Vitexin (BioDeep_00000017285)

Main id: BioDeep_00000000275

Secondary id: BioDeep_00000018310, BioDeep_00000269932

human metabolite PANOMIX_OTCML-2023 natural product BioNovoGene_Lab2019


代谢物信息卡片


5,7-dihydroxy-2-(4-hydroxyphenyl)-8-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-4H-chromen-4-one

化学式: C21H20O10 (432.1056)
中文名称: 牡荆素
谱图信息: 最多检出来源 Viridiplantae(plant) 24.97%

分子结构信息

SMILES: C1(O)=C([C@@H]2O[C@@H]([C@H]([C@@H]([C@H]2O)O)O)CO)C2OC(C3C=CC(O)=CC=3)=CC(=O)C=2C(O)=C1
InChI: InChI=1S/C21H20O10/c22-7-14-17(27)18(28)19(29)21(31-14)16-11(25)5-10(24)15-12(26)6-13(30-20(15)16)8-1-3-9(23)4-2-8/h1-6,14,17-19,21-25,27-29H,7H2/t14-,17-,18+,19-,21+/m1/s1

描述信息

Vitexin is an apigenin flavone glycoside, which is found in the passion flower, bamboo leaves and pearl millet It has a role as a platelet aggregation inhibitor, an EC 3.2.1.20 (alpha-glucosidase) inhibitor, an antineoplastic agent and a plant metabolite. It is a C-glycosyl compound and a trihydroxyflavone. It is functionally related to an apigenin. It is a conjugate acid of a vitexin-7-olate.
Vitexin is a natural product found in Itea chinensis, Salacia chinensis, and other organisms with data available.
See also: Cannabis sativa subsp. indica top (part of); Cytisus scoparius flowering top (part of); Fenugreek seed (part of) ... View More ...
An apigenin flavone glycoside, which is found in the passion flower, bamboo leaves and pearl millet
Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2].
Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2].

同义名列表

43 个代谢物同义名

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-4H-chromen-4-one; 5,7-dihydroxy-2-(4-hydroxyphenyl)-8-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]chromen-4-one; 5,7-dihydroxy-2-(4-hydroxyphenyl)-8-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]chromen-4-one; (1S)-1,5-anhydro-1-[5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-chromen-8-yl]-D-glucitol; (1S)-1,5-anhydro-1-(5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-chromen-8-yl)-D-glucitol; 4H-1-Benzopyran-4-one, 5,7-dihydroxy-8-.beta.-D-glucopyranosyl-2-(4-hydroxyphenyl)-; 4H-1-Benzopyran-4-one, 8-.beta.-D-glucopyranosyl-5,7-dihydroxy-2-(4-hydroxyphenyl)-; 4H-1-Benzopyran-4-one, 5,7-dihydroxy-8-beta-D-glucopyranosyl-2-(4-hydroxyphenyl)-; 4H-1-Benzopyran-4-one, 8-beta-D-glucopyranosyl-5,7-dihydroxy-2-(4-hydroxyphenyl)-; 8-beta-D-Glucopyranosyl-5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one; Vitexin, United States Pharmacopeia (USP) Reference Standard; FLAVONE, 8-.BETA.-D-GLUCOPYRANOSYL-4,5,7-TRIHYDROXY-; 5,7,4-Trihydroxyflavone 8-C-.beta.-D-glucopyranoside; VITEXIN (CONSTITUENT OF HAWTHORN LEAF WITH FLOWER); FLAVONE, 8-beta-D-GLUCOPYRANOSYL-4,5,7-TRIHYDROXY-; Vitexin, primary pharmaceutical reference standard; (hydroxymethyl)tetrahydro-2H-pyran-2-yl)-; Flavone, 8-D-glucosyl-4,5,7-trihydroxy-; 8-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-; APIGENIN-8-C-.BETA.-D-GLUCOPYRANOSIDE; 8-D-Glucosyl-4,5,7-trihydroxyflavone; 8-beta-D-Glucopyranosyl-apigenin; Apigenin 8-C-.beta.-D-glucoside; Vitexin, analytical standard; SGEWCQFRYRRZDC-VPRICQMDSA-N; apigenin 8-C-glucoside; Apigenin-8-C-glucoside; 8C-hexosyl apigenin; 8-glycosyl-apigenin; 8-glycosylapigenin; VITEXIN [USP-RS]; VITEXIN (USP-RS); VITEXIN [WHO-DD]; UNII-9VP70K75OK; VITEXIN [INCI]; ORIENTOSIDE; Vitexin,(S); 9VP70K75OK; VITEXINA; VITEXINE; Vitexin; Vitxein; Vitexin



