Cordycepin (BioDeep_00000000114)

   

natural product PANOMIX_OTCML-2023


代谢物信息卡片


(2R,3R,5S)-2-(6-amino-9H-purin-9-yl)-5-(hydroxymethyl)tetrahydrofuran-3-ol

化学式: C10H13N5O3 (251.1018)
中文名称: 蛹虫草菌素, 虫草多糖, 虫草素, 冬虫夏草菌素, 3-脱氧腺苷
谱图信息: 最多检出来源 Chinese Herbal Medicine(otcml) 26.56%

分子结构信息

SMILES: C1C(OC(C1O)N2C=NC3=C(N=CN=C32)N)CO
InChI: InChI=1S/C10H13N5O3/c11-8-7-9(13-3-12-8)15(4-14-7)10-6(17)1-5(2-16)18-10/h3-6,10,16-17H,1-2H2,(H2,11,12,13)

描述信息

Cordycepin is a 3-deoxyribonucleoside and a member of adenosines. It has a role as an antimetabolite and a nucleoside antibiotic.
Cordycepin has been used in trials studying the treatment of Leukemia.
Cordycepin is a natural product found in Aspergillus nidulans, Streptomyces sparsogenes, and other organisms with data available.
Cordycepin is a purine nucleoside antimetabolite and antibiotic isolated from the fungus Cordyceps militaris with potential antineoplastic, antioxidant, and anti-inflammatory activities. Cordycepin is an inhibitor of polyadenylation, activates AMP-activated protein kinase (AMPK) and reduces mammalian target of rapamycin (mTOR) signaling, which may result in both the induction of tumor cell apoptosis and a decrease in tumor cell proliferation. mTOR, a serine/threonine kinase belonging to the phosphatidylinositol 3-kinase (PI3K)-related kinase (PIKK) family, plays an important role in the PI3K/AKT/mTOR signaling pathway that regulates cell growth and proliferation, and its expression or activity is frequently dysregulated in human cancers.
C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite
D000890 - Anti-Infective Agents > D000935 - Antifungal Agents
D009676 - Noxae > D009153 - Mutagens
D000970 - Antineoplastic Agents
Cordycepin (3'-Deoxyadenosine) is a nucleoside derivative and inhibits IL-1β-induced MMP-1 and MMP-3 expression in rheumatoid arthritis synovial fibroblasts (RASFs) in a dose-dependent manner[1]. Cordycepin kills Mycobacterium tuberculosis through hijacking the bacterial adenosine kinase[2].
Cordycepin (3'-Deoxyadenosine) is a nucleoside derivative and inhibits IL-1β-induced MMP-1 and MMP-3 expression in rheumatoid arthritis synovial fibroblasts (RASFs) in a dose-dependent manner[1]. Cordycepin kills Mycobacterium tuberculosis through hijacking the bacterial adenosine kinase[2].
Cordycepin (3'-Deoxyadenosine) is a nucleoside derivative and inhibits IL-1β-induced MMP-1 and MMP-3 expression in rheumatoid arthritis synovial fibroblasts (RASFs) in a dose-dependent manner[1]. Cordycepin kills Mycobacterium tuberculosis through hijacking the bacterial adenosine kinase[2].

同义名列表

38 个代谢物同义名

(2R,3R,5S)-2-(6-amino-9H-purin-9-yl)-5-(hydroxymethyl)tetrahydrofuran-3-ol; (2R,3R,5S)-2-(6-aminopurin-9-yl)-5-(hydroxymethyl)tetrahydrofuran-3-ol; (2R,3R,5S)-2-(6-amino-9H-purin-9-yl)-5-(hydroxymethyl)oxolan-3-ol; (2R,3R,5S)-2-(6-aminopurin-9-yl)-5-(hydroxymethyl)oxolan-3-ol; 9H-Purin-6-amine, 9-(3-deoxy-beta-D-erythro-pentofuranosyl)-; 2-(6-aminopurin-9-yl)-5-(hydroxymethyl)tetrahydrofuran-3-ol; 9-(3-Deoxy-b-D-erythro-pentofuranosyl)-9H-purin-6-amine; 9H-Purine, 6-amino-9-(3-deoxy-beta-D-ribofuranosyl)-; beta-D-erythro-Pentofuranoside, adenine-9 3-deoxy-; 4-26-00-03594 (Beilstein Handbook Reference); 9-(3-DEOXY-.BETA.-D-RIBOFURANOSYL)ADENINE; 9-(beta-D-3-Deoxyribofuranosyl)adenine; Cordycepin, from Cordyceps militaris; 2-Hydroxy-3-deoxyadenosine erythro; Cordycepin, >=98.0\\% (HPLC); 9-Cordyceposidoadenosine; 9-cordyceposidoadenine; Adenine cordyceposide; ADENOSINE, 3-DEOXY-; Cordycepin [WHO-DD]; 2-OH-3-dA erythro; 3-deoxy-adenosine; CORDYCEPIN [INCI]; 3-deoxyadenosine; UNII-GZ8VF4M2J8; CORDYCEPIN [MI]; Cordycepin,(S); PDSP1_001033; PDSP2_001017; cordycepine; cordycepene; Cordycepin; GZ8VF4M2J8; 3AD; NCGC00092360-03_C10H13N5O3_3-Deoxyadenosine; 3-Deoxyadenosine; Cordycepin; 3'-Deoxyadenosine



