnopharmacology.
2023 Aug; 318(Pt B):117059. doi:
10.1016/j.jep.2023.117059
. [PMID: 37604329] - Yi Hu, Peiyi Liang, Zhuxian Wang, CuiPing Jiang, Quanfu Zeng, Chunyan Shen, Yufan Wu, Li Liu, Yankui Yi, Hongxia Zhu, Qiang Liu. Exploring the mechanism of solubilization and release of isoliquiritigenin in deep eutectic solvents.
International journal of pharmaceutics.
2023 Aug; ?(?):123298. doi:
10.1016/j.ijpharm.2023.123298
. [PMID: 37558146] - Zeyu Wang, Weijian Li, Xue Wang, Qin Zhu, Liguo Liu, Shimei Qiu, Lu Zou, Ke Liu, Guoqiang Li, Huijie Miao, Yang Yang, Chengkai Jiang, Yong Liu, Rong Shao, Xu'an Wang, Yingbin Liu. Isoliquiritigenin induces HMOX1 and GPX4-mediated ferroptosis in gallbladder cancer cells.
Chinese medical journal.
2023 Jul; ?(?):. doi:
10.1097/cm9.0000000000002675
. [PMID: 37488674] - Lei Ye, Ming Su, Xinyi Qiao, Shaowei Wang, Ke Zheng, Yang Zhu, Huitao Li, Yiyan Wang, Ren-Shan Ge. Chalcone derivatives from licorice inhibit human and rat gonadal 3β-hydroxysteroid dehydrogenases as therapeutic uses.
Journal of ethnopharmacology.
2023 May; ?(?):116690. doi:
10.1016/j.jep.2023.116690
. [PMID: 37245711] - Vineet Babu, Deepak Singh Kapkoti, Monika Binwal, Rajendra S Bhakuni, Karuna Shanker, Manju Singh, Sudeep Tandon, Madhav N Mugale, Narendra Kumar, Dnyaneshwar U Bawankule. Liquiritigenin, isoliquiritigenin rich extract of glycyrrhiza glabra roots attenuates inflammation in macrophages and collagen-induced arthritis in rats.
Inflammopharmacology.
2023 Mar; ?(?):. doi:
10.1007/s10787-023-01152-w
. [PMID: 36947299] - Na Liu, Min Liu, Mengwei Jiang, Zhenwei Li, Weijun Chen, Wenxuan Wang, Xianglei Fu, Man Qi, Md Hasan Ali, Nan Zou, Qingguang Liu, Hui Tang, Shenghui Chu. Isoliquiritigenin alleviates the development of alcoholic liver fibrosis by inhibiting ANXA2.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2023 Mar; 159(?):114173. doi:
10.1016/j.biopha.2022.114173
. [PMID: 36680814] - Jianyu He, Ying Deng, Lingxuan Ren, Zhen Jin, Jianjun Yang, Feng Yao, Yizhen Liu, Zihan Zheng, Danli Chen, Bo Wang, Yirong Zhang, Guanjun Nan, Weirong Wang, Rong Lin. Isoliquiritigenin from licorice flavonoids attenuates NLRP3-mediated pyroptosis by SIRT6 in vascular endothelial cells.
Journal of ethnopharmacology.
2023 Mar; 303(?):115952. doi:
10.1016/j.jep.2022.115952
. [PMID: 36442759] - Queen Saikia, Ajit Hazarika, Jogen Chandra Kalita. Isoliquiritigenin ameliorates paroxetine-induced sexual dysfunction in male albino mice.
Reproductive toxicology (Elmsford, N.Y.).
2023 Feb; 117(?):108341. doi:
10.1016/j.reprotox.2023.108341
. [PMID: 36740106] - Xiancong Zeng, Mengxia Zhao, Hefeng Yao. Anti-lung Cancer, Anti-microbial, Anti-α-glucosidase, Anti-sorbitol Dehydrogenase, and in silico Studies of Wogonoside and Isoliquiritigenin as Natural Compounds.
Journal of oleo science.
2023; 72(10):919-927. doi:
10.5650/jos.ess23101
. [PMID: 37793822] - Yuyan Bai, Jin Zhou, Han Zhu, Yanlin Tao, Lupeng Wang, Liu Yang, Hui Wu, Fei Huang, Hailian Shi, Xiaojun Wu. Isoliquiritigenin inhibits microglia-mediated neuroinflammation in models of Parkinson's disease via JNK/AKT/NFκB signaling pathway.
Phytotherapy research : PTR.
2022 Dec; ?(?):. doi:
10.1002/ptr.7665
. [PMID: 36484427] - Boran Ni, Yi Liu, Xue Gao, Mengru Cai, Jing Fu, Xingbin Yin, Jian Ni, Xiaoxv Dong. Isoliquiritigenin attenuates emodin-induced hepatotoxicity in vivo and in vitro through Nrf2 pathway.
Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.
