Aristolochic_acid (BioDeep_00001867467)

Main id: BioDeep_00000000132

 

PANOMIX_OTCML-2023 Toxin


代谢物信息卡片


8-methoxy-6-nitro-naphtho[2,1-g][1,3]benzodioxole-5-carboxylic acid

化学式: C17H11NO7 (341.0535)
中文名称: 马兜铃酸 A, 马兜铃酸
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: COC1=CC=CC2=C3C(=C(C=C21)[N+](=O)[O-])C(=CC4=C3OCO4)C(=O)O
InChI: InChI=1S/C17H11NO7/c1-23-12-4-2-3-8-9(12)5-11(18(21)22)14-10(17(19)20)6-13-16(15(8)14)25-7-24-13/h2-6H,7H2,1H3,(H,19,20)

描述信息

Aristolochic acid A is an aristolochic acid that is phenanthrene-1-carboxylic acid that is substituted by a methylenedioxy group at the 3,4 positions, by a methoxy group at position 8, and by a nitro group at position 10. It is the most abundant of the aristolochic acids and is found in almost all Aristolochia (birthworts or pipevines) species. It has been tried in a number of treatments for inflammatory disorders, mainly in Chinese and folk medicine. However, there is concern over their use as aristolochic acid is both carcinogenic and nephrotoxic. It has a role as a nephrotoxin, a carcinogenic agent, a mutagen, a toxin and a metabolite. It is a monocarboxylic acid, a C-nitro compound, a cyclic acetal, an organic heterotetracyclic compound, an aromatic ether and a member of aristolochic acids.
Aristolochic acid is a natural product found in Thottea duchartrei, Aristolochia, and other organisms with data available.
Aristolochic acids are a family of carcinogenic, mutagenic, and nephrotoxic compounds commonly found in the Aristolochiaceae family of plants, including Aristolochia and Asarum (wild ginger), which are commonly used in Chinese herbal medicine. Aristolochic acid I is the most abundant of the aristolochic acids and is found in almost all Aristolochia species. Aristolochic acids are often accompanied by aristolactams.
See also: Aristolochia fangchi root (part of).
An aristolochic acid that is phenanthrene-1-carboxylic acid that is substituted by a methylenedioxy group at the 3,4 positions, by a methoxy group at position 8, and by a nitro group at position 10. It is the most abundant of the aristolochic acids and is found in almost all Aristolochia (birthworts or pipevines) species. It has been tried in a number of treatments for inflammatory disorders, mainly in Chinese and folk medicine. However, there is concern over their use as aristolochic acid is both carcinogenic and nephrotoxic.
D009676 - Noxae > D002273 - Carcinogens
D009676 - Noxae > D009153 - Mutagens
Aristolochic acid A (Aristolochic acid I; TR 1736) is the main component of plant extract Aristolochic acids, which are found in various herbal plants of genus Aristolochia and Asarum. Aristolochic acid A significantly reduces both activator protein 1 (AP-1) and NF-κB activities. Aristolochic acid A reduces BLCAP gene expression in human cell lines[1].
Aristolochic acid A (Aristolochic acid I; TR 1736) is the main component of plant extract Aristolochic acids, which are found in various herbal plants of genus Aristolochia and Asarum. Aristolochic acid A significantly reduces both activator protein 1 (AP-1) and NF-κB activities. Aristolochic acid A reduces BLCAP gene expression in human cell lines[1].

同义名列表

73 个代谢物同义名

8-methoxy-6-nitro-naphtho[2,1-g][1,3]benzodioxole-5-carboxylic acid; Phenanthro[3,4-d]-1,3-dioxole-5-carbocylic acid, 8-methoxy-6-nitro-; Aristolochic acid I, European Pharmacopoeia (EP) Reference Standard; Phenanthro(3,4-d)-1,3-dioxole-5-carboxylic acid, 8-methoxy-6-nitro-; 8-Methoxy-3,4-methylenedioxy-10-nitrophenanthrene-1-carboxylic acid; Phenanthro[3,4-d]-1,3-dioxole-5-carboxylic acid, 8-methoxy-6-nitro-; 3,4-Methylenedioxy-8-methoxy-10-nitro-1-phenanthrenecarboxylic acid; 8-methoxy-6-nitro-naphtho[1,2-e][1,3]benzodioxole-5-carboxylic acid; 8-Methoxy-6-nitrophenanthro[3,4-d][1,3]dioxole-5-carboxylic acid #; 8-methoxy-6-nitronaphtho[2,1-g][1,3]benzodioxole-5-carboxylic acid; 8-Methoxy-6-nitrophenanthol (3,4-d) 1,3-dioxole-5-carboxylic acid; 8-Methoxy-6-nitro-phenanthro[3,4-d][1,3]dioxole-5-carboxylic acid; 8-methoxy-6-nitrophenanthro(3,4-d)(1,3)dioxole-5-carboxylic acid; 8-methoxy-6-nitrophenanthro(3,4-d)-1,3-dioxole-5-carboxylic acid; 8-Methoxy-6-nitrophenanthro[3,4-d][1,3]dioxole-5-carboxylic acid; 8-Methoxy-3,4-methylendioxxy-10-nitro-1-phenanthrencarbonsaeure; Aristolochia, European Pharmacopoeia (EP) Reference Standard; Phenanthro[3,3-dioxole-5-carboxylic acid, 8-methoxy-6-nitro-; ARISTOLOCHIC ACID, PLANTS CONTAINING [IARC]; ARISTOLOCHIC ACID, PLANTS CONTAINING (IARC); 2-Naphthyl Pyrovalerone-d8 Hydrochloride; Mixture of Aristolochic Acid A and B; aristolochic acid I, sodium salt; Aristolochic acid I, powder; BBFQZRXNYIEMAW-UHFFFAOYSA-N; ARISTOLOCHIC ACID [WHO-DD]; ARISTOLOCHIC ACID [IARC]; ARISTOLOCHIC ACID (IARC); Aristolochic acid A,(S); ARISTOLOCHIC ACID [MI]; sodium aristolochate; aristolochic acid A; aristolochic acid I; Aristolochic acid 1; Aristolochic acid-I; Aristolochic-acid-A; aris-tolochic acid; Aristolochiazaeure; AristolochicacidA; Aristolochic acid; Spectrum2_000822; Spectrum3_001114; Spectrum5_000729; Spectrum4_001952; ARISTOLOCHIA A; DivK1c_006544; ARISTOLOCHINE; KBio1_001488; KBio3_000320; KBio2_001636; KBio3_000319; KBio2_005296; Aristolochia; Aristolochic; KBio3_002068; NCI60_000460; KBio2_002728; KBio2_006772; KBio2_004204; Aristolochin; KBio2_000160; Bio2_000640; Bio1_000418; Bio1_001396; IDI1_033910; Bio2_000160; Bio1_000907; Birthwort; C17H11NO7; Tardolyt; GOQ; TR 1736; Aristolochic acid



数据库引用编号

19 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