数据库引用编号

48 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(1)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 11 ADA, AKT1, CAT, MAPK14, MTOR, NLRP3, PIK3CA, PRKAA2, PTGS2, PTK2, VEGFA
Peripheral membrane protein 4 ADA, MTOR, PTGS2, PTK2
Endoplasmic reticulum membrane 3 HMOX1, MTOR, PTGS2
Nucleus 9 ADK, AKT1, HMOX1, MAPK14, MTOR, NLRP3, PRKAA2, PTK2, VEGFA
cytosol 12 ADA, ADK, AKT1, CAT, HMOX1, MAPK14, MTOR, NLRP3, NT5E, PIK3CA, PRKAA2, PTK2
dendrite 2 MTOR, PRKAA2
phagocytic vesicle 1 MTOR
centrosome 1 PTK2
nucleoplasm 7 ADK, AKT1, HMOX1, MAPK14, MTOR, NT5E, PRKAA2
Cell membrane 4 ADA, AKT1, NT5E, PTK2
Cytoplasmic side 3 HMOX1, MTOR, PTK2
lamellipodium 2 AKT1, PIK3CA
Golgi apparatus membrane 2 MTOR, NLRP3
cell cortex 2 AKT1, PTK2
cell junction 1 ADA
cell surface 3 ADA, NT5E, VEGFA
glutamatergic synapse 2 AKT1, MAPK14
Golgi apparatus 2 PRKAA2, VEGFA
Golgi membrane 3 INS, MTOR, NLRP3
lysosomal membrane 1 MTOR
neuronal cell body 1 PRKAA2
postsynapse 1 AKT1
Cytoplasm, cytosol 1 NLRP3
Lysosome 2 ADA, MTOR
plasma membrane 6 ADA, ADK, AKT1, NT5E, PIK3CA, PTK2
Membrane 9 ADA, AKT1, CAT, HMOX1, MTOR, NLRP3, NT5E, PRKAA2, VEGFA
axon 1 PRKAA2
caveola 1 PTGS2
extracellular exosome 2 CAT, NT5E
Lysosome membrane 1 MTOR
endoplasmic reticulum 4 HMOX1, NLRP3, PTGS2, VEGFA
extracellular space 8 CCL2, CXCL8, HMOX1, IL10, IL2, IL4, INS, VEGFA
perinuclear region of cytoplasm 3 HMOX1, PIK3CA, PTK2
adherens junction 1 VEGFA
intercalated disc 1 PIK3CA
mitochondrion 3 CAT, MAPK14, NLRP3
protein-containing complex 3 AKT1, CAT, PTGS2
intracellular membrane-bounded organelle 2 CAT, PTK2
Microsome membrane 2 MTOR, PTGS2
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Secreted 8 CCL2, CXCL8, IL10, IL2, IL4, INS, NLRP3, VEGFA
extracellular region 10 CAT, CCL2, CXCL8, IL10, IL2, IL4, INS, MAPK14, NLRP3, VEGFA
Mitochondrion outer membrane 1 MTOR
mitochondrial outer membrane 2 HMOX1, MTOR
mitochondrial matrix 1 CAT
Extracellular side 1 ADA
Cytoplasmic vesicle lumen 1 ADA
anchoring junction 2 ADA, PTK2
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 PTK2
external side of plasma membrane 2 ADA, NT5E
Secreted, extracellular space, extracellular matrix 1 VEGFA
dendritic spine 1 PTK2
microtubule cytoskeleton 1 AKT1
cell-cell junction 1 AKT1
vesicle 1 AKT1
Cytoplasm, perinuclear region 1 PTK2
Cell junction, focal adhesion 1 PTK2
Cytoplasm, cytoskeleton 1 PTK2
focal adhesion 2 CAT, PTK2
spindle 1 AKT1
extracellular matrix 1 VEGFA
Peroxisome 1 CAT
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
Nucleus, PML body 1 MTOR
PML body 1 MTOR
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
secretory granule 1 VEGFA
nuclear speck 2 MAPK14, PRKAA2
Cytoplasm, cytoskeleton, microtubule organizing center 1 NLRP3
Inflammasome 1 NLRP3
interphase microtubule organizing center 1 NLRP3
NLRP3 inflammasome complex 1 NLRP3
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
neuron projection 1 PTGS2
ciliary basal body 2 AKT1, PTK2
cell projection 1 PTK2
cytoskeleton 1 PTK2
Cytoplasm, cytoskeleton, cilium basal body 1 PTK2
spindle pole 1 MAPK14
Cytoplasm, cell cortex 1 PTK2
Lipid-anchor, GPI-anchor 1 NT5E
nuclear envelope 1 MTOR
Endomembrane system 2 MTOR, NLRP3
endosome lumen 1 INS
microtubule organizing center 1 NLRP3
cytoplasmic stress granule 1 PRKAA2
side of membrane 1 NT5E
stress fiber 1 PTK2
ficolin-1-rich granule lumen 2 CAT, MAPK14
secretory granule lumen 3 CAT, INS, MAPK14
Golgi lumen 1 INS
endoplasmic reticulum lumen 2 INS, PTGS2
platelet alpha granule lumen 1 VEGFA
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
Single-pass type IV membrane protein 1 HMOX1
[Isoform 2]: Cytoplasm 1 ADK
[Isoform 1]: Nucleus 1 ADK
nucleotide-activated protein kinase complex 1 PRKAA2
Cytoplasmic vesicle, phagosome 1 MTOR
catalase complex 1 CAT
[N-VEGF]: Cytoplasm 1 VEGFA
[VEGFA]: Secreted 1 VEGFA
[Isoform L-VEGF189]: Endoplasmic reticulum 1 VEGFA
[Isoform VEGF121]: Secreted 1 VEGFA
[Isoform VEGF165]: Secreted 1 VEGFA
VEGF-A complex 1 VEGFA
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA


