Parthenolide (BioDeep_00000000069)

   

natural product PANOMIX_OTCML-2023


代谢物信息卡片


(1aR,4E,7aS,10aS,10bS)-1a,5-Dimethyl-8-methylene-2,3,6,7,7a,8,10a,10b-octahydrooxireno[9,10]cyclodeca[1,2-b]furan-9(1aH)-one

化学式: C15H20O3 (248.1412)
中文名称: 小白菊内酯, 银胶菊内酯, (1aR,7aS,10aS,10bS)-1a,5-二甲基-8-亚甲基-2,3,6,7,7a,8,10a,10b-八氢氧杂环戊烯[9,10]环癸[1,2-b]呋喃-9(1aH)-酮
谱图信息: 最多检出来源 Viridiplantae(plant) 11.34%

Reviewed

Last reviewed on 2024-08-21.

Cite this Page

Parthenolide. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/parthenolide (retrieved 2024-12-22) (BioDeep RN: BioDeep_00000000069). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C/C/1=C\CC[C@@]2([C@@H](O2)[C@@H]3[C@@H](CC1)C(=C)C(=O)O3)C
InChI: InChI=1S/C15H20O3/c1-9-5-4-8-15(3)13(18-15)12-11(7-6-9)10(2)14(16)17-12/h5,11-13H,2,4,6-8H2,1,3H3/b9-5-

描述信息

D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents
D002491 - Central Nervous System Agents > D000700 - Analgesics
D000893 - Anti-Inflammatory Agents
D018501 - Antirheumatic Agents
(1Ar,7aS,10aS,10bS)-1a,5-dimethyl-8-methylidene-2,3,6,7,7a,8,10a,10b-octahydrooxireno[9,10]cyclodeca[1,2-b]furan-9(1aH)-one is a germacranolide.
Parthenolide has been used in trials studying the diagnostic of Allergic Contact Dermatitis.
(1aR,7aS,10aS,10bS)-1a,5-dimethyl-8-methylidene-2,3,6,7,7a,8,10a,10b-octahydrooxireno[9,10]cyclodeca[1,2-b]furan-9(1aH)-one is a natural product found in Cyathocline purpurea, Tanacetum parthenium, and other organisms with data available.
Parthenolide belongs to germacranolides and derivatives class of compounds. Those are sesquiterpene lactones with a structure based on the germacranolide skeleton, characterized by a gamma lactone fused to a 1,7-dimethylcyclodec-1-ene moiety. Thus, parthenolide is considered to be an isoprenoid lipid molecule. Parthenolide is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Parthenolide is a bitter tasting compound found in sweet bay, which makes parthenolide a potential biomarker for the consumption of this food product. Parthenolide is a sesquiterpene lactone of the germacranolide class which occurs naturally in the plant feverfew (Tanacetum parthenium), after which it is named. It is found in highest concentration in the flowers and fruit .
relative retention time with respect to 9-anthracene Carboxylic Acid is 1.002
relative retention time with respect to 9-anthracene Carboxylic Acid is 1.000
Parthenolide is a sesquiterpene lactone found in the medicinal herb Feverfew. Parthenolide exhibits anti-inflammatory activity by inhibiting NF-κB activation; also inhibits HDAC1 protein without affecting other class I/II HDACs.
Parthenolide is a sesquiterpene lactone found in the medicinal herb Feverfew. Parthenolide exhibits anti-inflammatory activity by inhibiting NF-κB activation; also inhibits HDAC1 protein without affecting other class I/II HDACs.

同义名列表

21 个代谢物同义名

Oxireno[9,10]cyclodeca[1,2-b]furan-9(1aH)-one, 2,3,6,7,7a,8,10a,10b-octahydro-1a,5-dimethyl-8-methylene-, (1aR,4E,7aS,10aS,10bR)-; Parthenolide; 4,5-alpha-Epoxy-6-beta-hydroxygermacra-1(10),11(13)-dien-12-oic acid gamma-lactone; (7Z)-4,8-Dimethyl-12-methylidene-3,14-dioxatricyclo[9.3.0.02,4]tetradec-7-en-13-one; [1aR-(1aR*,4E,7aS*,10aS*,-10bR*)]-2,3-6,7,7a,8,10a,10b-Octahydro-1a,5-dimethyl-8-methyleneoxireno[9,10]cyclodeca[1,2-b]furan-9(1aH)-one; Oxireno[9,10]cyclodeca[1,2-b]furan-9(1aH)-one, 2,3,6,7,7a,8,10a,10b-octahydro-1a,5-dimethyl-8-methylene-, (1aR,4E,7aS,10aS,10bS)-; (1aR,7aS,10aS,10bS)-1a,5-dimethyl-8-methylidene-2,3,6,7,7a,8,10a,10b-octahydrooxireno[9,10]cyclodeca[1,2-b]furan-9(1aH)-one; (1S,2S,4R,7E,11S)-4,8-dimethyl-12-methylidene-3,14-dioxatricyclo[9.3.0.0,2,4]tetradec-7-en-13-one; (1S,2S,4R,7E,11S)-4,8-dimethyl-12-methylidene-3,14-dioxatricyclo[9.3.0.02,4]tetradec-7-en-13-one; Germacra-1(10),11(13)-dien-12-oic acid, 4,5.alpha.-epoxy-6.beta.-hydroxy-, gamma.-lactone; 4,5alpha-Epoxy-6beta-hydroxygermacra-1(10),11(13)-dien-12-oic Acid gamma-Lactone; parthenolide, (1aR-(1aR*,4E,7aS*,10aS*,10bR*))-isomer; Parthenolide ((-)-Parthenolide); KTEXNACQROZXEV-SLXBATTESA-N; (-)-Parthenolide; MEGxp0_000050; ACon1_001961; PTL; NCGC00024683-03_C15H20O3_(1aR,4E,7aS,10aS,10bS)-1a,5-Dimethyl-8-methylene-2,3,6,7,7a,8,10a,10b-octahydrooxireno[9,10]cyclodeca[1,2-b]furan-9(1aH)-one; Parthenolide; (1aR,7aS,10aS,10bS)-1a,5-dimethyl-8-methylidene-2,3,6,7,7a,8,10a,10b-octahydrooxireno[9,10]cyclodeca[1,2-b]furan-9(1aH)-one



数据库引用编号

64 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

83 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(1)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(82)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