58 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 12 ALB, CDH1, CDKN1A, CYP1A1, MAPK14, MTOR, NQO1, SMAD3, STAT3, TP53, VEGFA, VIM
Peripheral membrane protein 3 CYP1A1, CYP1B1, MTOR
Endoplasmic reticulum membrane 4 CYP1A1, CYP1A2, CYP1B1, MTOR
Nucleus 10 ALB, CDH1, CDKN1A, MAPK14, MTOR, NQO1, SMAD3, STAT3, TP53, VEGFA
cytosol 11 ALB, CDH1, CDKN1A, GPT, MAPK14, MTOR, NQO1, SMAD3, STAT3, TP53, VIM
dendrite 2 MTOR, NQO1
nuclear body 1 CDKN1A
phagocytic vesicle 2 MTOR, VIM
trans-Golgi network 1 CDH1
centrosome 2 ALB, TP53
nucleoplasm 7 CDH1, CDKN1A, MAPK14, MTOR, SMAD3, STAT3, TP53
RNA polymerase II transcription regulator complex 1 STAT3
Cell membrane 3 CDH1, TNF, VIM
Cytoplasmic side 1 MTOR
lamellipodium 1 CDH1
Multi-pass membrane protein 2 SLC22A6, SLC22A8
Golgi apparatus membrane 1 MTOR
Synapse 1 NQO1
cell junction 1 CDH1
cell surface 2 TNF, VEGFA
glutamatergic synapse 2 CDH1, MAPK14
Golgi apparatus 4 ALB, CCN2, CDH1, VEGFA
Golgi membrane 1 MTOR
lysosomal membrane 1 MTOR
mitochondrial inner membrane 1 CYP1A1
neuronal cell body 2 NQO1, TNF
postsynapse 1 CDH1
Cytoplasm, cytosol 1 NQO1
Lysosome 1 MTOR
endosome 1 CDH1
plasma membrane 8 CCN2, CDH1, SLC22A6, SLC22A8, SMAD3, STAT3, TNF, VIM
Membrane 7 CDH1, CYP1B1, MTOR, NQO1, SLC22A6, TP53, VEGFA
apical plasma membrane 1 SLC22A8
axon 1 VIM
basolateral plasma membrane 2 SLC22A6, SLC22A8
caveola 1 SLC22A6
extracellular exosome 6 ALB, CDH1, GPT, SLC22A6, SLC22A8, VIM
Lysosome membrane 1 MTOR
endoplasmic reticulum 3 ALB, TP53, VEGFA
extracellular space 5 ALB, CCN2, IL6, TNF, VEGFA
perinuclear region of cytoplasm 2 CDH1, CDKN1A
adherens junction 2 CDH1, VEGFA
mitochondrion 4 CYP1A1, CYP1B1, MAPK14, TP53
protein-containing complex 4 ALB, CDKN1A, SLC22A6, TP53
intracellular membrane-bounded organelle 4 CCN2, CYP1A1, CYP1A2, CYP1B1
Microsome membrane 4 CYP1A1, CYP1A2, CYP1B1, MTOR
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Single-pass type I membrane protein 1 CDH1
Secreted 4 ALB, CCN2, IL6, VEGFA
extracellular region 7 ALB, CCN2, CDH1, IL6, MAPK14, TNF, VEGFA
cytoplasmic side of plasma membrane 1 CDH1
Mitochondrion outer membrane 1 MTOR
mitochondrial outer membrane 1 MTOR
Mitochondrion matrix 1 TP53
mitochondrial matrix 1 TP53
anchoring junction 1 ALB
transcription regulator complex 3 SMAD3, STAT3, TP53
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 TP53
nuclear membrane 1 CDH1
external side of plasma membrane 1 TNF
Secreted, extracellular space, extracellular matrix 2 CCN2, VEGFA
actin cytoskeleton 1 CDH1
nucleolus 2 CDKN1A, TP53
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Mitochondrion inner membrane 1 CYP1A1
Membrane raft 1 TNF
Cytoplasm, cytoskeleton 2 TP53, VIM
focal adhesion 1 VIM
Cell junction, adherens junction 1 CDH1
flotillin complex 1 CDH1
extracellular matrix 2 CCN2, VEGFA
Peroxisome 1 VIM
Nucleus, PML body 2 MTOR, TP53
PML body 2 MTOR, TP53
secretory granule 1 VEGFA
intermediate filament 1 VIM
lateral plasma membrane 2 CDH1, SLC22A8
nuclear speck 1 MAPK14
nuclear inner membrane 1 SMAD3
receptor complex 1 SMAD3
neuron projection 1 VIM
ciliary basal body 1 ALB
chromatin 3 SMAD3, STAT3, TP53
cell leading edge 1 VIM
phagocytic cup 1 TNF
cytoskeleton 1 VIM
centriole 1 ALB
Golgi apparatus, trans-Golgi network 1 CDH1
spindle pole 2 ALB, MAPK14
blood microparticle 1 ALB
Basolateral cell membrane 2 SLC22A6, SLC22A8
site of double-strand break 1 TP53
nuclear envelope 1 MTOR
Endomembrane system 1 MTOR
microtubule organizing center 1 VIM
germ cell nucleus 1 TP53
replication fork 1 TP53
intermediate filament cytoskeleton 1 VIM
basal plasma membrane 1 SLC22A6
ficolin-1-rich granule lumen 1 MAPK14
secretory granule lumen 1 MAPK14
endoplasmic reticulum lumen 2 ALB, IL6
nuclear matrix 2 TP53, VIM
transcription repressor complex 1 TP53
platelet alpha granule lumen 2 ALB, VEGFA
anaphase-promoting complex 1 CDH1
Nucleus matrix 1 VIM
[Isoform 2]: Nucleus 1 CDH1
[Isoform 1]: Nucleus 1 TP53
heteromeric SMAD protein complex 1 SMAD3
SMAD protein complex 1 SMAD3
Basal cell membrane 1 SLC22A6
apical junction complex 1 CDH1
Cell junction, desmosome 1 CDH1
desmosome 1 CDH1
Cytoplasmic vesicle, phagosome 1 MTOR
catenin complex 1 CDH1
cyclin-dependent protein kinase holoenzyme complex 1 CDKN1A
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
interleukin-6 receptor complex 1 IL6
PCNA-p21 complex 1 CDKN1A
[N-VEGF]: Cytoplasm 1 VEGFA
[VEGFA]: Secreted 1 VEGFA
[Isoform L-VEGF189]: Endoplasmic reticulum 1 VEGFA
[Isoform VEGF121]: Secreted 1 VEGFA
[Isoform VEGF165]: Secreted 1 VEGFA
VEGF-A complex 1 VEGFA
ciliary transition fiber 1 ALB
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Xueli Liu, Yuan Luo, Yu Fan, Xiujun Cao, Jun Lu, Guoxin Song, Chunhui Deng. Magnetic quaternary ammonium polymer bearing porous agarose for selective extraction of Aristolochic acids in the plasma. Journal of chromatography. A. 2024 Jul; 1726(?):464965. doi: 10.1016/j.chroma.2024.464965. [PMID: 38733925]
  • Dong-Zhu Tu, Pei-Qi Liu, Guang-Hao Zhu, Hai-Rong Zeng, Yan-Yan Deng, Jian Huang, Xiao-Ting Niu, Yan-Fang Liu, Jing Hu, Xin-Miao Liang, Moshe Finel, Ping Wang, Guang-Bo Ge. Human UDP-glucuronosyltransferase 1As catalyze aristolochic acid D O-glucuronidation to form a lesser nephrotoxic glucuronide. Journal of ethnopharmacology. 2024 Jun; 328(?):118116. doi: 10.1016/j.jep.2024.118116. [PMID: 38548118]
  • Chuanting Xu, Qi Wang, Changlin Du, Lu Chen, Zhongnan Zhou, Zhenming Zhang, Na Cai, Jun Li, Cheng Huang, Taotao Ma. Histone deacetylase-mediated silencing of PSTPIP2 expression contributes to aristolochic acid nephropathy-induced PANoptosis. British journal of pharmacology. 2024 May; 181(9):1452-1473. doi: 10.1111/bph.16299. [PMID: 38073114]