数据库引用编号

23 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

940 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 14 AKT1, BCL2, CASP3, CAT, HIF1A, MAPK8, MTOR, NFE2L2, PIK3CA, PPARG, PRKAA2, PTGS2, TP53, VEGFA
Peripheral membrane protein 2 MTOR, PTGS2
Endoplasmic reticulum membrane 4 BCL2, HMOX1, MTOR, PTGS2
Nucleus 12 AKT1, BCL2, CASP3, HIF1A, HMOX1, MAPK8, MTOR, NFE2L2, PPARG, PRKAA2, TP53, VEGFA
cytosol 13 AKT1, BCL2, CASP3, CAT, HIF1A, HMOX1, MAPK8, MTOR, NFE2L2, PIK3CA, PPARG, PRKAA2, TP53
dendrite 2 MTOR, PRKAA2
nuclear body 1 HIF1A
phagocytic vesicle 1 MTOR
centrosome 2 NFE2L2, TP53
nucleoplasm 10 AKT1, CASP3, HIF1A, HMOX1, MAPK8, MTOR, NFE2L2, PPARG, PRKAA2, TP53
RNA polymerase II transcription regulator complex 3 HIF1A, NFE2L2, PPARG
Cell membrane 2 AKT1, TNF
Cytoplasmic side 2 HMOX1, MTOR
lamellipodium 2 AKT1, PIK3CA
Golgi apparatus membrane 1 MTOR
Synapse 1 MAPK8
cell cortex 1 AKT1
cell surface 2 TNF, VEGFA
glutamatergic synapse 2 AKT1, CASP3
Golgi apparatus 3 NFE2L2, PRKAA2, VEGFA
Golgi membrane 2 INS, MTOR
lysosomal membrane 2 GAA, MTOR
neuronal cell body 3 CASP3, PRKAA2, TNF
postsynapse 1 AKT1
Cytoplasm, cytosol 1 NFE2L2
Lysosome 2 GAA, MTOR
plasma membrane 5 AKT1, GAA, NFE2L2, PIK3CA, TNF
Membrane 9 AKT1, BCL2, CAT, GAA, HMOX1, MTOR, PRKAA2, TP53, VEGFA
axon 2 MAPK8, PRKAA2
caveola 1 PTGS2
extracellular exosome 2 CAT, GAA
Lysosome membrane 2 GAA, MTOR
endoplasmic reticulum 5 BCL2, HMOX1, PTGS2, TP53, VEGFA
extracellular space 6 HMOX1, IL10, IL6, INS, TNF, VEGFA
lysosomal lumen 1 GAA
perinuclear region of cytoplasm 3 HMOX1, PIK3CA, PPARG
adherens junction 1 VEGFA
intercalated disc 1 PIK3CA
mitochondrion 3 BCL2, CAT, TP53
protein-containing complex 6 AKT1, BCL2, CAT, HIF1A, PTGS2, TP53
intracellular membrane-bounded organelle 3 CAT, GAA, PPARG
Microsome membrane 2 MTOR, PTGS2
postsynaptic density 1 CASP3
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Secreted 5 GAA, IL10, IL6, INS, VEGFA
extracellular region 7 CAT, GAA, IL10, IL6, INS, TNF, VEGFA
Mitochondrion outer membrane 2 BCL2, MTOR
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 3 BCL2, HMOX1, MTOR
Mitochondrion matrix 1 TP53
mitochondrial matrix 2 CAT, TP53
transcription regulator complex 1 TP53
motile cilium 1 HIF1A
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 TP53
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 1 TNF
Secreted, extracellular space, extracellular matrix 1 VEGFA
microtubule cytoskeleton 1 AKT1
nucleolus 1 TP53
axon cytoplasm 1 HIF1A
cell-cell junction 1 AKT1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
vesicle 1 AKT1
Membrane raft 1 TNF
pore complex 1 BCL2
Cytoplasm, cytoskeleton 1 TP53
focal adhesion 1 CAT
spindle 1 AKT1
extracellular matrix 1 VEGFA
Peroxisome 1 CAT
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
Nucleus, PML body 2 MTOR, TP53
PML body 2 MTOR, TP53
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
secretory granule 1 VEGFA
nuclear speck 2 HIF1A, PRKAA2
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
receptor complex 1 PPARG
neuron projection 1 PTGS2
ciliary basal body 1 AKT1
chromatin 4 HIF1A, NFE2L2, PPARG, TP53
mediator complex 1 NFE2L2
phagocytic cup 1 TNF
site of double-strand break 1 TP53
nuclear envelope 1 MTOR
Endomembrane system 1 MTOR
endosome lumen 1 INS
tertiary granule membrane 1 GAA
cytoplasmic stress granule 1 PRKAA2
Nucleus speckle 1 HIF1A
euchromatin 1 HIF1A
germ cell nucleus 1 TP53
replication fork 1 TP53
myelin sheath 1 BCL2
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 2 CAT, INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 3 IL6, INS, PTGS2
nuclear matrix 1 TP53
transcription repressor complex 1 TP53
platelet alpha granule lumen 1 VEGFA
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
transport vesicle 1 INS
azurophil granule membrane 1 GAA
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
Single-pass type IV membrane protein 1 HMOX1
[Isoform 1]: Nucleus 1 TP53
protein-DNA complex 1 NFE2L2
ficolin-1-rich granule membrane 1 GAA
basal dendrite 1 MAPK8
death-inducing signaling complex 1 CASP3
nucleotide-activated protein kinase complex 1 PRKAA2
Cytoplasmic vesicle, phagosome 1 MTOR
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
catalase complex 1 CAT
interleukin-6 receptor complex 1 IL6
autolysosome lumen 1 GAA
BAD-BCL-2 complex 1 BCL2
[N-VEGF]: Cytoplasm 1 VEGFA
[VEGFA]: Secreted 1 VEGFA
[Isoform L-VEGF189]: Endoplasmic reticulum 1 VEGFA
[Isoform VEGF121]: Secreted 1 VEGFA
[Isoform VEGF165]: Secreted 1 VEGFA
VEGF-A complex 1 VEGFA
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Hazal Eken, Nurcan Bektas Turkmen, Behiye Senel, Rana Arslan. Examination of the effects of vitexin and vitexin-loaded solid lipid nanoparticles on neuropathic pain and possible mechanisms of action. Neuropharmacology. 2024 Aug; 253(?):109961. doi: 10.1016/j.neuropharm.2024.109961. [PMID: 38657947]
  • Xin Huang, Xiaopei Hu, Suhong Li, Tuoping Li. Vitexin-rhamnoside encapsulated with zein-pectin nanoparticles relieved high-fat diet induced lipid metabolism disorders in mice by altering the gut microbiota. International journal of biological macromolecules. 2024 Apr; 264(Pt 2):130704. doi: 10.1016/j.ijbiomac.2024.130704. [PMID: 38460630]
  • Jaroslaw Czubinski, Krzysztof Dwiecki. Effect of different oligomerization assemblies of γ-conglutin on its interaction behavior with vitexin. Journal of the science of food and agriculture. 2024 Apr; 104(6):3381-3391. doi: 10.1002/jsfa.13223. [PMID: 38100295]
