Ursolic acid (BioDeep_00000000219)

 

Secondary id: BioDeep_00000230272, BioDeep_00000237293, BioDeep_00000859717, BioDeep_00000873016

human metabolite PANOMIX_OTCML-2023 Endogenous


代谢物信息卡片


(1S,2R,4aS,6aS,6bR,8aR,10S,12aR,12bR,14bS)-10-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

化学式: C30H48O3 (456.36032579999994)
中文名称: 乌苏酸, 乌宋酸, 乌索酸, 熊果酸, 3-表熊果酸, 3-表熊果酸, 熊果酸
谱图信息: 最多检出来源 Viridiplantae(plant) 0.08%

分子结构信息

SMILES: C1[C@@H](C([C@H]2[C@](C1)([C@@H]1[C@@](CC2)([C@]2(C(=CC1)[C@H]1[C@@](CC2)(CC[C@H]([C@@H]1C)C)C(=O)O)C)C)C)(C)C)O
InChI: InChI=1S/C30H48O3/c1-18-10-15-30(25(32)33)17-16-28(6)20(24(30)19(18)2)8-9-22-27(5)13-12-23(31)26(3,4)21(27)11-14-29(22,28)7/h8,18-19,21-24,31H,9-17H2,1-7H3,(H,32,33)

描述信息

Ursolic acid is a ubiquitous triterpenoid in plant kingdom, medicinal herbs, and is an integral part of the human diet. During the last decade over 700 research articles have been published on triterpenoids research, reflecting tremendous interest and progress in our understanding of these compounds. This included the isolation and purification of these tritepernoids from various plants and herbs, the chemical modifications to make more effective and water soluble derivatives, the pharmacological research on their beneficial effects, the toxicity studies, and the clinical use of these triterpenoids in various diseases including anticancer chemotherapies. Ursolic acid (UA), a pentacyclic triterpene acid, has been isolated from many kinds of medicinal plants, such as Eriobotrya japonica, Rosmarinns officinalis, Melaleuca leucadendron, Ocimum sanctum and Glechoma hederaceae. UA has been reported to produce antitumor activities and antioxidant activity, and is reported to have an antioxidant activity. UA may play an important role in regulating the apoptosis induced by high glucose presumably through scavenging of ROS (reactive oxygen species). It has been found recently that ursolic acid treatment affects growth and apoptosis in cancer cells. (PMID: 15994040, 17516235, 17213663).
Ursolic acid is a pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. It has a role as a plant metabolite and a geroprotector. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It derives from a hydride of an ursane.
Ursolic acid is a natural product found in Gladiolus italicus, Freziera, and other organisms with data available.
Ursolic Acid is a pentacyclic triterpenoid found in various fruits, vegetables and medicinal herbs, with a variety of potential pharmacologic activities including anti-inflammatory, antioxidative, antiviral, serum lipid-lowering, and antineoplastic activities. Upon administration, ursolic acid may promote apoptosis and inhibit cancer cell proliferation through multiple mechanisms. This may include the regulation of mitochondrial function through various pathways including the ROCK/PTEN and p53 pathways, the suppression of the nuclear factor-kappa B (NF-kB) pathways, and the increase in caspase-3, caspase-8 and caspase-9 activities.
See also: Holy basil leaf (part of); Jujube fruit (part of); Lagerstroemia speciosa leaf (part of).
D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors
A pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by a beta-hydroxy group at position 3.
C274 - Antineoplastic Agent > C129839 - Apoptotic Pathway-targeting Antineoplastic Agent
Found in wax of apples, pears and other fruits. V. widely distributed in plants
D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents
D002491 - Central Nervous System Agents > D000700 - Analgesics
C26170 - Protective Agent > C275 - Antioxidant
D000893 - Anti-Inflammatory Agents
D000890 - Anti-Infective Agents
D000970 - Antineoplastic Agents
D004791 - Enzyme Inhibitors
3-Epiursolic Acid is a triterpenoid that can be isolated from Eriobotrya japonica, acts as a competitive inhibitor of cathepsin L (IC50, 6.5 μM; Ki, 19.5 μM), with no obvious effect on cathepsin B[1].
3-Epiursolic Acid is a triterpenoid that can be isolated from Eriobotrya japonica, acts as a competitive inhibitor of cathepsin L (IC50, 6.5 μM; Ki, 19.5 μM), with no obvious effect on cathepsin B[1].
Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy.
Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy.

同义名列表

87 个代谢物同义名

(1S,2R,4aS,6aS,6bR,8aR,10S,12aR,12bR,14bS)-10-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid; (1S,2R,4aS,6aR,6aS,6bR,8aR,10S,12aR,14bS)-10-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydro-1H-picene-4a-carboxylic acid; (1S,2R,4aS,6aR,6aS,6bR,8aR,10S,12aR,14bS)-10-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydro-1H-picene-4a-carboxylicacid; Ursolic acid, United States Pharmacopeia (USP) Reference Standard; olean-12-en-28-oic acid, 3-hydroxy-, sodium salt (1:1), (3beta)-; Ursolic acid, European Pharmacopoeia (EP) Reference Standard; (3beta,5beta,18alpha,20beta)-3-hydroxyurs-12-en-28-oic acid; Ursolic acid, primary pharmaceutical reference standard; URSOLIC ACID (CONSTITUENT OF HOLY BASIL LEAF) [DSC]; ursolic acid, (3beta)-isomer, monopotassium salt; Urs-12-en-28-oic acid, 3-hydroxy-, (3.beta.)-; URSOLIC ACID (CONSTITUENT OF HOLY BASIL LEAF); ursolic acid, (3beta)-isomer, 2-(14)C-labeled; Urs-12-en-28-oic acid, 3-hydroxy-, (3beta)-; (3.BETA.)-3-HYDROXYURS-12-EN-28-OIC ACID; (3beta)-3-hydroxy-Urs-12-en-28-oic acid; (3 beta)-3-hydroxyurs-12-en-28-oic acid; (3beta)-3-Hydroxyurs-12-en-28-oic acid; Urs-12-en-28-oic acid, 3beta-hydroxy-; 3.beta.-hydroxy-Urs-12-en-28-oic acid; (3b)-3-Hydroxyurs-12-en-28-Oic acid; 3beta-hydroxy-Urs-12-en-28-oic acid; (3Β)-3-hydroxyurs-12-en-28-Oic acid; (3beta)-3-hydroxy-Urs-12-en-28-oate; (3beta)-3-Hydroxyurs-12-en-28-oate; 3beta-Hydroxy-12-ursen-28-oic Acid; 3beta-Hydroxyurs-12-en-28-oic acid; Ursolic acid, analytical standard; 3beta-Hydroxy-12-ursen-28-ic acid; N-Ethylhydroxylaminehydrochloride; 3.beta.-hydroxy-Urs-12-en-28-oate; (3b)-3-Hydroxyurs-12-en-28-Oate; 3B-HYDROXYURS-12-EN-28-OIC ACID; (3Β)-3-hydroxyurs-12-en-28-Oate; 3beta-hydroxy-Urs-12-en-28-oate; 3Β-hydroxyurs-12-en-28-Oic acid; 3beta-Hydroxyurs-12-en-28-oate; ursolic acid monosodium salt; WCGUUGGRBIKTOS-GPOJBZKASA-N; ursolic acid sodium salt; URSOLIC ACID (USP-RS); URSOLIC ACID [WHO-DD]; URSOLIC ACID [USP-RS]; Ursolic acid, >=90\\%; .beta.-Ursolic acid; 3alpha-ursolic acid; URSOLIC ACID [HSDB]; URSOLIC ACID [INCI]; 3beta-ursolic acid; Prunol;Urson;Malol; 3-epi-ursolic acid; URSOLIC ACID [MI]; 3-epiursolic acid; beta-Ursolic acid; sodium oleanolate; Prestwick3_000089; (+)-ursolic acid; UNII-P3M2575F3F; Bungeolic acid; Β-ursolic acid; BPBio1_000020; Ursolic Acid; ursolic-acid; P3M2575F3F; Micromerol; Ursolisome; AI3-03109; Merotaine; Ursolate; Ursolic; Prunol; Urson; Malol; 6Q5; UA; (3β)-3-hydroxy-Urs-12-en-28-oic acid; (3β)-3-Hydroxyurs-12-en-28-oic acid; 3β-hydroxy-Urs-12-en-28-oic acid; (3β)-3-hydroxy-Urs-12-en-28-oate; (3β)-3-Hydroxyurs-12-en-28-oate; 3β-Hydroxyurs-12-en-28-oic acid; 3β-Hydroxy-12-ursen-28-ic acid; 3β-hydroxy-Urs-12-en-28-oate; 3β-Hydroxyurs-12-en-28-oate; Morinoursolic acid A; β-Ursolic acid; Carissic acid



