Irigenin (BioDeep_00000000103)

 

Secondary id: BioDeep_00000270783

human metabolite PANOMIX_OTCML-2023 natural product


代谢物信息卡片


4H-1-Benzopyran-4-one,5,7-dihydroxy-3-(3-hydroxy-4,5-dimethoxyphenyl)-6-methoxy-

化学式: C18H16O8 (360.0845)
中文名称: 野鸢尾黄素
谱图信息: 最多检出来源 Viridiplantae(plant) 44.98%

分子结构信息

SMILES: c1(c(c(c2c(c1)occ(c2=O)c1cc(c(c(c1)OC)OC)O)O)OC)O
InChI: InChI=1S/C18H16O8/c1-23-13-5-8(4-10(19)17(13)24-2)9-7-26-12-6-11(20)18(25-3)16(22)14(12)15(9)21/h4-7,19-20,22H,1-3H3

描述信息

Irigenin, also known as 5,7,3-trihydroxy-6,4,5-trimethoxyisoflavone, is a member of the class of compounds known as 3-hydroxy,4-methoxyisoflavonoids. 3-hydroxy,4-methoxyisoflavonoids are isoflavonoids carrying a methoxy group attached to the C4 atom, as well as a hydroxyl group at the C3-position of the isoflavonoid backbone. Thus, irigenin is considered to be a flavonoid lipid molecule. Irigenin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Irigenin can be synthesized from isoflavone. Irigenin can also be synthesized into iridin. Irigenin can be found in lima bean, which makes irigenin a potential biomarker for the consumption of this food product. Irigenin is an O-methylated isoflavone, a type of flavonoid. It can be isolated from the rhizomes of the leopard lily (Belamcanda chinensis), and Iris kemaonensis .
Irigenin is a hydroxyisoflavone that is isoflavone substituted by hydroxy groups at positions 5, 7 and 3 and methoxy groups at positions 6, 4 and 5 respectively. It has a role as a plant metabolite. It is a hydroxyisoflavone and a member of 4-methoxyisoflavones. It is functionally related to an isoflavone.
Irigenin is a natural product found in Iris milesii, Iris tectorum, and other organisms with data available.
Irigenin is a is a lead compound, and mediates its anti-metastatic effect by specifically and selectively blocking α9β1 and α4β1 integrins binding sites on C-C loop of Extra Domain A (EDA). Irigenin shows anti-cancer properties. It sensitizes TRAIL-induced apoptosis via enhancing pro-apoptotic molecules in gastric cancer cells[1].
Irigenin is a is a lead compound, and mediates its anti-metastatic effect by specifically and selectively blocking α9β1 and α4β1 integrins binding sites on C-C loop of Extra Domain A (EDA). Irigenin shows anti-cancer properties. It sensitizes TRAIL-induced apoptosis via enhancing pro-apoptotic molecules in gastric cancer cells[1].

同义名列表

13 个代谢物同义名

4H-1-Benzopyran-4-one,5,7-dihydroxy-3-(3-hydroxy-4,5-dimethoxyphenyl)-6-methoxy-; 5,7-Dihydroxy-3-(3-hydroxy-4,5-dimethoxyphenyl)-6-methoxy-4H-1-benzopyran-4-one; 5,7-Dihydroxy-3-(3-hydroxy-4,5-dimethoxyphenyl)-6-methoxy-4H-chromen-4-one; 5,7-Dihydroxy-3-(3-hydroxy-4,5-dimethoxyphenyl)-6-methoxy-4-benzopyrone; 5,7-dihydroxy-3-(3-hydroxy-4,5-dimethoxyphenyl)-6-methoxychromen-4-one; 5,7,3-Trimethoxy-6,4,5-trimethoxyisoflavone; 5,7,3-trihydroxy-6,4,5-trimethoxyisoflavone; 3,5,7-Trihydroxy-4,5,6-trimethoxyisoflavone; UNII-6O4NX37350; IRIGENIN [MI]; 6O4NX37350; Irigenin; Irigenin