  • Jiayu Song, Hongri Wang, Jingyi Sheng, Wen Zhang, Juan Lei, Weihua Gan, Fangfang Cai, Yunwen Yang. Vitexin attenuates chronic kidney disease by inhibiting renal tubular epithelial cell ferroptosis via NRF2 activation. Molecular medicine (Cambridge, Mass.). 2023 10; 29(1):147. doi: 10.1186/s10020-023-00735-1. [PMID: 37891461]
  • Sheng Zhang, Shunxiao Zhang, Hua Wang, Yue Chen. Vitexin ameliorated diabetic nephropathy via suppressing GPX4-mediated ferroptosis. European journal of pharmacology. 2023 May; 951(?):175787. doi: 10.1016/j.ejphar.2023.175787. [PMID: 37172926]
  • Sornsawan Chomchoey, Supakchon Klongdee, Methavee Peanparkdee, Utai Klinkesorn. Fabrication and characterization of nanoemulsions for encapsulation and delivery of vitexin: antioxidant activity, storage stability and in vitro digestibility. Journal of the science of food and agriculture. 2023 Mar; 103(5):2532-2543. doi: 10.1002/jsfa.12375. [PMID: 36478565]
  • Lei Guo, Lei Shi. Vitexin Improves Cerebral ischemia‑reperfusion Injury by Attenuating Oxidative Injury and Ferroptosis via Keap1/Nrf2/HO-1signaling. Neurochemical research. 2023 Mar; 48(3):980-995. doi: 10.1007/s11064-022-03829-0. [PMID: 36435955]
  • Daojian Zhang, Taiguo Ning, Hongbin Wang. Vitexin alleviates inflammation and enhances apoptosis through the regulation of the JAK/STAT/SOCS signaling pathway in the arthritis rat model. Journal of biochemical and molecular toxicology. 2022 Dec; 36(12):e23201. doi: 10.1002/jbt.23201. [PMID: 36029189]
  • Jing Zhang, Feilin Liang, Zongwen Chen, Yonger Chen, Jun Yuan, Qingping Xiong, Shaozhen Hou, Song Huang, Changhui Liu, Jian Liang. Vitexin Protects against Dextran Sodium Sulfate-Induced Colitis in Mice and Its Potential Mechanisms. Journal of agricultural and food chemistry. 2022 Sep; 70(38):12041-12054. doi: 10.1021/acs.jafc.2c05177. [PMID: 36124900]
  • Mingfang Tao, Rong Li, Zhuo Zhang, Ting Wu, Tingting Xu, Daniel Zogona, Yuting Huang, Siyi Pan, Xiaoyun Xu. Vitexin and Isovitexin Act through Inhibition of Insulin Receptor to Promote Longevity and Fitness in Caenorhabditis elegans. Molecular nutrition & food research. 2022 09; 66(17):e2100845. doi: 10.1002/mnfr.202100845. [PMID: 35413150]
  • Esraa Ghazy, Hassanien Sagban Taghi. The Autophagy-Inducing Mechanisms of Vitexin, Cinobufacini, and Physalis alkekengi Hydroalcoholic Extract against Breast Cancer in vitro and in vivo. Journal of gastrointestinal cancer. 2022 Sep; 53(3):592-596. doi: 10.1007/s12029-021-00668-0. [PMID: 34287803]
  • Sheng Zhang, Shenyi Jin, Shunxiao Zhang, Yuan-Yuan Li, Hua Wang, Yue Chen, Hao Lu. Vitexin protects against high glucose-induced endothelial cell apoptosis and oxidative stress via Wnt/β-catenin and Nrf2 signalling pathway. Archives of physiology and biochemistry. 2022 Mar; ?(?):1-10. doi: 10.1080/13813455.2022.2028845. [PMID: 35254859]
  • Yan Jiang, Qiming Gong, Yuanxun Gong, Chenyi Zhuo, Jinmei Huang, Qianli Tang. Vitexin Attenuates Non-alcoholic Fatty Liver Disease Lipid Accumulation in High Fat-Diet Fed Mice by Activating Autophagy and Reducing Endoplasmic Reticulum Stress in Liver. Biological & pharmaceutical bulletin. 2022 Mar; 45(3):260-267. doi: 10.1248/bpb.b21-00716. [PMID: 35034930]
  • Shuai Qiu, Jing Chen, Jin Tae Kim, Yimeng Zhou, Ji Hyun Moon, Seung Beom Lee, Ho Jin Park, Hong Jin Lee. Suppression of Adipogenesis and Fat Accumulation by Vitexin Through Activation of Hedgehog Signaling in 3T3-L1 Adipocytes. Journal of medicinal food. 2022 Mar; 25(3):313-323. doi: 10.1089/jmf.2021.k.0163. [PMID: 35320011]
  • Yu Chen, Jing Yang, Zhi Huang, Baoyi Yin, Talha Umar, Cheng Yang, Xiangqian Zhang, Hongyuan Jing, Shuai Guo, Mengyao Guo, Ganzhen Deng, Changwei Qiu. Vitexin Mitigates Staphylococcus aureus-Induced Mastitis via Regulation of ROS/ER Stress/NF-κB/MAPK Pathway. Oxidative medicine and cellular longevity. 2022; 2022(?):7977433. doi: 10.1155/2022/7977433. [PMID: 35795861]
  • Chengshi Ding, Henglun Shen, Zhongjing Tian, Meiling Kang, Jing Ma, Qing He, Jinglong Wang, Yingxia Zhang, Yanmei Deng, Deya Wang. Protective effect of hawthorn vitexin on the ethanol-injured DNA of BRL-3A hepatocytes. Medicine. 2021 Dec; 100(50):e28228. doi: 10.1097/md.0000000000028228. [PMID: 34918685]
  • Eliatania Clementino Costa, Pedro Modesto Nascimento Menezes, Fabrício Souza Silva, Luciano Augusto de Araújo Ribeiro, Larissa Araújo Rolim, Edigênia Cavalcante da Cruz Araújo, Xirley Pereira Nunes. Jatropha mutabilis, a new source of vitexin: HPLC quantification and pharmacological evaluation. Natural product research. 2021 Dec; 35(24):6200-6203. doi: 10.1080/14786419.2020.1837807. [PMID: 33121280]
  • Jonas Akenaton Venturineli Pagassini, Leandro José Grava de Godoy, Felipe Girotto Campos, Gustavo Ribeiro Barzotto, Maria Aparecida Ribeiro Vieira, Carmen Sílvia Fernandes Boaro. Silicon and mechanical damage increase polyphenols and vitexin in Passiflora incarnata L. Scientific reports. 2021 11; 11(1):22064. doi: 10.1038/s41598-021-01647-y. [PMID: 34764405]
  • Dhananjay Gire, Jhankar Acharya, Sajad Malik, Shrirang Inamdar, Saroj Ghaskadbi. Molecular mechanism of anti-adipogenic effect of vitexin in differentiating hMSCs. Phytotherapy research : PTR. 2021 Nov; 35(11):6462-6471. doi: 10.1002/ptr.7300. [PMID: 34612537]
