Melatonin (BioDeep_00000000216)
Secondary id: BioDeep_00000269410
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019
代谢物信息卡片
化学式: C13H16N2O2 (232.1211716)
中文名称: 褪黑素
谱图信息:
最多检出来源 Homo sapiens(plant) 11.87%
Last reviewed on 2024-07-01.
Cite this Page
Melatonin. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/melatonin (retrieved
2024-12-04) (BioDeep RN: BioDeep_00000000216). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: CC(=O)NCCC1=CNC2=C1C=C(C=C2)OC
InChI: InChI=1S/C13H16N2O2/c1-9(16)14-6-5-10-8-15-13-4-3-11(17-2)7-12(10)13/h3-4,7-8,15H,5-6H2,1-2H3,(H,14,16)
描述信息
Melatonin is a member of the class of acetamides that is acetamide in which one of the hydrogens attached to the nitrogen atom is replaced by a 2-(5-methoxy-1H-indol-3-yl)ethyl group. It is a hormone secreted by the pineal gland in humans. It has a role as a hormone, an anticonvulsant, an immunological adjuvant, a radical scavenger, a central nervous system depressant, a human metabolite, a mouse metabolite and a geroprotector. It is a member of acetamides and a member of tryptamines. It is functionally related to a tryptamine.
Melatonin is a biogenic amine that is found in animals, plants and microbes. Aaron B. Lerner of Yale University is credited for naming the hormone and for defining its chemical structure in 1958. In mammals, melatonin is produced by the pineal gland. The pineal gland is small endocrine gland, about the size of a rice grain and shaped like a pine cone (hence the name), that is located in the center of the brain (rostro-dorsal to the superior colliculus) but outside the blood-brain barrier. The secretion of melatonin increases in darkness and decreases during exposure to light, thereby regulating the circadian rhythms of several biological functions, including the sleep-wake cycle. In particular, melatonin regulates the sleep-wake cycle by chemically causing drowsiness and lowering the body temperature. Melatonin is also implicated in the regulation of mood, learning and memory, immune activity, dreaming, fertility and reproduction. Melatonin is also an effective antioxidant. Most of the actions of melatonin are mediated through the binding and activation of melatonin receptors. Individuals with autism spectrum disorders (ASD) may have lower than normal levels of melatonin. A 2008 study found that unaffected parents of individuals with ASD also have lower melatonin levels, and that the deficits were associated with low activity of the ASMT gene, which encodes the last enzyme of melatonin synthesis. Reduced melatonin production has also been proposed as a likely factor in the significantly higher cancer rates in night workers.
Melatonin is a hormone produced by the pineal gland that has multiple effects including somnolence, and is believed to play a role in regulation of the sleep-wake cycle. Melatonin is available over-the-counter and is reported to have beneficial effects on wellbeing and sleep. Melatonin has not been implicated in causing serum enzyme elevations or clinically apparent liver injury.
Melatonin is a natural product found in Mesocricetus auratus, Ophiopogon japonicus, and other organisms with data available.
Therapeutic Melatonin is a therapeutic chemically synthesized form of the pineal indole melatonin with antioxidant properties. The pineal synthesis and secretion of melatonin, a serotonin-derived neurohormone, is dependent on beta-adrenergic receptor function. Melatonin is involved in numerous biological functions including circadian rhythm, sleep, the stress response, aging, and immunity.
Melatonin is a hormone involved in sleep regulatory activity, and a tryptophan-derived neurotransmitter, which inhibits the synthesis and secretion of other neurotransmitters such as dopamine and GABA. Melatonin is synthesized from serotonin intermediate in the pineal gland and the retina where the enzyme 5-hydroxyindole-O-methyltransferase, that catalyzes the last step of synthesis, is found. This hormone binds to and activates melatonin receptors and is involved in regulating the sleep and wake cycles. In addition, melatonin possesses antioxidative and immunoregulatory properties via regulating other neurotransmitters.
Melatonin is a biogenic amine that is found in animals, plants and microbes. Aaron B. Lerner of Yale University is credited for naming the hormone and for defining its chemical structure in 1958. In mammals, melatonin is produced by the pineal gland. The pineal gland is small endocrine gland, about the size of a rice grain and shaped like a pine cone (hence the name), that is l...
