Ginkgetin (BioDeep_00000861493)

Main id: BioDeep_00000007768

 

PANOMIX_OTCML-2023 natural product


代谢物信息卡片


4H-1-Benzopyran-4-one, 5,7-dihydroxy-8-[5-(5-hydroxy-7-methoxy-4-oxo-4H-1-benzopyran-2-yl)-2-methoxyphenyl]-2-(4-hydroxyphenyl)-

化学式: C32H22O10 (566.1213)
中文名称: 银杏双黄酮
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: COC1=C(C=C(C=C1)C2=CC(=O)C3=C(C=C(C=C3O2)OC)O)C4=C(C=C(C5=C4OC(=CC5=O)C6=CC=C(C=C6)O)O)O
InChI: InChI=1S/C32H22O10/c1-39-18-10-20(34)30-23(37)13-27(41-28(30)11-18)16-5-8-25(40-2)19(9-16)29-21(35)12-22(36)31-24(38)14-26(42-32(29)31)15-3-6-17(33)7-4-15/h3-14,33-36H,1-2H3

描述信息

Ginkgetin, a biflavone, is isolated from Ginkgo biloba leaves. Ginkgetin exhibit anti-tumor, anti-inflammatory, neuroprotective, anti-fungal activities. Ginkgetin is also a potent inhibitor of Wnt signaling, with an IC50 of 5.92 μΜ[1][2][3][4][5].
Ginkgetin, a biflavone, is isolated from Ginkgo biloba leaves. Ginkgetin exhibit anti-tumor, anti-inflammatory, neuroprotective, anti-fungal activities. Ginkgetin is also a potent inhibitor of Wnt signaling, with an IC50 of 5.92 μΜ[1][2][3][4][5].

同义名列表

28 个代谢物同义名

4H-1-Benzopyran-4-one, 5,7-dihydroxy-8-[5-(5-hydroxy-7-methoxy-4-oxo-4H-1-benzopyran-2-yl)-2-methoxyphenyl]-2-(4-hydroxyphenyl)-; 4H-1-Benzopyran-4-one, 5,7-dihydroxy-8-(5-(5-hydroxy-7-methoxy-4-oxo-4H-1-benzopyran-2-yl)-2-methoxyphenyl)-2-(4-hydroxyphenyl)-; 5,7-dihydroxy-8-[5-(5-hydroxy-7-methoxy-4-oxo-chromen-2-yl)-2-methoxy-phenyl]-2-(4-hydroxyphenyl)chromen-4-one; 5,7-dihydroxy-8-[5-(5-hydroxy-7-methoxy-4-oxo-2-chromenyl)-2-methoxyphenyl]-2-(4-hydroxyphenyl)-4-chromenone; 5,7-dihydroxy-8-[5-(5-hydroxy-7-methoxy-4-oxochromen-2-yl)-2-methoxyphenyl]-2-(4-hydroxyphenyl)chromen-4-one; 5,7-dihydroxy-8-[5-(5-hydroxy-4-keto-7-methoxy-chromen-2-yl)-2-methoxy-phenyl]-2-(4-hydroxyphenyl)chromone; 3,8-Biflavone, 4,5,5,7-tetrahydroxy-4,7-dimethoxy-; Amentoflavone 7,4-dimethyl ether; 7,4-Dimethylamentoflavone; Spectrum4_001610; Spectrum5_000339; Spectrum2_000054; Spectrum3_001727; Spectrum_001932; BSPBio_003374; KBioSS_002476; KBioGR_001959; KBio2_007605; KBio2_002469; KBio3_002594; KBio2_005037; SPBio_000207; AIDS-210280; AIDS210280; Ginkgetin; 481-46-9; C10048; Ginkgetin