  • Siti Zaidathul Iman Zolkiffly, Johnson Stanslas, Hafizah Abdul Hamid, Muhammad Zulfadli Mehat. Ficus deltoidea: Potential inhibitor of pro-inflammatory mediators in lipopolysaccharide-induced activation of microglial cells. Journal of ethnopharmacology. 2021 Oct; 279(?):114309. doi: 10.1016/j.jep.2021.114309. [PMID: 34119609]
  • Qilong Zhang, Zhijia Fan, Wei Xue, Fanfan Sun, Huaqing Zhu, Dake Huang, Zhicheng Wang, Liuyi Dong. Vitexin regulates Epac and NLRP3 and ameliorates chronic cerebral hypoperfusion injury. Canadian journal of physiology and pharmacology. 2021 Oct; 99(10):1079-1087. doi: 10.1139/cjpp-2021-0034. [PMID: 33915055]
  • Xu Pang, Mei Wang, Shuang-Yan Wang, Jie Zhang, Ya-Peng Du, Ye Zhao, Xiao-Hui Zheng, Bai-Ping Ma. Phenolic compounds from the leaves of Crataegus pinnatifida Bge. var. major N.E.Br. And their lipid-lowering effects. Bioorganic & medicinal chemistry letters. 2021 09; 47(?):128211. doi: 10.1016/j.bmcl.2021.128211. [PMID: 34157392]
  • Ji Hwan Lee, Sullim Lee, Quynh Nhu Nguyen, Hung Manh Phung, Myoung-Sook Shin, Jae-Yong Kim, Hyukjae Choi, Sang Hee Shim, Ki Sung Kang. Identification of the Active Ingredient and Beneficial Effects of Vitex rotundifolia Fruits on Menopausal Symptoms in Ovariectomized Rats. Biomolecules. 2021 07; 11(7):. doi: 10.3390/biom11071033. [PMID: 34356661]
  • Pei-Jia Tang, Zhi-Hui Zhang, Li-Li Niu, Cheng-Bo Gu, Wen-Yi Zheng, Hai-Chao Cui, Xiao-Han Yuan. Fusarium solani G6, a novel vitexin-producing endophytic fungus: characterization, yield improvement and osteoblastic proliferation activity. Biotechnology letters. 2021 Jul; 43(7):1371-1383. doi: 10.1007/s10529-021-03118-w. [PMID: 33797653]
  • Tao Ding, Tingting Zhao, Yinhui Li, Zhixiao Liu, Jiarong Ding, Boyao Ji, Yue Wang, Zhiyong Guo. Vitexin exerts protective effects against calcium oxalate crystal-induced kidney pyroptosis in vivo and in vitro. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2021 Jun; 86(?):153562. doi: 10.1016/j.phymed.2021.153562. [PMID: 33857849]
  • Guangju Zhou, Jiale Cui, Suhua Xie, Haiyan Wan, Yan Luo, Gang Guo. Vitexin, a fenugreek glycoside, ameliorated obesity-induced diabetic nephropathy via modulation of NF-κB/IkBα and AMPK/ACC pathways in mice. Bioscience, biotechnology, and biochemistry. 2021 Apr; 85(5):1183-1193. doi: 10.1093/bbb/zbab012. [PMID: 33704405]
  • Li Zhang, Lianfeng Shi, Juanjuan Han, Zhenzuo Li. Protection of β-pancreatic cells from dysfunctionality of insulin using vitexin by apoptosis of INS-1 cells. Archives of physiology and biochemistry. 2021 Apr; ?(?):1-8. doi: 10.1080/13813455.2021.1910714. [PMID: 33835897]
  • Mengting Ni, Xin Song, Junhui Pan, Deming Gong, Guowen Zhang. Vitexin Inhibits Protein Glycation through Structural Protection, Methylglyoxal Trapping, and Alteration of Glycation Site. Journal of agricultural and food chemistry. 2021 Mar; 69(8):2462-2476. doi: 10.1021/acs.jafc.0c08052. [PMID: 33600185]
  • Yonger Chen, Bingxin Wang, Xin Yuan, Yingyu Lu, Jiliang Hu, Jie Gao, Jizong Lin, Jian Liang, Shaozhen Hou, Shuxian Chen. Vitexin prevents colitis-associated carcinogenesis in mice through regulating macrophage polarization. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2021 Mar; 83(?):153489. doi: 10.1016/j.phymed.2021.153489. [PMID: 33571919]
  • Nafisha Shaedi, Idanawati Naharudin, Chee Yan Choo, Tin Wui Wong. Design of oral intestinal-specific alginate-vitexin nanoparticulate system to modulate blood glucose level of diabetic rats. Carbohydrate polymers. 2021 Feb; 254(?):117312. doi: 10.1016/j.carbpol.2020.117312. [PMID: 33357875]
  • Md Nurul Huda, Shuai Lu, Tanzim Jahan, Mengqi Ding, Rintu Jha, Kaixuan Zhang, Wei Zhang, Milen I Georgiev, Sang Un Park, Meiliang Zhou. Treasure from garden: Bioactive compounds of buckwheat. Food chemistry. 2021 Jan; 335(?):127653. doi: 10.1016/j.foodchem.2020.127653. [PMID: 32739818]
  • Pingping Dong, Lei Shi, Shaoping Wang, Shan Jiang, Haoran Li, Fan Dong, Jing Xu, Long Dai, Jiayu Zhang. Rapid Profiling and Identification of Vitexin Metabolites in Rat Urine, Plasma and Faeces after Oral Administration Using a UHPLC-Q-Exactive Orbitrap Mass Spectrometer Coupled with Multiple Data-mining Methods. Current drug metabolism. 2021; 22(3):185-197. doi: 10.2174/1389200221999210101232841. [PMID: 33397253]
  • Huanhua Yang, Wei Xue, Caijuan Ding, Cheng Wang, Bohan Xu, Shuo Chen, Binshan Zha, Yuqian Sun, Huaqin Zhu, Junyan Zhang, Liuyi Dong. Vitexin Mitigates Myocardial Ischemia/Reperfusion Injury in Rats by Regulating Mitochondrial Dysfunction via Epac1-Rap1 Signaling. Oxidative medicine and cellular longevity. 2021; 2021(?):9921982. doi: 10.1155/2021/9921982. [PMID: 34257823]
  • Daniela Alejandra Torres-Ortiz, Rodríguez-deLeón Eloy, Bah Moustapha, Ibarra-Alvarado César, Mercado-Silva Edmundo, Castro-Ruiz Jesús Eduardo, Rivera-Pastrana Dulce María. Vasorelaxing effect and possible chemical markers of the flowers of the Mexican Crataegus gracilior. Natural product research. 2020 Dec; 34(24):3522-3525. doi: 10.1080/14786419.2019.1577833. [PMID: 30864868]
  • Kyeong-Min Kim, Hyo-Eun Son, Hyeon-Young Min, Won-Gu Jang. Vitexin enhances osteoblast differentiation through phosphorylation of Smad and expression of Runx2 at in vitro and ex vivo. Molecular biology reports. 2020 Nov; 47(11):8809-8817. doi: 10.1007/s11033-020-05929-y. [PMID: 33118104]
  • Chujie Li, Yonger Chen, Xin Yuan, Lian He, Xiaojun Li, Song Huang, Shaozhen Hou, Jian Liang. Vitexin ameliorates chronic stress plub high fat diet-induced nonalcoholic fatty liver disease by inhibiting inflammation. European journal of pharmacology. 2020 Sep; 882(?):173264. doi: 10.1016/j.ejphar.2020.173264. [PMID: 32544504]