Melatonin is a biogenic amine that is found in animals, plants and microbes. Aaron B. Lerner of Yale University is credited for naming the hormone and for defining its chemical structure in 1958. In mammals, melatonin is produced by the pineal gland. The pineal gland is small endocrine gland, about the size of a rice grain and shaped like a pine cone (hence the name), that is located in the center of the brain (rostro-dorsal to the superior colliculus) but outside the blood-brain barrier. The secretion of melatonin increases in darkness and decreases during exposure to light, thereby regulating the circadian rhythms of several biological functions, including the sleep-wake cycle. In particular, melatonin regulates the sleep-wake cycle by chemically causing drowsiness and. lowering the body temperature. Melatonin is also implicated in the regulation of mood,learning and memory, immune activity, dreaming, fertility and reproduction. Melatonin is also an effective antioxidant. Most of the actions of melatonin are mediated through the binding and activation of melatonin receptors. Individuals with autism spectrum disorders(ASD) may have lower than normal levels of melatonin. A 2008 study found that unaffected parents of individuals with ASD also have lower melatonin levels, and that the deficits. were associated with low activity of the ASMT gene, which encodes the last enzyme of melatonin synthesis. Reduced melatonin production has also been proposed as a likely factor in the significantly higher cancer rates in night workers.
Melatonin, also known chemically as N-acetyl-5-methoxytryptamine, is a naturally occurring compound found in animals, plants and microbes. In animals, circulating levels of the hormone melatonin vary in a daily cycle, thereby allowing the entrainment of the circadian rhythms of several biological functions.
A member of the class of acetamides that is acetamide in which one of the hydrogens attached to the nitrogen atom is replaced by a 2-(5-methoxy-1H-indol-3-yl)ethyl group. It is a hormone secreted by the pineal gland in humans.
Melatonin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=73-31-4 (retrieved 2024-07-01) (CAS RN: 73-31-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Melatonin is a hormone made by the pineal gland that can activates melatonin receptor. Melatonin plays a role in sleep and possesses important antioxidative and anti-inflammatory properties[1][2][3]. Melatonin is a novel selective ATF-6 inhibitor and induces human hepatoma cell apoptosis through COX-2 downregulation[4]. Melatonin attenuates palmitic acid-induced (HY-N0830) mouse granulosa cells apoptosis via endoplasmic reticulum stress[5].
Melatonin is a hormone made by the pineal gland that can activates melatonin receptor. Melatonin plays a role in sleep and possesses important antioxidative and anti-inflammatory properties[1][2][3]. Melatonin is a novel selective ATF-6 inhibitor and induces human hepatoma cell apoptosis through COX-2 downregulation[4]. Melatonin attenuates palmitic acid-induced (HY-N0830) mouse granulosa cells apoptosis via endoplasmic reticulum stress[5].
同义名列表
120 个代谢物同义名