  • Yun-Shu Hu, Jian-Qing Zhang, Wen-Long Wei, Huan-Ya Yang, Fei Sha, Xuan-Jing Shen, Shuai Yao, Jia-Yuan Li, Hua Qu, Ping Li, Xiang-Mei Chen, Dean Guo. Comprehensive HRMS Screening and Risk Assessments of Aristolochic Acid Analogues in Asari Radix et Rhizoma and Related Commercial Health Products. Journal of agricultural and food chemistry. 2024 Apr; 72(13):7438-7456. doi: 10.1021/acs.jafc.4c00751. [PMID: 38513720]
  • Changlin Du, Chuanting Xu, Pengcheng Jia, Na Cai, Zhenming Zhang, Wenna Meng, Lu Chen, Zhongnan Zhou, Qi Wang, Rui Feng, Jun Li, Xiaoming Meng, Cheng Huang, Taotao Ma. PSTPIP2 ameliorates aristolochic acid nephropathy by suppressing interleukin-19-mediated neutrophil extracellular trap formation. eLife. 2024 Feb; 13(?):. doi: 10.7554/elife.89740. [PMID: 38314821]
  • Tao Su, Zhi-E Fang, Yu-Ming Guo, Chun-Yu Wang, Jia-Bo Wang, Dong Ji, Zhao-Fang Bai, Li Yang, Xiao-He Xiao. No Incidence of Liver Cancer Was Observed in A Retrospective Study of Patients with Aristolochic Acid Nephropathy. Chinese journal of integrative medicine. 2023 Nov; ?(?):. doi: 10.1007/s11655-023-3560-0. [PMID: 37943487]
  • Chin-Chung Lin, Pei-Ying Lin, Zhenyuan Han, Chen-Yu Tsai, David E Beck, Shuchen Hsieh. Rapid identification and detection of aristolochic acids in the herbal extracts by Raman spectroscopy. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2023 Nov; 300(?):122918. doi: 10.1016/j.saa.2023.122918. [PMID: 37269653]
  • Meilin Chen, Chongjun Zhao, Zhiqi Li, Qiqi Fan, Shan Lu, Xiaoyu Tao, Yifan Lin, Ruichao Lin, Jiarui Wu. Investigation of the applicability of the zebrafish model for the evaluation of aristolochic acid-related nephrotoxicity. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2023 Sep; 121(?):155092. doi: 10.1016/j.phymed.2023.155092. [PMID: 37804820]
  • Jinxia Wei, Xin Shao, Jinbiao Guo, Yanxue Zheng, Yuanyuan Wang, Zhenjie Zhang, Yao Chen, Yubo Li. Rapid and selective removal of aristolochic acid i in natural products by vinylene-linked iCOF resins. Journal of hazardous materials. 2023 Jul; 461(?):132140. doi: 10.1016/j.jhazmat.2023.132140. [PMID: 37734311]
  • Jiwei Li, Meiqi Chen, Sisi Ke, Jiangwei Tian, Haixiang Yu, Xiufeng Liu, Bo-Yang Yu. Generation of a high-affinity DNA aptamer for on-site screening of toxic aristolochic acid I in herbal medicines and botanical products. Analytica chimica acta. 2023 Jul; 1264(?):341302. doi: 10.1016/j.aca.2023.341302. [PMID: 37230722]
  • Su-Yin Chiang, Ming-Tsai Wey, Yu-Syuan Luo, Wei-Chung Shih, Dalaijamts Chimeddulam, Po-Chi Hsu, Hui-Fen Huang, Tung-Hu Tsai, Kuen-Yuh Wu. Simultaneous toxicokinetic studies of aristolochic acid I and II and aristolactam I and II using a newly-developed microdialysis liquid chromatography-tandem mass spectrometry. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2023 May; ?(?):113856. doi: 10.1016/j.fct.2023.113856. [PMID: 37257633]
  • Jingzhuo Tian, Chenyue Liu, Lianmei Wang, Zhong Xian, Yong Zhao, Shasha Qin, Yan Yi, Chunying Li, Jiayin Han, Chen Pan, Yushi Zhang, Suyan Liu, Jing Meng, Xuan Tang, Fang Wang, Meiting Liu, Aihua Liang. Study on the difference and correlation between the contents and toxicity of aristolochic acid analogues in Aristolochia plants. Journal of ethnopharmacology. 2023 May; ?(?):116568. doi: 10.1016/j.jep.2023.116568. [PMID: 37217154]
  • Miyu Komatsu, Takeshi Funakoshi, Toshihiko Aki, Kana Unuma, Koichi Uemura. Aristolochic acid induces an inflammatory response with prostaglandin E2 production and apoptosis in NRK-52E proximal tubular cells. Toxicology letters. 2023 Feb; ?(?):. doi: 10.1016/j.toxlet.2023.02.009. [PMID: 36863539]
  • Shuang Wang, Zhihui Liu, Yao Wang, Bendong Shi, Yinzhu Jin, Yu Wang, Xiaowen Jiang, Mingxin Song, Wenhui Yu. Grape seed extract proanthocyanidin antagonizes aristolochic acid I-induced liver injury in rats by activating PI3K-AKT pathway. Toxicology mechanisms and methods. 2023 Feb; 33(2):131-140. doi: 10.1080/15376516.2022.2103479. [PMID: 35850572]
  • Meiting Liu, Lianmei Wang, Shasha Qin, Yong Zhao, Suyan Liu, Yan Yi, Chunying Li, Jingzhuo Tian, Chenyue Liu, Jing Meng, Yuan Wang, Yushi Zhang, Fang Wang, Chen Pan, Jiayin Han, Xuan Tang, Liping Wang, Aihua Liang. Long-term oral administration of Asarum heterotropoides f. mandshuricum (Maxim.) Kitag. decoction and its aristolochic acid analogs do not cause renal toxicity in mice. Journal of ethnopharmacology. 2023 Jan; 307(?):116202. doi: 10.1016/j.jep.2023.116202. [PMID: 36708883]
  • Xiao Meng, Mengping Zhang, Lingfei Liu, Jie Du, Nianlu Li, Wei Zou, Cuijuan Wang, Wenwen Chen, Haiyan Wei, Ranran Liu, Qiang Jia, Hua Shao, Yongchao Lai. Rapid and robust analysis of aristolochic acid I in Chinese medicinal herbal preparations by surface-enhanced Raman spectroscopy. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2023 Jan; 285(?):121880. doi: 10.1016/j.saa.2022.121880. [PMID: 36130467]
  • Jinghe Zhang, Yinan Wang, Changhong Wang, Kan Li, Weifang Tang, Jing Sun, Xikui Wang. Uptake, Translocation, and Fate of Carcinogenic Aristolochic Acid in Typical Vegetables in Soil-Plant Systems. Molecules (Basel, Switzerland). 2022 Nov; 27(23):. doi: 10.3390/molecules27238271. [PMID: 36500364]
  • Samrat Das, Shefali Thakur, Michael Korenjak, Viktoriya S Sidorenko, Felicia Fei-Lei Chung, Jiri Zavadil. Aristolochic acid-associated cancers: a public health risk in need of global action. Nature reviews. Cancer. 2022 10; 22(10):576-591. doi: 10.1038/s41568-022-00494-x. [PMID: 35854147]