  • Tiejun Chen, Meizi Piao, Syed Md Ehsanur Rahman, Lehong Zhang, Yang Deng. Influence of fermentation on antioxidant and hypolipidemic properties of maifanite mineral water-cultured common buckwheat sprouts. Food chemistry. 2020 Aug; 321(?):126741. doi: 10.1016/j.foodchem.2020.126741. [PMID: 32276146]
  • Kazuki Kurahayashi, Kengo Hanaya, Shuhei Higashibayashi, Takeshi Sugai. Improved preparation of vitexin from hot water extract of Basella alba, the commercially available vegetable Malabar spinach ("Tsurumurasaki" in Japanese) and the application to semisynthesis of chafuroside B. Bioscience, biotechnology, and biochemistry. 2020 Aug; 84(8):1554-1559. doi: 10.1080/09168451.2020.1761286. [PMID: 32351166]
  • Xiao-Lin Qiu, Qing-Feng Zhang. Identification and quantification of main flavonoids in the leaves of Bambusa multiplex cv. Fernleaf. Natural product research. 2020 Jul; 34(14):2076-2079. doi: 10.1080/14786419.2019.1569013. [PMID: 30721085]
  • Huiqi Yuan, Shuni Duan, Ting Guan, Xin Yuan, Jizong Lin, Shaozhen Hou, Xiaoping Lai, Song Huang, Xianhua Du, Shuxian Chen. Vitexin protects against ethanol-induced liver injury through Sirt1/p53 signaling pathway. European journal of pharmacology. 2020 Apr; 873(?):173007. doi: 10.1016/j.ejphar.2020.173007. [PMID: 32045602]
  • Wei Xue, Xin Wang, Hong Tang, Fanfan Sun, Huaqing Zhu, Dake Huang, Liuyi Dong. Vitexin attenuates myocardial ischemia/reperfusion injury in rats by regulating mitochondrial dysfunction induced by mitochondrial dynamics imbalance. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2020 Apr; 124(?):109849. doi: 10.1016/j.biopha.2020.109849. [PMID: 31972356]
  • Paula Tarcila Félix de Oliveira, Emanuela Lima Dos Santos, Wliana Alves Viturino da Silva, Magda Rhayanny Assunção Ferreira, Luiz Alberto Lira Soares, Francineyde Alves da Silva, Fábio Sérgio Barbosa da Silva. Use of mycorrhizal fungi releases the application of organic fertilizers to increase the production of leaf vitexin in yellow passion fruit. Journal of the science of food and agriculture. 2020 Mar; 100(4):1816-1821. doi: 10.1002/jsfa.10197. [PMID: 31825527]
  • Nouran M Fahmy, Eman Al-Sayed, Saad Moghannem, Faizul Azam, Mohamed El-Shazly, Abdel Nasser Singab. Breaking Down the Barriers to a Natural Antiviral Agent: Antiviral Activity and Molecular Docking of Erythrina speciosa Extract, Fractions, and the Major Compound. Chemistry & biodiversity. 2020 Feb; 17(2):e1900511. doi: 10.1002/cbdv.201900511. [PMID: 31800173]
  • Samantha Bedell, Jacob Wells, Qinfeng Liu, Chris Breivogel. Vitexin as an active ingredient in passion flower with potential as an agent for nicotine cessation: vitexin antagonism of the expression of nicotine locomotor sensitization in rats. Pharmaceutical biology. 2019 Dec; 57(1):8-12. doi: 10.1080/13880209.2018.1561725. [PMID: 30707857]
  • Jae-Yong Kim, Sang Hee Shim. Anti-Atherosclerotic Effects of Fruits of Vitex rotundifolia and Their Isolated Compounds via Inhibition of Human LDL and HDL Oxidation. Biomolecules. 2019 11; 9(11):. doi: 10.3390/biom9110727. [PMID: 31726713]
  • Shrirang Inamdar, Ankita Joshi, Sajad Malik, Ramanamurthy Boppana, Saroj Ghaskadbi. Vitexin alleviates non-alcoholic fatty liver disease by activating AMPK in high fat diet fed mice. Biochemical and biophysical research communications. 2019 10; 519(1):106-112. doi: 10.1016/j.bbrc.2019.08.139. [PMID: 31472955]
  • Jiawei Jiang, Yewei Jia, Xuanyuan Lu, Tan Zhang, Kangxian Zhao, Ziyuan Fu, Cong Pang, Yu Qian. Vitexin suppresses RANKL-induced osteoclastogenesis and prevents lipopolysaccharide (LPS)-induced osteolysis. Journal of cellular physiology. 2019 08; 234(10):17549-17560. doi: 10.1002/jcp.28378. [PMID: 30793311]
  • Michael McCullagh, Cintia Alessandra Matiucci Pereira, Janete Harumi Yariwake. Use of ion mobility mass spectrometry to enhance cumulative analytical specificity and separation to profile 6-C/8-C-glycosylflavone critical isomer pairs and known-unknowns in medicinal plants. Phytochemical analysis : PCA. 2019 Jul; 30(4):424-436. doi: 10.1002/pca.2825. [PMID: 30891865]
  • Amirul Ridzuan Abu Bakar, Adiratna Mat Ripen, Amir Feisal Merican, Saharuddin Bin Mohamad. Enzymatic inhibitory activity of Ficus deltoidea leaf extract on matrix metalloproteinase-2, 8 and 9. Natural product research. 2019 Jun; 33(12):1765-1768. doi: 10.1080/14786419.2018.1434631. [PMID: 29394875]
  • Shiqi Zheng, Di Geng, Shuangyue Liu, Qingqing Wang, Siqi Liu, Rufeng Wang. A newly isolated human intestinal bacterium strain capable of deglycosylating flavone C-glycosides and its functional properties. Microbial cell factories. 2019 May; 18(1):94. doi: 10.1186/s12934-019-1144-7. [PMID: 31138294]
  • Lan Luo, Jiazhen Kang, Qiong He, Yue Qi, Xingyu Chen, Shumei Wang, Shengwang Liang. A NMR-Based Metabonomics Approach to Determine Protective Effect of a Combination of Multiple Components Derived from Naodesheng on Ischemic Stroke Rats. Molecules (Basel, Switzerland). 2019 May; 24(9):. doi: 10.3390/molecules24091831. [PMID: 31086027]
  • Ye Peng, Quancai Sun, Weidong Xu, Yuanqing He, Wengang Jin, Li Yuan, Ruichang Gao. Vitexin ameliorates high fat diet-induced obesity in male C57BL/6J mice via the AMPKα-mediated pathway. Food & function. 2019 Apr; 10(4):1940-1947. doi: 10.1039/c9fo00148d. [PMID: 30874277]