数据库引用编号

31 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

88 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(2)

  • ursolate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + uvaol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ursolic aldehyde
  • ursolate biosynthesis: H+ + NADPH + O2 + uvaol ⟶ H2O + NADP+ + ursolic aldehyde

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(86)

  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + uvaol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ursolic aldehyde
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: H+ + NADPH + O2 + ursolic aldehyde ⟶ H2O + NADP+ + ursolate
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: H+ + NADPH + O2 + ursolic aldehyde ⟶ H2O + NADP+ + ursolate
  • ursolate biosynthesis: H+ + NADPH + O2 + ursolic aldehyde ⟶ H2O + NADP+ + ursolate
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: H+ + NADPH + O2 + ursolic aldehyde ⟶ H2O + NADP+ + ursolate
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + uvaol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ursolic aldehyde
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + uvaol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ursolic aldehyde
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + uvaol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ursolic aldehyde
  • ursolate biosynthesis: H+ + NADPH + O2 + ursolic aldehyde ⟶ H2O + NADP+ + ursolate
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + uvaol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ursolic aldehyde
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
  • ursolate biosynthesis: α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1470 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Yufan Guo, Xiuru Yang, Yihong Zhang, Fazhen Luo, Juan Yang, Xupeng Zhang, Jinxia Mi, Yan Xie. Hyaluronic acid/dextran-based polymeric micelles co-delivering ursolic acid and doxorubicin to mitochondria for potentiating chemotherapy in MDR cancer. Carbohydrate polymers. 2024 May; 332(?):121897. doi: 10.1016/j.carbpol.2024.121897. [PMID: 38431408]
  • Li Chen, Yan Chen, Mengxia Wang, Linglin Lai, Linbo Zheng, Huiqin Lu. Ursolic acid alleviates cancer cachexia by inhibiting STAT3 signaling pathways in C2C12 myotube and CT26 tumor-bearing mouse model. European journal of pharmacology. 2024 Apr; 969(?):176429. doi: 10.1016/j.ejphar.2024.176429. [PMID: 38423241]
  • Lina Zhu, Yuee Tian, Tiewei Wang, Xiaobo Huang, Lin Zhou, Liu Shengming, Genqiang Chen, Zhiping Che. Semisynthesis, anti-oomycete and anti-fungal activities of ursolic acid ester derivatives. Natural product research. 2024 Mar; 38(6):906-915. doi: 10.1080/14786419.2023.2207135. [PMID: 37115170]
  • Xiao-Long Huang, Yan Sun, Peng Wen, Jun-Cheng Pan, Wei-Yang He. The potential mechanism of ursolic acid in the treatment of bladder cancer based on network pharmacology and molecular docking. The Journal of international medical research. 2024 Mar; 52(3):3000605241234006. doi: 10.1177/03000605241234006. [PMID: 38443785]
  • Edet Effiong Asanga, Ndifreke Daniel Ekpo, Affiong Asuquo Edeke, Chinedum Martins Ekeleme, Henshaw Uchechi Okoroiwu, Uwem Okon Edet, Ekementeabasi A Umoh, Nikita Elkanah Umoaffia, Olorunfemi Abraham Eseyin, Ani Nkang, Monday Akpanabiatu, Jude Efiom Okokon, Sylvia Akpotuzor, Bright Asuquo Effiong, MacGeorge Ettaba. Betulinic and ursolic acids from Nauclea latifolia roots mediate their antimalarial activities through docking with PfEMP-1 and PfPKG proteins. BMC complementary medicine and therapies. 2024 Feb; 24(1):79. doi: 10.1186/s12906-023-04324-x. [PMID: 38326823]
  • Mengzhe Zhang, Fenfen Xiang, Yipeng Sun, Rongrong Liu, Qian Li, Qing Gu, Xiangdong Kang, Rong Wu. Ursolic acid inhibits the metastasis of colon cancer by downregulating ARL4C expression. Oncology reports. 2024 02; 51(2):. doi: 10.3892/or.2023.8686. [PMID: 38131251]
  • Tzu-Kang Lin, Kun-Chieh Yeh, Ming-Shang Pai, Pei-Wen Hsieh, Su-Jane Wang. Ursolic acid inhibits the synaptic release of glutamate and prevents glutamate excitotoxicity in rats. European journal of pharmacology. 2024 Jan; 963(?):176280. doi: 10.1016/j.ejphar.2023.176280. [PMID: 38113967]
  • Tao Zhang, Fenfen Xiang, Xiaoxiao Li, Zixi Chen, Jun Wang, Jiahui Guo, Shanshan Zhu, Jun Zhou, Xiangdong Kang, Rong Wu. Mechanistic study on ursolic acid inhibiting the growth of colorectal cancer cells through the downregulation of TGF-β3 by miR-140-5p. Journal of biochemical and molecular toxicology. 2024 Jan; 38(1):e23581. doi: 10.1002/jbt.23581. [PMID: 38044485]
  • Zhen Zeng, Zhe Sun, Cheng-Ying Wu, Fang Long, Hong Shen, Jing Zhou, Song-Lin Li. Quality evaluation of Pterocephali Herba through simultaneously quantifying 18 bioactive components by UPLC-TQ-MS/MS analysis. Journal of pharmaceutical and biomedical analysis. 2023 Oct; 238(?):115828. doi: 10.1016/j.jpba.2023.115828. [PMID: 37918282]
  • Wenqi Liu, Shiwen Kang, Huijian Chen, Yerlan Bahetjan, Jinyan Zhang, Rumei Lu, Ni Zheng, Guangzhong Yang, Xinzhou Yang. A composition of ursolic acid derivatives from Ludwigia hyssopifolia induces apoptosis in throat cancer cells via the Akt/mTOR and mitochondrial signaling pathways and by modulating endoplasmic reticulum stress. Journal of ethnopharmacology. 2023 Oct; 319(Pt 3):117351. doi: 10.1016/j.jep.2023.117351. [PMID: 37884218]