  • Wenjuan Jiang, Chuanting Xu, Songbing Xu, Wan Su, Changlin Du, Jiahui Dong, Rui Feng, Cheng Huang, Jun Li, Taotao Ma. Macrophage-derived, LRG1-enriched extracellular vesicles exacerbate aristolochic acid nephropathy in a TGFβR1-dependent manner. Cell biology and toxicology. 2022 08; 38(4):629-648. doi: 10.1007/s10565-021-09666-1. [PMID: 34677723]
  • Kathleen G Dickman, Chung-Hsin Chen, Arthur P Grollman, Yeong-Shiau Pu. Aristolochic acid-containing Chinese herbal medicine and upper urinary tract urothelial carcinoma in Taiwan: a narrative review. World journal of urology. 2022 Jul; ?(?):. doi: 10.1007/s00345-022-04100-5. [PMID: 35867141]
  • Yan Yang, Fei-Lin Ge, Xiao-Yan Zhan, Wen-Qing Mu, Zhi-Yong Li, Li Lin, Zi-Ying Wei, Zhao-Fang Bai, Qin Sun, Xiao-He Xiao. Schisandra chinensis Oil Attenuates Aristolochic Acid I-Induced Nephrotoxicity in vivo and in vitro. Chinese journal of integrative medicine. 2022 Jul; 28(7):603-611. doi: 10.1007/s11655-022-3574-z. [PMID: 35391592]
  • Jing-Zhuo Tian, Su-Yan Liu, Yue Gao, Bo-Li Zhang, Ai-Hua Liang. [Risk assessment, safe medication and scientific supervision of traditional Chinese medicine containing aristolochic acids--toxicity is different among aristolochic acids, and detection and control of aristolochic acid Ⅰ/Ⅱ is critical]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2022 Jul; 47(14):3693-3700. doi: 10.19540/j.cnki.cjcmm.20220520.401. [PMID: 35850825]
  • Alexandra T Lukinich-Gruia, Joëlle Nortier, Nikola M Pavlović, Dragan Milovanović, Miloš Popović, Lavinia Paula Drăghia, Virgil Păunescu, Călin A Tatu. Aristolochic acid I as an emerging biogenic contaminant involved in chronic kidney diseases: A comprehensive review on exposure pathways, environmental health issues and future challenges. Chemosphere. 2022 Jun; 297(?):134111. doi: 10.1016/j.chemosphere.2022.134111. [PMID: 35231474]
  • Mislav Mokos, Nikolina Bašić-Jukić. IgA nephropathy following SARS-CoV-2 vaccination in a renal transplant recipient with a history of aristolochic acid nephropathy. Therapeutic apheresis and dialysis : official peer-reviewed journal of the International Society for Apheresis, the Japanese Society for Apheresis, the Japanese Society for Dialysis Therapy. 2022 06; 26(3):667-668. doi: 10.1111/1744-9987.13765. [PMID: 34816609]
  • Yating Lu, Yue Guo, Xiao Liang, Huimin Huang, Xue Ling, Zhiheng Su, Yonghong Liang. The recognition of aristolochic acid I based on fluorescence quenching of bovine serum albumin-stabilized gold nanoclusters. Analytical methods : advancing methods and applications. 2022 05; 14(20):1963-1972. doi: 10.1039/d2ay00492e. [PMID: 35531633]
  • Jiayin Zhang, Kwan-Kit Jason Chan, Wan Chan. Synergistic Interaction of Polycyclic Aromatic Hydrocarbons, Phthalate Esters, or Phenol on DNA Adduct Formation by Aristolochic Acid I: Insights into the Etiology of Balkan Endemic Nephropathy. Chemical research in toxicology. 2022 05; 35(5):849-857. doi: 10.1021/acs.chemrestox.2c00026. [PMID: 35471859]
  • Wenjing Guo, Zhangsheng Shi, Ting Zeng, Yu He, Zongwei Cai, Jialing Zhang. Metabolic study of aristolochic acid I-exposed mice liver by atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry imaging and machine learning. Talanta. 2022 May; 241(?):123261. doi: 10.1016/j.talanta.2022.123261. [PMID: 35101835]
  • Xianrui Chen, Ting Huang, Zhibing Huang, Quanbin Han. Development of an immunochromatographic test strip for the rapid detection of aristolochic acid A in herbal medicinal materials. Phytochemical analysis : PCA. 2022 Apr; 33(3):441-451. doi: 10.1002/pca.3100. [PMID: 34802168]
  • Kensuke Sasaki, Andrew S Terker, Jiaqi Tang, Shirong Cao, Juan Pablo Arroyo, Aolei Niu, Suwan Wang, Xiaofeng Fan, Yahua Zhang, Stephanie R Bennett, Ming-Zhi Zhang, Raymond C Harris. Macrophage interferon regulatory factor 4 deletion ameliorates aristolochic acid nephropathy via reduced migration and increased apoptosis. JCI insight. 2022 02; 7(4):. doi: 10.1172/jci.insight.150723. [PMID: 35025763]
  • Sandra Karanović, Maude Ardin, Zuojian Tang, Karla Tomić, Stephanie Villar, Claire Renard, Elisa Venturini, Adam H Lorch, Daniel S Lee, Želimir Stipančić, Neda Slade, Ivana Vuković Brinar, Damir Dittrich, Krešimir Karlović, Fran Borovečki, Kathleen G Dickman, Magali Olivier, Arthur P Grollman, Bojan Jelaković, Jiri Zavadil. Molecular profiles and urinary biomarkers of upper tract urothelial carcinomas associated with aristolochic acid exposure. International journal of cancer. 2022 01; 150(2):374-386. doi: 10.1002/ijc.33827. [PMID: 34569060]
  • Qian Zhang, Piao Luo, Jiayun Chen, Chuanbin Yang, Fei Xia, Junzhe Zhang, Huan Tang, Dandan Liu, Liwei Gu, Qiaoli Shi, Xueling He, Tong Yang, Jigang Wang. Dissection of Targeting Molecular Mechanisms of Aristolochic Acid-induced Nephrotoxicity via a Combined Deconvolution Strategy of Chemoproteomics and Metabolomics. International journal of biological sciences. 2022; 18(5):2003-2017. doi: 10.7150/ijbs.69618. [PMID: 35342337]
  • Xiaoyan Wang, Ping Jia, Ting Ren, Zhouping Zou, Sujuan Xu, Yunlu Zhang, Yiqin Shi, Siyu Bao, Yingxiang Li, Yi Fang, Xiaoqiang Ding. MicroRNA-382 Promotes M2-Like Macrophage via the SIRP-α/STAT3 Signaling Pathway in Aristolochic Acid-Induced Renal Fibrosis. Frontiers in immunology. 2022; 13(?):864984. doi: 10.3389/fimmu.2022.864984. [PMID: 35585990]
  • Shinya Taguchi, Kengo Azushima, Takahiro Yamaji, Shingo Urate, Toru Suzuki, Eriko Abe, Shohei Tanaka, Shunichiro Tsukamoto, Daisuke Kamimura, Sho Kinguchi, Akio Yamashita, Hiromichi Wakui, Kouichi Tamura. Effects of tumor necrosis factor-α inhibition on kidney fibrosis and inflammation in a mouse model of aristolochic acid nephropathy. Scientific reports. 2021 12; 11(1):23587. doi: 10.1038/s41598-021-02864-1. [PMID: 34880315]