2022 Nov; 261(?):109430. doi:
10.1016/j.cbpc.2022.109430
. [PMID: 35944824] - Zhu Zhang, Wen-Qing Chen, Shi-Qing Zhang, Jing-Xuan Bai, Bin Liu, Ken Kin-Lam Yung, Joshua Ka-Shun Ko. Isoliquiritigenin inhibits pancreatic cancer progression through blockade of p38 MAPK-regulated autophagy.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2022 Nov; 106(?):154406. doi:
10.1016/j.phymed.2022.154406
. [PMID: 36029643] - Yameng Cui, Yulin Wu, Cong Wang, Zuolin Wang, Yanyang Li, Zhansheng Jiang, Wei Zhao, Zhanyu Pan. Isoliquiritigenin inhibits non-small cell lung cancer progression via m6A/IGF2BP3-dependent TWIST1 mRNA stabilization.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2022 Sep; 104(?):154299. doi:
10.1016/j.phymed.2022.154299
. [PMID: 35816995] - Manman Li, Guicong Lu, Xiao Ma, Ruihong Wang, Xihong Chen, Yongxiong Yu, Caode Jiang. Anti-inflammation of isoliquiritigenin via the inhibition of NF-κB and MAPK in LPS-stimulated MAC-T cells.
BMC veterinary research.
2022 Aug; 18(1):320. doi:
10.1186/s12917-022-03414-1
. [PMID: 35986317] - Jinxia Sun, Qingwen Zhang, Guizhen Yang, Yinhong Li, Yan Fu, Yuejuan Zheng, Xin Jiang. The licorice flavonoid isoliquiritigenin attenuates Mycobacterium tuberculosis-induced inflammation through Notch1/NF-κB and MAPK signaling pathways.
Journal of ethnopharmacology.
2022 Aug; 294(?):115368. doi:
10.1016/j.jep.2022.115368
. [PMID: 35589023] - Meiling Gao, Qiang Cai, Haichao Si, Si Shi, Huixia Wei, Miaomiao Lv, Xiaofan Wang, Tieli Dong. Isoliquiritigenin attenuates pathological cardiac hypertrophy via regulating AMPKα in vivo and in vitro.
Journal of molecular histology.
2022 Aug; 53(4):679-689. doi:
10.1007/s10735-022-10090-w
. [PMID: 35834120] - Chin-Yi Lin, Yu-Cheng Lin, Catherine Reena Paul, Dennis Jine-Yuan Hsieh, Cecilia Hsuan Day, Ray-Jade Chen, Chia-Hua Kuo, Tsung-Jung Ho, Marthandam Asokan Shibu, Chin-Hu Lai, Tzu-Ching Shih, Wei-Wen Kuo, Chih-Yang Huang. Isoliquiritigenin ameliorates advanced glycation end-products toxicity on renal proximal tubular epithelial cells.
Environmental toxicology.
2022 Aug; 37(8):2096-2102. doi:
10.1002/tox.23553
. [PMID: 35583127] - Sha Huang, Yuhua Wang, Shuwen Xie, Yuqi Lai, Chan Mo, Ting Zeng, Shanshan Kuang, Chuying Zhou, Zhiyun Zeng, Yuyao Chen, Shaohui Huang, Lei Gao, Zhiping Lv. Isoliquiritigenin alleviates liver fibrosis through caveolin-1-mediated hepatic stellate cells ferroptosis in zebrafish and mice.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2022 Jul; 101(?):154117. doi:
10.1016/j.phymed.2022.154117
. [PMID: 35489326] - Kaitlyn M Joyce, Carmen P Wong, Ian A Scriven, Dawn A Olson, Daniel R Doerge, Adam J Branscum, Lara H Sattgast, William G Helferich, Russell T Turner, Urszula T Iwaniec. Isoliquiritigenin Decreases Bone Resorption and Osteoclast Differentiation.
Molecular nutrition & food research.
2022 06; 66(11):e2100974. doi:
10.1002/mnfr.202100974
. [PMID: 35319818] - Zhengyang Li, Chao Xu, Yan Wang. Poly d,l-(lactic-co-glycolic) Acid PEGylated Isoliquiritigenin Alleviates Traumatic Brain Injury by Reversing Cyclooxygenase 2 Level.
Journal of biomedical nanotechnology.
2022 Mar; 18(3):909-916. doi:
10.1166/jbn.2022.3284
. [PMID: 35715911] - Lu Wang, Xiaohui Wang, Lina Kong, Yingying Li, Kai Huang, Jingjing Wu, Changyuan Wang, Huijun Sun, Pengyuan Sun, Jiangning Gu, Haifeng Luo, Kexin Liu, Qiang Meng. Activation of PGC-1α via isoliquiritigenin-induced downregulation of miR-138-5p alleviates nonalcoholic fatty liver disease.
Phytotherapy research : PTR.
2022 Feb; 36(2):899-913. doi:
10.1002/ptr.7334
. [PMID: 35041255] - Lu Wang, Lina Kong, Shuai Xu, Xiaohui Wang, Kai Huang, Shuyuan Wang, Jingjing Wu, Changyuan Wang, Huijun Sun, Kexin Liu, Qiang Meng. Isoliquiritigenin-mediated miR-23a-3p inhibition activates PGC-1α to alleviate alcoholic liver injury.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2022 Feb; 96(?):153845. doi:
10.1016/j.phymed.2021.153845
. [PMID: 34785106] - Wahidah H Al-Qahtani, Ghedeir M Alshammari, Jamaan S Ajarem, Amani Y Al-Zahrani, Aishah Alzuwaydi, Refaat Eid, Mohammed Abdo Yahya. Isoliquiritigenin prevents Doxorubicin-induced hepatic damage in rats by upregulating and activating SIRT1.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2022 Feb; 146(?):112594. doi:
10.1016/j.biopha.2021.112594
. [PMID: 34968927] - Chen Xing, Wen-Qiang Cui, Yue Zhang, Xin-Shu Zou, Jing-You Hao, Si-Di Zheng, Ting-Ting Wang, Xiao-Zhen Wang, Tong Wu, Yan-Yan Liu, Xue-Ying Chen, Shu-Guang Yuan, Zhi-Yun Zhang, Yan-Hua Li. Ultrasound-assisted deep eutectic solvents extraction of glabridin and isoliquiritigenin from Glycyrrhiza glabra: Optimization, extraction mechanism and in vitro bioactivities.