  • Zhi-Mei Li, Ning Liu, Ya-Ping Jiang, Jia-Mei Yang, Jie Zheng, Miao Sun, Yu-Xiang Li, Tao Sun, Jing Wu, Jian-Qiang Yu. Vitexin alleviates streptozotocin-induced sexual dysfunction and fertility impairments in male mice via modulating the hypothalamus-pituitary-gonadal axis. Chemico-biological interactions. 2019 Jan; 297(?):119-129. doi: 10.1016/j.cbi.2018.10.013. [PMID: 30365938]
  • Zhongquan Xin, Shasha Ma, Dabing Ren, Wenbin Liu, Binsong Han, Yi Zhang, Jianbo Xiao, Lunzhao Yi, Baichuan Deng. UPLC-Orbitrap-MS/MS combined with chemometrics establishes variations in chemical components in green tea from Yunnan and Hunan origins. Food chemistry. 2018 Nov; 266(?):534-544. doi: 10.1016/j.foodchem.2018.06.056. [PMID: 30381222]
  • Nian Liu, Kuan Song Wang, Min Qi, Ying Jun Zhou, Guang Yao Zeng, Juan Tao, Jian Da Zhou, Jiang Lin Zhang, Xiang Chen, Cong Peng. Vitexin compound 1, a novel extraction from a Chinese herb, suppresses melanoma cell growth through DNA damage by increasing ROS levels. Journal of experimental & clinical cancer research : CR. 2018 Nov; 37(1):269. doi: 10.1186/s13046-018-0897-x. [PMID: 30400954]
  • Ines van Dooren, Kenn Foubert, Sebastiaan Bijttebier, Annelies Breynaert, Mart Theunis, Vasiliki Exarchou, Magda Claeys, Nina Hermans, Sandra Apers, Luc Pieters. In vitro gastrointestinal biotransformation and characterization of a Desmodium adscendens decoction: the first step in unravelling its behaviour in the human body. The Journal of pharmacy and pharmacology. 2018 Oct; 70(10):1414-1422. doi: 10.1111/jphp.12978. [PMID: 30003542]
  • C B Gu, H Ma, W J Ning, L L Niu, H Y Han, X H Yuan, Y J Fu. Characterization, culture medium optimization and antioxidant activity of an endophytic vitexin-producing fungus Dichotomopilus funicola Y3 from pigeon pea [Cajanus cajan (L.) Millsp.]. Journal of applied microbiology. 2018 Oct; 125(4):1054-1065. doi: 10.1111/jam.13928. [PMID: 29791772]
  • Li-Jia Liu, Xiu-Hua Hu, Li-Na Guo, Ru-Feng Wang, Qi-Tao Zhao. Anti-inflammatory effect of the compounds from the flowers of Trollius chinensis. Pakistan journal of pharmaceutical sciences. 2018 Sep; 31(5):1951-1957. doi: ". [PMID: 30150194]
  • Dicson Sheeja Malar, Venkatesan Suryanarayanan, Mani Iyer Prasanth, Sanjeev Kumar Singh, Krishnaswamy Balamurugan, Kasi Pandima Devi. Vitexin inhibits Aβ25-35 induced toxicity in Neuro-2a cells by augmenting Nrf-2/HO-1 dependent antioxidant pathway and regulating lipid homeostasis by the activation of LXR-α. Toxicology in vitro : an international journal published in association with BIBRA. 2018 Aug; 50(?):160-171. doi: 10.1016/j.tiv.2018.03.003. [PMID: 29545167]
  • Isabela M Lorizola, Cibele P B Furlan, Mariana Portovedo, Marciane Milanski, Patrícia B Botelho, Rosângela M N Bezerra, Beatriz R Sumere, Maurício A Rostagno, Caroline D Capitani. Beet Stalks and Leaves (Beta vulgaris L.) Protect Against High-Fat Diet-Induced Oxidative Damage in the Liver in Mice. Nutrients. 2018 Jul; 10(7):. doi: 10.3390/nu10070872. [PMID: 29976910]
  • Dicson Sheeja Malar, Mani Iyer Prasanth, Rajamohamed Beema Shafreen, Krishnaswamy Balamurugan, Kasi Pandima Devi. Grewia tiliaefolia and its active compound vitexin regulate the expression of glutamate transporters and protect Neuro-2a cells from glutamate toxicity. Life sciences. 2018 Jun; 203(?):233-241. doi: 10.1016/j.lfs.2018.04.047. [PMID: 29704481]
  • Izabel Lucena Gadioli, Marcela de Sá Barreto da Cunha, Mariana Veras Oliveira de Carvalho, Ana Maria Costa, Lívia de Lacerda de Oliveira Pineli. A systematic review on phenolic compounds in Passiflora plants: Exploring biodiversity for food, nutrition, and popular medicine. Critical reviews in food science and nutrition. 2018 Mar; 58(5):785-807. doi: 10.1080/10408398.2016.1224805. [PMID: 27645583]
  • Prashant Joshi, Vinay R Sonawane, Ibidapo S Williams, Glen J P McCann, Linda Gatchie, Rajni Sharma, Naresh Satti, Bhabatosh Chaudhuri, Sandip B Bharate. Identification of karanjin isolated from the Indian beech tree as a potent CYP1 enzyme inhibitor with cellular efficacy via screening of a natural product repository. MedChemComm. 2018 Feb; 9(2):371-382. doi: 10.1039/c7md00388a. [PMID: 30108931]
  • Amirul Ridzuan Abu Bakar, Thamilvaani Manaharan, Amir Feisal Merican, Saharuddin Bin Mohamad. Experimental and computational approaches to reveal the potential of Ficus deltoidea leaves extract as α-amylase inhibitor. Natural product research. 2018 Feb; 32(4):473-476. doi: 10.1080/14786419.2017.1312393. [PMID: 28391727]
  • Hyo Hee Yang, Kyung-Eon Oh, Yang Hee Jo, Jong Hoon Ahn, Qing Liu, Ayman Turk, Jae Young Jang, Bang Yeon Hwang, Ki Yong Lee, Mi Kyeong Lee. Characterization of tyrosinase inhibitory constituents from the aerial parts of Humulus japonicus using LC-MS/MS coupled online assay. Bioorganic & medicinal chemistry. 2018 01; 26(2):509-515. doi: 10.1016/j.bmc.2017.12.011. [PMID: 29254897]
  • Takako Aboshi, Shiho Ishiguri, Yoshihito Shiono, Tetsuya Murayama. Flavonoid glycosides in Malabar spinach Basella alba inhibit the growth of Spodoptera litura larvae. Bioscience, biotechnology, and biochemistry. 2018 Jan; 82(1):9-14. doi: 10.1080/09168451.2017.1406301. [PMID: 29207916]
  • Hyun Jong Kim, Yu Ran Nam, Eun-Jung Kim, Joo Hyun Nam, Woo Kyung Kim. Spirodela polyrhiza and its Chemical Constituent Vitexin Exert Anti-Allergic Effect via ORAI1 Channel Inhibition. The American journal of Chinese medicine. 2018; 46(6):1243-1261. doi: 10.1142/s0192415x18500659. [PMID: 30149756]