  • Wenjing Guo, Zhangsheng Shi, Jing Zhang, Ting Zeng, Yu He, Zongwei Cai. Analysis of aristolochic acid I in mouse serum and tissues by using magnetic solid-phase extraction and UHPLC-MS/MS. Talanta. 2021 Dec; 235(?):122774. doi: 10.1016/j.talanta.2021.122774. [PMID: 34517632]
  • Yong-Zhen Liu, Heng-Lei Lu, Xin-Ming Qi, Guo-Zhen Xing, Xin Wang, Pan Yu, Lu Liu, Fang-Fang Yang, Xiao-Lan Ding, Ze-An Zhang, Zhong-Ping Deng, Li-Kun Gong, Jin Ren. Aristolochic acid I promoted clonal expansion but did not induce hepatocellular carcinoma in adult rats. Acta pharmacologica Sinica. 2021 Dec; 42(12):2094-2105. doi: 10.1038/s41401-021-00622-7. [PMID: 33686245]
  • Shingo Urate, Hiromichi Wakui, Kengo Azushima, Takahiro Yamaji, Toru Suzuki, Eriko Abe, Shohei Tanaka, Shinya Taguchi, Shunichiro Tsukamoto, Sho Kinguchi, Kazushi Uneda, Tomohiko Kanaoka, Yoshitoshi Atobe, Kengo Funakoshi, Akio Yamashita, Kouichi Tamura. Aristolochic Acid Induces Renal Fibrosis and Senescence in Mice. International journal of molecular sciences. 2021 Nov; 22(22):. doi: 10.3390/ijms222212432. [PMID: 34830314]
  • Yi Wang, Zhigang Wang, Zhengping Wu, Menglin Chen, Dong Dong, Pei Yu, Danyi Lu, Baojian Wu. Involvement of REV-ERBα dysregulation and ferroptosis in aristolochic acid I-induced renal injury. Biochemical pharmacology. 2021 11; 193(?):114807. doi: 10.1016/j.bcp.2021.114807. [PMID: 34673015]
  • Yueh-An Lu, Chia-Te Liao, Rachel Raybould, Bnar Talabani, Irina Grigorieva, Barbara Szomolay, Timothy Bowen, Robert Andrews, Philip R Taylor, Donald Fraser. Single-Nucleus RNA Sequencing Identifies New Classes of Proximal Tubular Epithelial Cells in Kidney Fibrosis. Journal of the American Society of Nephrology : JASN. 2021 10; 32(10):2501-2516. doi: 10.1681/asn.2020081143. [PMID: 34155061]
  • Zhong Xian, Jingzhuo Tian, Yushi Zhang, Jing Meng, Yong Zhao, Chunying Li, Yan Yi, Jiayin Han, Suyan Liu, Lianmei Wang, Chen Pan, Dunfang Wang, Fang Wang, Aihua Liang. Study on the potential nephrotoxicity and mutagenicity of aristolochic acid IVa and its mechanism. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2021 Oct; 142(?):112081. doi: 10.1016/j.biopha.2021.112081. [PMID: 34463271]
  • Khai Gene Leong, Elyce Ozols, John Kanellis, Frank Y Ma, David J Nikolic-Paterson. Cyclophilin D Promotes Acute, but Not Chronic, Kidney Injury in a Mouse Model of Aristolochic Acid Toxicity. Toxins. 2021 10; 13(10):. doi: 10.3390/toxins13100700. [PMID: 34678993]
  • Yao Wang, Xianglin Ma, Chong Zhou, Yongzhen Jia, Si Liu, Zongliang Xiong, Xu Guo, Xue Fei, Xiaowen Jiang, Wenhui Yu. Aristolochic acid induces mitochondrial apoptosis through oxidative stress in rats, leading to liver damage. Toxicology mechanisms and methods. 2021 Oct; 31(8):609-618. doi: 10.1080/15376516.2021.1946229. [PMID: 34167444]
  • Lavinia Paula Drăghia, Alexandra Teodora Lukinich-Gruia, Camelia Oprean, Nikola M Pavlović, Virgil Păunescu, Călin Adrian Tatu. Aristolochic acid I: an investigation into the role of food crops contamination, as a potential natural exposure pathway. Environmental geochemistry and health. 2021 Oct; 43(10):4163-4178. doi: 10.1007/s10653-021-00903-4. [PMID: 33796971]
  • František Bárta, Alena Dedíková, Michaela Bebová, Šárka Dušková, Jaroslav Mráz, Heinz H Schmeiser, Volker M Arlt, Petr Hodek, Marie Stiborová. Co-Exposure to Aristolochic Acids I and II Increases DNA Adduct Formation Responsible for Aristolochic Acid I-Mediated Carcinogenicity in Rats. International journal of molecular sciences. 2021 Sep; 22(19):. doi: 10.3390/ijms221910479. [PMID: 34638820]
  • Jingjing Wan, Ruixue Chen, Zhou Yang, Jing Xi, Yiyi Cao, Yu Chen, Xinyu Zhang, Yang Luan. Aristolochic acid IVa forms DNA adducts in vitro but is non-genotoxic in vivo. Archives of toxicology. 2021 08; 95(8):2839-2850. doi: 10.1007/s00204-021-03077-1. [PMID: 34223934]
  • Penglong Wang, Wenbo Guo, Guangrui Huang, Jianhua Zhen, Yini Li, Tong Li, Lu Zhao, Kai Yuan, Xuehao Tian, Xuemei Huang, Yanyan Feng, Haimin Lei, Anlong Xu. Berberine-Based Heterogeneous Linear Supramolecules Neutralized the Acute Nephrotoxicity of Aristolochic Acid by the Self-Assembly Strategy. ACS applied materials & interfaces. 2021 Jul; 13(28):32729-32742. doi: 10.1021/acsami.1c06968. [PMID: 34247476]
  • Hongjian Ji, Jingyin Hu, Guozhe Zhang, Jianxiang Song, Xiaohua Zhou, Dean Guo. Aristolochic acid nephropathy: A scientometric analysis of literature published from 1971 to 2019. Medicine. 2021 Jul; 100(27):e26510. doi: 10.1097/md.0000000000026510. [PMID: 34232183]
  • Wanlin Guo, Jiayin Zhang, Zhihan Sun, William H Orem, Calin A Tatu, Niko S Radulović, Dragan Milovanović, Nikola M Pavlović, Wan Chan. Analysis of Polycyclic Aromatic Hydrocarbons and Phthalate Esters in Soil and Food Grains from the Balkan Peninsula: Implication on DNA Adduct Formation by Aristolochic Acid I and Balkan Endemic Nephropathy. Environmental science & technology. 2021 07; 55(13):9024-9032. doi: 10.1021/acs.est.1c00648. [PMID: 34125507]
  • Lingzhi Li, Sibei Tao, Fan Guo, Jing Liu, Rongshuang Huang, Zhouke Tan, Xiaoxi Zeng, Liang Ma, Ping Fu. Genetic and pharmacological inhibition of fatty acid-binding protein 4 alleviated inflammation and early fibrosis after toxin induced kidney injury. International immunopharmacology. 2021 Jul; 96(?):107760. doi: 10.1016/j.intimp.2021.107760. [PMID: 33991998]