145 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 16 AKT1, ANG, BCL2, CASP3, CTNNB1, HDAC1, HSPA5, MAPK8, MTOR, NFKB1, NFKBIA, NLRP3, PTGS2, TP53, TUBB4B, VEGFA
Peripheral membrane protein 2 MTOR, PTGS2
Endoplasmic reticulum membrane 5 BCL2, HSPA5, MTOR, PTGS2, SPP1
Nucleus 16 AKT1, ANG, BCL2, CASP3, CTNNB1, HDAC1, HSPA5, JUN, MAPK8, MTOR, NFKB1, NFKBIA, NLRP3, TP53, TUBB4B, VEGFA
cytosol 14 AKT1, ANG, BCL2, CASP3, CTNNB1, HDAC1, HSPA5, MAPK8, MTOR, NFKB1, NFKBIA, NLRP3, TP53, TUBB4B
dendrite 1 MTOR
phagocytic vesicle 1 MTOR
centrosome 2 CTNNB1, TP53
nucleoplasm 10 AKT1, CASP3, CTNNB1, HDAC1, JUN, MAPK8, MTOR, NFKB1, NFKBIA, TP53
RNA polymerase II transcription regulator complex 1 JUN
Cell membrane 3 AKT1, CTNNB1, SPP1
Cytoplasmic side 1 MTOR
lamellipodium 2 AKT1, CTNNB1
Multi-pass membrane protein 1 SPP1
Golgi apparatus membrane 2 MTOR, NLRP3
Synapse 2 CTNNB1, MAPK8
cell cortex 2 AKT1, CTNNB1
cell junction 1 CTNNB1
cell surface 2 HSPA5, VEGFA
glutamatergic synapse 3 AKT1, CASP3, CTNNB1
Golgi apparatus 2 SPP1, VEGFA
Golgi membrane 2 MTOR, NLRP3
growth cone 1 ANG
lysosomal membrane 1 MTOR
neuronal cell body 3 ANG, CASP3, HDAC1
postsynapse 1 AKT1
presynaptic membrane 1 CTNNB1
Cytoplasm, cytosol 1 NLRP3
Lysosome 1 MTOR
plasma membrane 5 AKT1, CTNNB1, HSPA5, NFKBIA, SPP1
Membrane 8 AKT1, BCL2, CTNNB1, HSPA5, MTOR, NLRP3, TP53, VEGFA
axon 1 MAPK8
basolateral plasma membrane 1 CTNNB1
caveola 1 PTGS2
extracellular exosome 4 CTNNB1, HSPA5, SPP1, TUBB4B
Lysosome membrane 1 MTOR
endoplasmic reticulum 6 BCL2, HSPA5, NLRP3, PTGS2, TP53, VEGFA
extracellular space 5 ANG, CCL2, IL6, SPP1, VEGFA
perinuclear region of cytoplasm 2 CTNNB1, SPP1
Schaffer collateral - CA1 synapse 1 CTNNB1
adherens junction 2 CTNNB1, VEGFA
apicolateral plasma membrane 1 CTNNB1
bicellular tight junction 1 CTNNB1
mitochondrion 5 BCL2, HSPA5, NFKB1, NLRP3, TP53
protein-containing complex 7 AKT1, BCL2, CTNNB1, HDAC1, HSPA5, PTGS2, TP53
intracellular membrane-bounded organelle 1 HSPA5
Microsome membrane 2 MTOR, PTGS2
postsynaptic density 1 CASP3
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Secreted 6 ANG, CCL2, IL6, NLRP3, SPP1, VEGFA
extracellular region 8 ANG, CCL2, IL6, NFKB1, NLRP3, SPP1, TUBB4B, VEGFA
Mitochondrion outer membrane 2 BCL2, MTOR
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 2 BCL2, MTOR
Mitochondrion matrix 1 TP53
mitochondrial matrix 1 TP53
transcription regulator complex 4 CTNNB1, JUN, NFKB1, TP53
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 TP53
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
Extracellular vesicle 1 TUBB4B
Secreted, extracellular space, extracellular matrix 1 VEGFA
actin cytoskeleton 1 ANG
Z disc 1 CTNNB1
beta-catenin destruction complex 1 CTNNB1
microtubule cytoskeleton 2 AKT1, TUBB4B
nucleolus 2 ANG, TP53
Wnt signalosome 1 CTNNB1
midbody 1 HSPA5
apical part of cell 1 CTNNB1
cell-cell junction 2 AKT1, CTNNB1
vesicle 1 AKT1
postsynaptic membrane 1 CTNNB1
heterochromatin 1 HDAC1
pore complex 1 BCL2
Cytoplasm, cytoskeleton 3 CTNNB1, TP53, TUBB4B
focal adhesion 2 CTNNB1, HSPA5
microtubule 1 TUBB4B
spindle 1 AKT1
Cell junction, adherens junction 1 CTNNB1
flotillin complex 1 CTNNB1
extracellular matrix 1 VEGFA
basement membrane 1 ANG
Nucleus, PML body 2 MTOR, TP53
PML body 2 MTOR, TP53
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
secretory granule 1 VEGFA
fascia adherens 1 CTNNB1
lateral plasma membrane 1 CTNNB1
Cytoplasm, cytoskeleton, microtubule organizing center 1 NLRP3
Inflammasome 1 NLRP3
interphase microtubule organizing center 1 NLRP3
NLRP3 inflammasome complex 1 NLRP3
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
neuron projection 1 PTGS2
ciliary basal body 1 AKT1
chromatin 4 HDAC1, JUN, NFKB1, TP53
cell projection 1 SPP1
cell periphery 1 CTNNB1
mitotic spindle 1 TUBB4B
Chromosome 1 ANG
cytoskeleton 1 TUBB4B
Cytoplasm, cytoskeleton, cilium basal body 1 CTNNB1
Nucleus, nucleolus 1 ANG
spindle pole 1 CTNNB1
nuclear chromosome 1 JUN
postsynaptic density, intracellular component 1 CTNNB1
microvillus membrane 1 CTNNB1
site of double-strand break 1 TP53
intercellular bridge 1 TUBB4B
Cytoplasm, cytoskeleton, flagellum axoneme 1 TUBB4B
sperm flagellum 1 TUBB4B
nuclear envelope 1 MTOR
Endomembrane system 3 CTNNB1, MTOR, NLRP3
axonemal microtubule 1 TUBB4B
microtubule organizing center 1 NLRP3
Melanosome 1 HSPA5
Cytoplasm, Stress granule 1 ANG
cytoplasmic stress granule 1 ANG
euchromatin 2 CTNNB1, JUN
germ cell nucleus 1 TP53
replication fork 1 TP53
myelin sheath 1 BCL2
secretory granule lumen 1 NFKB1
endoplasmic reticulum lumen 4 HSPA5, IL6, PTGS2, SPP1
nuclear matrix 1 TP53
transcription repressor complex 2 HDAC1, TP53
platelet alpha granule lumen 1 VEGFA
specific granule lumen 1 NFKB1
histone deacetylase complex 1 HDAC1
endocytic vesicle 1 ANG
beta-catenin-TCF complex 1 CTNNB1
azurophil granule lumen 1 TUBB4B
NuRD complex 1 HDAC1
presynaptic active zone cytoplasmic component 1 CTNNB1
endoplasmic reticulum-Golgi intermediate compartment 1 HSPA5
[Isoform 1]: Nucleus 1 TP53
Sin3-type complex 1 HDAC1
protein-DNA complex 1 CTNNB1
basal dendrite 1 MAPK8
death-inducing signaling complex 1 CASP3
Cytoplasmic vesicle, phagosome 1 MTOR
catenin complex 1 CTNNB1
transcription factor AP-1 complex 1 JUN
angiogenin-PRI complex 1 ANG
interleukin-6 receptor complex 1 IL6
endoplasmic reticulum chaperone complex 1 HSPA5
BAD-BCL-2 complex 1 BCL2
[N-VEGF]: Cytoplasm 1 VEGFA
[VEGFA]: Secreted 1 VEGFA
[Isoform L-VEGF189]: Endoplasmic reticulum 1 VEGFA
[Isoform VEGF121]: Secreted 1 VEGFA
[Isoform VEGF165]: Secreted 1 VEGFA
VEGF-A complex 1 VEGFA
beta-catenin-TCF7L2 complex 1 CTNNB1
[Nuclear factor NF-kappa-B p105 subunit]: Cytoplasm 1 NFKB1
[Nuclear factor NF-kappa-B p50 subunit]: Nucleus 1 NFKB1
I-kappaB/NF-kappaB complex 2 NFKB1, NFKBIA
NF-kappaB p50/p65 complex 1 NFKB1
beta-catenin-ICAT complex 1 CTNNB1
Scrib-APC-beta-catenin complex 1 CTNNB1