  • Cláudio Luís Venturini, Antonio Macho, Karuppusamy Arunachalam, Danielle Ayr Tavares de Almeida, Suellen Iara Guirra Rosa, Eduarda Pavan, Sikiru Olaitan Balogun, Amílcar Sabino Damazo, Domingos Tabajara de Oliveira Martins. Vitexin inhibits inflammation in murine ovalbumin-induced allergic asthma. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2018 Jan; 97(?):143-151. doi: 10.1016/j.biopha.2017.10.073. [PMID: 29091859]
  • Dicson Sheeja Malar, Rajamohamed Beema Shafreen, Shunmugiah Karutha Pandian, Kasi Pandima Devi. Cholinesterase inhibitory, anti-amyloidogenic and neuroprotective effect of the medicinal plant Grewia tiliaefolia - An in vitro and in silico study. Pharmaceutical biology. 2017 Dec; 55(1):381-393. doi: 10.1080/13880209.2016.1241811. [PMID: 27931177]
  • Chengbo Gu, Ziwei Liu, Xiaohan Yuan, Wang Li, Yuangang Zu, Yujie Fu. Preparation of Vitexin Nanoparticles by Combining the Antisolvent Precipitation and High Pressure Homogenization Approaches Followed by Lyophilization for Dissolution Rate Enhancement. Molecules (Basel, Switzerland). 2017 Nov; 22(11):. doi: 10.3390/molecules22112038. [PMID: 29165376]
  • Man Liao, Xiaoye Cheng, Xinpeng Diao, Yupeng Sun, Lantong Zhang. Metabolites identificaion of two bioactive constituents in Trollius ledebourii in rats using ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2017 Nov; 1068-1069(?):297-312. doi: 10.1016/j.jchromb.2017.10.061. [PMID: 29127056]
  • Nur Adeelah Che Ahmad Tantowi, Paisal Hussin, Seng Fong Lau, Suhaila Mohamed. Mistletoe fig (Ficus deltoidea Jack) leaf extract prevented postmenopausal osteoarthritis by attenuating inflammation and cartilage degradation in rat model. Menopause (New York, N.Y.). 2017 Sep; 24(9):1071-1080. doi: 10.1097/gme.0000000000000882. [PMID: 28640163]
  • Kumar Ganesan, Baojun Xu. Molecular targets of vitexin and isovitexin in cancer therapy: a critical review. Annals of the New York Academy of Sciences. 2017 08; 1401(1):102-113. doi: 10.1111/nyas.13446. [PMID: 28891090]
  • Tian-Tian Guo, Jian-Chun Zhang, Hai Zhang, Qing-Chao Liu, Yong Zhao, Yu-Fei Hou, Lu Bai, Li Zhang, Xue-Qiang Liu, Xue-Ying Liu, Sheng-Yong Zhang, Nai-Sheng Bai. Bioactive spirans and other constituents from the leaves of Cannabis sativa f. sativa. Journal of Asian natural products research. 2017 Aug; 19(8):793-802. doi: 10.1080/10286020.2016.1248947. [PMID: 27848262]
  • Yinnan Sun, Kui Yang, Qin Cao, Jinde Sun, Yu Xia, Yinhang Wang, Wei Li, Chunhui Ma, Shouxin Liu. Homogenate-assisted Vacuum-powered Bubble Extraction of Moso Bamboo Flavonoids for On-line Scavenging Free Radical Capacity Analysis. Molecules (Basel, Switzerland). 2017 Jul; 22(7):. doi: 10.3390/molecules22071156. [PMID: 28696360]
  • Fengli Chen, Qiang Zhang, Junling Liu, Huiyan Gu, Lei Yang. An efficient approach for the extraction of orientin and vitexin from Trollius chinensis flowers using ultrasonic circulating technique. Ultrasonics sonochemistry. 2017 Jul; 37(?):267-278. doi: 10.1016/j.ultsonch.2017.01.012. [PMID: 28427633]
  • Samsulrizal Nurdiana, Yong Meng Goh, Hafandi Ahmad, Sulaiman Md Dom, Nur Syimal'ain Azmi, Noor Syaffinaz Noor Mohamad Zin, Mahdi Ebrahimi. Changes in pancreatic histology, insulin secretion and oxidative status in diabetic rats following treatment with Ficus deltoidea and vitexin. BMC complementary and alternative medicine. 2017 Jun; 17(1):290. doi: 10.1186/s12906-017-1762-8. [PMID: 28576138]
  • Paolino Ninfali, Elena Antonini, Alessandra Frati, Emanuele-Salvatore Scarpa. C-Glycosyl Flavonoids from Beta vulgaris Cicla and Betalains from Beta vulgaris rubra: Antioxidant, Anticancer and Antiinflammatory Activities-A Review. Phytotherapy research : PTR. 2017 Jun; 31(6):871-884. doi: 10.1002/ptr.5819. [PMID: 28464411]
  • Shimaa M Hassoun, Noha Abdel-Rahman, Entsar I Eladl, Mamdouh M El-Shishtawy. Antiangiogenic activity of vitexicarpine in experimentally induced hepatocellular carcinoma: Impact on vascular endothelial growth factor pathway. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine. 2017 Jun; 39(6):1010428317707376. doi: 10.1177/1010428317707376. [PMID: 28651490]
  • Lei Wen, Yunliang Lin, Ruimin Lv, Huijiao Yan, Jinqian Yu, Hengqiang Zhao, Xiao Wang, Daijie Wang. An Efficient Method for the Preparative Isolation and Purification of Flavonoids from Leaves of Crataegus pinnatifida by HSCCC and Pre-HPLC. Molecules (Basel, Switzerland). 2017 May; 22(5):. doi: 10.3390/molecules22050767. [PMID: 28486427]
  • Vinod Bhatt, Sushila Sharma, Neeraj Kumar, Upendra Sharma, Bikram Singh. Simultaneous quantification and identification of flavonoids, lignans, coumarin and amides in leaves of Zanthoxylum armatum using UPLC-DAD-ESI-QTOF-MS/MS. Journal of pharmaceutical and biomedical analysis. 2017 Jan; 132(?):46-55. doi: 10.1016/j.jpba.2016.09.035. [PMID: 27693952]
  • Miao He, Jia-Wei Min, Wei-Lin Kong, Xiao-Hua He, Jun-Xu Li, Bi-Wen Peng. A review on the pharmacological effects of vitexin and isovitexin. Fitoterapia. 2016 Dec; 115(?):74-85. doi: 10.1016/j.fitote.2016.09.011. [PMID: 27693342]
  • Elizabeth M Mudge, Ying Liu, Jensen A Lund, Paula N Brown. Single-Laboratory Validation for the Determination of Flavonoids in Hawthorn Leaves and Finished Products by LC-UV. Planta medica. 2016 Nov; 82(17):1487-1492. doi: 10.1055/s-0042-118463. [PMID: 27776376]