文献列表

  • Kozue Sakao, Cho Sho, Takeshi Miyata, Kensaku Takara, Rio Oda, De-Xing Hou. Verification of In Vitro Anticancer Activity and Bioactive Compounds in Cordyceps Militaris-Infused Sweet Potato Shochu Spirits. Molecules (Basel, Switzerland). 2024 May; 29(9):. doi: 10.3390/molecules29092119. [PMID: 38731610]
  • Ning Wang, Bo Hong, Yingchun Zhao, Chuanbo Ding, Guodong Chai, Yue Wang, Jiali Yang, Lifeng Zhang, Weimin Yu, Yang Lu, Shuang Ma, Shuai Zhang, Xinglong Liu. Dopamine-grafted oxidized hyaluronic acid/gelatin/cordycepin nanofiber membranes modulate the TLR4/NF-kB signaling pathway to promote diabetic wound healing. International journal of biological macromolecules. 2024 Mar; 262(Pt 1):130079. doi: 10.1016/j.ijbiomac.2024.130079. [PMID: 38340939]
  • Huizhen Sun, Shanshan Wei, Yanchun Gong, Kaizhi Ding, Shan Tang, Wei Sun, Chunhua Yuan, Liping Huang, Zhibing Liu, Chong Chen, Lihua Yao. Neuroprotective effects of cordycepin inhibit glutamate-induced apoptosis in hippocampal neurons. Cell stress & chaperones. 2024 Jan; ?(?):. doi: 10.1016/j.cstres.2024.01.001. [PMID: 38219840]
  • Rongzhang Chen, Chen Feng, Lujun Chen, Xiao Zheng, Weiwei Fang, Shaoxian Wu, Xinran Gao, Can Chen, Jiayi Yang, Yue Wu, Yuanyuan Chen, Panpan Zheng, Nan Hu, Maoling Yuan, Yuanyuan Fu, Hanjie Ying, Jun Zhou, Jingting Jiang. Single-cell RNA sequencing indicates cordycepin remodels the tumor immune microenvironment to enhance TIGIT blockade's anti-tumor effect in colon cancer. International immunopharmacology. 2024 Jan; 126(?):111268. doi: 10.1016/j.intimp.2023.111268. [PMID: 37992442]
  • H B Zhou, L J Feng, X H Weng, T Wang, H Lu, Y B Bian, Z Y Huang, J L Zhang. Inhibition mechanism of cordycepin and ergosterol from Cordyceps militaris Link. against xanthine oxidase and cyclooxygenase-2. International journal of biological macromolecules. 2023 Dec; 258(Pt 2):128898. doi: 10.1016/j.ijbiomac.2023.128898. [PMID: 38141695]
  • Lujun Chen, Xiao Zheng, Hao Huang, Chen Feng, Shaoxian Wu, Rongzhang Chen, Hongwei Jiang, Maoling Yuan, Yuanyuan Fu, Hanjie Ying, Jun Zhou, Jingting Jiang. Cordycepin synergizes with CTLA-4 blockade to remodel the tumor microenvironment for enhanced cancer immunotherapy. International immunopharmacology. 2023 Aug; 124(Pt A):110786. doi: 10.1016/j.intimp.2023.110786. [PMID: 37611443]
  • P Snega Priya, Raghul Murugan, Bader O Almutairi, Selvaraj Arokiyaraj, P Shanjeev, Jesu Arockiaraj. Delineating the protective action of cordycepin against cadmium induced oxidative stress and gut inflammation through downregulation of NF-κB pathway. Environmental toxicology and pharmacology. 2023 Aug; 102(?):104246. doi: 10.1016/j.etap.2023.104246. [PMID: 37595934]
  • Min Chen, Jiahao Luo, Wenming Jiang, Lijing Chen, Longxing Miao, Chunchao Han. Cordycepin: A review of strategies to improve the bioavailability and efficacy. Phytotherapy research : PTR. 2023 Jun; ?(?):. doi: 10.1002/ptr.7921. [PMID: 37329165]
  • Baiyi Yan, Yanchun Gong, Wei Meng, Huizhen Sun, Wenxi Li, Kaizhi Ding, Caixia Dang, Xiaofei Gao, Wei Sun, Chunhua Yuan, Songhua Wang, Li-Hua Yao. Cordycepin protects islet β-cells against glucotoxicity and lipotoxicity via modulating related proteins of ROS/JNK signaling pathway. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2023 Apr; 163(?):114776. doi: 10.1016/j.biopha.2023.114776. [PMID: 37100012]
  • Xuebing Zhou, Chunyu Yang, Yuan Li, Dan Chen, Tong Wang, Tesi Liu, Wendi Yan, Zhaoxia Su, Bosen Peng, Xiangshan Ren. Cordycepin reprogramming lipid metabolism to block metastasis and EMT via ERO1A/mTOR/SREBP1 axis in cholangiocarcinoma. Life sciences. 2023 Apr; ?(?):121698. doi: 10.1016/j.lfs.2023.121698. [PMID: 37080351]
  • Jinyan Yu, Min Sun, Xiaoyu Wang, Dongmei Qi, Chunchao Han. Poly-pathways metabolomics for high-yielding cordycepin of Cordyceps militaris. Biomedical chromatography : BMC. 2023 Feb; 37(2):e5551. doi: 10.1002/bmc.5551. [PMID: 36408993]
  • Shenglan Qi, Huida Guan, Yongli Wang, Qinqin Fang, Xuemei Cheng, Ping Liu, Hai Wei, Wei Liu, Changhong Wang. Simultaneous determination of cordycepin and its metabolite 3'-deoxyinosine in rat whole blood by ultra-high-performance liquid chromatography coupled with Q Exactive hybrid quadrupole orbitrap high-resolution accurate mass spectrometry and its application to accurate pharmacokinetic studies. Journal of separation science. 2023 Jan; 46(2):e2200602. doi: 10.1002/jssc.202200602. [PMID: 36377517]
  • Shi-Ru Zhang, Miao Pan, Ying-Bin Gao, Ruo-Yue Fan, Xin-Ni Bin, Si-Tong Qian, Cheng-Lun Tang, Han-Jie Ying, Jia-Qi Wu, Ming-Fang He. Efficacy and mechanism study of cordycepin against brain metastases of small cell lung cancer based on zebrafish. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2023 Jan; 109(?):154613. doi: 10.1016/j.phymed.2022.154613. [PMID: 36610112]
  • Rolf Teschke, Tran Dang Xuan. Heavy Metals, Halogenated Hydrocarbons, Phthalates, Glyphosate, Cordycepin, Alcohol, Drugs, and Herbs, Assessed for Liver Injury and Mechanistic Steps. Frontiers in bioscience (Landmark edition). 2022 11; 27(11):314. doi: 10.31083/j.fbl2711314. [PMID: 36472117]
  • Abdulmohsin J Alamoudi, Sami A Alessi, Waleed Y Rizg, Abdulmajeed M Jali, Awaji Y Safhi, Fahad Y Sabei, Sameer Alshehri, Khaled M Hosny, Ashraf B Abdel-Naim. Cordycepin Attenuates Testosterone-Induced Benign Prostatic Hyperplasia in Rats via Modulation of AMPK and AKT Activation. Pharmaceutics. 2022 Aug; 14(8):. doi: 10.3390/pharmaceutics14081652. [PMID: 36015278]