  • Fan Lin, Yunqi Liu, Lili Tang, Xiaohui Xu, Xueli Zhang, Yifan Song, Bicheng Chen, Yeping Ren, Xiangdong Yang. Rapamycin protects against aristolochic acid nephropathy in mice by potentiating mammalian target of rapamycin‑mediated autophagy. Molecular medicine reports. 2021 07; 24(1):. doi: 10.3892/mmr.2021.12134. [PMID: 33955513]
  • Hua Shu, Guoning Chen, Lu Wang, Xia Cui, Zhimin Luo, Wanghui Jing, Chun Chang, Aiguo Zeng, Jia Zhang, Qiang Fu. Metal-organic framework grafted with melamine for the selective recognition and miniaturized solid phase extraction of aristolochic acid Ⅰ from traditional Chinese medicine. Journal of chromatography. A. 2021 Jun; 1647(?):462155. doi: 10.1016/j.chroma.2021.462155. [PMID: 33957350]
  • Benedikt Bauer, Daniel Liedtke, Sebastian Jarzina, Emilia Stammler, Katrin Kreisel, Viola Lalomia, Markus Diefenbacher, Eva Klopocki, Angela Mally. Exploration of zebrafish larvae as an alternative whole-animal model for nephrotoxicity testing. Toxicology letters. 2021 Jun; 344(?):69-81. doi: 10.1016/j.toxlet.2021.03.005. [PMID: 33722575]
  • Chen Chen, Xinwei Shi, Tao Zhou, Weimin Li, Sifeng Li, Guoqing Bai. Full-length transcriptome analysis and identification of genes involved in asarinin and aristolochic acid biosynthesis in medicinal plant Asarum sieboldii. Genome. 2021 Jun; 64(6):639-653. doi: 10.1139/gen-2020-0095. [PMID: 33320770]
  • Medjda Bellamri, Kyle Brandt, Christina V Brown, Ming-Tsang Wu, Robert J Turesky. Cytotoxicity and genotoxicity of the carcinogen aristolochic acid I (AA-I) in human bladder RT4 cells. Archives of toxicology. 2021 06; 95(6):2189-2199. doi: 10.1007/s00204-021-03059-3. [PMID: 33938965]
  • Chia-En Lin, Po-Yeh Lin, Wen-Chi Yang, Yu-Shen Huang, Tzu-Yao Lin, Chien-Ming Chen, Hung-Shing Chen, Jen-Ai Lee, Shih-Ming Chen. Evaluation of the nephrotoxicity and safety of low-dose aristolochic acid, extending to the use of Xixin (Asurum), by determination of methylglyoxal and d-lactate. Journal of ethnopharmacology. 2021 May; 272(?):113945. doi: 10.1016/j.jep.2021.113945. [PMID: 33617966]
  • Yuanjun Yang, Xiaodong Geng, Kun Chi, Chao Liu, Ran Liu, Xiangmei Chen, Quan Hong, Guangyan Cai. Ultrasound enhances the therapeutic potential of mesenchymal stem cells wrapped in greater omentum for aristolochic acid nephropathy. Stem cell research & therapy. 2021 05; 12(1):261. doi: 10.1186/s13287-021-02243-7. [PMID: 33941258]
  • Lu Cao, Hongguang Liu, Wenjun Xie, Shumeng Jiao, Xueqiang Wu, Kaisong Yuan, Xia Zhou, Muzi Yang, Yanyan Guan, Huaihong Cai, Zhihui Lai, Jian Chen, Haibo Zhou. Real-time monitoring of aristolochic acid I reduction process using surface-enhanced Raman Spectroscopy with DFT simulation. Biosensors & bioelectronics. 2021 May; 179(?):113061. doi: 10.1016/j.bios.2021.113061. [PMID: 33609952]
  • Ruixue Chen, Xinyue You, Yiyi Cao, Kenichi Masumura, Tomoko Ando, Shuichi Hamada, Katsuyoshi Horibata, Jingjing Wan, Jing Xi, Xinyu Zhang, Masamitsu Honma, Yang Luan. Benchmark dose analysis of multiple genotoxicity endpoints in gpt delta mice exposed to aristolochic acid I. Mutagenesis. 2021 04; 36(1):87-94. doi: 10.1093/mutage/geaa034. [PMID: 33367723]
  • Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome. Cell reports. 2021 04; 35(4):109040. doi: 10.1016/j.celrep.2021.109040. [PMID: 33910017]
  • Liping Ma, Zhuowei Shen, Haihong Hu, Hui Zhou, Lushan Yu, Huidi Jiang, Su Zeng. Effects of rhein and Rheum palmatum L. extract on the pharmacokinetics and tissue distribution of aristolochic acid I and its demethylated metabolite in rats. Journal of ethnopharmacology. 2021 Mar; 267(?):113537. doi: 10.1016/j.jep.2020.113537. [PMID: 33137430]
  • Abhijit Dey, Alok Kumar Hazra, Anuradha Mukherjee, Samapika Nandy, Devendra Kumar Pandey. Chemotaxonomy of the ethnic antidote Aristolochia indica for aristolochic acid content: Implications of anti-phospholipase activity and genotoxicity study. Journal of ethnopharmacology. 2021 Feb; 266(?):113416. doi: 10.1016/j.jep.2020.113416. [PMID: 32980485]
  • Takeo Ishii, Tomohiro Kumagae, Hiromichi Wakui, Shingo Urate, Shohei Tanaka, Eriko Abe, Toru Suzuki, Takahiro Yamaji, Sho Kinguchi, Ryu Kobayashi, Kotaro Haruhara, Takashi Nakamura, Shuzo Kobayashi, Kouichi Tamura. Tissue xanthine oxidoreductase activity in a mouse model of aristolochic acid nephropathy. FEBS open bio. 2021 02; 11(2):507-518. doi: 10.1002/2211-5463.13083. [PMID: 33448693]
  • Yu Li, Houxi Xu, Danhong Cai, Sirui Zhu, Xiaoli Liu, Ye Zhao, Zhaofeng Zhang, Yaoyao Bian, Mei Xue, Liang Zhang. Integration of transcriptomic, proteomic and metabolomic data to reveal the biological mechanisms of AAI injury in renal epithelial cells. Toxicology in vitro : an international journal published in association with BIBRA. 2021 Feb; 70(?):105054. doi: 10.1016/j.tiv.2020.105054. [PMID: 33212167]
  • Chi-Kong Chan, Kwan-Kit Jason Chan, Ning Liu, Wan Chan. Quantitation of Protein Adducts of Aristolochic Acid I by Liquid Chromatography-Tandem Mass Spectrometry: A Novel Method for Biomonitoring Aristolochic Acid Exposure. Chemical research in toxicology. 2021 01; 34(1):144-153. doi: 10.1021/acs.chemrestox.0c00454. [PMID: 33410325]
  • Yinxue Guo, Maorong Hu, Juan Ma, Arunachalam Chinnathambi, Sulaiman Ali Alharbi, Omar H M Shair, Pingyu Ge. Protective effect of panaxydol against repeated administration of aristolochic acid on renal function and lipid peroxidation products via activating Keap1-Nrf2/ARE pathway in rat kidney. Journal of biochemical and molecular toxicology. 2021 Jan; 35(1):e22619. doi: 10.1002/jbt.22619. [PMID: 32894623]