Ultrasonics sonochemistry.
2022 Feb; 83(?):105946. doi:
10.1016/j.ultsonch.2022.105946
. [PMID: 35151194] - Tan Rui-Zhi, Xie Ke-Huan, Liao Yuan, Lin Xiao, Zhu Bing-Wen, Liu Tong-Tong, Wang Li. Renoprotective effect of isoliquiritigenin on cisplatin-induced acute kidney injury through inhibition of FPR2 in macrophage.
Journal of pharmacological sciences.
2022 Jan; 148(1):56-64. doi:
10.1016/j.jphs.2021.10.001
. [PMID: 34924130] - Leiming Sun, Zheng Yang, Jiaying Zhang, Jie Wang. Isoliquiritigenin attenuates acute renal injury through suppressing oxidative stress, fibrosis and JAK2/STAT3 pathway in streptozotocin-induced diabetic rats.
Bioengineered.
2021 12; 12(2):11188-11200. doi:
10.1080/21655979.2021.2006978
. [PMID: 34784849] - Yun Tang, Haojun Luo, Qiong Xiao, Li Li, Xiang Zhong, Jiong Zhang, Fang Wang, Guisen Li, Li Wang, Yi Li. Isoliquiritigenin attenuates septic acute kidney injury by regulating ferritinophagy-mediated ferroptosis.
Renal failure.
2021 Dec; 43(1):1551-1560. doi:
10.1080/0886022x.2021.2003208
. [PMID: 34791966] - Tzu-Yu Lin, Cheng-Wei Lu, Pei-Wen Hsieh, Kuan-Ming Chiu, Ming-Yi Lee, Su-Jane Wang. Natural Product Isoliquiritigenin Activates GABAB Receptors to Decrease Voltage-Gate Ca2+ Channels and Glutamate Release in Rat Cerebrocortical Nerve Terminals.
Biomolecules.
2021 10; 11(10):. doi:
10.3390/biom11101537
. [PMID: 34680170] - Min Hye Kang, Gwi Yeong Jang, Yun-Jeong Ji, Jeong Hoon Lee, Su Ji Choi, Tae Kyung Hyun, Hyung Don Kim. Antioxidant and Anti-Melanogenic Activities of Heat-Treated Licorice (Wongam, Glycyrrhiza glabra × G. uralensis) Extract.
Current issues in molecular biology.
2021 Sep; 43(2):1171-1187. doi:
10.3390/cimb43020083
. [PMID: 34563052] - Junjie Yang, Fanjie Hu, Chengjun Guo, Yuqing Liang, Haiying Song, Kui Cheng. Discovery of isoliquiritigenin analogues that reverse acute hepatitis by inhibiting macrophage polarization.
Bioorganic chemistry.
2021 09; 114(?):105043. doi:
10.1016/j.bioorg.2021.105043
. [PMID: 34120019] - Li Zhang, Sheng-Ye Yang, Feng-Rong Qi-Li, Xiao-Xiao Liu, Wei-Tao Zhang, Chao Peng, Ping Wu, Ping Li, Pingping Li, Xiaojun Xu. Administration of isoliquiritigenin prevents nonalcoholic fatty liver disease through a novel IQGAP2-CREB-SIRT1 axis.
Phytotherapy research : PTR.
2021 Jul; 35(7):3898-3915. doi:
10.1002/ptr.7101
. [PMID: 33860590] - Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
Cell reports.
2021 04; 35(4):109040. doi:
10.1016/j.celrep.2021.109040
. [PMID: 33910017] - Ankur Kumar Tanwar, Neha Dhiman, Amit Kumar, Vikas Jaitak. Engagement of phytoestrogens in breast cancer suppression: Structural classification and mechanistic approach.
European journal of medicinal chemistry.
2021 Mar; 213(?):113037. doi:
10.1016/j.ejmech.2020.113037
. [PMID: 33257172] - Sharifa Alzahrani, Eman Said, Sadeem M Ajwah, Sumayyah Y Alsharif, Khaled S El-Bayoumi, Sawsan A Zaitone, Mona Qushawy, Nehal M Elsherbiny. Isoliquiritigenin attenuates inflammation and modulates Nrf2/caspase-3 signalling in STZ-induced aortic injury.
The Journal of pharmacy and pharmacology.