数据库引用编号

20 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

83 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 11 AIMP2, AKT1, EGFR, HRAS, HSP90AA1, IL18, KEAP1, MAPK8, PTGS1, PTGS2, RIPK1
Peripheral membrane protein 2 PTGS1, PTGS2
Endosome membrane 2 EGFR, RIPK1
Endoplasmic reticulum membrane 6 EGFR, HRAS, PTGS1, PTGS2, UGT1A1, UGT1A9
Nucleus 7 AIMP2, AKT1, EGFR, GABPA, HSP90AA1, KEAP1, MAPK8
cytosol 8 AIMP2, AKT1, HRAS, HSP90AA1, IL18, KEAP1, MAPK8, RIPK1
nucleoplasm 6 AKT1, GABPA, HRAS, HSP90AA1, KEAP1, MAPK8
Cell membrane 8 AKT1, EGFR, HRAS, HSP90AA1, ITGAM, ITLN1, RIPK1, TNF
Lipid-anchor 1 HRAS
Cytoplasmic side 1 HRAS
lamellipodium 1 AKT1
ruffle membrane 1 EGFR
Early endosome membrane 1 EGFR
Golgi apparatus membrane 1 HRAS
Synapse 2 ACAN, MAPK8
cell cortex 1 AKT1
cell junction 1 EGFR
cell surface 4 EGFR, HSP90AA1, ITGAM, TNF
glutamatergic synapse 4 ACAN, AKT1, EGFR, HRAS
Golgi apparatus 2 HRAS, PTGS1
Golgi membrane 2 EGFR, HRAS
neuronal cell body 2 HSP90AA1, TNF
postsynapse 1 AKT1
Cytoplasm, cytosol 2 AIMP2, IL18
endosome 1 EGFR
plasma membrane 8 AKT1, EGFR, HRAS, HSP90AA1, ITGAM, RIPK1, TNF, UGT1A1
Membrane 8 AIMP2, AKT1, EGFR, HRAS, HSP90AA1, ITGAM, UGT1A1, UGT1A9
apical plasma membrane 2 EGFR, HSP90AA1
axon 1 MAPK8
basolateral plasma membrane 2 EGFR, HSP90AA1
caveola 1 PTGS2
extracellular exosome 4 HSP90AA1, ITGAM, ITLN1, PTGS1
endoplasmic reticulum 4 KEAP1, PTGS2, UGT1A1, UGT1A9
extracellular space 8 ACAN, EGFR, IGF1, IL18, IL6, ITGAM, ITLN1, TNF
lysosomal lumen 2 ACAN, HSP90AA1
perinuclear region of cytoplasm 4 EGFR, HRAS, HSP90AA1, UGT1A1
mitochondrion 2 HSP90AA1, RIPK1
protein-containing complex 5 AKT1, EGFR, HSP90AA1, PTGS2, RIPK1
intracellular membrane-bounded organelle 1 PTGS1
Microsome membrane 2 PTGS1, PTGS2
Single-pass type I membrane protein 2 EGFR, ITGAM
Secreted 4 IGF1, IL18, IL6, ITLN1
extracellular region 7 ACAN, HSP90AA1, IGF1, IL18, IL6, ITLN1, TNF
Single-pass membrane protein 2 UGT1A1, UGT1A9
centriolar satellite 1 KEAP1
photoreceptor outer segment 1 PTGS1
nuclear membrane 1 EGFR
external side of plasma membrane 2 ITGAM, TNF
Secreted, extracellular space, extracellular matrix 1 ACAN
microtubule cytoskeleton 1 AKT1
midbody 1 KEAP1
cell-cell junction 1 AKT1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
vesicle 1 AKT1
Cytoplasm, perinuclear region 1 UGT1A1
Membrane raft 4 EGFR, ITGAM, ITLN1, TNF
focal adhesion 1 EGFR
spindle 1 AKT1
GABA-ergic synapse 1 ACAN
basement membrane 1 ACAN
intracellular vesicle 1 EGFR
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
collagen-containing extracellular matrix 2 ACAN, HSP90AA1
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
receptor complex 3 EGFR, ITLN1, RIPK1
neuron projection 2 PTGS1, PTGS2
ciliary basal body 1 AKT1
chromatin 1 GABPA
axonal growth cone 1 HSP90AA1
phagocytic cup 1 TNF
brush border membrane 2 HSP90AA1, ITLN1
actin filament 1 KEAP1
Lipid-anchor, GPI-anchor 1 ITLN1
Cul3-RING ubiquitin ligase complex 1 KEAP1
Endomembrane system 2 HRAS, PTGS1
specific granule membrane 1 ITGAM
tertiary granule membrane 1 ITGAM
Melanosome 1 HSP90AA1
side of membrane 1 ITLN1
dendritic growth cone 1 HSP90AA1
myelin sheath 1 HSP90AA1
sperm mitochondrial sheath 1 HSP90AA1
sperm plasma membrane 1 HSP90AA1
basal plasma membrane 1 EGFR
synaptic membrane 1 EGFR
exocytic vesicle 1 IGF1
plasma membrane raft 1 ITGAM
ficolin-1-rich granule lumen 1 HSP90AA1
secretory granule lumen 1 HSP90AA1
Golgi lumen 1 ACAN