  • Xin Zhang, Xuebing Zhou, Ming Gao, You Lyu, Ying Wang, Chunyu Yang, Yingshi Piao, Xiangshan Ren. [Cordycepin inhibits the proliferation and migration of human gastric cancer cells by suppressing lipid metabolism via AMPK and MAPK activation]. Xi bao yu fen zi mian yi xue za zhi = Chinese journal of cellular and molecular immunology. 2022 Jun; 38(6):513-521. doi: . [PMID: 35732609]
  • Yuanxi Feng, Qiang Huang. Protective effects of cordycepin against d-galactose-induced aging in rats: A view from the heart. Geriatrics & gerontology international. 2022 May; 22(5):433-440. doi: 10.1111/ggi.14376. [PMID: 35352454]
  • Akalesh Kumar Verma. Cordycepin: a bioactive metabolite of Cordyceps militaris and polyadenylation inhibitor with therapeutic potential against COVID-19. Journal of biomolecular structure & dynamics. 2022 05; 40(8):3745-3752. doi: 10.1080/07391102.2020.1850352. [PMID: 33225826]
  • Han Xu, Jing Cheng, Fei He. Cordycepin alleviates myocardial ischemia/reperfusion injury by enhancing autophagy via AMPK-mTOR pathway. Journal of physiology and biochemistry. 2022 May; 78(2):401-413. doi: 10.1007/s13105-021-00816-x. [PMID: 35230668]
  • Ying-Chyi Song, Chuan-Teng Liu, Hui-Ju Lee, Hung-Rong Yen. Cordycepin prevents and ameliorates experimental autoimmune encephalomyelitis by inhibiting leukocyte infiltration and reducing neuroinflammation. Biochemical pharmacology. 2022 03; 197(?):114918. doi: 10.1016/j.bcp.2022.114918. [PMID: 35063441]
  • Shabana Bibi, Mohammad Mehedi Hasan, Yuan-Bing Wang, Stavros P Papadakos, Hong Yu. Cordycepin as a Promising Inhibitor of SARS-CoV-2 RNA Dependent RNA Polymerase (RdRp). Current medicinal chemistry. 2022; 29(1):152-162. doi: 10.2174/0929867328666210820114025. [PMID: 34420502]
  • Jinxiu Wang, Yanchun Gong, Haoyuan Tan, Wenxi Li, Baiyi Yan, Chunfang Cheng, Juan Wan, Wei Sun, Chunhua Yuan, Li-Hua Yao. Cordycepin suppresses glutamatergic and GABAergic synaptic transmission through activation of A1 adenosine receptor in rat hippocampal CA1 pyramidal neurons. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2022 Jan; 145(?):112446. doi: 10.1016/j.biopha.2021.112446. [PMID: 34808556]
  • Tzu-Yun Chou, Hsiao-Ping Kuo, Sheng-Fa Tsai, Shyue-Tsong Huang, Meei-Ju Yang, Shoei-Sheng Lee, Chia-Chuan Chang. Doubled production of cordycepin analogs in cultured Cordyceps militaris by addition of Andrea droppings. Natural product research. 2021 Dec; 35(23):5459-5464. doi: 10.1080/14786419.2020.1781112. [PMID: 32594773]
  • Shi Qi Zuo, Can Li, Yi Lun Liu, Yue Hao Tan, Xing Wan, Tian Xu, Qiang Li, Li Wang, Yong Li Wu, Feng Mei Deng, Bin Tang. Cordycepin inhibits cell senescence by ameliorating lysosomal dysfunction and inducing autophagy through the AMPK and mTOR-p70S6K pathway. FEBS open bio. 2021 10; 11(10):2705-2714. doi: 10.1002/2211-5463.13263. [PMID: 34448542]
  • Suthida Panwong, Methi Wathikthinnakon, Thida Kaewkod, Nunghathai Sawasdee, Yingmanee Tragoolpua, Pa-Thai Yenchitsomanus, Aussara Panya. Cordycepin Sensitizes Cholangiocarcinoma Cells to Be Killed by Natural Killer-92 (NK-92) Cells. Molecules (Basel, Switzerland). 2021 Oct; 26(19):. doi: 10.3390/molecules26195973. [PMID: 34641520]
  • Yu-Ying Chen, Chun-Hsien Chen, Wei-Chen Lin, Chih-Wei Tung, Yung-Chia Chen, Shang-Hsun Yang, Bu-Miin Huang, Rong-Jane Chen. The Role of Autophagy in Anti-Cancer and Health Promoting Effects of Cordycepin. Molecules (Basel, Switzerland). 2021 Aug; 26(16):. doi: 10.3390/molecules26164954. [PMID: 34443541]
  • Tian Lan, Yang Yu, Jing Zhang, Haonan Li, Qiqing Weng, Shuo Jiang, Song Tian, Tonghao Xu, Sha Hu, Guizhi Yang, Yan Zhang, Weixuan Wang, Lexun Wang, Qing Zhu, Xianglu Rong, Jiao Guo. Cordycepin Ameliorates Nonalcoholic Steatohepatitis by Activation of the AMP-Activated Protein Kinase Signaling Pathway. Hepatology (Baltimore, Md.). 2021 08; 74(2):686-703. doi: 10.1002/hep.31749. [PMID: 33576035]
  • Junyu Zhang, Tongtong Jian, Yu Zhang, Guoying Zhang, Jianya Ling. Dynamic content changes of cordycepin and adenosine and transcriptome in Cordyceps kyushuensis Kob at different fermentation stages. Bioprocess and biosystems engineering. 2021 Aug; 44(8):1793-1803. doi: 10.1007/s00449-021-02561-3. [PMID: 33786675]
  • Aussara Panya, Pucharee Songprakhon, Suthida Panwong, Kanyaluck Jantakee, Thida Kaewkod, Yingmanee Tragoolpua, Nunghathai Sawasdee, Vannajan Sanghiran Lee, Piyarat Nimmanpipug, Pa-Thai Yenchitsomanus. Cordycepin Inhibits Virus Replication in Dengue Virus-Infected Vero Cells. Molecules (Basel, Switzerland). 2021 May; 26(11):. doi: 10.3390/molecules26113118. [PMID: 34071102]
  • Xiao-Ling Zhang, Wen-Min Huang, Pei-Chen Tang, Ying Sun, Xin Zhang, Lu Qiu, Bo-Cheng Yu, Xiao-Yan Zhang, Yu-Xin Hong, Yun He, Xiao-Qun Ge. Anti-inflammatory and neuroprotective effects of natural cordycepin in rotenone-induced PD models through inhibiting Drp1-mediated mitochondrial fission. Neurotoxicology. 2021 05; 84(?):1-13. doi: 10.1016/j.neuro.2021.02.002. [PMID: 33549657]
  • Akalesh Kumar Verma, Rohit Aggarwal. Repurposing potential of FDA-approved and investigational drugs for COVID-19 targeting SARS-CoV-2 spike and main protease and validation by machine learning algorithm. Chemical biology & drug design. 2021 04; 97(4):836-853. doi: 10.1111/cbdd.13812. [PMID: 33289334]
  • Xiaobao Gong, Tianju Li, Rongzhen Wan, Lin Sha. Cordycepin attenuates high-fat diet-induced non-alcoholic fatty liver disease via down-regulation of lipid metabolism and inflammatory responses. International immunopharmacology. 2021 Feb; 91(?):107173. doi: 10.1016/j.intimp.2020.107173. [PMID: 33352441]