  • Kensuke Iwasa, Sosuke Yagishita, Nan Yagishita-Kyo, Anzu Yamagishi, Shinji Yamamoto, Kota Yamashina, Chikara Haruta, Masashi Asai, Kei Maruyama, Kuniyoshi Shimizu, Keisuke Yoshikawa. Long term administration of loquat leaves and their major component, ursolic acid, attenuated endogenous amyloid-β burden and memory impairment. Scientific reports. 2023 10; 13(1):16770. doi: 10.1038/s41598-023-44098-3. [PMID: 37798424]
  • Guolong Li, Zhichao Du, Pingping Shen, Jian Zhang. Novel MeON-glycosides of ursolic acid: Synthesis, antitumor evaluation, and mechanism studies. Fitoterapia. 2023 Sep; 169(?):105595. doi: 10.1016/j.fitote.2023.105595. [PMID: 37355050]
  • Wenyue Wang, Tessa Sherry, Xinran Cheng, Qi Fan, Rebecca Cornell, Jie Liu, Zhicheng Xiao, Roger Pocock. An intestinal sphingolipid confers intergenerational neuroprotection. Nature cell biology. 2023 Aug; ?(?):. doi: 10.1038/s41556-023-01195-9. [PMID: 37537365]
  • Qian Liu, Yuyang Wu, Sisi Li, Somy Yoon, Jiaxin Zhang, Xiaoyi Wang, Luoshuang Hu, Chenying Su, Chunwu Zhang, Yungang Wu. Ursolic acid alleviates steroid-induced avascular necrosis of the femoral head in mouse by inhibiting apoptosis and rescuing osteogenic differentiation. Toxicology and applied pharmacology. 2023 Aug; ?(?):116649. doi: 10.1016/j.taap.2023.116649. [PMID: 37536651]
  • Ruiling Liu, Liping Zhang, Shangyue Xiao, Hangjun Chen, Yanchao Han, Ben Niu, Weijie Wu, Haiyan Gao. Ursolic acid, the main component of blueberry cuticular wax, inhibits Botrytis cinerea growth by damaging cell membrane integrity. Food chemistry. 2023 Jul; 415(?):135753. doi: 10.1016/j.foodchem.2023.135753. [PMID: 36870211]
  • Nan Huang, Qichang Xing, Wencan Li, Qingzi Yan, Renzhu Liu, Xiang Liu, Zheng Liu. Explore the mechanism of ursolic acid acting on atherosclerosis through network pharmacological and bioinformatics methods. Medicine. 2023 Jul; 102(30):e34362. doi: 10.1097/md.0000000000034362. [PMID: 37505165]
  • Ying Wang, Xiaodan Wu, Guansong Shao, Tao Wang, Zihan Wang, Bingyang Qin, Jingru Zhao, Zhiguo Liu, Yujie Fu. A cellulose-based intelligent temperature-sensitive molecularly imprinted aerogel reactor for specific recognition and enrichment of ursolic acid. Journal of chromatography. A. 2023 Jul; 1706(?):464225. doi: 10.1016/j.chroma.2023.464225. [PMID: 37541056]
  • Maiara A Daga, Scheila T Nicolau, Juliana Jurumenha-Barreto, Lucas B S Lima, Isaac L Cabral, Ana Paula Pivotto, Amanda Stefanello, João P A Amorim, Jaqueline Hoscheid, Edson A Silva, Thaís S Ayala, Rafael A Menolli. Ursolic acid-rich extract presents trypanocidal action in vitro but worsens mice under experimental acute Chagas disease. Parasite immunology. 2023 Jul; ?(?):e13005. doi: 10.1111/pim.13005. [PMID: 37467029]
  • Arina Soursouri, Seyed Mohsen Hosseini, Farnoosh Fattahi. Seasonal variations of triterpene acid contents in Viscum album L. on typical host trees of Hyrcanian forests. Scientific reports. 2023 07; 13(1):11587. doi: 10.1038/s41598-023-38649-x. [PMID: 37463985]
  • Tuba Aydin, Ruya Saglamtas, Mehmet Gumustas, Mucip Genisel, Cavit Kazaz, Ahmet Cakir. Lavandula stoechas L. subsp. stoechas, a New Herbal Source for Ursolic Acid: Quantitative Analysis, Purification and Bioactivity Studies. Chemistry & biodiversity. 2023 Jun; ?(?):e202300414. doi: 10.1002/cbdv.202300414. [PMID: 37338138]
  • Abdul Qadir, Shehla Nasar Mir Najib Ullah, Dipak Kumar Gupta, Nausheen Khan, Musarrat Husain Warsi, Mehnaz Kamal. Combinatorial drug-loaded quality by design adapted transliposome gel formulation for dermal delivery: In vitro and dermatokinetic study. Journal of cosmetic dermatology. 2023 Jun; ?(?):. doi: 10.1111/jocd.15792. [PMID: 37309263]
  • Jia Lihong, Tie Defu, Fan Zhaohui, Chen Dan, Chen Qizhu, Chen Jun, B O Huaben. Mechanism underlying Fanmugua () leaf multicomponent synergistic therapy for anemia: data mining based on hematopoietic network. Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan. 2023 Jun; 43(3):542-551. doi: 10.19852/j.cnki.jtcm.2023.03.004. [PMID: 37147756]
  • Irene Julca, Daniela Mutwil-Anderwald, Vaishnervi Manoj, Zahra Khan, Soak Kuan Lai, Lay K Yang, Ing T Beh, Jerzy Dziekan, Yoon P Lim, Shen K Lim, Yee W Low, Yuen I Lam, Seth Tjia, Yuguang Mu, Qiao W Tan, Przemyslaw Nuc, Le M Choo, Gillian Khew, Loo Shining, Antony Kam, James P Tam, Zbynek Bozdech, Maximilian Schmidt, Bjoern Usadel, Yoganathan Kanagasundaram, Saleh Alseekh, Alisdair Fernie, Hoi Y Li, Marek Mutwil. Genomic, transcriptomic, and metabolomic analysis of Oldenlandia corymbosa reveals the biosynthesis and mode of action of anti-cancer metabolites. Journal of integrative plant biology. 2023 Jun; 65(6):1442-1466. doi: 10.1111/jipb.13469. [PMID: 36807520]
  • Jingjing Shen, Yan Fu, Fanglin Liu, Bangzuo Ning, Xin Jiang. Ursolic Acid Promotes Autophagy by Inhibiting Akt/mTOR and TNF-α/TNFR1 Signaling Pathways to Alleviate Pyroptosis and Necroptosis in Mycobacterium tuberculosis-Infected Macrophages. Inflammation. 2023 May; ?(?):. doi: 10.1007/s10753-023-01839-w. [PMID: 37212951]