Melatonin, Pharmaceutical Secondary Standard; Certified Reference Material; Melatonin, United States Pharmacopeia (USP) Reference Standard; Melatonin, British Pharmacopoeia (BP) Reference Standard; Acetamide, N-[2-(5-methoxy-1H-indol-3-yl)ethyl]- (9CI); Acetamide, N-[2-(5-methoxyindol-3-yl)ethyl]- (6CI,8CI); Acetamide, {N-[2-(5-methoxy-1H-indol-3-yl)ethyl]-}; {N-[2-(5-methoxy-1H-indol-3-yl)ethyl]-} Acetamide; Acetamide, N-(2-(5-methoxy-1H-indol-3-yl)ethyl)-; Acetamide, N-[2-(5-methoxy-1H-indol-3-yl)ethyl]-; N-[2-(5-Methoxy-1H-indol-3-yl)-ethyl]-acetamide; Acetamide, {N-[2-(5-methoxyindol-3-yl)ethyl]-}; N-[2-(5-methoxy-1H-indol-3-yl)ethyl]-Acetamide; N-[2-(5-Methoxy-1H-indol-3-yl)ethyl]acetamide; N-[2-(5-Methoxy-1H-indol-3-yl)ethyl)acetamide; N-(2-(5-Methoxy-1H-indol-3-yl)ethyl)acetamide; {N-[2-(5-methoxyindol-3-yl)ethyl]-} Acetamide; Acetamide, N-(2-(5-methoxyindol-3-yl)ethyl)-; 5-22-12-00042 (Beilstein Handbook Reference); Acetamide, N-[2-(5-methoxyindol-3-yl)ethyl]-; N-(2-(5-methoxyindol-3-yl)ethyl)-Acetamide; N-[2-(5-methoxyindol-3-yl)ethyl]-Acetamide; N-[2-(5-methoxyindol-3-yl)ethyl]acetamide; N-(2-(5-Methoxyindol-3-yl)ethyl)acetamide; 3-(n-acetyl-2-aminoethyl)-5-methoxyindole; N-acetyl-5-methoxy-tryptamine Melatonine; Melatonin Rapid Release Gelcaps 5 mg; 0E2B08C1-B325-45B1-8939-6F9081EFDFA4; 3-(2-Acetamidoethyl)-5-methoxyindole; Melatonin (synth.) standard-grade; 3-N-Acetyl-5-methoxyl tryptamine; Melatonin Rapid Release Gelcaps; Melatonin, powder, >=98\\% (TLC); Melatonin 1.0 mg/ml in Methanol; N-acetyl-5-methoxy-tryptamine; 5-methoxy n-acetyl-tryptamine; Melatonin (synth.) ultra-pure; N-Acetyl-5-methoxytryptamine; 5-Methoxy-N-acetyltryptamine; MELATONIN [GREEN BOOK]; WLN: T56 BMJ D2MV1 GO1; Therapeutic Melatonin; Guna-dermo (Salt/Mix); MELATONIN [EMA EPAR]; Melatonin, >=99.5\\%; MELATONIN (USP-RS); MELATONIN [WHO-DD]; Melatonin Phenolic; MELATONIN [USP-RS]; MELATONIN [VANDF]; MELATONIN [MART.]; Prestwick3_000458; Prestwick1_000458; Prestwick2_000458; Prestwick0_000458; Melatonin, Powder; MELATONIN (MART.); Spectrum5_001745; Spectrum3_001393; Safrel Melatonin; Spectrum2_001344; Spectrum4_000066; Amerix Melatonin; MELATONIN [HSDB]; MELATONIN [INCI]; MELATONIN [DSC]; Melatonin (JAN); ChemDiv2_003916; Melatonina (TN); MELATONIN [JAN]; UNII-JL5DK93RCL; MELATONIN [MI]; Tox21_110195_1; [3H]-melatonin; Melatobel (TN); Lopac0_000787; DivK1c_000353; BPBio1_000590; Oprea1_104553; Oprea1_814234; [3H]melatonin; HSCI1_000400; KBio3_002226; KBio2_000665; NCI60_004378; Tox21_500787; KBio2_003233; KBio1_000353; Tox21_302926; Tox21_110195; KBio2_005801; Tox21_201527; CAS-73-31-4; IDI1_002631; IDI1_000353; SMP2_000309; Melatonine;; Melatonine; Melatonina; JL5DK93RCL; Guna-dermo; Melatonex; Melatobel; Melatonin; CHEMBL45; Melapure; Posidorm; Circadin; Melovine; J5.258B; Regulin; Melatol; [3H]MLT; somease; Melaxen; Primex; MT6; ML1; Melatonine; Melatonin; Melatonin
数据库引用编号
43 个数据库交叉引用编号
- ChEBI: CHEBI:16796
- KEGG: C01598
- KEGGdrug: D08170
- PubChem: 896
- HMDB: HMDB0001389
- Metlin: METLIN73
- DrugBank: DB01065
- ChEMBL: CHEMBL45
- Wikipedia: Melatonin
- MeSH: Melatonin
- ChemIDplus: 0000073314
- MetaCyc: N-ACETYL-5-METHOXY-TRYPTAMINE
- foodb: FDB004234
- chemspider: 872
- CAS: 73-31-4
- MoNA: KO001407
- MoNA: KO001409
- MoNA: KO003435
- MoNA: KO003433
- MoNA: PS126301
- MoNA: KO003432
- MoNA: KO003436
- MoNA: PS126305
- MoNA: PS126304
- MoNA: KO009066
- MoNA: KO003434
- MoNA: KO009065
- MoNA: PS126303
- MoNA: KO001411
- MoNA: KO001408
- MoNA: KO001410
- MoNA: PS126302
- PMhub: MS000000010
- MetaboLights: MTBLC16796
- PDB-CCD: ML1
- 3DMET: B00330
- NIKKAJI: J5.258B
- RefMet: Melatonin
- medchemexpress: HY-B0075
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-389
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-883
- PubChem: 4752
- KNApSAcK: 16796
分类词条
相关代谢途径
Reactome(11)
BioCyc(5)
PlantCyc(0)
代谢反应
250 个相关的代谢反应过程信息。
Reactome(114)
- Signaling Pathways:
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- Signaling by GPCR:
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- GPCR downstream signalling:
H2O + cAMP ⟶ AMP
- G alpha (i) signalling events:
ATP ⟶ PPi + cAMP