  • Chang-Wen Ku, Tsung-Jung Ho, Chih-Yang Huang, Pei-Ming Chu, Hsiu-Chung Ou, Pei-Ling Hsieh. Cordycepin Attenuates Palmitic Acid-Induced Inflammation and Apoptosis of Vascular Endothelial Cells through Mediating PI3K/Akt/eNOS Signaling Pathway. The American journal of Chinese medicine. 2021; 49(7):1703-1722. doi: 10.1142/s0192415x21500804. [PMID: 34488549]
  • Dabing Li, Xiaoyan Liu, Lianmei Zhang, Jiayue He, Xianmao Chen, Shuguang Liu, Jiewen Fu, Shangyi Fu, Hanchun Chen, Junjiang Fu, Jingliang Cheng. COVID-19 disease and malignant cancers: The impact for the furin gene expression in susceptibility to SARS-CoV-2. International journal of biological sciences. 2021; 17(14):3954-3967. doi: 10.7150/ijbs.63072. [PMID: 34671211]
  • Warut Kengkittipat, Somrudee Kaewmalun, Mattaka Khongkow, Tawin Iempridee, Angkana Jantimaporn, Phichaporn Bunwatcharaphansakun, Jakarwan Yostawonkul, Teerapong Yata, Waranyoo Phoolcharoen, Katawut Namdee. Improvement of the multi-performance biocharacteristics of cordycepin using BiloNiosome-core/chitosan-shell hybrid nanocarriers. Colloids and surfaces. B, Biointerfaces. 2021 Jan; 197(?):111369. doi: 10.1016/j.colsurfb.2020.111369. [PMID: 33032178]
  • Hasan Riza Aydin, Cagri Akin Sekerci, Ertugrul Yigit, Hatice Kucuk, Huseyin Kocakgol, Seyfi Kartal, Yiloren Tanidir, Orhan Deger. Protective effect of cordycepin on experimental renal ischemia/reperfusion injury in rats. Archivio italiano di urologia, andrologia : organo ufficiale [di] Societa italiana di ecografia urologica e nefrologica. 2020 Dec; 92(4):. doi: 10.4081/aiua.2020.4.340. [PMID: 33348963]
  • Liyang Yang, Guilan Li, Zhi Chai, Qiang Gong, Jianquan Guo. Synthesis of cordycepin: Current scenario and future perspectives. Fungal genetics and biology : FG & B. 2020 10; 143(?):103431. doi: 10.1016/j.fgb.2020.103431. [PMID: 32610064]
  • Jing Yang, Yiwen Zhou, Jinsong Shi. Cordycepin protects against acute pancreatitis by modulating NF-κB and NLRP3 inflammasome activation via AMPK. Life sciences. 2020 Jun; 251(?):117645. doi: 10.1016/j.lfs.2020.117645. [PMID: 32268154]
  • Syed Amir Ashraf, Abd Elmoneim O Elkhalifa, Arif Jamal Siddiqui, Mitesh Patel, Amir Mahgoub Awadelkareem, Mejdi Snoussi, Mohammad Saquib Ashraf, Mohd Adnan, Sibte Hadi. Cordycepin for Health and Wellbeing: A Potent Bioactive Metabolite of an Entomopathogenic Cordyceps Medicinal Fungus and Its Nutraceutical and Therapeutic Potential. Molecules (Basel, Switzerland). 2020 Jun; 25(12):. doi: 10.3390/molecules25122735. [PMID: 32545666]
  • Tesi Liu, Guang Zhu, Wendi Yan, You Lv, Xue Wang, Guang Jin, Minghua Cui, Zhenhua Lin, Xiangshan Ren. Cordycepin Inhibits Cancer Cell Proliferation and Angiogenesis through a DEK Interaction via ERK Signaling in Cholangiocarcinoma. The Journal of pharmacology and experimental therapeutics. 2020 05; 373(2):279-289. doi: 10.1124/jpet.119.263202. [PMID: 32102917]
  • Han Zhang, Yu-Xian Wang, Xin-Xin Tong, Wallace Yokoyama, Jing Cao, Fang Wang, Cheng Peng, Jin-Lin Guo. Overexpression of ribonucleotide reductase small subunit, RNRM, increases cordycepin biosynthesis in transformed Cordyceps militaris. Chinese journal of natural medicines. 2020 May; 18(5):393-400. doi: 10.1016/s1875-5364(20)30046-7. [PMID: 32451097]
  • Xue-Ying Li, Homng Tao, Can Jin, Zhen-Yun DU, Wen-Feng Liao, Qing-Jiu Tang, Kan Ding. Cordycepin inhibits pancreatic cancer cell growth in vitro and in vivo via targeting FGFR2 and blocking ERK signaling. Chinese journal of natural medicines. 2020 May; 18(5):345-355. doi: 10.1016/s1875-5364(20)30041-8. [PMID: 32451092]
  • Rirong Yang, Xiaoli Wang, Deshuang Xi, Jian Mo, Ke Wang, Shunrong Luo, Jiao Wei, Zhenghua Ren, Hui Pang, Yu Luo. Cordycepin Attenuates IFN-γ-Induced Macrophage IP-10 and Mig Expressions by Inhibiting STAT1 Activity in CFA-Induced Inflammation Mice Model. Inflammation. 2020 Apr; 43(2):752-764. doi: 10.1007/s10753-019-01162-3. [PMID: 31873836]
  • Huida Guan, Shenglan Qi, Wei Liu, Chao Ma, Changhong Wang. A rapid assay to screen adenosine deaminase inhibitors from Ligustri Lucidi Fructus against metabolism of cordycepin utilizing ultra-high-performance liquid chromatography-tandem mass spectrometry. Biomedical chromatography : BMC. 2020 Mar; 34(3):e4779. doi: 10.1002/bmc.4779. [PMID: 31845520]
  • Simon A Hawley, Fiona A Ross, Fiona M Russell, Abdelmadjid Atrih, Douglas J Lamont, D Grahame Hardie. Mechanism of Activation of AMPK by Cordycepin. Cell chemical biology. 2020 02; 27(2):214-222.e4. doi: 10.1016/j.chembiol.2020.01.004. [PMID: 31991096]
  • Feng Han, Meng Dou, Yuxiang Wang, Cuixiang Xu, Yang Li, XiaoMing Ding, WuJun Xue, Jin Zheng, Puxun Tian, Chenguang Ding. Cordycepin protects renal ischemia/reperfusion injury through regulating inflammation, apoptosis, and oxidative stress. Acta biochimica et biophysica Sinica. 2020 Feb; 52(2):125-132. doi: 10.1093/abbs/gmz145. [PMID: 31951250]
  • Qing-Ying Luo, Hong-Fu Cao, Shu-Kun Liu, Min Wu, Shan-Shan Li, Zhi-Qing Zhang, An-Jun Chen, Guang-Hui Shen, He-Jun Wu, Mei-Liang Li, Xing-Yan Liu, Yong Jiang, Jun-Fei Bi, Zheng-You He. Novel liquid fermentation medium of Cordyceps militaris and optimization of hydrothermal reflux extraction of cordycepin. Journal of Asian natural products research. 2020 Feb; 22(2):167-178. doi: 10.1080/10286020.2018.1539080. [PMID: 30507305]
  • Chuqing Cao, Shuting Yang, Zhiguang Zhou. The potential application of Cordyceps in metabolic-related disorders. Phytotherapy research : PTR. 2020 Feb; 34(2):295-305. doi: 10.1002/ptr.6536. [PMID: 31667949]