  • Adam Yasgar, Danielle Bougie, Richard T Eastman, Ruili Huang, Misha Itkin, Jennifer Kouznetsova, Caitlin Lynch, Crystal McKnight, Mitch Miller, Deborah K Ngan, Tyler Peryea, Pranav Shah, Paul Shinn, Menghang Xia, Xin Xu, Alexey V Zakharov, Anton Simeonov. Quantitative Bioactivity Signatures of Dietary Supplements and Natural Products. ACS pharmacology & translational science. 2023 May; 6(5):683-701. doi: 10.1021/acsptsci.2c00194. [PMID: 37200814]
  • Zhiyao Liu, Hailiang Huang, Ying Yu, Yuqi Jia, Lingling Li, Xin Shi, Fangqi Wang. Exploring the potential mechanism of action of ursolic acid against gastric cancer and COVID-19 using network pharmacology and bioinformatics analysis. Current pharmaceutical design. 2023 May; ?(?):. doi: 10.2174/1381612829666230510124716. [PMID: 37218202]
  • Mohan Karthik, Shanmugam Manoharan, Radhakrishnan Muralinaidu. Ursolic acid-loaded chitosan nanoparticles suppress 7,12-dimethylbenz(a)anthracene-induced oral tumor formation through their antilipid peroxidative potential in golden Syrian hamsters. Naunyn-Schmiedeberg's archives of pharmacology. 2023 May; ?(?):. doi: 10.1007/s00210-023-02509-2. [PMID: 37162542]
  • Parthasarathy Arunachalam Chettiyar Kamatchi, Rajan Maheswaran, Subramaniyan Sivanandhan, Savarimuthu Ignacimuthu, Kedike Balakrishna, Appadurai Daniel Reegan, Subramanian Arivoli. Bioefficacy of ursolic acid and its derivatives isolated from Catharanthus roseus (L) G. Don leaf against Aedes aegypti, Culex quinquefasciatus, and Anopheles stephensi larvae. Environmental science and pollution research international. 2023 May; ?(?):. doi: 10.1007/s11356-023-27253-1. [PMID: 37133656]
  • Md Yousof Ali, Se Eun Park, Su Hui Seong, Gerald W Zamponi, Hyun Ah Jung, Jae Sue Choi. Ursonic acid from Artemisia montana exerts anti-diabetic effects through anti-glycating properties, and by inhibiting PTP1B and activating the PI3K/Akt signaling pathway in insulin-resistant C2C12 cells. Chemico-biological interactions. 2023 May; 376(?):110452. doi: 10.1016/j.cbi.2023.110452. [PMID: 36933777]
  • Guirong Chen, Chang Liu, Mingbo Zhang, Xiaobo Wang. [Study on the anti-sepsis mechanism of ursolic acid by targeting myeloid differentiation protein-2]. Zhonghua wei zhong bing ji jiu yi xue. 2023 May; 35(5):476-481. doi: 10.3760/cma.j.cn121430-20220705-00634. [PMID: 37308226]
  • Amanda Kornel, Matteo Nadile, Maria Ilektra Retsidou, Minas Sakellakis, Katerina Gioti, Apostolos Beloukas, Newman Siu Kwan Sze, Panagiota Klentrou, Evangelia Tsiani. Ursolic Acid against Prostate and Urogenital Cancers: A Review of In Vitro and In Vivo Studies. International journal of molecular sciences. 2023 Apr; 24(8):. doi: 10.3390/ijms24087414. [PMID: 37108576]
  • Fan Xu, Minghua Li, Zujun Que, Mingliang Su, Wang Yao, Yu Zhang, Bin Luo, Yan Li, Zhanxia Zhang, Jianhui Tian. Combined chemo-immuno-photothermal therapy based on ursolic acid/astragaloside IV-loaded hyaluronic acid-modified polydopamine nanomedicine inhibiting the growth and metastasis of non-small cell lung cancer. Journal of materials chemistry. B. 2023 Apr; ?(?):. doi: 10.1039/d2tb02328h. [PMID: 37009696]
  • Zhehuan Wang, Huiru Zhang, Caihong Qi, Hui Guo, Xiangyue Jiao, Jia Yan, Yifei Wang, Qiangsheng Li, Mingming Zhao, Xinhao Guo, Baoluo Wan, Xiaotian Li. Ursolic acid ameliorates DNCB-induced atopic dermatitis-like symptoms in mice by regulating TLR4/NF-κB and Nrf2/HO-1 signaling pathways. International immunopharmacology. 2023 Mar; 118(?):110079. doi: 10.1016/j.intimp.2023.110079. [PMID: 36996741]
  • Brice Maxime Nkouayeb Nangmou, Hermine Laure Maza Djomkam, Georges Bellier Tabekoueng, Willifred Dongmo Tékapi Tsopgni, Gabin Thierry Mbahbou Bitchagno, Michel Arnaud Mbock, Raceline Gounoue Kamkumo, Marcel Frese, Bruno Ndjakou Lenta, Silvère Augustin Ngouela, Nobert Sewald, Anatole Guy Blaise Azebaze. Bioguided Fractionation and Isolation of an Antiplasmodial Saponin from the Roots of Nauclea xanthoxylon (A.Chev.) Aubrév. (Rubiaceae). Chemistry & biodiversity. 2023 Mar; ?(?):e202200271. doi: 10.1002/cbdv.202200271. [PMID: 36890112]
  • Ke Jin, Xun Shi, Jiaheng Liu, Wenwen Yu, Yanfeng Liu, Jianghua Li, Guocheng Du, Xueqin Lv, Long Liu. Combinatorial metabolic engineering enables the efficient production of ursolic acid and oleanolic acid in Saccharomyces cerevisiae. Bioresource technology. 2023 Mar; 374(?):128819. doi: 10.1016/j.biortech.2023.128819. [PMID: 36868430]
  • Hui Zhao, Shun Tang, Qiu Tao, Tianqi Ming, Jiarong Lei, Yuanjing Liang, Yuhui Peng, Minmin Wang, Maolun Liu, Han Yang, Shan Ren, Haibo Xu. Ursolic Acid Suppresses Colorectal Cancer by Down-Regulation of Wnt/β-Catenin Signaling Pathway Activity. Journal of agricultural and food chemistry. 2023 Feb; ?(?):. doi: 10.1021/acs.jafc.2c06775. [PMID: 36826439]
  • Chunyan Li, Chunhuan Ren, Yale Chen, Mingming Wang, Jun Tang, Yan Zhang, Qiangjun Wang, Zijun Zhang. Changes on proteomic and metabolomic profiling of cryopreserved sperm effected by melatonin. Journal of proteomics. 2023 02; 273(?):104791. doi: 10.1016/j.jprot.2022.104791. [PMID: 36538967]
  • Sarra Kefi, Rym Essid, Adele Papetti, Ghassen Abid, Lamjed Bouslama, Ezzedine Aouani, Olfa Tabbene, Ferid Limam. Antioxidant, antibacterial, and antileishmanial potential of Micromeria nervosa extracts and molecular mechanism of action of the bioactive compound. Journal of applied microbiology. 2023 Feb; 134(2):. doi: 10.1093/jambio/lxad007. [PMID: 36649680]