2021 Mar; 73(2):193-205. doi:
10.1093/jpp/rgaa056
. [PMID: 33793806] - Jing Wu, Qiao-Qiao Zhong, Tian-Yun Wang, Chen-Xiang Wang, Yan Du, Shuai Ji, Liang Wang, Meng-Zhe Guo, Dao-Quan Tang. MS-based metabolite analysis of two licorice chalcones in mice plasma, bile, feces, and urine after oral administration.
Biomedical chromatography : BMC.
2021 Mar; 35(3):e4998. doi:
10.1002/bmc.4998
. [PMID: 33037660] - Fu Peng, Hailin Tang, Junrong Du, Jianping Chen, Cheng Peng. Isoliquiritigenin Suppresses EMT-Induced Metastasis in Triple-Negative Breast Cancer through miR-200c/C-JUN/[Formula: see text]-Catenin.
The American journal of Chinese medicine.
2021; 49(2):505-523. doi:
10.1142/s0192415x21500233
. [PMID: 33641651] - Xiaozhong Huang, Yujuan Shi, Hongjin Chen, Rongrong Le, Xiaohua Gong, Ke Xu, Qihan Zhu, Feixia Shen, Zimiao Chen, Xuemei Gu, Xiaojun Chen, Xiong Chen. Isoliquiritigenin prevents hyperglycemia-induced renal injuries by inhibiting inflammation and oxidative stress via SIRT1-dependent mechanism.
Cell death & disease.
2020 12; 11(12):1040. doi:
10.1038/s41419-020-03260-9
. [PMID: 33288747] - Gang Wang, Yang Yu, Yu-Zhu Wang, Pei-Hao Yin, Ke Xu, Heng Zhang. The effects and mechanisms of isoliquiritigenin loaded nanoliposomes regulated AMPK/mTOR mediated glycolysis in colorectal cancer.
Artificial cells, nanomedicine, and biotechnology.
2020 Dec; 48(1):1231-1249. doi:
10.1080/21691401.2020.1825092
. [PMID: 32985258] - Xuechun Chen, Dejin Xun, Ruzhang Zheng, Lu Zhao, Yuqing Lu, Jun Huang, Rui Wang, Yi Wang. Deep-Learning-Assisted Assessment of DNA Damage Based on Foci Images and Its Application in High-Content Screening of Lead Compounds.
Analytical chemistry.
2020 10; 92(20):14267-14277. doi:
10.1021/acs.analchem.0c03741
. [PMID: 32986405] - Yi-Wen Hsu, Hsin-Yuan Chen, Yi-Fen Chiang, Li-Chun Chang, Po-Han Lin, Shih-Min Hsia. The effects of isoliquiritigenin on endometriosis in vivo and in vitro study.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2020 Oct; 77(?):153214. doi:
10.1016/j.phymed.2020.153214
. [PMID: 32736296] - Sharifa Alzahrani, Sawsan A Zaitone, Eman Said, Mohamed El-Sherbiny, Sadeem Ajwah, Sumayyah Yasser Alsharif, Nehal M Elsherbiny. Protective effect of isoliquiritigenin on experimental diabetic nephropathy in rats: Impact on Sirt-1/NFκB balance and NLRP3 expression.
International immunopharmacology.
2020 Oct; 87(?):106813. doi:
10.1016/j.intimp.2020.106813
. [PMID: 32707499] - Tania Gómez-Sierra, Omar Noel Medina-Campos, José D Solano, María Elena Ibarra-Rubio, José Pedraza-Chaverri. Isoliquiritigenin Pretreatment Induces Endoplasmic Reticulum Stress-Mediated Hormesis and Attenuates Cisplatin-Induced Oxidative Stress and Damage in LLC-PK1 Cells.
Molecules (Basel, Switzerland).
2020 Sep; 25(19):. doi:
10.3390/molecules25194442
. [PMID: 32992605] - Dingding Shi, Jiali Yang, Yueming Jiang, Lingrong Wen, Zhubin Wang, Bao Yang. The antioxidant activity and neuroprotective mechanism of isoliquiritigenin.
Free radical biology & medicine.
2020 05; 152(?):207-215. doi:
10.1016/j.freeradbiomed.2020.03.016
. [PMID: 32220625] - Xiaoqing Fan, Jie Bai, Minwan Hu, Yanxia Xu, Shengyu Zhao, Yanhong Sun, Baolian Wang, Jinping Hu, Yan Li. Drug interaction study of flavonoids toward OATP1B1 and their 3D structure activity relationship analysis for predicting hepatoprotective effects.
Toxicology.
2020 05; 437(?):152445. doi:
10.1016/j.tox.2020.152445
. [PMID: 32259555] - Zhenzhen Song, Yun Zhang, Huazheng Zhang, R Samuel Rajendran, Rongchun Wang, Chung-Der Hsiao, Jianheng Li, Qing Xia, Kechun Liu. Isoliquiritigenin triggers developmental toxicity and oxidative stress-mediated apoptosis in zebrafish embryos/larvae via Nrf2-HO1/JNK-ERK/mitochondrion pathway.
Chemosphere.
2020 May; 246(?):125727. doi:
10.1016/j.chemosphere.2019.125727
. [PMID: 31896010] - Gari Vidal Ccana-Ccapatinta, Jennyfer Andrea Aldana Mejía, Matheus Hikaru Tanimoto, Milton Groppo, Jean Carlos Andrade Sarmento de Carvalho, Jairo Kenupp Bastos. Dalbergia ecastaphyllum (L.) Taub. and Symphonia globulifera L.f.: The Botanical Sources of Isoflavonoids and Benzophenones in Brazilian Red Propolis.