  • Zhongrong Guo, Wen Chen, Guisen Dai, Yuanliang Huang. Cordycepin suppresses the migration and invasion of human liver cancer cells by downregulating the expression of CXCR4. International journal of molecular medicine. 2020 01; 45(1):141-150. doi: 10.3892/ijmm.2019.4391. [PMID: 31746344]
  • Xiao-Mei Tao, Peng-Fei Liu, Hong-Yan Gu, Dong-Bo Lian, Lei Gao, Wei-Wei Tao, Dan Yan, Bin Zhao. Cordycepin Alleviates Anterior Cruciate Ligament Transection (ACLT)-Induced Knee Osteoarthritis Through Regulating TGF-β Activity and Autophagy. Drug design, development and therapy. 2020; 14(?):2809-2817. doi: 10.2147/dddt.s251893. [PMID: 32764880]
  • Xiao-Zhong Liao, Ying Gao, Hong-Wei Zhao, Mi Zhou, Dan-Lei Chen, Lan-Ting Tao, Wei Guo, Ling-Ling Sun, Chu-Ying Gu, Han-Rui Chen, Zhi-Wei Xiao, Jia-Xing Zhang, Mei-Fang He, Li-Zhu Lin. Cordycepin Reverses Cisplatin Resistance in Non-small Cell Lung Cancer by Activating AMPK and Inhibiting AKT Signaling Pathway. Frontiers in cell and developmental biology. 2020; 8(?):609285. doi: 10.3389/fcell.2020.609285. [PMID: 33520990]
  • Long-Zhen Lin, Tao Wei, Lin Yin, Yuan Zou, Wei-Fang Bai, Zhi-Wei Ye, Fan Yun, Jun-Fang Lin, Li-Qiong Guo. An Efficient Strategy for Enhancement of Bioactive Compounds in the Fruit Body of Caterpillar Medicinal Mushroom, Cordyceps militaris (Ascomycetes), by Spraying Biotic Elicitors. International journal of medicinal mushrooms. 2020; 22(12):1161-1170. doi: 10.1615/intjmedmushrooms.2020037155. [PMID: 33463933]
  • Hucheng Zhang, Lina Deng, Zhengtian Zhang, Yusen Guan, Bo Li, Jun Yang, Haitao Fan, Guowei Yang, Xiaofeng Chen, Jinjun Zhang, Xiulan Xin, Frank Vriesekoop. Enhanced Cordycepin Production in Caterpillar Medicinal Mushroom, Cordyceps militaris (Ascomycetes), Mutated by a Multifunctional Plasma Mutagenesis System. International journal of medicinal mushrooms. 2020; 22(12):1147-1159. doi: 10.1615/intjmedmushrooms.2020037153. [PMID: 33463932]
  • Shu-Xia Tao, Dan Xue, Zi-Hui Lu, Hai-Long Huang. Effects of Substrates on the Production of Fruiting Bodies and the Bioactive Components by Different Cordyceps militaris Strains (Ascomycetes). International journal of medicinal mushrooms. 2020; 22(1):55-63. doi: 10.1615/intjmedmushrooms.2019033257. [PMID: 32463998]
  • Tobie D Lee, Olivia W Lee, Kyle R Brimacombe, Lu Chen, Rajarshi Guha, Sabrina Lusvarghi, Bethilehem G Tebase, Carleen Klumpp-Thomas, Robert W Robey, Suresh V Ambudkar, Min Shen, Michael M Gottesman, Matthew D Hall. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein. Molecular pharmacology. 2019 11; 96(5):629-640. doi: 10.1124/mol.119.115964. [PMID: 31515284]
  • Tao Cao, Ricong Xu, Yi Xu, Yang Liu, Dongli Qi, Qijun Wan. The protective effect of Cordycepin on diabetic nephropathy through autophagy induction in vivo and in vitro. International urology and nephrology. 2019 Oct; 51(10):1883-1892. doi: 10.1007/s11255-019-02241-y. [PMID: 31359358]
  • Peng Qin, ZhiYe Wang, DengXue Lu, HongMei Kang, Guang Li, Rui Guo, YuHui Zhao, RongBing Han, Bing Ji, Yang Zeng. Neutral Lipid Content in Lipid Droplets: Potential Biomarker of Cordycepin Accumulation in Cordycepin-Producing Fungi. Molecules (Basel, Switzerland). 2019 Sep; 24(18):. doi: 10.3390/molecules24183363. [PMID: 31527427]
  • Hongyue Xu, Bingjie Wu, Xueyan Wang, Fangxue Ma, Yan Li, Yanan An, Chao Wang, Xuefei Wang, Wenjing Luan, Shulin Li, Mingyuan Liu, Jianyi Xu, Hongjuan Wang, Xudong Tang, Lu Yu. Cordycepin regulates body weight by inhibiting lipid droplet formation, promoting lipolysis and recruiting beige adipocytes. The Journal of pharmacy and pharmacology. 2019 Sep; 71(9):1429-1439. doi: 10.1111/jphp.13127. [PMID: 31259423]
  • Junsang Oh, Eunhyun Choi, Deok-Hyo Yoon, Tae-Yong Park, Bhushan Shrestha, Hyung-Kyoon Choi, Gi-Ho Sung. 1H-NMR-Based Metabolic Profiling of Cordyceps militaris to Correlate the Development Process and Anti-Cancer Effect. Journal of microbiology and biotechnology. 2019 Aug; 29(8):1212-1220. doi: 10.4014/jmb.1904.04004. [PMID: 31336431]
  • Tianjiao Li, Liankui Wen, Bijun Cheng. Cordycepin alleviates hepatic lipid accumulation by inducing protective autophagy via PKA/mTOR pathway. Biochemical and biophysical research communications. 2019 08; 516(3):632-638. doi: 10.1016/j.bbrc.2019.06.108. [PMID: 31242974]
  • Tran Ngoc Quy, Tran Dang Xuan, Yusuf Andriana, Hoang-Dung Tran, Tran Dang Khanh, Rolf Teschke. Cordycepin Isolated from Cordyceps militaris: Its Newly Discovered Herbicidal Property and Potential Plant-Based Novel Alternative to Glyphosate. Molecules (Basel, Switzerland). 2019 Aug; 24(16):. doi: 10.3390/molecules24162901. [PMID: 31405038]
  • Chunli Wei, Xiaojun Yao, Zebo Jiang, Yuwei Wang, Dianzheng Zhang, Xi Chen, Xingxing Fan, Chun Xie, Jingliang Cheng, Junjiang Fu, Elaine Lai-Han Leung. Cordycepin Inhibits Drug-resistance Non-small Cell Lung Cancer Progression by Activating AMPK Signaling Pathway. Pharmacological research. 2019 06; 144(?):79-89. doi: 10.1016/j.phrs.2019.03.011. [PMID: 30974169]
  • Nguyen Khoi Song Tran, Goon-Tae Kim, Si-Hyun Park, Dongyup Lee, Soon-Mi Shim, Tae-Sik Park. Fermented Cordyceps militaris Extract Prevents Hepatosteatosis and Adipocyte Hypertrophy in High Fat Diet-Fed Mice. Nutrients. 2019 May; 11(5):. doi: 10.3390/nu11051015. [PMID: 31064103]
  • Ting Hu, Yue Liang, Guishen Zhao, Wenliang Wu, Huafen Li, Yanbin Guo. Selenium Biofortification and Antioxidant Activity in Cordyceps militaris Supplied with Selenate, Selenite, or Selenomethionine. Biological trace element research. 2019 Feb; 187(2):553-561. doi: 10.1007/s12011-018-1386-y. [PMID: 29855849]