数据库引用编号

9 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

107 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 16 BCL2, BIRC5, CASP3, CASP8, CASP9, CAT, CCND1, JAK2, MAPK14, PIK3CA, PRKAA2, PTGS2, SIRT1, STAT3, TLR4, TP53
Peripheral membrane protein 2 JAK2, PTGS2
Endosome membrane 1 TLR4
Endoplasmic reticulum membrane 2 BCL2, PTGS2
Nucleus 12 BCL2, BIRC5, CASP3, CASP8, CASP9, CCND1, JAK2, MAPK14, PRKAA2, SIRT1, STAT3, TP53
cytosol 14 BCL2, BIRC5, CASP3, CASP8, CASP9, CAT, CCND1, JAK2, MAPK14, PIK3CA, PRKAA2, SIRT1, STAT3, TP53
dendrite 1 PRKAA2
centrosome 2 CCND1, TP53
nucleoplasm 10 BIRC5, CASP3, CASP8, CCND1, JAK2, MAPK14, PRKAA2, SIRT1, STAT3, TP53
RNA polymerase II transcription regulator complex 1 STAT3
Cell membrane 2 TLR4, TNF
lamellipodium 2 CASP8, PIK3CA
cell surface 2 TLR4, TNF
glutamatergic synapse 3 CASP3, JAK2, MAPK14
Golgi apparatus 1 PRKAA2
neuronal cell body 3 CASP3, PRKAA2, TNF
postsynapse 1 JAK2
plasma membrane 5 JAK2, PIK3CA, STAT3, TLR4, TNF
Membrane 6 BCL2, CAT, JAK2, PRKAA2, TLR4, TP53
axon 2 CCK, PRKAA2
caveola 2 JAK2, PTGS2
extracellular exosome 1 CAT
endoplasmic reticulum 3 BCL2, PTGS2, TP53
extracellular space 4 CCK, CXCL8, IL6, TNF
perinuclear region of cytoplasm 2 PIK3CA, TLR4
bicellular tight junction 1 CCND1
intercalated disc 1 PIK3CA
mitochondrion 7 BCL2, CASP8, CASP9, CAT, MAPK14, SIRT1, TP53
protein-containing complex 7 BCL2, BIRC5, CASP8, CASP9, CAT, PTGS2, TP53
intracellular membrane-bounded organelle 1 CAT
Microsome membrane 1 PTGS2
postsynaptic density 1 CASP3
chromatin silencing complex 1 SIRT1
Single-pass type I membrane protein 1 TLR4
Secreted 3 CCK, CXCL8, IL6
extracellular region 6 CAT, CCK, CXCL8, IL6, MAPK14, TNF
cytoplasmic side of plasma membrane 1 JAK2
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 2 BCL2, CASP8
Mitochondrion matrix 1 TP53
mitochondrial matrix 2 CAT, TP53
transcription regulator complex 2 STAT3, TP53
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 TP53
Nucleus membrane 2 BCL2, CCND1
Bcl-2 family protein complex 1 BCL2
nuclear membrane 2 BCL2, CCND1
external side of plasma membrane 2 TLR4, TNF
microtubule cytoskeleton 1 BIRC5
nucleolus 2 SIRT1, TP53
midbody 1 BIRC5
Early endosome 1 TLR4
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Cell projection, lamellipodium 1 CASP8
heterochromatin 1 SIRT1
Membrane raft 2 JAK2, TNF
pore complex 1 BCL2
Cytoplasm, cytoskeleton 1 TP53
Cytoplasm, cytoskeleton, spindle 1 BIRC5
focal adhesion 2 CAT, JAK2
microtubule 1 BIRC5
spindle 1 BIRC5
Peroxisome 1 CAT
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
Nucleus, PML body 2 SIRT1, TP53
PML body 2 SIRT1, TP53
nuclear speck 2 MAPK14, PRKAA2
interphase microtubule organizing center 1 BIRC5
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 2 PTGS2, SIRT1
nuclear outer membrane 1 PTGS2
Cell projection, ruffle 1 TLR4
ruffle 1 TLR4
receptor complex 1 TLR4
neuron projection 1 PTGS2
chromatin 3 SIRT1, STAT3, TP53
phagocytic cup 2 TLR4, TNF
Chromosome 1 BIRC5
cytoskeleton 2 CASP8, JAK2
centriole 1 BIRC5
spindle pole 1 MAPK14
nuclear chromosome 1 BIRC5
site of double-strand break 1 TP53
fibrillar center 1 SIRT1
nuclear envelope 1 SIRT1
Endomembrane system 1 JAK2
endosome lumen 1 JAK2
Chromosome, centromere 1 BIRC5
Chromosome, centromere, kinetochore 1 BIRC5
cytoplasmic stress granule 1 PRKAA2
euchromatin 2 JAK2, SIRT1
cell body 1 CASP8
germ cell nucleus 1 TP53
replication fork 1 TP53
myelin sheath 1 BCL2
lipopolysaccharide receptor complex 1 TLR4
ficolin-1-rich granule lumen 2 CAT, MAPK14
secretory granule lumen 2 CAT, MAPK14
endoplasmic reticulum lumen 2 IL6, PTGS2
nuclear matrix 1 TP53
transcription repressor complex 2 CCND1, TP53
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
kinetochore 1 BIRC5
apoptosome 1 CASP9
chromosome, centromeric region 1 BIRC5
chromosome passenger complex 1 BIRC5
[Isoform 1]: Nucleus 1 TP53
extrinsic component of cytoplasmic side of plasma membrane 1 JAK2
cytoplasmic microtubule 1 BIRC5
spindle microtubule 1 BIRC5
survivin complex 1 BIRC5
CD95 death-inducing signaling complex 1 CASP8
death-inducing signaling complex 2 CASP3, CASP8
ripoptosome 1 CASP8
eNoSc complex 1 SIRT1
rDNA heterochromatin 1 SIRT1
nucleotide-activated protein kinase complex 1 PRKAA2
extrinsic component of plasma membrane 1 JAK2
granulocyte macrophage colony-stimulating factor receptor complex 1 JAK2
interleukin-12 receptor complex 1 JAK2
interleukin-23 receptor complex 1 JAK2
cyclin-dependent protein kinase holoenzyme complex 1 CCND1
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
catalase complex 1 CAT
interleukin-6 receptor complex 1 IL6
BAD-BCL-2 complex 1 BCL2
cyclin D1-CDK4 complex 1 CCND1
cyclin D1-CDK6 complex 1 CCND1
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
caspase complex 1 CASP9
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF
[SirtT1 75 kDa fragment]: Cytoplasm 1 SIRT1