  • Jennifer George, Gangadhar A Meshram, Vishwanath R Patil. Sono-Maceration - a rapid and inexpensive method for the isolation of ursolic acid from Neolamarckia cadamba leaves. Natural product research. 2023 Feb; 37(3):494-497. doi: 10.1080/14786419.2021.1971978. [PMID: 34467786]
  • Peng-Yu Zhao, Yue-Qin Yang, Fei-Fan Wang, Min Peng, Ming-Cong Li, Dong Pei, Zhi-Yang Hou, Yu-Bi Zhou. [Content analysis and quality evaluation of main active components and mineral elements of Cynomorium songaricum in different habitats]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2023 Feb; 48(4):908-920. doi: 10.19540/j.cnki.cjcmm.20220918.104. [PMID: 36872261]
  • Rana Mohammad Qasaymeh, Dino Rotondo, Veronique Seidel. Phytochemical study and immunomodulatory activity of Fraxinus excelsior L. The Journal of pharmacy and pharmacology. 2023 Jan; 75(1):117-128. doi: 10.1093/jpp/rgac076. [PMID: 36332078]
  • Priya Namdeo, Bina Gidwani, Sakshi Tiwari, Vishal Jain, Veenu Joshi, Shiv Shankar Shukla, Ravindra Kumar Pandey, Amber Vyas. Therapeutic potential and novel formulations of ursolic acid and its derivatives: an updated review. Journal of the science of food and agriculture. 2023 Jan; ?(?):. doi: 10.1002/jsfa.12423. [PMID: 36597140]
  • Anuj Kumar Sharma, Rajaneesh Kumar Chaudhary, Swetza Singh, Akash Ved, Karuna Shanker Shukla, Anita Singh, Manjul Pratap Singh, Mayank Kulshreshtha. HPTLC Studies, in silico Docking Studies, and Pharmacological Evaluation of Elaeocarpus ganitrus as a Gastroprotective Agent. Central nervous system agents in medicinal chemistry. 2023; 23(1):13-31. doi: 10.2174/1871524923666230412080313. [PMID: 37394979]
  • Manthena Navabharath, Varsha Srivastava, Saurabh Gupta, Shoor Vir Singh, Sayeed Ahmad. Ursolic Acid and Solasodine as Potent Anti-Mycobacterial Agents for Combating Paratuberculosis: An Anti-Inflammatory and In Silico Analysis. Molecules (Basel, Switzerland). 2022 Dec; 28(1):. doi: 10.3390/molecules28010274. [PMID: 36615467]
  • Ditte L Fogde, Cristina P R Xavier, Kristina Balnytė, Lya K K Holland, Kamilla Stahl-Meyer, Christoffel Dinant, Elisabeth Corcelle-Termeau, Cristina Pereira-Wilson, Kenji Maeda, Marja Jäättelä. Ursolic Acid Impairs Cellular Lipid Homeostasis and Lysosomal Membrane Integrity in Breast Carcinoma Cells. Cells. 2022 12; 11(24):. doi: 10.3390/cells11244079. [PMID: 36552844]
  • Xin-Yu Lin, Jing Zhou, Cai-Feng Hao, He Zhu, Shan-Shan Zhou, Jin-Di Xu, Qian Mao, Song-Lin Li, Ming Kong. Quality consistency evaluation of commercial Prunellae Spica by integrating determination of secondary metabolites and saccharides. Phytochemical analysis : PCA. 2022 Dec; ?(?):. doi: 10.1002/pca.3197. [PMID: 36494085]
  • Bowen Yang, Qiuwen Zhu, Xiaodong Wang, Jingxin Mao, Shuqing Zhou. Using network pharmacology and molecular docking verification to explore the mechanism of ursolic acid in the treatment of osteoporosis. Medicine. 2022 Dec; 101(49):e32222. doi: 10.1097/md.0000000000032222. [PMID: 36626454]
  • Ding Tang, Chen Wang, Qianying Gan, Zhixin Wang, Renwang Jiang. Chemical composition-based characterization of the anti-allergic effect of Guominkang Formula on IgE-mediated mast cells activation and passive cutaneous anaphylaxis. Chinese journal of natural medicines. 2022 Dec; 20(12):925-936. doi: 10.1016/s1875-5364(22)60225-5. [PMID: 36549806]
  • Yan-Jie Qu, Min-Rui Ding, Chao Gu, Li-Min Zhang, Rong-Rong Zhen, Jin-Fang Chen, Bing Hu, Hong-Mei An. Acteoside and ursolic acid synergistically protects H2O2-induced neurotrosis by regulation of AKT/mTOR signalling: from network pharmacology to experimental validation. Pharmaceutical biology. 2022 Dec; 60(1):1751-1761. doi: 10.1080/13880209.2022.2098344. [PMID: 36102631]
  • Amanda Kornel, Matteo Nadile, Evangelia Tsiani. Evidence of the Beneficial Effects of Ursolic Acid against Lung Cancer. Molecules (Basel, Switzerland). 2022 Nov; 27(21):. doi: 10.3390/molecules27217466. [PMID: 36364289]
  • Gouse M Shaik, Lubica Draberova, Sara Cernohouzova, Magda Tumova, Viktor Bugajev, Petr Draber. Pentacyclic triterpenoid ursolic acid interferes with mast cell activation via a lipid-centric mechanism affecting FcεRI signalosome functions. The Journal of biological chemistry. 2022 11; 298(11):102497. doi: 10.1016/j.jbc.2022.102497. [PMID: 36115460]
  • Fazhen Luo, Juanjuan Zhao, Shuo Liu, Yuanfei Xue, Dongyun Tang, Jun Yang, Ye Mei, Guowen Li, Yan Xie. Ursolic acid augments the chemosensitivity of drug-resistant breast cancer cells to doxorubicin by AMPK-mediated mitochondrial dysfunction. Biochemical pharmacology. 2022 11; 205(?):115278. doi: 10.1016/j.bcp.2022.115278. [PMID: 36191625]
  • Hong Jiang, Jian-Hua Wei, Cui-Yan Lin, Gui-Bin Liang, Rui-Jie He, Ri-Zhen Huang, Xian-Li Ma, Guo-Bao Huang, Ye Zhang. Ursolic acid-piperazine-dithiocarbamate ruthenium(II) polypyridyl complexes induced necroptosis in MGC-803 cells. Metallomics : integrated biometal science. 2022 10; 14(10):. doi: 10.1093/mtomcs/mfac072. [PMID: 36149330]