  • Xuan Zhao, Guoying Zhang, Caiyi Li, Jianya Ling. Cordycepin and pentostatin biosynthesis gene identified through transcriptome and proteomics analysis of Cordyceps kyushuensis Kob. Microbiological research. 2019 Jan; 218(?):12-21. doi: 10.1016/j.micres.2018.09.005. [PMID: 30454654]
  • Feng Huang, Weihui Li, Hui Xu, Huafeng Qin, Zheng-Guo He. Cordycepin kills Mycobacterium tuberculosis through hijacking the bacterial adenosine kinase. PloS one. 2019; 14(6):e0218449. doi: 10.1371/journal.pone.0218449. [PMID: 31199855]
  • Xin Jiang, Tang P-C, Qin Chen, Xin Zhang, Fan Y-Y, Bo-Cheng Yu, Gu X-X, Ying Sun, Ge X-Q, Zhang X-L. Cordycepin Exerts Neuroprotective Effects via an Anti-Apoptotic Mechanism based on the Mitochondrial Pathway in a Rotenone-Induced Parkinsonism Rat Model. CNS & neurological disorders drug targets. 2019; 18(8):609-620. doi: 10.2174/1871527318666190905152138. [PMID: 31486758]
  • Tingli Sun, Wenpeng Dong, Guohong Jiang, Jingbo Yang, Jizhang Liu, Lijie Zhao, Peilong Ma. Cordyceps militaris Improves Chronic Kidney Disease by Affecting TLR4/NF-κB Redox Signaling Pathway. Oxidative medicine and cellular longevity. 2019; 2019(?):7850863. doi: 10.1155/2019/7850863. [PMID: 31049139]
  • Lina Zhu, Hongxia Zhang, Yangfang Liu, Jing-Song Zhang, Xinhua Gao, Qingjiu Tang. Effect of Culture Time on the Bioactive Components in the Fruit Bodies of Caterpillar Mushroom, Cordyceps militaris CM-H0810 (Ascomycetes). International journal of medicinal mushrooms. 2019; 21(11):1107-1114. doi: 10.1615/intjmedmushrooms.2019032704. [PMID: 32450020]
  • Yanan An, Yan Li, Xueyan Wang, Zhaobin Chen, Hongyue Xu, Lingyu Wu, Shulin Li, Chao Wang, Wenjing Luan, Xuefei Wang, Mingyuan Liu, Xudong Tang, Lu Yu. Cordycepin reduces weight through regulating gut microbiota in high-fat diet-induced obese rats. Lipids in health and disease. 2018 Dec; 17(1):276. doi: 10.1186/s12944-018-0910-6. [PMID: 30522511]
  • Jiapeng Tang, Zhenqing Qian, Hui Wu. Enhancing cordycepin production in liquid static cultivation of Cordyceps militaris by adding vegetable oils as the secondary carbon source. Bioresource technology. 2018 Nov; 268(?):60-67. doi: 10.1016/j.biortech.2018.07.128. [PMID: 30071414]
  • Na-Ra Han, Phil-Dong Moon, Hyung-Min Kim, Hyun-Ja Jeong. Cordycepin ameliorates skin inflammation in a DNFB-challenged murine model of atopic dermatitis. Immunopharmacology and immunotoxicology. 2018 Oct; 40(5):401-407. doi: 10.1080/08923973.2018.1510964. [PMID: 30183461]
  • Hao Song, Li-Ping Huang, Yuping Li, Chao Liu, Songhua Wang, Wei Meng, Shanshan Wei, Xin-Ping Liu, Yanchun Gong, Li-Hua Yao. Neuroprotective effects of cordycepin inhibit Aβ-induced apoptosis in hippocampal neurons. Neurotoxicology. 2018 09; 68(?):73-80. doi: 10.1016/j.neuro.2018.07.008. [PMID: 30031108]
  • Rui Qing, Zezhi Huang, Yufei Tang, Qingke Xiang, Fan Yang. Cordycepin alleviates lipopolysaccharide-induced acute lung injury via Nrf2/HO-1 pathway. International immunopharmacology. 2018 Jul; 60(?):18-25. doi: 10.1016/j.intimp.2018.04.032. [PMID: 29702279]
  • Ha-Kyoung Kwon, Woo-Ri Jo, Hye-Jin Park. Immune-enhancing activity of C. militaris fermented with Pediococcus pentosaceus (GRC-ON89A) in CY-induced immunosuppressed model. BMC complementary and alternative medicine. 2018 Feb; 18(1):75. doi: 10.1186/s12906-018-2133-9. [PMID: 29475435]
  • Bing Bai, Ondřej Novák, Karin Ljung, Johannes Hanson, Leónie Bentsink. Combined transcriptome and translatome analyses reveal a role for tryptophan-dependent auxin biosynthesis in the control of DOG1-dependent seed dormancy. The New phytologist. 2018 02; 217(3):1077-1085. doi: 10.1111/nph.14885. [PMID: 29139127]
  • Kazuki Motomura, Tomokazu Kawashima, Frédéric Berger, Tetsu Kinoshita, Tetsuya Higashiyama, Daisuke Maruyama. A pharmacological study of Arabidopsis cell fusion between the persistent synergid and endosperm. Journal of cell science. 2018 01; 131(2):. doi: 10.1242/jcs.204123. [PMID: 28808086]
  • Liang-Tzung Lin, Ying-Jang Lai, She-Ching Wu, Wei-Hsuan Hsu, Chen-Jei Tai. Optimal conditions for cordycepin production in surface liquid-cultured Cordyceps militaris treated with porcine liver extracts for suppression of oral cancer. Journal of food and drug analysis. 2018 01; 26(1):135-144. doi: 10.1016/j.jfda.2016.11.021. [PMID: 29389548]
  • Ji-Sun Shin, Soo-Hak Chung, Woo-Seok Lee, Je-Young Lee, Jong-Lae Kim, Kyung-Tae Lee. Immunostimulatory effects of cordycepin-enriched WIB-801CE from Cordyceps militaris in splenocytes and cyclophosphamide-induced immunosuppressed mice. Phytotherapy research : PTR. 2018 Jan; 32(1):132-139. doi: 10.1002/ptr.5960. [PMID: 29168246]
  • Yongliang Xia, Feifei Luo, Yanfang Shang, Peilin Chen, Yuzhen Lu, Chengshu Wang. Fungal Cordycepin Biosynthesis Is Coupled with the Production of the Safeguard Molecule Pentostatin. Cell chemical biology. 2017 12; 24(12):1479-1489.e4. doi: 10.1016/j.chembiol.2017.09.001. [PMID: 29056419]
  • Guilherme M do Carmo, Pedro H Doleski, Mariângela F de Sá, Thirssa H Grando, Maria I Azevedo, Alessandra G Manzoni, Daniela B R Leal, Lucas T Gressler, Luan C Henker, Ricardo E Mendes, Matheus D Baldissera, Silvia G Monteiro, Lenita M Stefani, Aleksandro S Da Silva. Treatment with 3'-deoxyadenosine and deoxycoformycin in mice infected by Trypanosoma cruzi and its side effect on purinergic enzymes. Microbial pathogenesis. 2017 Dec; 113(?):51-56. doi: 10.1016/j.micpath.2017.10.030. [PMID: 29051060]