endoplasmic reticulum lumen 2 IL6, PTGS2
platelet alpha granule lumen 1 IGF1
perineuronal net 1 ACAN
clathrin-coated endocytic vesicle membrane 1 EGFR
basal dendrite 1 MAPK8
death-inducing signaling complex 1 RIPK1
ripoptosome 1 RIPK1
aminoacyl-tRNA synthetase multienzyme complex 1 AIMP2
integrin complex 1 ITGAM
multivesicular body, internal vesicle lumen 1 EGFR
Shc-EGFR complex 1 EGFR
endocytic vesicle lumen 1 HSP90AA1
GTPase complex 1 HRAS
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
inclusion body 1 KEAP1
alphav-beta3 integrin-IGF-1-IGF1R complex 1 IGF1
insulin-like growth factor binding protein complex 1 IGF1
insulin-like growth factor ternary complex 1 IGF1
integrin alphaM-beta2 complex 1 ITGAM
interleukin-6 receptor complex 1 IL6
endoplasmic reticulum chaperone complex 1 UGT1A1
cytochrome complex 1 UGT1A1
perisynaptic extracellular matrix 1 ACAN
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Passent M Abdel-Baki, Moshera M El-Sherei, Amal E Khaleel, Marwa M Abdel-Aziz, Mona M Okba. Irigenin, a novel lead from Iris confusa for management of Helicobacter pylori infection with selective COX-2 and HpIMPDH inhibitory potential. Scientific reports. 2022 07; 12(1):11457. doi: 10.1038/s41598-022-15361-w. [PMID: 35794127]
  • Tao Hu, Xinyu Ge, Junyang Wang, Ning Zhang, Xingxing Diao, Lihong Hu, Xiachang Wang. Metabolite identification of iridin in rats by using UHPLC-MS/MS and pharmacokinetic study of its metabolite irigenin. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2021 Sep; 1181(?):122914. doi: 10.1016/j.jchromb.2021.122914. [PMID: 34492510]
  • Sandra Ochensberger, Fabian Alperth, Božena Mitić, Olaf Kunert, Stefanie Mayer, Maria Ferreira Mourão, Ivana Turek, Simon Vlad Luca, Krystyna Skalicka-Woźniak, Željan Maleš, Dario Hruševar, Ivan Duka, Franz Bucar. Phenolic compounds of Iris adriatica and their antimycobacterial effects. Acta pharmaceutica (Zagreb, Croatia). 2019 Dec; 69(4):673-681. doi: 10.2478/acph-2019-0037. [PMID: 31639092]
  • B Roger, V Jeannot, X Fernandez, S Cerantola, J Chahboun. Characterisation and quantification of flavonoids in Iris germanica L. and Iris pallida Lam. resinoids from Morocco. Phytochemical analysis : PCA. 2012 Sep; 23(5):450-5. doi: 10.1002/pca.1379. [PMID: 22213588]
  • Mingchuan Liu, Shengjie Yang, Linhong Jin, Deyu Hu, Zhibing Wu, Song Yang. Chemical constituents of the ethyl acetate extract of Belamcanda chinensis (L.) DC roots and their antitumor activities. Molecules (Basel, Switzerland). 2012 May; 17(5):6156-69. doi: 10.3390/molecules17056156. [PMID: 22627971]
  • Sabrin R M Ibrahim, Gamal A Mohamed, Nawal M Al-Musayeib. New constituents from the rhizomes of Egyptian Iris germanica L. Molecules (Basel, Switzerland). 2012 Mar; 17(3):2587-98. doi: 10.3390/molecules17032587. [PMID: 22388969]
  • Wei-dong Zhang, Wan-jun Yang, Xiao-juan Wang, Yi Gu, Rong Wang. Simultaneous determination of tectorigenin, irigenin and irisflorentin in rat plasma and urine by UHPLC-MS/MS: application to pharmacokinetics. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2011 Dec; 879(31):3735-41. doi: 10.1016/j.jchromb.2011.10.022. [PMID: 22071270]
  • Yuan-Yuan Zhang, Qi Wang, Lian-Wen Qi, Xiao-Ying Qin, Min-Jian Qin. Characterization and determination of the major constituents in Belamcandae Rhizoma by HPLC-DAD-ESI-MS(n). Journal of pharmaceutical and biomedical analysis. 2011 Sep; 56(2):304-14. doi: 10.1016/j.jpba.2011.05.040. [PMID: 21715119]