  • Qing Lu, Weili Chen, Yajie Ji, Yu Liu, Xiaohong Xue. Ursolic Acid Enhances Cytotoxicity of Doxorubicin-Resistant Triple-Negative Breast Cancer Cells via ZEB1-AS1/miR-186-5p/ABCC1 Axis. Cancer biotherapy & radiopharmaceuticals. 2022 Oct; 37(8):673-683. doi: 10.1089/cbr.2020.4147. [PMID: 33493421]
  • Min Kyung Hyun, Dae Hyun Kim, Chan Hum Park, Sang Gyun Noh, Sihyun Choi, Jae Yong Lee, Ji Hye Choi, Duhyeon Park, Yeon Ja Choi, Hae Young Chung. Protective mechanisms of loquat leaf extract and ursolic acid against diabetic pro-inflammation. Journal of molecular medicine (Berlin, Germany). 2022 10; 100(10):1455-1464. doi: 10.1007/s00109-022-02243-x. [PMID: 35962799]
  • Esra Küpeli Akkol, Gülin Renda, Mert İlhan, Nurdan Yazıcı Bektaş. Wound healing acceleration and anti-inflammatory potential of Prunella vulgaris L.: From conventional use to preclinical scientific verification. Journal of ethnopharmacology. 2022 Sep; 295(?):115411. doi: 10.1016/j.jep.2022.115411. [PMID: 35636653]
  • Simeng Chu, Yujie Lu, Wenjuan Liu, Xiaoyao Ma, Jiamin Peng, Xiaoying Wang, Min Jiang, Gang Bai. Ursolic acid alleviates tetrandrine-induced hepatotoxicity by competitively binding to the substrate-binding site of glutathione S-transferases. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2022 Sep; 104(?):154325. doi: 10.1016/j.phymed.2022.154325. [PMID: 35820303]
  • Li Chen, Maolun Liu, Han Yang, Shan Ren, Qiang Sun, Hui Zhao, Tianqi Ming, Shun Tang, Qiu Tao, Sha Zeng, Xianli Meng, Haibo Xu. Ursolic acid inhibits the activation of smoothened-independent non-canonical hedgehog pathway in colorectal cancer by suppressing AKT signaling cascade. Phytotherapy research : PTR. 2022 Sep; 36(9):3555-3570. doi: 10.1002/ptr.7523. [PMID: 35708264]
  • Xing Wei, Yuying Lan, Zhifei Nong, Chongjin Li, Zhiqiong Feng, Xiaoping Mei, Yang Zhai, Min Zou. Ursolic acid represses influenza A virus-triggered inflammation and oxidative stress in A549 cells by modulating the miR-34c-5p/TLR5 axis. Cytokine. 2022 09; 157(?):155947. doi: 10.1016/j.cyto.2022.155947. [PMID: 35780710]
  • Hui Li, Chen Cheng, Shanshan Shi, Yan Wu, Yongfeng Gao, Zhihao Liu, Mingjian Liu, Zhaodong Li, Lijian Huo, Xiaoyan Pan, Shuwen Liu, Gaopeng Song. Identification, optimization, and biological evaluation of 3-O-β-chacotriosyl ursolic acid derivatives as novel SARS-CoV-2 entry inhibitors by targeting the prefusion state of spike protein. European journal of medicinal chemistry. 2022 Aug; 238(?):114426. doi: 10.1016/j.ejmech.2022.114426. [PMID: 35551037]
  • Han Li, You Yu, Yi Liu, Zhihong Luo, Betty Yuen Kwan Law, Yi Zheng, Xing Huang, Wenhua Li. Ursolic acid enhances the antitumor effects of sorafenib associated with Mcl-1-related apoptosis and SLC7A11-dependent ferroptosis in human cancer. Pharmacological research. 2022 08; 182(?):106306. doi: 10.1016/j.phrs.2022.106306. [PMID: 35714823]
  • Xiaoyao Ma, Yongping Bai, Kaixin Liu, Yiman Han, Jinling Zhang, Yuteng Liu, Xiaotao Hou, Erwei Hao, Yuanyuan Hou, Gang Bai. Ursolic acid inhibits the cholesterol biosynthesis and alleviates high fat diet-induced hypercholesterolemia via irreversible inhibition of HMGCS1 in vivo. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2022 Aug; 103(?):154233. doi: 10.1016/j.phymed.2022.154233. [PMID: 35671633]
  • Hien Nguyen Thi Thu, Duyen Nguyen Huu Huong, Thuan Nguyen Thi Dieu, Hanh Tran Thi Ngoc, Huyen Pham Van, Anh Hoang Thi Ngoc, Ha Nguyen Xuan, Ngoc Khanh Pham, Cuong Nguyen Manh, Phan Nguyen Huu Toan. In vitro and in silico cytotoxic activities of triterpenoids from the leaves of Aralia dasyphylla Miq. and the assessment of their ADMET properties. Journal of biomolecular structure & dynamics. 2022 Jul; ?(?):1-9. doi: 10.1080/07391102.2022.2098822. [PMID: 35838156]
  • Abdul-Quddus Kehinde Oyedele, Temitope Isaac Adelusi, Abdeen Tunde Ogunlana, Mojeed Ashiru Ayoola, Rofiat Oluwabusola Adeyemi, Musa Oladayo Babalola, James Babatunde Ayorinde, Josiah Ayoola Isong, Toheeb Olakunle Ajasa, Ibrahim Damilare Boyenle. Promising disruptors of p53-MDM2 dimerization from some medicinal plant phytochemicals: a molecular modeling study. Journal of biomolecular structure & dynamics. 2022 Jul; ?(?):1-10. doi: 10.1080/07391102.2022.2097313. [PMID: 35822492]
  • Wen-Lung Ma, Ning Chang, Yingchun Yu, Yu-Ting Su, Guan-Yu Chen, Wei-Chung Cheng, Yang-Chang Wu, Ching-Chia Li, Wei-Chun Chang, Juan-Cheng Yang. Ursolic acid silences CYP19A1/aromatase to suppress gastric cancer growth. Cancer medicine. 2022 07; 11(14):2824-2835. doi: 10.1002/cam4.4536. [PMID: 35545835]
  • Chengjiao Chu, Kainan Song, Yongzhen Zhang, Min Yang, Boyi Fan, Huilian Huang, Guangtong Chen. Biotransformation of ursolic acid by Circinella muscae and their anti-neuroinflammatory activities of metabolites. Natural product research. 2022 Jun; 36(11):2777-2782. doi: 10.1080/14786419.2021.1925893. [PMID: 33977841]
  • Hien Thu Nguyen, Xoan Thi Le, Tai Van Nguyen, Hoa Nhu Phung, Hang Thi Nguyet Pham, Khoi Minh Nguyen, Kinzo Matsumoto. Ursolic acid and its isomer oleanolic acid are responsible for the anti-dementia effects of Ocimum sanctum in olfactory bulbectomized mice. Journal of natural medicines. 2022 Jun; 76(3):621-633. doi: 10.1007/s11418-022-01609-2. [PMID: 35218459]