  • Roswitha Schuster, Wolfgang Holzer, Hannes Doerfler, Wolfram Weckwerth, Helmut Viernstein, Siriporn Okonogi, Monika Mueller. Cajanus cajan- a source of PPARγ activators leading to anti-inflammatory and cytotoxic effects. Food & function. 2016 Sep; 7(9):3798-806. doi: 10.1039/c6fo00689b. [PMID: 27603115]
  • G Smilin Bell Aseervatham, U Suryakala, Doulethunisha, S Sundaram, P Chandra Bose, T Sivasudha. Expression pattern of NMDA receptors reveals antiepileptic potential of apigenin 8-C-glucoside and chlorogenic acid in pilocarpine induced epileptic mice. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2016 Aug; 82(?):54-64. doi: 10.1016/j.biopha.2016.04.066. [PMID: 27470339]
  • Yang Xie, Qiu-Shi Guo, Guang-Shu Wang. Preparative Separation and Purification of the Total Flavonoids in Scorzonera austriaca with Macroporous Resins. Molecules (Basel, Switzerland). 2016 Jun; 21(6):. doi: 10.3390/molecules21060768. [PMID: 27304948]
  • Meixian Liu, Jing Dong, Zongtao Lin, Yanyan Niu, Xiaotian Zhang, Haixiu Jiang, Ning Guo, Wei Li, Hong Wang, Shizhong Chen. Rapid screening of transferrin-binders in the flowers of Bauhinia blakeana Dunn by on-line high-performance liquid chromatography-diode-array detector-electrospray ionization-ion-trap-time-of-flight-mass spectrometry-transferrin-fluorescence detection system. Journal of chromatography. A. 2016 Jun; 1450(?):17-28. doi: 10.1016/j.chroma.2016.04.043. [PMID: 27178150]
  • Feng Han, Yupin Guo, Huiyan Gu, Fenglan Li, Baozhong Hu, Lei Yang. Application of alkyl polyglycoside surfactant in ultrasonic-assisted extraction followed by macroporous resin enrichment for the separation of vitexin-2″-O-rhamnoside and vitexin from Crataegus pinnatifida leaves. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2016 Feb; 1012-1013(?):69-78. doi: 10.1016/j.jchromb.2016.01.017. [PMID: 26807707]
  • Kexin Hou, Fengli Chen, Yuangang Zu, Lei Yang. Ionic liquids-lithium salts pretreatment followed by ultrasound-assisted extraction of vitexin-4″-O-glucoside, vitexin-2″-O-rhamnoside and vitexin from Phyllostachys edulis leaves. Journal of chromatography. A. 2016 Jan; 1431(?):17-26. doi: 10.1016/j.chroma.2015.12.067. [PMID: 26763300]
  • Camila Carla Guimarães, Denise Dias Oliveira, Mayara Valdevite, Ana Lúcia Fachin Saltoratto, Sarazete Izidia Vaz Pereira, Suzelei de Castro França, Ana Maria Soares Pereira, Paulo Sérgio Pereira. The glycosylated flavonoids vitexin, isovitexin, and quercetrin isolated from Serjania erecta Radlk (Sapindaceae) leaves protect PC12 cells against amyloid-β25-35 peptide-induced toxicity. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2015 Dec; 86(?):88-94. doi: 10.1016/j.fct.2015.09.002. [PMID: 26385725]
  • Lucie Zemanova, Jakub Hofman, Eva Novotna, Kamil Musilek, Tereza Lundova, Jana Havrankova, Anna Hostalkova, Jakub Chlebek, Lucie Cahlikova, Vladimír Wsol. Flavones Inhibit the Activity of AKR1B10, a Promising Therapeutic Target for Cancer Treatment. Journal of natural products. 2015 Nov; 78(11):2666-74. doi: 10.1021/acs.jnatprod.5b00616. [PMID: 26529431]
  • Yueqiu Liu, Dan Staerk, Mia N Nielsen, Nils Nyberg, Anna K Jäger. High-resolution hyaluronidase inhibition profiling combined with HPLC-HRMS-SPE-NMR for identification of anti-necrosis constituents in Chinese plants used to treat snakebite. Phytochemistry. 2015 Nov; 119(?):62-9. doi: 10.1016/j.phytochem.2015.09.005. [PMID: 26386983]
  • Fang An, Xinxin Cao, Haiqi Qu, Shuhua Wang. Attenuation of oxidative stress of erythrocytes by the plant-derived flavonoids vitexin and apigenin. Die Pharmazie. 2015 Nov; 70(11):724-32. doi: ". [PMID: 26790189]
  • Sebastian Granica, Holger Kluge, Gert Horn, Adam Matkowski, Anna K Kiss. The phytochemical investigation of Agrimonia eupatoria L. and Agrimonia procera Wallr. as valid sources of Agrimoniae herba--The pharmacopoeial plant material. Journal of pharmaceutical and biomedical analysis. 2015 Oct; 114(?):272-9. doi: 10.1016/j.jpba.2015.05.027. [PMID: 26092224]
  • Inhae Kang, Seojin Choi, Tae Joung Ha, Munji Choi, Hae-Ri Wi, Byong Won Lee, Myoungsook Lee. Effects of Mung Bean (Vigna radiata L.) Ethanol Extracts Decrease Proinflammatory Cytokine-Induced Lipogenesis in the KK-Ay Diabese Mouse Model. Journal of medicinal food. 2015 Aug; 18(8):841-9. doi: 10.1089/jmf.2014.3364. [PMID: 25826234]
  • Qiang Wei, Xiao-ying Ji, Fei Xu, Qian-rong Li, Hao Yin. [Chemical Constituents from Leaves of Hibiscus syriacus and Their α-Glucosidase Inhibitory Activities]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2015 May; 38(5):975-9. doi: . [PMID: 26767290]
  • Xin-shuai Wang, Xiao-chen Hu, Gui-ling Chen, Xiang Yuan, Rui-na Yang, Shuo Liang, Jing Ren, Jia-chun Sun, Guo-qiang Kong, She-gan Gao, Xiao-shan Feng. Effects of vitexin on the pharmacokinetics and mRNA expression of CYP isozymes in rats. Phytotherapy research : PTR. 2015 Mar; 29(3):366-72. doi: 10.1002/ptr.5260. [PMID: 25447838]
  • Cheng-bo Gu, Man Cai, Xiao-han Yuan, Yuan-gang Zu. [Research progress on plant resources distribution of vitexin and its pharmacological effects]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2015 Feb; 40(3):382-9. doi: ". [PMID: 26084156]
  • Silvia C Heredia-Vieira, Ana M Simonet, Wagner Vilegas, Francisco A Macías. Unusual C,O-Fused Glycosylapigenins from Serjania marginata Leaves. Journal of natural products. 2015 Jan; 78(1):77-84. doi: 10.1021/np500715x. [PMID: 25517504]