Molecules (Basel, Switzerland).
2020 Apr; 25(9):. doi:
10.3390/molecules25092060
. [PMID: 32354180] - Jing-Ran Fan, Yi Kuang, Ze-Yuan Dong, Yang Yi, Yan-Xia Zhou, Bin Li, Xue Qiao, Min Ye. Prenylated Phenolic Compounds from the Aerial Parts of Glycyrrhiza uralensis as PTP1B and α-Glucosidase Inhibitors.
Journal of natural products.
2020 04; 83(4):814-824. doi:
10.1021/acs.jnatprod.9b00262
. [PMID: 32196343] - Kang Uk Kim, Sung-Jin Lee, Inhyung Lee. Development of an Improved Menopausal Symptom-Alleviating Licorice (Glycyrrhiza uralensis) by Biotransformation Using Monascus albidulus.
Journal of microbiology and biotechnology.
2020 Feb; 30(2):178-186. doi:
10.4014/jmb.1909.09037
. [PMID: 31752065] - Yun Huang, Chen Liu, Wu-Cha Zeng, Guo-Yan Xu, Jian-Min Wu, Zhi-Wen Li, Xuan-Yu Huang, Rong-Jin Lin, Xi Shi. Isoliquiritigenin inhibits the proliferation, migration and metastasis of Hep3B cells via suppressing cyclin D1 and PI3K/AKT pathway.
Bioscience reports.
2020 01; 40(1):. doi:
10.1042/bsr20192727
. [PMID: 31840737] - Xiangsheng Zhao, Shihui Zhang, Dan Liu, Meihua Yang, Jianhe Wei. Analysis of Flavonoids in Dalbergia odorifera by Ultra-Performance Liquid Chromatography with Tandem Mass Spectrometry.
Molecules (Basel, Switzerland).
2020 Jan; 25(2):. doi:
10.3390/molecules25020389
. [PMID: 31963485] - Liping Ye, Junjie Zhang, Yu Zhang, Binbin Gu, Hongyuan Zhu, Xinli Mao. Isoliquiritigenin Suppressed Esophageal Squamous Carcinoma Growth by Blocking EGFR Activation and Inducing Cell Cycle Arrest.
BioMed research international.
2020; 2020(?):9259852. doi:
10.1155/2020/9259852
. [PMID: 32190688] - Jingwei Hao, Jiahui Liu, Lei Zhang, Yunrong Jing, Yubin Ji. A Study of the Ionic Liquid-Based Ultrasonic-Assisted Extraction of Isoliquiritigenin from Glycyrrhiza uralensis.
BioMed research international.
2020; 2020(?):7102046. doi:
10.1155/2020/7102046
. [PMID: 33062693] - Yuan Liao, Rui-Zhi Tan, Jian-Chun Li, Tong-Tong Liu, Xia Zhong, Ying Yan, Jie-Ke Yang, Xiao Lin, Jun-Ming Fan, Li Wang. Isoliquiritigenin Attenuates UUO-Induced Renal Inflammation and Fibrosis by Inhibiting Mincle/Syk/NF-Kappa B Signaling Pathway.
Drug design, development and therapy.
2020; 14(?):1455-1468. doi:
10.2147/dddt.s243420
. [PMID: 32341639] - Jie Qi, Jianguo Cui, Baobin Mi, Xiaohong Yan, Wenwen Xu, Hui Ma, Qingtan Zhang, Fang Xu. Isoliquiritigenin Inhibits Atherosclerosis by Blocking TRPC5 Channel Expression.
Cardiovascular therapeutics.
2020; 2020(?):1926249. doi:
10.1155/2020/1926249
. [PMID: 32328171] - Zhi-Xing Cao, Yi Wen, Jun-Lin He, Shen-Zhen Huang, Fei Gao, Chuan-Jie Guo, Qing-Qing Liu, Shu-Wen Zheng, Dao-Yin Gong, Yu-Zhi Li, Ruo-Qi Zhang, Jian-Ping Chen, Cheng Peng. Isoliquiritigenin, an Orally Available Natural FLT3 Inhibitor from Licorice, Exhibits Selective Anti-Acute Myeloid Leukemia Efficacy In Vitro and In Vivo.
Molecular pharmacology.
2019 11; 96(5):589-599. doi:
10.1124/mol.119.116129
. [PMID: 31462456] - Tobie D Lee, Olivia W Lee, Kyle R Brimacombe, Lu Chen, Rajarshi Guha, Sabrina Lusvarghi, Bethilehem G Tebase, Carleen Klumpp-Thomas, Robert W Robey, Suresh V Ambudkar, Min Shen, Michael M Gottesman, Matthew D Hall. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Molecular pharmacology.
2019 11; 96(5):629-640. doi:
10.1124/mol.119.115964
. [PMID: 31515284] - Chen Chen, Shuang Huang, Chang-Liang Chen, Sing-Bing Su, Dong-Dong Fang. Isoliquiritigenin Inhibits Ovarian Cancer Metastasis by Reversing Epithelial-to-Mesenchymal Transition.
Molecules (Basel, Switzerland).