  • Wenguang Feng, Wei-Zhong Ying, Xingsheng Li, Lisa M Curtis, Paul W Sanders. Renoprotective effect of Stat1 deletion in murine aristolochic acid nephropathy. American journal of physiology. Renal physiology. 2021 01; 320(1):F87-F96. doi: 10.1152/ajprenal.00401.2020. [PMID: 33283645]
  • Hong-Jian Ji, Jia-Yuan Li, Shi-Fei Wu, Wen-Yong Wu, Chang-Liang Yao, Shuai Yao, Jian-Qing Zhang, De-An Guo. Two New Aristolochic Acid Analogues from the Roots of Aristolochia contorta with Significant Cytotoxic Activity. Molecules (Basel, Switzerland). 2020 Dec; 26(1):. doi: 10.3390/molecules26010044. [PMID: 33374869]
  • Rozaini Abdullah, Sebastiaan Wesseling, Bert Spenkelink, Jochem Louisse, Ans Punt, Ivonne M C M Rietjens. Defining in vivo dose-response curves for kidney DNA adduct formation of aristolochic acid I in rat, mouse and human by an in vitro and physiologically based kinetic modeling approach. Journal of applied toxicology : JAT. 2020 12; 40(12):1647-1660. doi: 10.1002/jat.4024. [PMID: 33034907]
  • Lianmei Wang, Chunying Li, Jingzhuo Tian, Jing Liu, Yong Zhao, Yan Yi, Yushi Zhang, Jiayin Han, Chen Pan, Suyan Liu, Nuo Deng, Zhong Xian, Guiqin Li, Xin Zhang, Aihua Liang. Genome-wide transcriptional analysis of Aristolochia manshuriensis induced gastric carcinoma. Pharmaceutical biology. 2020 Dec; 58(1):98-106. doi: 10.1080/13880209.2019.1710219. [PMID: 31957525]
  • Alena Dedı Ková, František Bárta, Václav Martínek, Kevin Kotalík, Šárka Dušková, Jaroslav Mráz, Volker Manfred Arlt, Marie Stiborová, Petr Hodek. In Vivo Metabolism of Aristolochic Acid I and II in Rats Is Influenced by Their Coexposure. Chemical research in toxicology. 2020 11; 33(11):2804-2818. doi: 10.1021/acs.chemrestox.0c00198. [PMID: 32894017]
  • Jianping Ye, Xin Cai, Qing Zhou, Zhihong Yan, Kang Li. Molecularly imprinted ratiometric fluorescent probe for visual and fluorescent determination of aristolochic acid I based on a Schiff-base fluorescent compound. Mikrochimica acta. 2020 10; 187(11):623. doi: 10.1007/s00604-020-04598-9. [PMID: 33090285]
  • Ziqiang Zhu, Xinxing Xu, Fengying Wang, Yongrui Song, Yanping Zhu, Wei Quan, Xueli Zhang, Cheng Bi, Hongxin He, Shuang Li, Xiaozhong Li. Integrative microRNA and mRNA expression profiling in acute aristolochic acid nephropathy in mice. Molecular medicine reports. 2020 Oct; 22(4):3367-3377. doi: 10.3892/mmr.2020.11444. [PMID: 32945497]
  • Xuan Huang, Juan Wu, Xinhui Liu, Haishan Wu, Jinjin Fan, Xiao Yang. The protective role of Nrf2 against aristolochic acid-induced renal tubular epithelial cell injury. Toxicology mechanisms and methods. 2020 Oct; 30(8):580-589. doi: 10.1080/15376516.2020.1795765. [PMID: 32660364]
  • Chengni Jin, Xin Miao, Yujie Zhong, Jiahui Han, Qi Liu, Jiachang Zhu, Xiaodong Xia, Xiaoli Peng. The renoprotective effect of diosgenin on aristolochic acid I-induced renal injury in rats: impact on apoptosis, mitochondrial dynamics and autophagy. Food & function. 2020 Sep; 11(9):7456-7467. doi: 10.1039/d0fo00401d. [PMID: 32789347]
  • Yihang Yu, Dong Hu, Yu Zhou, Han Xiang, Bo Liu, Lianju Shen, Chunlan Long, Xing Liu, Tao Lin, Dawei He, Yuanyuan Zhang, Tao Xu, Deying Zhang, Guanghui Wei. Human umbilical cord mesenchymal stem cell attenuates renal fibrosis via TGF-β/Smad signaling pathways in vivo and in vitro. European journal of pharmacology. 2020 Sep; 883(?):173343. doi: 10.1016/j.ejphar.2020.173343. [PMID: 32629029]
  • Hao Zhao, Na Jiang, Yachun Han, Ming Yang, Peng Gao, Xiaofen Xiong, Shan Xiong, Lingfeng Zeng, Ying Xiao, Ling Wei, Li Li, Chenrui Li, Jinfei Yang, Chengyuan Tang, Li Xiao, Fuyou Liu, Yu Liu, Lin Sun. Aristolochic acid induces renal fibrosis by arresting proximal tubular cells in G2/M phase mediated by HIF-1α. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2020 09; 34(9):12599-12614. doi: 10.1096/fj.202000949r. [PMID: 32706145]
  • Yuan-Yow Chiou, Si-Tse Jiang, Yu-Sian Ding, Yu-Hsuan Cheng. Kidney-based in vivo model for drug-induced nephrotoxicity testing. Scientific reports. 2020 08; 10(1):13640. doi: 10.1038/s41598-020-70502-3. [PMID: 32796873]
  • Xiaoyan Wang, Ning Xue, Shuan Zhao, Yiqin Shi, Xiaoqiang Ding, Yi Fang. Upregulation of miR-382 contributes to renal fibrosis secondary to aristolochic acid-induced kidney injury via PTEN signaling pathway. Cell death & disease. 2020 08; 11(8):620. doi: 10.1038/s41419-020-02876-1. [PMID: 32796834]
  • Jiayin Zhang, Chi-Kong Chan, Yat-Hing Ham, Wan Chan. Identifying Cysteine, N-Acetylcysteine, and Glutathione Conjugates as Novel Metabolites of Aristolochic Acid I: Emergence of a New Detoxification Pathway. Chemical research in toxicology. 2020 06; 33(6):1374-1381. doi: 10.1021/acs.chemrestox.9b00488. [PMID: 32048847]
  • Hongli Shan, Wen Tian, Yazhao Hong, Bo Xu, Chunxi Wang, Bing Yu, Xiaoqing Wang. Clinicopathologic characteristics and prognosis of upper tract urothelial carcinoma complicated with aristolochic acid nephropathy after radical nephroureterectomy. BMC complementary medicine and therapies. 2020 Jun; 20(1):166. doi: 10.1186/s12906-020-2861-5. [PMID: 32493345]
  • Jia-Feng Chang, Chih-Yu Hsieh, Kuo-Cheng Lu, Yue-Wen Chen, Shih-Shin Liang, Chih-Cheng Lin, Chi-Feng Hung, Jian-Chiun Liou, Mai-Szu Wu. Therapeutic Targeting of Aristolochic Acid Induced Uremic Toxin Retention, SMAD 2/3 and JNK/ERK Pathways in Tubulointerstitial Fibrosis: Nephroprotective Role of Propolis in Chronic Kidney Disease. Toxins. 2020 06; 12(6):. doi: 10.3390/toxins12060364. [PMID: 32498221]
  • Caiyu Li, Xue Wang, Yajuan Bi, Heshui Yu, Jing Wei, Yi Zhang, Lifeng Han, Youcai Zhang. Potent Inhibitors of Organic Anion Transporters 1 and 3 From Natural Compounds and Their Protective Effect on Aristolochic Acid Nephropathy. Toxicological sciences : an official journal of the Society of Toxicology. 2020 06; 175(2):279-291. doi: 10.1093/toxsci/kfaa033. [PMID: 32159797]