  • Weina Liu, Jianguang Luo, Lingyi Kong. Application of complexation high-speed counter-current chromatography in the separation of 5-hydroxyisoflavone isomers from Belamcanda chinensis (L.) DC. Journal of chromatography. A. 2011 Apr; 1218(14):1842-8. doi: 10.1016/j.chroma.2011.02.011. [PMID: 21376332]
  • Dorota Wozniak, Bogdan Janda, Ireneusz Kapusta, Wiesław Oleszek, Adam Matkowski. Antimutagenic and anti-oxidant activities of isoflavonoids from Belamcanda chinensis (L.) DC. Mutation research. 2010 Feb; 696(2):148-53. doi: 10.1016/j.mrgentox.2010.01.004. [PMID: 20096370]
  • D Eads, Rl Hansen, Ao Oyegunwa, Ce Cecil, Ca Culver, F Scholle, Itd Petty, Sm Laster. Terameprocol, a methylated derivative of nordihydroguaiaretic acid, inhibits production of prostaglandins and several key inflammatory cytokines and chemokines. Journal of inflammation (London, England). 2009 Jan; 6(?):2. doi: 10.1186/1476-9255-6-2. [PMID: 19133137]
  • Suk Woo Kang, Min Cheol Kim, Chul Young Kim, Sang Hoon Jung, Byung Hun Um. The rapid identification of isoflavonoids from Belamcanda chinensis by LC-NMR and LC-MS. Chemical & pharmaceutical bulletin. 2008 Oct; 56(10):1452-4. doi: 10.1248/cpb.56.1452. [PMID: 18827388]
  • Kwang Seok Ahn, Eun Jung Noh, Kwang-Hyun Cha, Yeong Shik Kim, Soon Sung Lim, Kuk Hyun Shin, Sang Hoon Jung. Inhibitory effects of Irigenin from the rhizomes of Belamcanda chinensis on nitric oxide and prostaglandin E(2) production in murine macrophage RAW 264.7 cells. Life sciences. 2006 Apr; 78(20):2336-42. doi: 10.1016/j.lfs.2005.09.041. [PMID: 16307761]
  • Sharon A O'Toole, Brian L Sheppard, Orla Sheils, John J O'Leary, Barbara Spengler, Volker Christoffel. Analysis of DNA in endometrial cancer cells treated with phyto-estrogenic compounds using comparative genomic hybridisation microarrays. Planta medica. 2005 May; 71(5):435-9. doi: 10.1055/s-2005-864139. [PMID: 15931582]
  • Orawan Monthakantirat, Wanchai De-Eknamkul, Kaoru Umehara, Yohko Yoshinaga, Toshio Miyase, Tsutomu Warashina, Hiroshi Noguchi. Phenolic constituents of the rhizomes of the Thai medicinal plant Belamcanda chinensis with proliferative activity for two breast cancer cell lines. Journal of natural products. 2005 Mar; 68(3):361-4. doi: 10.1021/np040175c. [PMID: 15787436]
  • Colm Morrissey, Jasmin Bektic, Barbara Spengler, David Galvin, Volker Christoffel, Helmut Klocker, John M Fitzpatrick, R William G Watson. Phytoestrogens derived from Belamcanda chinensis have an antiproliferative effect on prostate cancer cells in vitro. The Journal of urology. 2004 Dec; 172(6 Pt 1):2426-33. doi: 10.1097/01.ju.0000143537.86596.66. [PMID: 15538285]
  • Eckhard Wollenweber, Jan Frederik Stevens, Karin Klimo, Jutta Knauft, Norbert Frank, Clarissa Gerhäuser. Cancer chemopreventive in vitro activities of isoflavones isolated from Iris germanica. Planta medica. 2003 Jan; 69(1):15-20. doi: 10.1055/s-2003-37030. [PMID: 12567273]
  • Umar Mahmood, Vijay K Kaul, Leopold Jirovetz. Alkylated benzoquinones from Iris kumaonensis. Phytochemistry. 2002 Dec; 61(8):923-6. doi: 10.1016/s0031-9422(02)00474-0. [PMID: 12453518]
  • Sang Hoon Jung, Yeon Sil Lee, Sanghyun Lee, Soon Sung Lim, Yeong Shik Kim, Kuk Hyun Shin. Isoflavonoids from the rhizomes of Belamcanda chinensis and their effects on aldose reductase and sorbitol accumulation in streptozotocin induced diabetic rat tissues. Archives of pharmacal research. 2002 Jun; 25(3):306-12. doi: 10.1007/bf02976631. [PMID: 12135102]