2019 Oct; 24(20):. doi:
10.3390/molecules24203725
. [PMID: 31623144] - Navneet Kishore, Pradeep Kumar, Karuna Shanker, Akhilesh Kumar Verma. Human disorders associated with inflammation and the evolving role of natural products to overcome.
European journal of medicinal chemistry.
2019 Oct; 179(?):272-309. doi:
10.1016/j.ejmech.2019.06.034
. [PMID: 31255927] - Chenlong Wang, Yaxin Chen, Yang Wang, Xiaoxiao Liu, Yanzhuo Liu, Ying Li, Honglei Chen, Chengpeng Fan, Dongfang Wu, Jing Yang. Inhibition of COX-2, mPGES-1 and CYP4A by isoliquiritigenin blocks the angiogenic Akt signaling in glioma through ceRNA effect of miR-194-5p and lncRNA NEAT1.
Journal of experimental & clinical cancer research : CR.
2019 Aug; 38(1):371. doi:
10.1186/s13046-019-1361-2
. [PMID: 31438982] - Kuan Chen, Zhi-Min Hu, Wei Song, Zi-Long Wang, Jun-Bin He, Xiao-Meng Shi, Qing-Hua Cui, Xue Qiao, Min Ye. Diversity of O-Glycosyltransferases Contributes to the Biosynthesis of Flavonoid and Triterpenoid Glycosides in Glycyrrhiza uralensis.
ACS synthetic biology.
2019 08; 8(8):1858-1866. doi:
10.1021/acssynbio.9b00171
. [PMID: 31284719] - Peng Zou, Hong-Ming Ji, Jian-Wei Zhao, Xin-Min Ding, Zi-Gang Zhen, Xuan Zhang, Xiao-Qi Nie, Li-Xiong Xue. Protective effect of isoliquiritigenin against cerebral injury in septic mice via attenuation of NF-κB.
Inflammopharmacology.
2019 Aug; 27(4):809-816. doi:
10.1007/s10787-018-0503-z
. [PMID: 29943151] - Chamnan Yibcharoenporn, Phakawat Chusuth, Chanon Jakakul, Thanyada Rungrotmongkol, Warinthorn Chavasiri, Chatchai Muanprasat. Discovery of a novel chalcone derivative inhibiting CFTR chloride channel via AMPK activation and its anti-diarrheal application.
Journal of pharmacological sciences.
2019 Jul; 140(3):273-283. doi:
10.1016/j.jphs.2019.07.012
. [PMID: 31444000] - Jia-Ru Wang, Ying-Hua Luo, Xian-Ji Piao, Yi Zhang, Yu-Chao Feng, Jin-Qian Li, Wan-Ting Xu, Yu Zhang, Tong Zhang, Shi-Nong Wang, Hui Xue, Wen-Zhong Wang, Long-Kui Cao, Cheng-Hao Jin. Mechanisms underlying isoliquiritigenin-induced apoptosis and cell cycle arrest via ROS-mediated MAPK/STAT3/NF-κB pathways in human hepatocellular carcinoma cells.
Drug development research.
2019 06; 80(4):461-470. doi:
10.1002/ddr.21518
. [PMID: 30698296] - You Jin Han, Bitna Kang, Eun-Ju Yang, Min-Koo Choi, Im-Sook Song. Simultaneous Determination and Pharmacokinetic Characterization of Glycyrrhizin, Isoliquiritigenin, Liquiritigenin, and Liquiritin in Rat Plasma Following Oral Administration of Glycyrrhizae Radix Extract.
Molecules (Basel, Switzerland).
2019 May; 24(9):. doi:
10.3390/molecules24091816
. [PMID: 31083444] - Aleksandra Golonko, Tomasz Pienkowski, Renata Swislocka, Ryszard Lazny, Marek Roszko, Wlodzimierz Lewandowski. Another look at phenolic compounds in cancer therapy the effect of polyphenols on ubiquitin-proteasome system.
European journal of medicinal chemistry.
2019 Apr; 167(?):291-311. doi:
10.1016/j.ejmech.2019.01.044
. [PMID: 30776692] - Pille Link, Michael Wink. Isoliquiritigenin exerts antioxidant activity in Caenorhabditis elegans via insulin-like signaling pathway and SKN-1.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2019 Mar; 55(?):119-124. doi:
10.1016/j.phymed.2018.07.004
. [PMID: 30668421] - Jingjing Liu, Xin Xiong, Yutong Sui. Isoliquiritigenin Attenuates Neuroinflammation in Traumatic Brain Injury in Young Rats.
Neuroimmunomodulation.
2019; 26(2):102-110. doi:
10.1159/000495467
. [PMID: 30783039] - Qianwei Qu, Jinpeng Wang, Wenqiang Cui, Yonghui Zhou, Xiaoxu Xing, Ruixiang Che, Xin Liu, Xueying Chen, God'spower Bello-Onaghise, Chunliu Dong, Zhengze Li, Xiubo Li, Yanhua Li. In vitro activity and In vivo efficacy of Isoliquiritigenin against Staphylococcus xylosus ATCC 700404 by IGPD target.
PloS one.