  • Huiqiang Wei, Jianghong Guo, Xiao Sun, Wenfeng Gou, Hongxin Ning, Haihua Shang, Qiang Liu, Wenbin Hou, Yiliang Li. Discovery of Natural Ursane-type SENP1 Inhibitors and the Platinum Resistance Reversal Activity Against Human Ovarian Cancer Cells: A Structure-Activity Relationship Study. Journal of natural products. 2022 05; 85(5):1248-1255. doi: 10.1021/acs.jnatprod.1c01166. [PMID: 35500202]
  • Adam Markowski, Anna Jaromin, Paweł Migdał, Ewa Olczak, Adrianna Zygmunt, Magdalena Zaremba-Czogalla, Krzysztof Pawlik, Jerzy Gubernator. Design and Development of a New Type of Hybrid PLGA/Lipid Nanoparticle as an Ursolic Acid Delivery System against Pancreatic Ductal Adenocarcinoma Cells. International journal of molecular sciences. 2022 May; 23(10):. doi: 10.3390/ijms23105536. [PMID: 35628352]
  • Haixia Xu, Linghua Piao, Xiande Liu, Sheng-Nan Jiang. Ursolic acid-enriched kudingcha extract enhances the antitumor activity of bacteria-mediated cancer immunotherapy. BMC complementary medicine and therapies. 2022 May; 22(1):123. doi: 10.1186/s12906-022-03612-2. [PMID: 35509047]
  • Chen Chen, Qidi Ai, Axi Shi, Nan Wang, Lina Wang, Yuhui Wei. Oleanolic acid and ursolic acid: therapeutic potential in neurodegenerative diseases, neuropsychiatric diseases and other brain disorders. Nutritional neuroscience. 2022 Mar; ?(?):1-15. doi: 10.1080/1028415x.2022.2051957. [PMID: 35311613]
  • Kishor Mazumder, Biswajit Biswas, Abdullah Al Mamun, Hasan Billah, Ahsan Abid, Kishore Kumar Sarkar, Bisti Saha, Shorrowar Azom, Philip G Kerr. Investigations of AGEs' inhibitory and nephroprotective potential of ursolic acid towards reduction of diabetic complications. Journal of natural medicines. 2022 Mar; 76(2):490-503. doi: 10.1007/s11418-021-01602-1. [PMID: 35032247]
  • Sabeeha Ali, Manzar Alam, Fatima Khatoon, Urooj Fatima, Abdelbaset Mohamed Elasbali, Mohd Adnan, Asimul Islam, Md Imtaiyaz Hassan, Mejdi Snoussi, Vincenzo De Feo. Natural products can be used in therapeutic management of COVID-19: Probable mechanistic insights. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2022 Mar; 147(?):112658. doi: 10.1016/j.biopha.2022.112658. [PMID: 35066300]
  • Liwa Wang, Wenxia Wu, Shuge Tian. Qualitative and Quantitative Analyses of Four Active Components in Different Organs of Salvia Deserta Schang by High-Performance Thin-Layer Chromatography. Journal of chromatographic science. 2022 Feb; ?(?):. doi: 10.1093/chromsci/bmac014. [PMID: 35220420]
  • Yuyao Zhang, Zhi Zhang, John Paul Fawcett, Jingkai Gu. A novel, differential mobility spectrometry tandem mass spectrometric method for the in vivo quantitation of ursolic acid. Journal of pharmaceutical and biomedical analysis. 2022 Feb; 210(?):114559. doi: 10.1016/j.jpba.2021.114559. [PMID: 35016029]
  • Li Zong, Guorong Cheng, Jingwu Zhao, Xiaoyu Zhuang, Zhong Zheng, Zhiqiang Liu, Fengrui Song. Inhibitory Effect of Ursolic Acid on the Migration and Invasion of Doxorubicin-Resistant Breast Cancer. Molecules (Basel, Switzerland). 2022 Feb; 27(4):. doi: 10.3390/molecules27041282. [PMID: 35209071]
  • Shiguo Tang, Chao Fang, Yuting Liu, Lihua Tang, Yuanyi Xu. Anti-obesity and Anti-diabetic Effect of Ursolic Acid against Streptozotocin/High Fat Induced Obese in Diabetic Rats. Journal of oleo science. 2022 Feb; 71(2):289-300. doi: 10.5650/jos.ess21258. [PMID: 35034940]
  • Hayder M Al-Kuraishy, Ali I Al-Gareeb, Gaber El-Saber Batiha. The possible role of ursolic acid in Covid-19: A real game changer. Clinical nutrition ESPEN. 2022 02; 47(?):414-417. doi: 10.1016/j.clnesp.2021.12.030. [PMID: 35063236]
  • Xin Yan, Xiaoyun Liu, Yu Wang, Xueyang Ren, Jiamu Ma, Ruolan Song, Xiuhuan Wang, Ying Dong, Qiqi Fan, Jing Wei, Axiang Yu, Hong Sui, Gaimei She. Multi-omics integration reveals the hepatoprotective mechanisms of ursolic acid intake against chronic alcohol consumption. European journal of nutrition. 2022 Feb; 61(1):115-126. doi: 10.1007/s00394-021-02632-x. [PMID: 34215920]
  • Ntombikayise Tembe, Kgothatso E Machaba, Umar Ndagi, Hezekiel M Kumalo, Ndumiso N Mhlongo. Ursolic acid as a potential inhibitor of Mycobacterium tuberculosis cytochrome bc1 oxidase-a molecular modelling perspective. Journal of molecular modeling. 2022 Jan; 28(2):35. doi: 10.1007/s00894-021-04993-w. [PMID: 35022913]
  • Zuzanna Sycz, Dorota Tichaczek-Goska, Dorota Wojnicz. Anti-Planktonic and Anti-Biofilm Properties of Pentacyclic Triterpenes-Asiatic Acid and Ursolic Acid as Promising Antibacterial Future Pharmaceuticals. Biomolecules. 2022 01; 12(1):. doi: 10.3390/biom12010098. [PMID: 35053246]
  • Huiqiang Wei, Jianghong Guo, Xiao Sun, Wenfeng Gou, Hongxin Ning, Zhennan Fang, Qiang Liu, Wenbin Hou, Yiliang Li. Discovery and radiosensitization research of ursolic acid derivatives as SENP1 inhibitors. European journal of medicinal chemistry. 2022 Jan; 227(?):113918. doi: 10.1016/j.ejmech.2021.113918. [PMID: 34688014]
  • Ana Belen Ramos-Hryb, Francis L Pazini, Ana Paula Costa, Mauricio P Cunha, Manuella P Kaster, Ana Lúcia S Rodrigues. Role of heme oxygenase-1 in the antidepressant-like effect of ursolic acid in the tail suspension test. The Journal of pharmacy and pharmacology. 2022 Jan; 74(1):13-21. doi: 10.1093/jpp/rgab128. [PMID: 34791376]