文献列表

  • Lei Li, Qian Zhou, Linwei Li, Tingting Ran, Weiwu Wang, Chenyang Liu, Jin Chen, Tiemin Sun, Yu Chen, Xu Feng, Feng Zhang, Shu Xu. Structural insight into subunit F of respiratory chain complex I from Xanthomonas oryzae pv. oryzae inhibition by parthenolide. Pest management science. 2024 Jun; 80(6):2679-2688. doi: 10.1002/ps.7974. [PMID: 38284296]
  • Zi-Ying Zhan, Zhi-Hong Zhang, Rong-Hui Sun, Yan-Ling Wu, Ji-Xing Nan, Li-Hua Lian. A therapeutic strategy of parthenolide in improving imiquimod-induced psoriasis-like skin inflammation targeting IL-36/NETs through skin transdermal therapeutic system. International immunopharmacology. 2024 Apr; 131(?):111824. doi: 10.1016/j.intimp.2024.111824. [PMID: 38461633]
  • Jinfeng Sun, Liwei Li, Li Xiong, Fan Chen, Lingyu She, Hao Tang, Yuqing Zeng, Ying Duan, Luyao Li, Wei Wang, Gao Li, Xia Zhao, Guang Liang. Parthenolide alleviates cognitive dysfunction and neurotoxicity via regulation of AMPK/GSK3β(Ser9)/Nrf2 signaling pathway. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2023 Dec; 169(?):115909. doi: 10.1016/j.biopha.2023.115909. [PMID: 37992573]
  • Liru Huang, Fuhong Liu, Xukai Liu, Liyan Niu, Longhua Sun, Fang Fang, Kun Ma, Ping Hu. Parthenolide inhibits the proliferation and migration of cervical cancer cells via FAK/GSK3β pathway. Cancer chemotherapy and pharmacology. 2023 Dec; ?(?):. doi: 10.1007/s00280-023-04621-9. [PMID: 38141074]
  • Emine Toraman, Büşra Budak, Cemil Bayram, Selma Sezen, Behzad Mokhtare, Ahmet Hacımüftüoğlu. Role of parthenolide in paclitaxel-induced oxidative stress injury and impaired reproductive function in rat testicular tissue. Chemico-biological interactions. 2023 Nov; ?(?):110793. doi: 10.1016/j.cbi.2023.110793. [PMID: 37949423]
  • W Yao, X Wang, Y Yang, J You, J Jin, P Zeng, Q Han, X Yao, X Sun, J Zhou. [Liposome nanoparticles for targeted delivery of parthenolide induce colorectal cancer necroptosis to ameliorate tumor-infiltrating T cell exhaustion in mice]. Nan fang yi ke da xue xue bao = Journal of Southern Medical University. 2023 Oct; 43(10):1674-1681. doi: 10.12122/j.issn.1673-4254.2023.10.04. [PMID: 37933642]
  • María Ángeles Ávila-Gálvez, Daniela Marques, Inês Figueira, Katarina Cankar, Dirk Bosch, Maria Alexandra Brito, Cláudia Nunes Dos Santos. Costunolide and parthenolide: Novel blood-brain barrier permeable sesquiterpene lactones to improve barrier tightness. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2023 Sep; 167(?):115413. doi: 10.1016/j.biopha.2023.115413. [PMID: 37683593]
  • Jingyuan Sun, Pei Li, Honglian Gui, Laure Rittié, David B Lombard, Katrin Rietscher, Thomas M Magin, Qing Xie, Li Liu, M Bishr Omary. Deacetylation via SIRT2 prevents keratin-mutation-associated injury and keratin aggregation. JCI insight. 2023 07; 8(14):. doi: 10.1172/jci.insight.166314. [PMID: 37485877]
  • Le-Tian Huang, Tie-Jun Li, Ming-Lin Li, Han-Yong Luo, Yi-Bing Wang, Jia-He Wang. Untargeted lipidomic analysis and network pharmacology for parthenolide treated papillary thyroid carcinoma cells. BMC complementary medicine and therapies. 2023 Apr; 23(1):130. doi: 10.1186/s12906-023-03944-7. [PMID: 37095470]
  • Mehmet Enes Arslan, Hasan Türkez, Yasemin Sevim, Harun Selvitopi, Abdurrahim Kadi, Sena Öner, Adil Mardinoğlu. Costunolide and Parthenolide Ameliorate MPP+ Induced Apoptosis in the Cellular Parkinson's Disease Model. Cells. 2023 03; 12(7):. doi: 10.3390/cells12070992. [PMID: 37048065]
  • Meng Li, Qiong Luo, Xi Chen, Furong Qiu, Yanyan Tao, Xin Sun, Chenghai Liu. Screening of major hepatotoxic components of Tripterygium wilfordii based on hepatotoxic injury patterns. BMC complementary medicine and therapies. 2023 Jan; 23(1):9. doi: 10.1186/s12906-023-03836-w. [PMID: 36627617]
  • Reza Shahhoseini, Hadiseh Daneshvar. Phytochemical and physiological reactions of feverfew (Tanacetum parthenium (L.) Schultz Bip) to TiO2 nanoparticles. Plant physiology and biochemistry : PPB. 2023 Jan; 194(?):674-684. doi: 10.1016/j.plaphy.2022.12.011. [PMID: 36563573]
  • Arman Beyraghdar Kashkooli, Aalt D J van Dijk, Harro Bouwmeester, Alexander van der Krol. Individual lipid transfer proteins from Tanacetum parthenium show different specificity for extracellular accumulation of sesquiterpenes. Plant molecular biology. 2023 Jan; 111(1-2):153-166. doi: 10.1007/s11103-022-01316-2. [PMID: 36255594]
  • Li-Ping Liu, Ning Liu, Han-Ni Zhang, Ding Li. Exploring and validating the metastasis mechanism of pathenolide interfering with cutaneous melanoma through ER stress-dependent apoptosis based on the network pharmacology. Phytochemical analysis : PCA. 2022 Dec; ?(?):. doi: 10.1002/pca.3193. [PMID: 36477977]
  • Mahsa Darbahani, Mahdi Rahaie, Asa Ebrahimi, Mahmood Khosrowshahli. The effects of several abiotic elicitors on the expression of genes of key enzymes involved in the parthenolide biosynthetic pathway and its content in feverfew plant (Tanacetum parthenium L.). Natural product research. 2022 Dec; 36(23):6132-6136. doi: 10.1080/14786419.2022.2055555. [PMID: 35356827]
  • Xingchen Liu, Xiaobing Wang. Recent advances on the structural modification of parthenolide and its derivatives as anticancer agents. Chinese journal of natural medicines. 2022 Nov; 20(11):814-829. doi: 10.1016/s1875-5364(22)60238-3. [PMID: 36427916]