2019; 14(12):e0226260. doi:
10.1371/journal.pone.0226260
. [PMID: 31860659] - Xiao-Yu Chen, Huan-Huan Ren, Dan Wang, Ying Chen, Chuan-Jun Qu, Zhao-Hai Pan, Xiao-Na Liu, Wen-Jin Hao, Wen-Juan Xu, Ke-Jun Wang, De-Fang Li, Qiu-Sheng Zheng. Isoliquiritigenin Induces Mitochondrial Dysfunction and Apoptosis by Inhibiting mitoNEET in a Reactive Oxygen Species-Dependent Manner in A375 Human Melanoma Cells.
Oxidative medicine and cellular longevity.
2019; 2019(?):9817576. doi:
10.1155/2019/9817576
. [PMID: 30805086] - Dan Xiong, Wei Hu, Shu-Ting Ye, Yuan-Sheng Tan. Isoliquiritigenin alleviated the Ang II-induced hypertensive renal injury through suppressing inflammation cytokines and oxidative stress-induced apoptosis via Nrf2 and NF-κB pathways.
Biochemical and biophysical research communications.
2018 11; 506(1):161-168. doi:
10.1016/j.bbrc.2018.09.013
. [PMID: 30340829] - Ren Yushan, Yan Ying, Tan Yujun, Yao Jingchun, Liu Dongguang, Pan Lihong, Wang Pingping, Zhao Lili, Zeng Fanhui, Liu Zhong, Zhang Guimin, Li Jie. Isoliquiritigenin inhibits mouse S180 tumors with a new mechanism that regulates autophagy by GSK-3β/TNF-α pathway.
European journal of pharmacology.
2018 Nov; 838(?):11-22. doi:
10.1016/j.ejphar.2018.08.033
. [PMID: 30171855] - Youngmi Lee, Eun-Young Kwon, Myung-Sook Choi. Dietary Isoliquiritigenin at a Low Dose Ameliorates Insulin Resistance and NAFLD in Diet-Induced Obesity in C57BL/6J Mice.
International journal of molecular sciences.
2018 Oct; 19(10):. doi:
10.3390/ijms19103281
. [PMID: 30360437] - Changliang Chen, Anitha K Shenoy, Ravi Padia, Dongdong Fang, Qing Jing, Ping Yang, Shi-Bing Su, Shuang Huang. Suppression of lung cancer progression by isoliquiritigenin through its metabolite 2, 4, 2', 4'-Tetrahydroxychalcone.
Journal of experimental & clinical cancer research : CR.
2018 Oct; 37(1):243. doi:
10.1186/s13046-018-0902-4
. [PMID: 30285892] - Yannan Li, Jing Ning, Yan Wang, Chao Wang, Chengpeng Sun, Xiaokui Huo, Zhenlong Yu, Lei Feng, Baojing Zhang, Xiangge Tian, Xiaochi Ma. Drug interaction study of flavonoids toward CYP3A4 and their quantitative structure activity relationship (QSAR) analysis for predicting potential effects.
Toxicology letters.
2018 Sep; 294(?):27-36. doi:
10.1016/j.toxlet.2018.05.008
. [PMID: 29753067] - Xiu-Rong Zhang, Shi-Yao Wang, Wen Sun, Chao Wei. Isoliquiritigenin inhibits proliferation and metastasis of MKN28 gastric cancer cells by suppressing the PI3K/AKT/mTOR signaling pathway.
Molecular medicine reports.
2018 Sep; 18(3):3429-3436. doi:
10.3892/mmr.2018.9318
. [PMID: 30066879] - Shijian Xiang, Huoji Chen, Xiaojun Luo, Baichao An, Wenfeng Wu, Siwei Cao, Shifa Ruan, Zhuxian Wang, Lidong Weng, Hongxia Zhu, Qiang Liu. Isoliquiritigenin suppresses human melanoma growth by targeting miR-301b/LRIG1 signaling.
Journal of experimental & clinical cancer research : CR.
2018 Aug; 37(1):184. doi:
10.1186/s13046-018-0844-x
. [PMID: 30081934] - Rui Yang, Wendong Li, Bochuan Yuan, Guangxi Ren, Liqiang Wang, Ting Cheng, Ying Liu. The genetic and chemical diversity in three original plants of licorice, Glycyrriza uralensis Fisch., Glycyrrhiza inflata Bat. and Glycyrrhiza glabra L.
Pakistan journal of pharmaceutical sciences.
2018 Mar; 31(2):525-535. doi:
. [PMID: 29618444]
- Biyan Zhang, Yun Lai, Yufeng Li, Nan Shu, Zheng Wang, Yanping Wang, Yunsen Li, Zijun Chen. Antineoplastic activity of isoliquiritigenin, a chalcone compound, in androgen-independent human prostate cancer cells linked to G2/M cell cycle arrest and cell apoptosis.
European journal of pharmacology.
2018 Feb; 821(?):57-67. doi:
10.1016/j.ejphar.2017.12.053
. [PMID: 29277717] - Yi Kuang, Bin Li, Jingran Fan, Xue Qiao, Min Ye. Antitussive and expectorant activities of licorice and its major compounds.
Bioorganic & medicinal chemistry.