文献列表

  • Zhu Tao, Shaoliang Bai, Guodong Wu, Shengbing Zhai, Pei Zhang, Chunhua Fu, Longjiang Yu. Therapeutic effect of ginkgetin on smoke-induced airway inflammation by down-regulating the c/EBPβ signaling pathway and CCL2 expression. Journal of ethnopharmacology. 2024 Sep; 331(?):118284. doi: 10.1016/j.jep.2024.118284. [PMID: 38735420]
  • Shweta Sharma, Manisha Mahanty, Suneha G Rahaman, Pritha Mukherjee, Bidisha Dutta, Mohammad Imran Khan, Karunakaran Reddy Sankaran, Xiaoming He, Lakshmyya Kesavalu, Wei Li, Shaik O Rahaman. Avocado-derived extracellular vesicles loaded with ginkgetin and berberine prevent inflammation and macrophage foam cell formation. Journal of cellular and molecular medicine. 2024 Apr; 28(7):e18177. doi: 10.1111/jcmm.18177. [PMID: 38494843]
  • Ali Akbar, Muhammad Umar Ijaz. Pharmacotherapeutic potential of ginkgetin against polystyrene microplastics-instigated testicular toxicity in rats: A biochemical, spermatological, and histopathological assessment. Environmental science and pollution research international. 2024 Feb; 31(6):9031-9044. doi: 10.1007/s11356-023-31662-7. [PMID: 38182957]
  • Liangrong Wu, Chenchen Qian, Weiqi Zhang, Mengyun Shi, Xiuxiu Chen, Yi Wang, Feng Lin. Ginkgetin suppresses ovarian cancer growth through inhibition of JAK2/STAT3 and MAPKs signaling pathways. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2023 Apr; 116(?):154846. doi: 10.1016/j.phymed.2023.154846. [PMID: 37172479]
  • Siyu Zhang, Yujie Sun, Fengli Yao, Hongju Li, Yacong Yang, Xionghao Li, Zhongyue Bai, Yu Hu, Peng Wang, Ximing Xu. Ginkgo Biflavones Cause p53 Wild-Type Dependent Cell Death in a Transcription-Independent Manner of p53. Journal of natural products. 2023 Feb; 86(2):346-356. doi: 10.1021/acs.jnatprod.2c00959. [PMID: 36700552]
  • Guoqing Ren, Gonghao Xu, Renshi Li, Haifeng Xie, Zhengguo Cui, Lei Wang, Chaofeng Zhang. Modulation of Bleomycin-induced oxidative stress and pulmonary fibrosis by ginkgetin in mice via AMPK. Current molecular pharmacology. 2022 Mar; ?(?):. doi: 10.2174/1874467215666220304094058. [PMID: 35249515]
  • Lin Wei, Pan Jian, Huang Erjiong, Zhu Qihan. Ginkgetin alleviates high glucose-evoked mesangial cell oxidative stress injury, inflammation, and extracellular matrix (ECM) deposition in an AMPK/mTOR-mediated autophagy axis. Chemical biology & drug design. 2021 10; 98(4):620-630. doi: 10.1111/cbdd.13915. [PMID: 34148304]
  • Mazen O Alharbi, Bidisha Dutta, Rishov Goswami, Shweta Sharma, Kai Y Lei, Shaik O Rahaman. Identification and functional analysis of a biflavone as a novel inhibitor of transient receptor potential vanilloid 4-dependent atherogenic processes. Scientific reports. 2021 04; 11(1):8173. doi: 10.1038/s41598-021-87696-9. [PMID: 33854174]