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- GPCR downstream signalling:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- G alpha (i) signalling events:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- GPCR downstream signalling:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- G alpha (i) signalling events:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- GPCR downstream signalling:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- G alpha (i) signalling events:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- GPCR downstream signalling:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- G alpha (i) signalling events:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- Signaling Pathways:
AMP + p-AMPK heterotrimer ⟶ p-AMPK heterotrimer:AMP
- Signaling by GPCR:
H2O + cAMP ⟶ AMP
- GPCR downstream signalling:
H2O + cAMP ⟶ AMP
- G alpha (i) signalling events:
H2O + cAMP ⟶ AMP
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amine-derived hormones:
Dopa ⟶ DA + carbon dioxide
- Serotonin and melatonin biosynthesis:
5HTP ⟶ 5HT + carbon dioxide
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amine-derived hormones:
Dopa ⟶ DA + carbon dioxide
- Serotonin and melatonin biosynthesis:
5HTP ⟶ 5HT + carbon dioxide
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amine-derived hormones:
Iodine + L-Tyr ⟶ HI + MIT
- Serotonin and melatonin biosynthesis:
5HTP ⟶ 5HT + carbon dioxide
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- GPCR downstream signalling:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- G alpha (i) signalling events:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- GPCR downstream signalling:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- G alpha (i) signalling events:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
Ade-Rib + AdoR ⟶ ADORA1,3:Ade-Rib
- GPCR downstream signalling:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- G alpha (i) signalling events:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- GPCR ligand binding:
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- GPCR ligand binding:
Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- GPCR ligand binding:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- GPCR ligand binding:
Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
Ade-Rib ⟶ ADORA1,3:Ade-Rib
- GPCR ligand binding:
Ade-Rib + AdoR ⟶ ADORA1,3:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
Ade-Rib + AdoR ⟶ ADORA1,3:Ade-Rib
- GPCR ligand binding:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- GPCR ligand binding:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- GPCR ligand binding:
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- GPCR ligand binding:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- GPCR ligand binding:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- GPCR ligand binding:
Ade-Rib + H0YT13 ⟶ ADORA1,3:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
Ade-Rib + H0YT13 ⟶ ADORA1,3:Ade-Rib
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of amine-derived hormones:
Iodine + L-Tyr ⟶ HI + MIT
- Serotonin and melatonin biosynthesis:
5HT + Ac-CoA ⟶ Ac5HT + CoA-SH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of amine-derived hormones:
Iodine + L-Tyr ⟶ HI + MIT
- Serotonin and melatonin biosynthesis:
5HTP ⟶ 5HT + carbon dioxide
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of amine-derived hormones:
MIT + TPNH ⟶ I- + L-Tyr + TPN
- Serotonin and melatonin biosynthesis:
5HTP ⟶ 5HT + carbon dioxide
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of amine-derived hormones:
Iodine + L-Tyr ⟶ HI + MIT