2018 01; 26(1):278-284. doi:
10.1016/j.bmc.2017.11.046
. [PMID: 29224994] - Rajni Sharma, Linda Gatchie, Ibidapo S Williams, Shreyans K Jain, Ram A Vishwakarma, Bhabatosh Chaudhuri, Sandip B Bharate. Glycyrrhiza glabra extract and quercetin reverses cisplatin resistance in triple-negative MDA-MB-468 breast cancer cells via inhibition of cytochrome P450 1B1 enzyme.
Bioorganic & medicinal chemistry letters.
2017 12; 27(24):5400-5403. doi:
10.1016/j.bmcl.2017.11.013
. [PMID: 29150398] - Angela Patricia Moreno-Londoño, Claudia Bello-Alvarez, José Pedraza-Chaverri. Isoliquiritigenin pretreatment attenuates cisplatin induced proximal tubular cells (LLC-PK1) death and enhances the toxicity induced by this drug in bladder cancer T24 cell line.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2017 Nov; 109(Pt 1):143-154. doi:
10.1016/j.fct.2017.08.047
. [PMID: 28870684] - Nan Wu, Pi-Wu Wang, Nan Lin, Shi Lu, Yong-Qi Feng, Jie Rong, Zhuo Zhang, Jing Qu. Construction of a chalcone reductase expression vector and transformation of soybean plants.
Molecular medicine reports.
2017 Nov; 16(5):6178-6183. doi:
10.3892/mmr.2017.7382
. [PMID: 28901382] - Yan Lin, Yi Kuang, Kai Li, Shuang Wang, Shuai Ji, Kuan Chen, Wei Song, Xue Qiao, Min Ye. Nrf2 activators from Glycyrrhiza inflata and their hepatoprotective activities against CCl4-induced liver injury in mice.
Bioorganic & medicinal chemistry.
2017 10; 25(20):5522-5530. doi:
10.1016/j.bmc.2017.08.018
. [PMID: 28835349] - Yi Kuang, Yan Lin, Kai Li, Wei Song, Shuai Ji, Xue Qiao, Qingying Zhang, Min Ye. Screening of hepatoprotective compounds from licorice against carbon tetrachloride and acetaminophen induced HepG2 cells injury.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2017 Oct; 34(?):59-66. doi:
10.1016/j.phymed.2017.08.005
. [PMID: 28899510] - Yan Song, Lan Pan, Wenjie Li, Yingying Si, Di Zhou, Chengjian Zheng, Xiaofang Hao, Xinyue Jia, Yuemei Jia, Minghui Shi, Xiaoguang Jia, Ning Li, Yue Hou. Natural neuro-inflammatory inhibitors from Caragana turfanensis.
Bioorganic & medicinal chemistry letters.
2017 10; 27(20):4765-4769. doi:
10.1016/j.bmcl.2017.08.047
. [PMID: 28911817] - Xiaoxue Wang, Dong Wang, Yixin Huo, Dazhang Dai, Chihua Li, Chun Li, Guiyan Liu. Identification of isoliquiritigenin as an activator that stimulates the enzymatic production of glycyrrhetinic acid monoglucuronide.
Scientific reports.
2017 10; 7(1):12503. doi:
10.1038/s41598-017-10154-y
. [PMID: 28970510] - Hsin-Yuan Chen, Tsui-Chin Huang, Tzong-Ming Shieh, Chi-Hao Wu, Li-Chun Lin, Shih-Min Hsia. Isoliquiritigenin Induces Autophagy and Inhibits Ovarian Cancer Cell Growth.
International journal of molecular sciences.
2017 Sep; 18(10):. doi:
10.3390/ijms18102025
. [PMID: 28934130] - Fu Peng, Hailin Tang, Peng Liu, Jiangang Shen, Xinyuan Guan, Xiaofang Xie, Jihai Gao, Liang Xiong, Lei Jia, Jianping Chen, Cheng Peng. Isoliquiritigenin modulates miR-374a/PTEN/Akt axis to suppress breast cancer tumorigenesis and metastasis.
Scientific reports.
2017 08; 7(1):9022. doi:
10.1038/s41598-017-08422-y
. [PMID: 28827662] - Zhaodi Xie, Xiaoting Luo, Zhuan Zou, Xiao Zhang, Feifei Huang, Ruishan Li, Shijie Liao, Yun Liu. Synthesis and evaluation of hydroxychalcones as multifunctional non-purine xanthine oxidase inhibitors for the treatment of hyperuricemia.
Bioorganic & medicinal chemistry letters.
2017 08; 27(15):3602-3606. doi:
10.1016/j.bmcl.2017.01.053
. [PMID: 28655421] - Yan Lin, Yi Kuang, Kai Li, Shuang Wang, Wei Song, Xue Qiao, Gulnar Sabir, Min Ye. Screening for bioactive natural products from a 67-compound library of Glycyrrhiza inflata.
Bioorganic & medicinal chemistry.
2017 07; 25(14):3706-3713. doi:
10.1016/j.bmc.2017.05.009
. [PMID: 28522265] - Khang D H Nguyen, Phu H Dang, Hai X Nguyen, Mai T T Nguyen, Suresh Awale, Nhan T Nguyen. Phytochemical and cytotoxic studies on the leaves of Calotropis gigantea.
Bioorganic & medicinal chemistry letters.
2017 07; 27(13):2902-2906. doi:
10.1016/j.bmcl.2017.04.087
. [PMID: 28495081]