  • Yongming Zeng, Shuyi Lian, Danfeng Li, Xiaosheng Lin, Bozan Chen, Hongfa Wei, Tian Yang. Anti-hepatocarcinoma effect of cordycepin against NDEA-induced hepatocellular carcinomas via the PI3K/Akt/mTOR and Nrf2/HO-1/NF-κB pathway in mice. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2017 Nov; 95(?):1868-1875. doi: 10.1016/j.biopha.2017.09.069. [PMID: 28968944]
  • Jian Jin, Can Zhong, You Qin, Yuan Cai, Lanping Zhen, Bingbing Shen, Lin Chen, Dan Wan, Yuhui Qin, Shuihan Zhang. A new cordycepin-producing caterpillar fungus Ophiocordyceps xuefengensis with artificial infection to the host, cultivation of mycelia and stromata. FEMS microbiology letters. 2017 Nov; 364(20):. doi: 10.1093/femsle/fnx181. [PMID: 29044404]
  • Wanwipa Vongsangnak, Nachon Raethong, Warasinee Mujchariyakul, Nam Ninh Nguyen, Hon Wai Leong, Kobkul Laoteng. Genome-scale metabolic network of Cordyceps militaris useful for comparative analysis of entomopathogenic fungi. Gene. 2017 Aug; 626(?):132-139. doi: 10.1016/j.gene.2017.05.027. [PMID: 28512059]
  • Hong-Li Cao, Zi-Jin Liu, Zheng Chang. Cordycepin induces apoptosis in human bladder cancer cells via activation of A3 adenosine receptors. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine. 2017 Jul; 39(7):1010428317706915. doi: 10.1177/1010428317706915. [PMID: 28714368]
  • Ye Tian, Chuan-Xi Wang, Zheng-Ming Qian, Zhou Li, Miao-Xia Zhou, Wan-Yang Sun, Xin-Sheng Yao, Wen-Jia Li, Hao Gao. [Simultaneous determination of cordycepin and 2'-deoxyadenosine in Cordyceps genus by online SPE-HPLC]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2017 May; 42(10):1932-1938. doi: 10.19540/j.cnki.cjcmm.20170223.025. [PMID: 29090553]
  • Nai-Wen Su, Shu-Hua Wu, Chih-Wen Chi, Chung-Ji Liu, Tung-Hu Tsai, Yu-Jen Chen. Metronomic Cordycepin Therapy Prolongs Survival of Oral Cancer-Bearing Mice and Inhibits Epithelial-Mesenchymal Transition. Molecules (Basel, Switzerland). 2017 Apr; 22(4):. doi: 10.3390/molecules22040629. [PMID: 28406456]
  • Jingbo Wang, Rui Liu, Baoxiu Liu, Yan Yang, Jun Xie, Naishuo Zhu. Systems Pharmacology-based strategy to screen new adjuvant for hepatitis B vaccine from Traditional Chinese Medicine Ophiocordyceps sinensis. Scientific reports. 2017 03; 7(?):44788. doi: 10.1038/srep44788. [PMID: 28317886]
  • Chong Chen, Xin-Ping Liu, Wei Jiang, Bin Zeng, Wei Meng, Li-Ping Huang, Yu-Ping Li, Wei Sun, Chun-Hua Yuan, Li-Hua Yao. Anti-effects of cordycepin to hypoxia-induced membrane depolarization on hippocampal CA1 pyramidal neuron. European journal of pharmacology. 2017 Feb; 796(?):1-6. doi: 10.1016/j.ejphar.2016.12.021. [PMID: 27988284]
  • Chia-Woei Wang, Wei-Hsuan Hsu, Chen-Jei Tai. Antimetastatic effects of cordycepin mediated by the inhibition of mitochondrial activity and estrogen-related receptor α in human ovarian carcinoma cells. Oncotarget. 2017 Jan; 8(2):3049-3058. doi: 10.18632/oncotarget.13829. [PMID: 27966445]
  • Fumiyuki Soma, Junro Mogami, Takuya Yoshida, Midori Abekura, Fuminori Takahashi, Satoshi Kidokoro, Junya Mizoi, Kazuo Shinozaki, Kazuko Yamaguchi-Shinozaki. ABA-unresponsive SnRK2 protein kinases regulate mRNA decay under osmotic stress in plants. Nature plants. 2017 01; 3(?):16204. doi: 10.1038/nplants.2016.204. [PMID: 28059081]
  • Zhi-Bin Liu, Chao Liu, Bin Zeng, Li-Ping Huang, Li-Hua Yao. Modulation Effects of Cordycepin on Voltage-Gated Sodium Channels in Rat Hippocampal CA1 Pyramidal Neurons in the Presence/Absence of Oxygen. Neural plasticity. 2017; 2017(?):2459053. doi: 10.1155/2017/2459053. [PMID: 29225974]
  • Anhui Chen, Yulong Wang, Ying Shao, Bo Huang. A Novel Technique for Rejuvenation of Degenerated Caterpillar Medicinal Mushroom, Cordyceps militaris (Ascomycetes), a Valued Traditional Chinese Medicine. International journal of medicinal mushrooms. 2017; 19(1):87-91. doi: 10.1615/intjmedmushrooms.v19.i1.90. [PMID: 28322150]
  • Jin Li, Liping Zhong, Haibo Zhu, Fengzhong Wang. The Protective Effect of Cordycepin on D-Galactosamine/Lipopolysaccharide-Induced Acute Liver Injury. Mediators of inflammation. 2017; 2017(?):3946706. doi: 10.1155/2017/3946706. [PMID: 28522898]
  • Li-ping Zhong, Jin Li, Feng-zhong Wang, Hai-bo Zhu, Xu-jie Hou. [Protective effect and underlying mechanism of cordycepin on non-alcoholic fatty liver in ob/ob mice]. Yao xue xue bao = Acta pharmaceutica Sinica. 2017 01; 52(1):106-12. doi: . [PMID: 29911800]
  • Chao Yang, Linlin Zhao, Weitang Yuan, Jianguo Wen. Cordycepin induces apoptotic cell death and inhibits cell migration in renal cell carcinoma via regulation of microRNA-21 and PTEN phosphatase. Biomedical research (Tokyo, Japan). 2017; 38(5):313-320. doi: 10.2220/biomedres.38.313. [PMID: 29070781]
  • In-Hu Hwang, Seung Yoon Oh, Hyun-Jin Jang, Eunbi Jo, Jong Cheon Joo, Kyung-Bok Lee, Hwa-Seung Yoo, Mi Young Lee, Soo Jung Park, Ik-Soon Jang. Cordycepin promotes apoptosis in renal carcinoma cells by activating the MKK7-JNK signaling pathway through inhibition of c-FLIPL expression. PloS one. 2017; 12(10):e0186489. doi: 10.1371/journal.pone.0186489. [PMID: 29045468]
  • Jian Wang, Chen Chen, Zhihui Jiang, Meng Wang, Hai Jiang, Xiaoying Zhang. Protective effect of Cordyceps militaris extract against bisphenol A induced reproductive damage. Systems biology in reproductive medicine. 2016 Aug; 62(4):249-57. doi: 10.1080/19396368.2016.1182234. [PMID: 27315037]
  • Opeyemi J Olatunji, Yan Feng, Oyenike O Olatunji, Jian Tang, Zhen Ouyang, Zhaoliang Su. Cordycepin protects PC12 cells against 6-hydroxydopamine induced neurotoxicity via its antioxidant properties. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2016 Jul; 81(?):7-14. doi: 10.1016/j.biopha.2016.03.009. [PMID: 27261571]