  • Qian Zhou, Linwei Li, Fei Liu, Jun Hu, Yan Cao, Siwei Qiao, Yuxin Zhou, Bi Wang, Yihe Jia, Yu Chen, Shu Xu, Xu Feng. Mining and characterization of oxidative stress-related binding proteins of parthenolide in Xanthomonas oryzae pv. oryzae. Pest management science. 2022 Aug; 78(8):3345-3355. doi: 10.1002/ps.6961. [PMID: 35491536]
  • Yiting Shi, Tianyu Dong, Boxuan Zeng, Mingdong Yao, Ying Wang, Zexiong Xie, Wenhai Xiao, Yingjin Yuan. Production of Plant Sesquiterpene Lactone Parthenolide in the Yeast Cell Factory. ACS synthetic biology. 2022 07; 11(7):2473-2483. doi: 10.1021/acssynbio.2c00132. [PMID: 35723427]
  • Anshuo Li, Wenbin Gao, Xuwu Zhang, Yuwei Deng, Yuhui Zhu, Hao Gu, Jin Wen, Xinquan Jiang. A dual-responsive 'Yin-Yang' photothermal delivery system to accelerate Parthenolide anti-tumor efficacy. Biomaterials advances. 2022 Jul; 138(?):212935. doi: 10.1016/j.bioadv.2022.212935. [PMID: 35913256]
  • Ricardo A Leitão, Carlos A Fontes-Ribeiro, Ana Paula Silva. The effect of parthenolide on methamphetamine-induced blood-brain barrier and astrocyte alterations. European journal of clinical investigation. 2022 Apr; 52(4):e13694. doi: 10.1111/eci.13694. [PMID: 34694635]
  • Tao An, Huanhuan Yin, Yanting Lu, Feng Liu. The Emerging Potential of Parthenolide Nanoformulations in Tumor Therapy. Drug design, development and therapy. 2022; 16(?):1255-1272. doi: 10.2147/dddt.s355059. [PMID: 35517982]
  • Yubo Dong, Xuanjin Qian, Jian Li. Sesquiterpene Lactones and Cancer: New Insight into Antitumor and Anti-inflammatory Effects of Parthenolide-Derived Dimethylaminomicheliolide and Micheliolide. Computational and mathematical methods in medicine. 2022; 2022(?):3744837. doi: 10.1155/2022/3744837. [PMID: 35898475]
  • Mingxian Lan, Xi Gao, Xiuan Duan, Hongmei Li, Hang Yu, Jinliang Li, Yueqin Zhao, Xiaojiang Hao, Yuhan Zhao, Xiao Ding, Guoxing Wu. Nematicidal activity of tirotundin and parthenolide isolated from Tithonia diversifolia and Chrysanthemum parthenium. Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes. 2022; 57(1):54-61. doi: 10.1080/03601234.2021.2022945. [PMID: 34983315]
  • Zhen-Yu Cui, Ge Wang, Jing Zhang, Jian Song, Yu-Chen Jiang, Jia-Yi Dou, Li-Hua Lian, Ji-Xing Nan, Yan-Ling Wu. Parthenolide, bioactive compound of Chrysanthemum parthenium L., ameliorates fibrogenesis and inflammation in hepatic fibrosis via regulating the crosstalk of TLR4 and STAT3 signaling pathway. Phytotherapy research : PTR. 2021 Oct; 35(10):5680-5693. doi: 10.1002/ptr.7214. [PMID: 34250656]
  • Louna Karam, Soumaiah Abou Staiteieh, Rady Chaaban, Berthe Hayar, Bassel Ismail, Frank Neipel, Nadine Darwiche, Raghida Abou Merhi. Anticancer activities of parthenolide in primary effusion lymphoma preclinical models. Molecular carcinogenesis. 2021 08; 60(8):567-581. doi: 10.1002/mc.23324. [PMID: 34101920]
  • Shaohua Zhang, Xiaoman Ju, Qihong Yang, Yiying Zhu, Dongmei Fan, Guifeng Su, Lingmei Kong, Yan Li. USP47 maintains the stemness of colorectal cancer cells and is inhibited by parthenolide. Biochemical and biophysical research communications. 2021 07; 562(?):21-28. doi: 10.1016/j.bbrc.2021.05.017. [PMID: 34030041]
  • Weihong Wang, Yukai He, Qiuli Liu. Parthenolide plays a protective role in the liver of mice with metabolic dysfunction‑associated fatty liver disease through the activation of the HIPPO pathway. Molecular medicine reports. 2021 07; 24(1):. doi: 10.3892/mmr.2021.12126. [PMID: 33955510]
  • Jade Jaffar, Ian Glaspole, Karen Symons, Glen Westall. Inhibition of NF-κB by ACT001 reduces fibroblast activity in idiopathic pulmonary fibrosis. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2021 Jun; 138(?):111471. doi: 10.1016/j.biopha.2021.111471. [PMID: 33730605]
  • Perwez Alam, Nasir Ali Siddiqui, Md Tabish Rehman, Afzal Hussain, Ali Akhtar, Showkat R Mir, Mohamed Fahad Alajmi. Box-Behnken Design (BBD)-Based Optimization of Microwave-Assisted Extraction of Parthenolide from the Stems of Tarconanthus camphoratus and Cytotoxic Analysis. Molecules (Basel, Switzerland). 2021 Mar; 26(7):. doi: 10.3390/molecules26071876. [PMID: 33810340]
  • Sawalee Saosathan, Jalernsri Khounvong, Methee Rungrojsakul, Trinnakorn Katekunlaphan, Singkome Tima, Sawitree Chiampanichayakul, Cory Berkland, Songyot Anuchapreeda. Costunolide and parthenolide from Champi Sirindhorn (Magnolia sirindhorniae) inhibit leukemic cell proliferation in K562 and molt-4 cell lines. Natural product research. 2021 Mar; 35(6):988-992. doi: 10.1080/14786419.2019.1610752. [PMID: 31135208]
  • Corinne Vanucci-Bacqué, Florence Bedos-Belval. Anti-inflammatory activity of naturally occuring diarylheptanoids - A review. Bioorganic & medicinal chemistry. 2021 02; 31(?):115971. doi: 10.1016/j.bmc.2020.115971. [PMID: 33422907]
  • Dandan Liu, Yanyan Han, Lei Liu, Xinxiu Ren, Han Zhang, Shujun Fan, Tao Qin, Lianhong Li. Parthenolide inhibits the tumor characteristics of renal cell carcinoma. International journal of oncology. 2021 01; 58(1):100-110. doi: 10.3892/ijo.2020.5148. [PMID: 33367934]
  • Yulin Ren, A Douglas Kinghorn. Development of Potential Antitumor Agents from the Scaffolds of Plant-Derived Terpenoid Lactones. Journal of medicinal chemistry. 2020 12; 63(24):15410-15448. doi: 10.1021/acs.jmedchem.0c01449. [PMID: 33289552]