  • Jian-Shu Lou, Li-Ping Zhao, Zhi-Hui Huang, Xia-Yin Chen, Jing-Ting Xu, William Chi-Shing Tai, Karl W K Tsim, Yi-Tao Chen, Tian Xie. Ginkgetin derived from Ginkgo biloba leaves enhances the therapeutic effect of cisplatin via ferroptosis-mediated disruption of the Nrf2/HO-1 axis in EGFR wild-type non-small-cell lung cancer. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2021 Jan; 80(?):153370. doi: 10.1016/j.phymed.2020.153370. [PMID: 33113504]
  • Zhaohua Tian, Congyao Tang, Zhigang Wang. Neuroprotective effect of ginkgetin in experimental cerebral ischemia/reperfusion via apoptosis inhibition and PI3K/Akt/mTOR signaling pathway activation. Journal of cellular biochemistry. 2019 10; 120(10):18487-18495. doi: 10.1002/jcb.29169. [PMID: 31265179]
  • Jianxia Cheng, Yun Li, Jianping Kong. Ginkgetin inhibits proliferation of HeLa cells via activation of p38/NF-κB pathway. Cellular and molecular biology (Noisy-le-Grand, France). 2019 Apr; 65(4):79-82. doi: . [PMID: 31078156]
  • Qin Li, Tao Ye, Ting Long, Xuemei Peng. Ginkgetin exerts anti-inflammatory effects on cerebral ischemia/reperfusion-induced injury in a rat model via the TLR4/NF-κB signaling pathway. Bioscience, biotechnology, and biochemistry. 2019 Apr; 83(4):675-683. doi: 10.1080/09168451.2018.1553608. [PMID: 30570395]
  • Young-Lai Cho, Jong-Gil Park, Hyo Jin Kang, Wooil Kim, Min Ji Cho, Ju-Hong Jang, Min-Gi Kwon, Sungsik Kim, Sang-Hyun Lee, Jangwook Lee, Yeon-Gu Kim, Young-Jun Park, Won Kon Kim, Kwang-Hee Bae, Byoung-Mog Kwon, Sang J Chung, Jeong-Ki Min. Ginkgetin, a biflavone from Ginkgo biloba leaves, prevents adipogenesis through STAT5-mediated PPARγ and C/EBPα regulation. Pharmacological research. 2019 01; 139(?):325-336. doi: 10.1016/j.phrs.2018.11.027. [PMID: 30472463]
  • Naqi Lian, Jing Tong, Wenwen Li, Jingzhen Wu, Yu Li. Ginkgetin ameliorates experimental atherosclerosis in rats. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2018 Jun; 102(?):510-516. doi: 10.1016/j.biopha.2018.03.107. [PMID: 29579712]
  • Xiao Ruan, Liu-Ye Yan, Xian-Xian Li, Ben Liu, Huan Zhang, Qiang Wang. Optimization of process parameters of extraction of amentoflavone, quercetin and ginkgetin from Taxus chinensis using supercritical CO2 plus co-solvent. Molecules (Basel, Switzerland). 2014 Oct; 19(11):17682-96. doi: 10.3390/molecules191117682. [PMID: 25365294]
  • Ok Heui You, Sun-Hee Kim, Bonglee Kim, Eun Jung Sohn, Hyo-Jeong Lee, Bum-Sang Shim, Miyong Yun, Byung-Mog Kwon, Sung-Hoon Kim. Ginkgetin induces apoptosis via activation of caspase and inhibition of survival genes in PC-3 prostate cancer cells. Bioorganic & medicinal chemistry letters. 2013 May; 23(9):2692-5. doi: 10.1016/j.bmcl.2013.02.080. [PMID: 23523142]