  • Patrícia Cristina Barreto Lobo, Gustavo Duarte Pimentel. Ursolic acid does not change the cytokine levels following resistance training in healthy men: A pilot balanced, double-blind and placebo-controlled clinical trial. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2022 Jan; 145(?):112289. doi: 10.1016/j.biopha.2021.112289. [PMID: 34799219]
  • Mingzhu Luan, Huiyun Wang, Jiazhen Wang, Xiaofan Zhang, Fenglan Zhao, Zongliang Liu, Qingguo Meng. Advances in Anti-inflammatory Activity, Mechanism and Therapeutic Application of Ursolic Acid. Mini reviews in medicinal chemistry. 2022; 22(3):422-436. doi: 10.2174/1389557521666210913113522. [PMID: 34517797]
  • Weiwei Chen, Yingying Yu, Yang Liu, ChaoJie Song, HuanHuan Chen, Cong Tang, Yu Song, Xiaoli Zhang. Ursolic acid regulates gut microbiota and corrects the imbalance of Th17/Treg cells in T1DM rats. PloS one. 2022; 17(11):e0277061. doi: 10.1371/journal.pone.0277061. [PMID: 36327331]
  • Xiao Lyu, Xuhui Zhang, Libin Sun, Jingqi Wang, Dongwen Wang. Inhibitory Effect of Ursolic Acid on Proliferation and Migration of Renal Carcinoma Cells and Its Mechanism. Computational intelligence and neuroscience. 2022; 2022(?):1529132. doi: 10.1155/2022/1529132. [PMID: 35571705]
  • Qianqian Mao, Juan Min, Rui Zeng, Haiqin Liu, Hao Li, Cao Zhang, Aixian Zheng, Jiumao Lin, Xiaolong Liu, Ming Wu. Self-assembled traditional Chinese nanomedicine modulating tumor immunosuppressive microenvironment for colorectal cancer immunotherapy. Theranostics. 2022; 12(14):6088-6105. doi: 10.7150/thno.72509. [PMID: 36168633]
  • Vinicius Viana Pereira, Nara Rúbia Pereira, Rafael César Gonçalves Pereira, Lucienir Pains Duarte, Jacqueline Aparecida Takahashi, Roqueline Rodrigues Silva. Synthesis and Antimicrobial Activity of Ursolic Acid Ester Derivatives. Chemistry & biodiversity. 2022 Jan; 19(1):e202100566. doi: 10.1002/cbdv.202100566. [PMID: 34793623]
  • A Lőrincz, J Mihály, A Wacha, Cs Németh, B Besztercei, P Gyulavári, Z Varga, I Peták, A Bóta. Combination of multifunctional ursolic acid with kinase inhibitors for anti-cancer drug carrier vesicles. Materials science & engineering. C, Materials for biological applications. 2021 Dec; 131(?):112481. doi: 10.1016/j.msec.2021.112481. [PMID: 34857267]
  • Xiaohan Wu, He Li, Zhijie Wan, Ran Wang, Jing Liu, Qingfeng Liu, Haiyun Zhao, Zhehuan Wang, Huiru Zhang, Hui Guo, Caihong Qi, Xiangyue Jiao, Xiaotian Li. The combination of ursolic acid and empagliflozin relieves diabetic nephropathy by reducing inflammation, oxidative stress and renal fibrosis. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2021 Dec; 144(?):112267. doi: 10.1016/j.biopha.2021.112267. [PMID: 34624679]
  • Sayan Biswas, Amit Kar, Nanaocha Sharma, Pallab K Haldar, Pulok K Mukherjee. Synergistic effect of ursolic acid and piperine in CCl4 induced hepatotoxicity. Annals of medicine. 2021 12; 53(1):2009-2017. doi: 10.1080/07853890.2021.1995625. [PMID: 34751064]
  • Pankaj Tripathi, Saeed Alshahrani. Mitigation of ILβ-1, ILβ-6, TNF-α, and markers of apoptosis by ursolic acid against cisplatin-induced oxidative stress and nephrotoxicity in rats. Human & experimental toxicology. 2021 Dec; 40(12_suppl):S397-S405. doi: 10.1177/09603271211045953. [PMID: 34569348]
  • Zhaohui Jia, Wensheng Li, Pan Bian, Liuyang Yang, Hui Liu, Dong Pan, Zhongling Dou. Ursolic acid treats renal tubular epithelial cell damage induced by calcium oxalate monohydrate via inhibiting oxidative stress and inflammation. Bioengineered. 2021 12; 12(1):5450-5461. doi: 10.1080/21655979.2021.1955176. [PMID: 34506233]
  • Geu Rim Song, Yoon Jung Choi, Soo Jin Park, Subeen Shin, Giseong Lee, Hui Ji Choi, Do Yup Lee, Gyu-Yong Song, Sangtaek Oh. Root Bark of Morus alba L. and Its Bioactive Ingredient, Ursolic Acid, Suppress the Proliferation of Multiple Myeloma Cells by Inhibiting Wnt/β-Catenin Pathway. Journal of microbiology and biotechnology. 2021 Nov; 31(11):1559-1567. doi: 10.4014/jmb.2109.09002. [PMID: 34584036]
  • Jakub Erdmann, Marcin Kujaciński, Michał Wiciński. Beneficial Effects of Ursolic Acid and Its Derivatives-Focus on Potential Biochemical Mechanisms in Cardiovascular Conditions. Nutrients. 2021 Oct; 13(11):. doi: 10.3390/nu13113900. [PMID: 34836155]
  • Xiaoyong Sun, Xiaobo Chen, Shengjun Wang, Jinfeng Zhang, Bin Wu, Guozheng Qin. Protective Effect of Ursolic Acid in Prunella vulgaris L. on LPS-Induced Asthenozoospermia via Bcl-2/Bax Apoptosis Signaling Pathway. Current pharmaceutical biotechnology. 2021 Oct; 22(14):1953-1959. doi: 10.2174/1389201021666201027155413. [PMID: 33109038]
  • Chao Liang, Louise Kjaerulff, Paul Robert Hansen, Kenneth T Kongstad, Dan Staerk. Dual High-Resolution α-Glucosidase and PTP1B Inhibition Profiling Combined with HPLC-PDA-HRMS-SPE-NMR Analysis for the Identification of Potentially Antidiabetic Chromene Meroterpenoids from Rhododendron capitatum. Journal of natural products. 2021 09; 84(9):2454-2467. doi: 10.1021/acs.jnatprod.1c00454. [PMID: 34460246]
  • Yeong-Geun Lee, Kyung Won Kang, Woojae Hong, Yeon Hwa Kim, Jen Taek Oh, Dae Won Park, Minsung Ko, Yun-Feng Bai, Young-Jin Seo, Sang-Myeong Lee, Hyunggun Kim, Se Chan Kang. Potent antiviral activity of Agrimonia pilosa, Galla rhois, and their components against SARS-CoV-2. Bioorganic & medicinal chemistry. 2021 09; 45(?):116329. doi: 10.1016/j.bmc.2021.116329. [PMID: 34329818]