  • Minghua Liu, Ying Yang, Dajun Liu, Ye Cao, Yan Li. Parthenolide increases the sensitivity of gastric cancer cells to chemotherapy. Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan. 2020 12; 40(6):908-916. doi: 10.19852/j.cnki.jtcm.2020.06.002. [PMID: 33258341]
  • Seyede Zahra Ahmadi, Mansour Ghorbanpour, Ahmad Aghaee, Javad Hadian. Deciphering morpho-physiological and phytochemical attributes of Tanacetum parthenium L. plants exposed to C60 fullerene and salicylic acid. Chemosphere. 2020 Nov; 259(?):127406. doi: 10.1016/j.chemosphere.2020.127406. [PMID: 32585459]
  • Evy Paulsen, Klaus E Andersen. Compositae sensitization in Danish children and adolescents. Contact dermatitis. 2020 Oct; 83(4):296-300. doi: 10.1111/cod.13639. [PMID: 32542786]
  • Mohsen Bahrami, Mohammad Kamalinejad, Seied Amirhossein Latifi, Farhad Seif, Majid Dadmehr. Cytokine storm in COVID-19 and parthenolide: Preclinical evidence. Phytotherapy research : PTR. 2020 Oct; 34(10):2429-2430. doi: 10.1002/ptr.6776. [PMID: 32472655]
  • Longhua Sun, Wenxin Yuan, Guilan Wen, Bentong Yu, Fei Xu, Xin Gan, Jianjun Tang, Qinghua Zeng, Lanlan Zhu, Chuanhui Chen, Wei Zhang. Parthenolide inhibits human lung cancer cell growth by modulating the IGF‑1R/PI3K/Akt signaling pathway. Oncology reports. 2020 09; 44(3):1184-1193. doi: 10.3892/or.2020.7649. [PMID: 32705224]
  • Lili Yuan, Zhe Wang, Dongyang Zhang, Jiahe Wang. Metabonomic study of the intervention effects of Parthenolide on anti-thyroid cancer activity. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2020 Aug; 1150(?):122179. doi: 10.1016/j.jchromb.2020.122179. [PMID: 32506011]
  • Jin-Ho Park, Young-Hoon Kang, Sun-Chul Hwang, Se Heang Oh, June-Ho Byun. Parthenolide Has Negative Effects on In Vitro Enhanced Osteogenic Phenotypes by Inflammatory Cytokine TNF-α via Inhibiting JNK Signaling. International journal of molecular sciences. 2020 Jul; 21(15):. doi: 10.3390/ijms21155433. [PMID: 32751648]
  • Lichun Yu, Caihui Zhang, Yuan Chen, Qian Li, Jing Wang, Shuzhen Sun. Parthenolide ameliorates tweak-induced podocytes injury. Molecular biology reports. 2020 Jul; 47(7):5165-5173. doi: 10.1007/s11033-020-05591-4. [PMID: 32572732]
  • Pan Liang, Hangyi Wu, Zhenhai Zhang, Shulong Jiang, Huixia Lv. Preparation and characterization of parthenolide nanocrystals for enhancing therapeutic effects of sorafenib against advanced hepatocellular carcinoma. International journal of pharmaceutics. 2020 Jun; 583(?):119375. doi: 10.1016/j.ijpharm.2020.119375. [PMID: 32344021]
  • Jie Qiu, Chun-Mao Yuan, Min Wen, Ya-Nan Li, Juan Chen, Jun-You Jian, Lie-Jun Huang, Wei Gu, Yan-Mei Li, Xiao-Jiang Hao. Design, synthesis, and cytotoxic activities of novel hybrids of parthenolide and thiazolidinedione via click chemistry. Journal of Asian natural products research. 2020 May; 22(5):425-433. doi: 10.1080/10286020.2019.1597055. [PMID: 31012734]
  • Robert R A Freund, Philipp Gobrecht, Dietmar Fischer, Hans-Dieter Arndt. Advances in chemistry and bioactivity of parthenolide. Natural product reports. 2020 04; 37(4):541-565. doi: 10.1039/c9np00049f. [PMID: 31763637]
  • Wenbin Gao, Lei Li, Xuwu Zhang, Liyao Luo, Yuchu He, Cong Cong, Dawei Gao. Nanomagnetic liposome-encapsulated parthenolide and indocyanine green for targeting and chemo-photothermal antitumor therapy. Nanomedicine (London, England). 2020 04; 15(9):871-890. doi: 10.2217/nnm-2019-0038. [PMID: 32223505]
  • Qiu Fa Hao, Bao Bao Wang, Wei Zhang, Wei Qiu, Qian Ling Liu, Xue Mei Li. NF-κB Inhibitor Parthenolide Promotes Renal Tubules Albumin Uptake in Type 2 Diabetic Nephropathy. Chinese medical sciences journal = Chung-kuo i hsueh k'o hsueh tsa chih. 2020 Mar; 35(1):31-42. doi: 10.24920/003573. [PMID: 32299536]
  • Xue Li, Lingmei Kong, Qihong Yang, Aizhu Duan, Xiaoman Ju, Bicheng Cai, Lin Chen, Tao An, Yan Li. Parthenolide inhibits ubiquitin-specific peptidase 7 (USP7), Wnt signaling, and colorectal cancer cell growth. The Journal of biological chemistry. 2020 03; 295(11):3576-3589. doi: 10.1074/jbc.ra119.011396. [PMID: 32029476]
  • Qianqian Liu, Shaozhi Zhang, Dashuai Zhu, Xinyu Tang, Yongzhe Che, Xizeng Feng. The parthenolide derivative ACT001 synergizes with low doses of L-DOPA to improve MPTP-induced Parkinson's disease in mice. Behavioural brain research. 2020 02; 379(?):112337. doi: 10.1016/j.bbr.2019.112337. [PMID: 31697983]
  • Xin Jin, Qing Yang, Ning Cai, Zhenhai Zhang. A cocktail of betulinic acid, parthenolide, honokiol and ginsenoside Rh2 in liposome systems for lung cancer treatment. Nanomedicine (London, England). 2020 01; 15(1):41-54. doi: 10.2217/nnm-2018-0479. [PMID: 31868113]
  • Yasutaka Kuroda, Takuo Yuki, Yutaka Takahashi, Hitoshi Sakaguchi, Kayoko Matsunaga, Hiroshi Itagaki. An acid-hydrolyzed wheat protein activates the inflammatory and NF-κB pathways leading to long TSLP transcription in human keratinocytes. The Journal of toxicological sciences. 2020; 45(6):327-337. doi: 10.2131/jts.45.327. [PMID: 32493875]
  • Joanna Nawrot, Marta Napierała, Kinga Kaczerowska-Pietrzak, Ewa Florek, Justyna Gornowicz-Porowska, Ewa Pelant, Gerard Nowak. The Anti-Serotonin Effect of Parthenolide Derivatives and Standardised Extract from the Leaves of Stizolophus balsamita. Molecules (Basel, Switzerland). 2019 Nov; 24(22):. doi: 10.3390/molecules24224131. [PMID: 31731603]