  • Young Bae Ryu, Hyung Jae Jeong, Jang Hoon Kim, Young Min Kim, Ji-Young Park, Doman Kim, Thi Thanh Hanh Nguyen, Su-Jin Park, Jong Sun Chang, Ki Hun Park, Mun-Chual Rho, Woo Song Lee. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL(pro) inhibition. Bioorganic & medicinal chemistry. 2010 Nov; 18(22):7940-7. doi: 10.1016/j.bmc.2010.09.035. [PMID: 20934345]
  • Xiang-Qian Liu, Xiao-Dan Zhang, Yu-Lin Zhu, Bum-Young Shin, Shi-Xu Wu. [Structrue identification of biflavones and determination of Taxol from Taxus Madia]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2008 Oct; 31(10):1498-501. doi: . [PMID: 19230397]
  • Mi Kyeong Lee, Song Won Lim, Hyekyung Yang, Sang Hyun Sung, Heum-Sook Lee, Mi Jung Park, Young Choong Kim. Osteoblast differentiation stimulating activity of biflavonoids from Cephalotaxus koreana. Bioorganic & medicinal chemistry letters. 2006 Jun; 16(11):2850-4. doi: 10.1016/j.bmcl.2006.03.018. [PMID: 16574412]
  • Jong Keun Son, Min Jung Son, Eunkyung Lee, Tae Chul Moon, Kun Ho Son, Cheorl-Ho Kim, Hyun Pyo Kim, Sam Sik Kang, Hyeun Wook Chang. Ginkgetin, a Biflavone from Ginko biloba leaves, inhibits cyclooxygenases-2 and 5-lipoxygenase in mouse bone marrow-derived mast cells. Biological & pharmaceutical bulletin. 2005 Dec; 28(12):2181-4. doi: 10.1248/bpb.28.2181. [PMID: 16327145]
  • Wie-Jong Kwak, Chang Kyun Han, Kun Ho Son, Hyeun Wook Chang, Sam Sik Kang, Byoung Kyu Park, Hyun Pyo Kim. Effects of Ginkgetin from Ginkgo biloba Leaves on cyclooxygenases and in vivo skin inflammation. Planta medica. 2002 Apr; 68(4):316-21. doi: 10.1055/s-2002-26742. [PMID: 11988854]
  • Mario Dell'Agli, Enrica Bosisio. Biflavones of Ginkgo biloba stimulate lipolysis in 3T3-L1 adipocytes. Planta medica. 2002 Jan; 68(1):76-9. doi: 10.1055/s-2002-19876. [PMID: 11842336]
  • H K Kim, K H Son, H W Chang, S S Kang, H P Kim. Inhibition of rat adjuvant-induced arthritis by ginkgetin, a biflavone from ginkgo biloba leaves. Planta medica. 1999 Jun; 65(5):465-7. doi: 10.1055/s-2006-960815. [PMID: 10418340]
  • J D Chi, X F He, A R Liu, L X Xu. [HPLC determination of six flavonoid constituents in Ginkgo biloba leaves]. Yao xue xue bao = Acta pharmaceutica Sinica. 1997 Aug; 32(8):625-8. doi: . [PMID: 11596315]
  • C M Sun, W J Syu, Y T Huang, C C Chen, J C Ou. Selective cytotoxicity of ginkgetin from Selaginella moellendorffii. Journal of natural products. 1997 Apr; 60(4):382-4. doi: 10.1021/np960608e. [PMID: 9134745]
  • K Hayashi, T Hayashi, N Morita. Mechanism of action of the antiherpesvirus biflavone ginkgetin. Antimicrobial agents and chemotherapy. 1992 Sep; 36(9):1890-3. doi: 10.1128/aac.36.9.1890. [PMID: 1329635]
  • S Bourgoin, F Héry, J P Ternaux, M Hanson. Effects of benzodiazepines on the binding of tryptophan in serum. Consequences on 5-hydroxyindoles concentrations in the rat brain. Psychopharmacology communications. 1975; 1(2):209-16. doi: NULL. [PMID: 4860]