  • Tristan Tomlinson, Andrea Fernandes, Arthur P Grollman. Aristolochia Herbs and Iatrogenic Disease: The Case of Portland's Powders. The Yale journal of biology and medicine. 2020 06; 93(2):355-363. doi: NULL. [PMID: 32607094]
  • X Liu, J Wu, J Wang, X Feng, H Wu, R Huang, J Fan, X Yu, X Yang. Mitochondrial dysfunction is involved in aristolochic acid I-induced apoptosis in renal proximal tubular epithelial cells. Human & experimental toxicology. 2020 May; 39(5):673-682. doi: 10.1177/0960327119897099. [PMID: 31884831]
  • Xixin Wang, Arianna Giusti, Annelii Ny, Peter A de Witte. Nephrotoxic Effects in Zebrafish after Prolonged Exposure to Aristolochic Acid. Toxins. 2020 03; 12(4):. doi: 10.3390/toxins12040217. [PMID: 32235450]
  • Yi Quan, Long Jin, Kang Luo, Jian Jin, Sun Woo Lim, Yoo Jin Shin, Eun Jeong Ko, Byung Ha Chung, Chul Woo Yang. Assessment of nephrotoxicity of herbal medicine containing aristolochic acid in mice. The Korean journal of internal medicine. 2020 03; 35(2):400-407. doi: 10.3904/kjim.2018.280. [PMID: 31739654]
  • Jia-Bo Wang, Zhao-Fang Bai, Xiao-He Xiao. Letter to the Editor: Is Aristolochic Acid the Major Cause of Liver Cancer in China and Asia?. Hepatology (Baltimore, Md.). 2020 03; 71(3):1130. doi: 10.1002/hep.30993. [PMID: 31609008]
  • Lele Liu, Yuanjun Deng, Yang Cai, Pingfan Lu, Yiyan Guo, Chunjiang Zhang, Qian Li, Tianjing Zhang, Min Han, Gang Xu. Ablation of Gsa impairs renal tubule proliferation after injury via CDK2/cyclin E. American journal of physiology. Renal physiology. 2020 03; 318(3):F793-F803. doi: 10.1152/ajprenal.00367.2019. [PMID: 32036696]
  • Wenjuan Duan, Yue Li, Hongjing Dong, Guohong Yang, Wei Wang, Xiao Wang. Isolation and purification of six aristolochic acids with similar structures from Aristolochia manshuriensis Kom stems by pH-zone-refining counter-current chromatography. Journal of chromatography. A. 2020 Feb; 1613(?):460657. doi: 10.1016/j.chroma.2019.460657. [PMID: 31685246]
  • Etienne Empweb Anger, Feng Yu, Ji Li. Aristolochic Acid-Induced Nephrotoxicity: Molecular Mechanisms and Potential Protective Approaches. International journal of molecular sciences. 2020 Feb; 21(3):. doi: 10.3390/ijms21031157. [PMID: 32050524]
  • Xiang-Ming Wang, Yang Lu, Yi-Meng Song, Jun Dong, Ruo-Yan Li, Guo-Liang Wang, Xu Wang, Shu-Dong Zhang, Zhou-Huan Dong, Min Lu, Shi-Yu Wang, Li-Yuan Ge, Guang-Da Luo, Run-Zhuo Ma, Steve George Rozen, Fan Bai, Di Wu, Lu-Lin Ma. Integrative genomic study of Chinese clear cell renal cell carcinoma reveals features associated with thrombus. Nature communications. 2020 02; 11(1):739. doi: 10.1038/s41467-020-14601-9. [PMID: 32029730]
  • Fenqi Ji, Rongrong Jin, Chen Luo, Chunhui Deng, Yaoming Hu, Li Wang, Rongchang Wang, Jiabin Zhang, Guoxin Song. Fast determination of aristolochic acid I (AAI) in traditional Chinese medicine soup with magnetic solid-phase extraction by high performance liquid chromatography. Journal of chromatography. A. 2020 Jan; 1609(?):460455. doi: 10.1016/j.chroma.2019.460455. [PMID: 31443967]
  • Arnoud Boot, Nanhai Jiang, Steven G Rozen. Toward clinical understanding of aristolochic acid upper-tract urothelial carcinoma. Theranostics. 2020; 10(12):5578-5580. doi: 10.7150/thno.46489. [PMID: 32373232]
  • Jiafa Ren, Nathan P Rudemiller, Yi Wen, Xiaohan Lu, Jamie R Privratsky, Steven D Crowley. The transcription factor Twist1 in the distal nephron but not in macrophages propagates aristolochic acid nephropathy. Kidney international. 2020 01; 97(1):119-129. doi: 10.1016/j.kint.2019.07.016. [PMID: 31685313]
  • Ping-Hsun Lu, Hsun-Yao Lee, Yan-Liang Liou, Sheng-Fen Tung, Ko-Li Kuo, Yau-Hung Chen. Nephroprotective Role of Zhibai Dihuang Wan in Aristolochic Acid-Intoxicated Zebrafish. BioMed research international. 2020; 2020(?):5204348. doi: 10.1155/2020/5204348. [PMID: 33344639]
  • Shih-Ming Chen, Chia-En Lin, Hung-Hsiang Chen, Yu-Fan Cheng, Hui-Wen Cheng, Kazuhiro Imai. Effect of prednisolone on glyoxalase 1 in an inbred mouse model of aristolochic acid nephropathy using a proteomics method with fluorogenic derivatization-liquid chromatography-tandem mass spectrometry. PloS one. 2020; 15(1):e0227838. doi: 10.1371/journal.pone.0227838. [PMID: 31968011]
  • Jing-Rong Jhuang, Chun-Ju Chiang, Shih-Yung Su, Ya-Wen Yang, Wen-Chung Lee. Reduction in the Incidence of Urological Cancers after the Ban on Chinese Herbal Products Containing Aristolochic Acid: An Interrupted Time-Series Analysis. Scientific reports. 2019 12; 9(1):19860. doi: 10.1038/s41598-019-56394-y. [PMID: 31882686]
  • Yu He, Wenjing Guo, Kailong Luo, Qianqian Sun, Zian Lin, Zongwei Cai. Poly-l-lysine-based tissue embedding compatible with matrix-assisted laser desorption ionization-mass spectrometry imaging analysis of dry and fragile aristolochia plants. Journal of chromatography. A. 2019 Dec; 1608(?):460389. doi: 10.1016/j.chroma.2019.460389. [PMID: 31378528]
  • Yibo Yan, Chuixiu Huang, Xiantao Shen. Electromembrane extraction of aristolochic acids: New insights in separation of bioactive ingredients of traditional Chinese medicines. Journal of chromatography. A. 2019 Dec; 1608(?):460424. doi: 10.1016/j.chroma.2019.460424. [PMID: 31416626]
  • Jung-Yeon Kim, Jaechan Leem, Eon Ju Jeon. Protective Effects of Melatonin Against Aristolochic Acid-Induced Nephropathy in Mice. Biomolecules. 2019 12; 10(1):. doi: 10.3390/biom10010011. [PMID: 31861726]