  • Evy Paulsen, Klaus E Andersen. Screening for Compositae contact sensitization with sesquiterpene lactones and Compositae mix 2.5\% pet. Contact dermatitis. 2019 Nov; 81(5):368-373. doi: 10.1111/cod.13346. [PMID: 31265134]
  • Wei-Feng Gao, Yi-Xuan Li, Wei-Hua Zhang, Ran Tao, Ting-Ting Yin, Yi-Jia Wang, Li-Na Liu, Zhi-Wei Fu, Sai-Nan Li, Nai-Rong Liu, Heng Zhang, Guang Liu, Li-Zhong Zhao, Xi-Peng Zhang, Chun-Ze Zhang. Comparison of the inhibition potential of parthenolide and micheliolide on various UDP-glucuronosyltransferase isoforms. Xenobiotica; the fate of foreign compounds in biological systems. 2019 Oct; 49(10):1158-1163. doi: 10.1080/00498254.2018.1544383. [PMID: 30484368]
  • Charles A Berdan, Raymond Ho, Haley S Lehtola, Milton To, Xirui Hu, Tucker R Huffman, Yana Petri, Chad R Altobelli, Sasha G Demeulenaere, James A Olzmann, Thomas J Maimone, Daniel K Nomura. Parthenolide Covalently Targets and Inhibits Focal Adhesion Kinase in Breast Cancer Cells. Cell chemical biology. 2019 07; 26(7):1027-1035.e22. doi: 10.1016/j.chembiol.2019.03.016. [PMID: 31080076]
  • Chae Young Kim, Bobin Kang, Hyung Joo Suh, Hyeon-Son Choi. Parthenolide, a feverfew-derived phytochemical, ameliorates obesity and obesity-induced inflammatory responses via the Nrf2/Keap1 pathway. Pharmacological research. 2019 07; 145(?):104259. doi: 10.1016/j.phrs.2019.104259. [PMID: 31078744]
  • Arman Beyraghdar Kashkooli, Alexander R van der Krol, Patrick Rabe, Jeroen S Dickschat, Harro Bouwmeester. Substrate promiscuity of enzymes from the sesquiterpene biosynthetic pathways from Artemisia annua and Tanacetum parthenium allows for novel combinatorial sesquiterpene production. Metabolic engineering. 2019 07; 54(?):12-23. doi: 10.1016/j.ymben.2019.01.007. [PMID: 30822491]
  • Yulin Ren, Esperanza J Carcache de Blanco, James R Fuchs, Djaja D Soejarto, Joanna E Burdette, Steven M Swanson, A Douglas Kinghorn. Potential Anticancer Agents Characterized from Selected Tropical Plants. Journal of natural products. 2019 03; 82(3):657-679. doi: 10.1021/acs.jnatprod.9b00018. [PMID: 30830783]
  • Junxing Niu, Hui Huang, Fei Wang, Xianjing Zhang, Yi Liu, Qiang Yu, Lihong Hu. Synthetic derivatives of the natural product 13-amino 2-desoxy-4-epi-pulchellin inhibit STAT3 signaling and induce G2/M arrest and death of colon cancer cells. Bioorganic & medicinal chemistry letters. 2019 03; 29(6):782-785. doi: 10.1016/j.bmcl.2019.01.030. [PMID: 30711391]
  • Eti Mehrotra, Jyotsna Vishwakarma, Avinash C Tripathi, Pankaj K Sonar, Shailendra K Saraf. Schizonticidal antimalarial sesquiterpene lactones from Magnolia champaca (L.) Baill. ex Pierre: microwave-assisted extraction, HPTLC fingerprinting and computational studies. Natural product research. 2019 Feb; 33(4):568-572. doi: 10.1080/14786419.2017.1396595. [PMID: 29086620]
  • Qianling Liu, Liangyan Zhang, Wei Zhang, Qiufa Hao, Wei Qiu, Yubing Wen, Haiyun Wang, Xuemei Li. Inhibition of NF-κB Reduces Renal Inflammation and Expression of PEPCK in Type 2 Diabetic Mice. Inflammation. 2018 Dec; 41(6):2018-2029. doi: 10.1007/s10753-018-0845-0. [PMID: 30066289]
  • Shu Xu, Xingzeng Zhao, Fei Liu, Yan Cao, Bi Wang, Xiangyun Wang, Min Yin, Qizhi Wang, Xu Feng. Crucial role of oxidative stress in bactericidal effect of parthenolide against Xanthomonas oryzae pv. oryzae. Pest management science. 2018 Dec; 74(12):2716-2723. doi: 10.1002/ps.5091. [PMID: 29808556]
  • Qing Liu, Arman Beyraghdar Kashkooli, David Manzano, Irini Pateraki, Lea Richard, Pim Kolkman, Maria Fátima Lucas, Victor Guallar, Ric C H de Vos, Maurice C R Franssen, Alexander van der Krol, Harro Bouwmeester. Kauniolide synthase is a P450 with unusual hydroxylation and cyclization-elimination activity. Nature communications. 2018 11; 9(1):4657. doi: 10.1038/s41467-018-06565-8. [PMID: 30405138]
  • Evy Paulsen, Rime B El-Houri, Klaus E Andersen, Lars P Christensen. Parthenolide in Danish biodynamic and organic milk: A new source of exposure to an allergenic sesquiterpene lactone. Contact dermatitis. 2018 Oct; 79(4):208-212. doi: 10.1111/cod.13043. [PMID: 29923204]
  • Weihuan Mao, Ziguan Zhu. Parthenolide inhibits hydrogen peroxide‑induced osteoblast apoptosis. Molecular medicine reports. 2018 Jun; 17(6):8369-8376. doi: 10.3892/mmr.2018.8908. [PMID: 29693172]
  • Manmohit Kalia, Vivek Kumar Yadav, Pradeep Kumar Singh, Deepmala Sharma, Shahid Suhail Narvi, Vishnu Agarwal. Exploring the impact of parthenolide as anti-quorum sensing and anti-biofilm agent against Pseudomonas aeruginosa. Life sciences. 2018 Apr; 199(?):96-103. doi: 10.1016/j.lfs.2018.03.013. [PMID: 29524516]
  • Xiaoliang Zhu, Chunmao Yuan, Chenyang Tian, Chen Li, Fen Nie, Xiaomin Song, Rong Zeng, Dianqing Wu, Xiaojiang Hao, Lin Li. The plant sesquiterpene lactone parthenolide inhibits Wnt/β-catenin signaling by blocking synthesis of the transcriptional regulators TCF4/LEF1. The Journal of biological chemistry. 2018 04; 293(14):5335-5344. doi: 10.1074/jbc.m117.819300. [PMID: 29462785]
  • Hanan Alwaseem, Benjamin J Frisch, Rudi Fasan. Anticancer activity profiling of parthenolide analogs generated via P450-mediated chemoenzymatic synthesis. Bioorganic & medicinal chemistry. 2018 04; 26(7):1365-1373. doi: 10.1016/j.bmc.2017.08.009. [PMID: 28826596]
  • Nesa Jafari, Sonbol Nazeri, Sattar Tahmasebi Enferadi. Parthenolide reduces metastasis by inhibition of vimentin expression and induces apoptosis by suppression elongation factor α - 1 expression. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2018 Mar; 41(?):67-73. doi: 10.1016/j.phymed.2018.01.022. [PMID: 29519321]
  • Nagarethinam Baskaran, Govindan Sadasivam Selvam, Subramani Yuvaraj, Albert Abhishek. Parthenolide attenuates 7,12-dimethylbenz[a]anthracene induced hamster buccal pouch carcinogenesis. Molecular and cellular biochemistry. 2018 Mar; 440(1-2):11-22. doi: 10.1007/s11010-017-3151-5. [PMID: 28801714]
  • Njogu M Kimani, Josphat C Matasyoh, Marcel Kaiser, Reto Brun, Thomas J Schmidt. Antiprotozoal Sesquiterpene Lactones and Other Constituents from Tarchonanthus camphoratus and Schkuhria pinnata. Journal of natural products. 2018 01; 81(1):124-130. doi: 10.1021/acs.jnatprod.7b00747. [PMID: 29244495]
  • Shuguang Yuan, Xuemei Liu, Xuejing Zhu, Zhong Qu, Zailiang Gong, Jun Li, Li Xiao, Yuan Yang, Hong Liu, Lin Sun, Fuyou Liu. The Role of TLR4 on PGC-1α-Mediated Oxidative Stress in Tubular Cell in Diabetic Kidney Disease. Oxidative medicine and cellular longevity. 2018; 2018(?):6296802. doi: 10.1155/2018/6296802. [PMID: 29861832]
  • Érica Benassi-Zanqueta, Caroline Fernandes Marques, Samara Requena Nocchi, Benedito Prado Dias Filho, Celso Vataru Nakamura, Tania Ueda-Nakamura. Parthenolide Influences Herpes simplex virus 1 Replication in vitro. Intervirology. 2018; 61(1):14-22. doi: 10.1159/000490055. [PMID: 30001535]
  • Tao Li, Whayoung Lee, Hidetaka Hara, Cassandra Long, Mohamed Ezzelarab, David Ayares, Hai Huang, Yi Wang, Charles T Esmon, David K C Cooper, Hayato Iwase. An Investigation of Extracellular Histones in Pig-To-Baboon Organ Xenotransplantation. Transplantation. 2017 10; 101(10):2330-2339. doi: 10.1097/tp.0000000000001676. [PMID: 28157735]
  • Xuemei Li, Huike Yang, Jia Ke, Baoquan Liu, Xiaohong Lv, Xinlei Li, Yafang Zhang. Smad4 re-expression increases the sensitivity to parthenolide in colorectal cancer. Oncology reports. 2017 Oct; 38(4):2317-2324. doi: 10.3892/or.2017.5929. [PMID: 28902368]
  • Lara Soares Aleixo de Carvalho, Lívia Beatriz Almeida Fontes, Matheus Coutinho Gazolla, Débora Dos Santos Dias, Maria Aparecida Juliano, Gilson Costa Macedo, José Otávio do Amaral Corrêa, Ademar A Da Silva Filho. Parthenolide Modulates Immune Response in Cells from C57BL/6 Mice Induced with Experimental Autoimmune Encephalomyelitis. Planta medica. 2017 May; 83(8):693-700. doi: 10.1055/s-0042-122783. [PMID: 27997959]
  • Minting Lin, Hong Bi, Yanyan Yan, Wenjing Huang, Guiping Zhang, Genshui Zhang, Sili Tang, Yun Liu, Lingling Zhang, Jinxiang Ma, Jianye Zhang. Parthenolide suppresses non-small cell lung cancer GLC-82 cells growth via B-Raf/MAPK/Erk pathway. Oncotarget. 2017 Apr; 8(14):23436-23447. doi: 10.18632/oncotarget.15584. [PMID: 28423582]
  • Zaineb A F Albayati, Venumadhav Janganati, Zheng Chen, Jessica Ponder, Philip J Breen, Craig T Jordan, Peter A Crooks. Identification of a melampomagnolide B analog as a potential lead molecule for treatment of acute myelogenous leukemia. Bioorganic & medicinal chemistry. 2017 02; 25(3):1235-1241. doi: 10.1016/j.bmc.2016.12.036. [PMID: 28049618]
  • Z Arıkan-Ayyıldız, M Karaman, S Özbal, A Bağrıyanık, O Yilmaz, Ö Karaman, N Uzuner. Efficacy of parthenolide on lung histopathology in a murine model of asthma. Allergologia et immunopathologia. 2017 Jan; 45(1):63-68. doi: 10.1016/j.aller.2016.06.005. [PMID: 27717727]
  • Soudeh Farzadfar, Fatemeh Zarinkamar, Mehrdad Behmanesh, Mostafa Hojati. Magnesium and manganese interactively modulate parthenolide accumulation and the antioxidant defense system in the leaves of Tanacetum parthenium. Journal of plant physiology. 2016 Sep; 202(?):10-20. doi: 10.1016/j.jplph.2016.06.017. [PMID: 27450490]
  • Dongzhu Duan, Junmin Zhang, Juan Yao, Yaping Liu, Jianguo Fang. Targeting Thioredoxin Reductase by Parthenolide Contributes to Inducing Apoptosis of HeLa Cells. The Journal of biological chemistry. 2016 May; 291(19):10021-31. doi: 10.1074/jbc.m115.700591. [PMID: 27002142]
  • Ai-qin Zhao, Ji-hong Zhao, Shu-qing Zhang, Yong-yang Pan, Xu-lei Huo. Determination of parthenolide in rat plasma by UPLC-MS/MS and its application to a pharmacokinetic study. Journal of pharmaceutical and biomedical analysis. 2016 Feb; 119(?):99-103. doi: 10.1016/j.jpba.2015.11.039. [PMID: 26678176]
  • Mohammad Majdi, Morahem Ashengroph, Mohammad Reza Abdollahi. Sesquiterpene lactone engineering in microbial and plant platforms: parthenolide and artemisinin as case studies. Applied microbiology and biotechnology. 2016 Feb; 100(3):1041-1059. doi: 10.1007/s00253-015-7128-6. [PMID: 26567019]
  • Tien-Yao Tsai, Shyh-Liang Lou, Ka-Shun Cheng, Kar-Lok Wong, Mei-Ling Wang, Tzu-Hui Su, Paul Chan, Yuk-Man Leung. Repressed Ca(2+) clearance in parthenolide-treated murine brain bEND.3 endothelial cells. European journal of pharmacology. 2015 Dec; 769(?):280-6. doi: 10.1016/j.ejphar.2015.11.031. [PMID: 26607466]
  • Mohammad Majdi, Mohammad Reza Abdollahi, Asad Maroufi. Parthenolide accumulation and expression of genes related to parthenolide biosynthesis affected by exogenous application of methyl jasmonate and salicylic acid in Tanacetum parthenium. Plant cell reports. 2015 Nov; 34(11):1909-18. doi: 10.1007/s00299-015-1837-2. [PMID: 26183953]
  • Muhamad S F Zawawi, Victor Marino, Egon Perilli, Melissa D Cantley, Jiake Xu, P Edward Purdue, Anak A S S K Dharmapatni, David R Haynes, Tania N Crotti. Parthenolide reduces empty lacunae and osteoclastic bone surface resorption induced by polyethylene particles in a murine calvarial model of peri-implant osteolysis. Journal of biomedical materials research. Part A. 2015 Nov; 103(11):3572-9. doi: 10.1002/jbm.a.35484. [PMID: 25903444]
  • Zhong-Jin Yang, Wei-Zhi Ge, Qiu-Ying Li, Yaxin Lu, Jian-Miao Gong, Bei-Jia Kuang, Xiaonan Xi, Haiting Wu, Quan Zhang, Yue Chen. Syntheses and Biological Evaluation of Costunolide, Parthenolide, and Their Fluorinated Analogues. Journal of medicinal chemistry. 2015 Sep; 58(17):7007-20. doi: 10.1021/acs.jmedchem.5b00915. [PMID: 26226279]
  • Ahmed H Abdelazeem, Shabana I Khan, Stephen W White, Kenneth J Sufka, Christopher R McCurdy. Design, synthesis and biological evaluation of bivalent benzoxazolone and benzothiazolone ligands as potential anti-inflammatory/analgesic agents. Bioorganic & medicinal chemistry. 2015 Jul; 23(13):3248-59. doi: 10.1016/j.bmc.2015.04.057. [PMID: 25975638]
  • Dipankar De, Geeti Khullar, Sanjeev Handa. Performance of a commercially available plant allergen series in the assessment of suspected occupational contact dermatitis to plants in north Indian patients. Indian journal of dermatology, venereology and leprology. 2015 Jul; 81(4):376-9. doi: 10.4103/0378-6323.156199. [PMID: 25937142]
  • Joseph K Hexum, Chani M Becker, Aaron M Kempema, John R Ohlfest, David A Largaespada, Daniel A Harki. Parthenolide prodrug LC-1 slows growth of intracranial glioma. Bioorganic & medicinal chemistry letters. 2015 Jun; 25(12):2493-5. doi: 10.1016/j.bmcl.2015.04.058. [PMID: 25978958]
  • Fan-Cong Kong, Jing-Qiong Zhang, Chen Zeng, Wen-Lan Chen, Wen-Xiang Ren, Guo-Xin Yan, Hong-Xiang Wang, Qiu-Bai Li, Zhi-Chao Chen. Inhibitory effects of parthenolide on the activity of NF-κB in multiple myeloma via targeting TRAF6. Journal of Huazhong University of Science and Technology. Medical sciences = Hua zhong ke ji da xue xue bao. Yi xue Ying De wen ban = Huazhong keji daxue xuebao. Yixue Yingdewen ban. 2015 Jun; 35(3):343-349. doi: 10.1007/s11596-015-1435-0. [PMID: 26072071]
  • Michael Plöger, Jandirk Sendker, Klaus Langer, Thomas J Schmidt. Covalent modification of human serum albumin by the natural sesquiterpene lactone parthenolide. Molecules (Basel, Switzerland). 2015 Apr; 20(4):6211-23. doi: 10.3390/molecules20046211. [PMID: 25859779]
  • Natalie Schneider, Holger Ludwig, Peter Nick. Suppression of tubulin detyrosination by parthenolide recruits the plant-specific kinesin KCH to cortical microtubules. Journal of experimental botany. 2015 Apr; 66(7):2001-11. doi: 10.1093/jxb/erv012. [PMID: 25779700]
  • Mattia Cocco, Davide Garella, Antonella Di Stilo, Emily Borretto, Livio Stevanato, Marta Giorgis, Elisabetta Marini, Roberto Fantozzi, Gianluca Miglio, Massimo Bertinaria. Electrophilic warhead-based design of compounds preventing NLRP3 inflammasome-dependent pyroptosis. Journal of medicinal chemistry. 2014 Dec; 57(24):10366-82. doi: 10.1021/jm501072b. [PMID: 25418070]
  • Yan Zhao, Jiancheng Wang, Hongyu Li, Qianqian Jia, Sijia Chen, Zhaozhong Xu, Xiaoyan Du, Xiaowen Chen, Lu Lu, Bo Huang, Haibo Long. [Shenkang pill down-regulates AOPP-induced expression of inflammatory factor MCP-1 via a p38MAPK/NF-κB-dependent mechanism]. Nan fang yi ke da xue xue bao = Journal of Southern Medical University. 2014 Aug; 34(9):1265-71. doi: NULL. [PMID: 25263356]
  • Tatiana Shioji Tiuman, Tânia Ueda-Nakamura, Antonio Alonso, Celso Vataru Nakamura. Cell death in amastigote forms of Leishmania amazonensis induced by parthenolide. BMC microbiology. 2014 Jun; 14(?):152. doi: 10.1186/1471-2180-14-152. [PMID: 24913205]
  • Katarzyna Gach, Anna Janecka. α-Methylene-γ-lactones as a novel class of anti-leukemic agents. Anti-cancer agents in medicinal chemistry. 2014 Jun; 14(5):688-94. doi: 10.2174/1871520614666140313095010. [PMID: 24628266]
  • Vikram K Mahajan, Vikas Sharma, Mrinal Gupta, Pushpinder S Chauhan, Karaninder S Mehta, Swati Garg. Parthenium dermatitis: is parthenolide an effective choice for patch testing?. Contact dermatitis. 2014 Jun; 70(6):340-3. doi: 10.1111/cod.12194. [PMID: 24617958]
  • Qing Liu, David Manzano, Nikola Tanić, Milica Pesic, Jasna Bankovic, Irini Pateraki, Lea Ricard, Albert Ferrer, Ric de Vos, Sander van de Krol, Harro Bouwmeester. Elucidation and in planta reconstitution of the parthenolide biosynthetic pathway. Metabolic engineering. 2014 May; 23(?):145-53. doi: 10.1016/j.ymben.2014.03.005. [PMID: 24704560]
  • Thi Van Anh Tran, Clemens Malainer, Stefan Schwaiger, Atanas G Atanasov, Elke H Heiss, Verena M Dirsch, Hermann Stuppner. NF-κB inhibitors from Eurycoma longifolia. Journal of natural products. 2014 Mar; 77(3):483-8. doi: 10.1021/np400701k. [PMID: 24467387]