- Serotonin and melatonin biosynthesis:
L-Trp + Oxygen + Tetrahydrobiopterin ⟶ 4aOH-BH4 + 5HTP
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of amine-derived hormones:
Iodine + L-Tyr ⟶ HI + MIT
- Serotonin and melatonin biosynthesis:
5HTP ⟶ 5HT + carbon dioxide
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of amine-derived hormones:
Iodine + L-Tyr ⟶ HI + MIT
- Serotonin and melatonin biosynthesis:
5HTP ⟶ 5HT + carbon dioxide
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of amine-derived hormones:
Iodine + L-Tyr ⟶ HI + MIT
- Serotonin and melatonin biosynthesis:
5HTP ⟶ 5HT + carbon dioxide
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of amine-derived hormones:
Iodine + L-Tyr ⟶ HI + MIT
- Serotonin and melatonin biosynthesis:
5HTP ⟶ 5HT + carbon dioxide
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of amine-derived hormones:
Iodine + L-Tyr ⟶ HI + MIT
- Serotonin and melatonin biosynthesis:
5HTP ⟶ 5HT + carbon dioxide
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of amine-derived hormones:
NAd + SAM ⟶ ADR + H+ + SAH
- Serotonin and melatonin biosynthesis:
5HT + Ac-CoA ⟶ Ac5HT + CoA-SH
BioCyc(14)
- superpathway of tryptophan utilization:
N-formylkynurenine + H2O ⟶ H+ + L-kynurenine + formate
- superpathway of melatonin degradation:
hydrogen peroxide + melatonin ⟶ N1-acetyl-N2-formyl-5-methoxykynuramine + H2O
- melatonin degradation III:
hydrogen peroxide + melatonin ⟶ N1-acetyl-N2-formyl-5-methoxykynuramine + H2O
- superpathway of melatonin degradation:
N1-acetyl-N2-formyl-5-methoxykynuramine + H2O ⟶ N-acetyl-5-methoxykynurenamine + H+ + formate
- melatonin degradation III:
N1-acetyl-N2-formyl-5-methoxykynuramine + H2O ⟶ N-acetyl-5-methoxykynurenamine + H+ + formate
- melatonin degradation I:
O2 + a reduced [NADPH-hemoprotein reductase] + melatonin ⟶ N-acetyl-serotonin + H2O + an oxidized [NADPH-hemoprotein reductase] + formaldehyde
- melatonin degradation I:
O2 + a reduced [NADPH-hemoprotein reductase] + melatonin ⟶ N-acetyl-serotonin + H2O + an oxidized [NADPH-hemoprotein reductase] + formaldehyde
- serotonin and melatonin biosynthesis:
5-hydroxy-L-tryptophan + H+ ⟶ CO2 + serotonin
- melatonin degradation II:
5-methoxytryptamine + H+ + H2O + O2 ⟶ 5-methoxyindoleacetaldehyde + ammonium + hydrogen peroxide
- melatonin degradation II:
5-methoxyindoleacetaldehyde + A(H2) ⟶ 5-methoxytryptophol + A
- serotonin and melatonin biosynthesis:
N-acetyl-serotonin + SAM ⟶ H+ + SAH + melatonin
- biosynthesis of serotonin and melatonin:
5-hydroxy-L-tryptophan + H+ ⟶ CO2 + serotonin
- serotonin and melatonin biosynthesis:
5-hydroxy-L-tryptophan + H+ ⟶ CO2 + serotonin
- serotonin and melatonin biosynthesis:
5-hydroxy-L-tryptophan + H+ ⟶ CO2 + serotonin
WikiPathways(6)
- Biogenic amine synthesis:
Norepinephrine ⟶ Epinephrine
- Melatonin metabolism and effects:
Serotonin ⟶ 5-Hydroxyindoleacetic acid
- Biosynthesis and regeneration of tetrahydrobiopterin and catabolism of phenylalanine:
5-OH-Trp ⟶ Serotonin
- Tryptophan metabolism:
IA ⟶ Indolyl acryloyl glycine
- Biogenic amine synthesis:
Choline ⟶ Acetylcholine
- Kynurenine pathway and links to cell senescence:
N-Formylkynurenine ⟶ Kynurenine
Plant Reactome(0)
INOH(1)
- Tryptophan degradation ( Tryptophan degradation ):
L-Tryptophan + O2 ⟶ N-Formyl-L-kynurenine
PlantCyc(110)
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + trp ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + 5-hydroxy-L-tryptophan
- serotonin and melatonin biosynthesis:
N-acetyl-serotonin + SAM ⟶ H+ + SAH + melatonin
- serotonin and melatonin biosynthesis:
N-acetyl-serotonin + SAM ⟶ H+ + SAH + melatonin
COVID-19 Disease Map(0)
PathBank(5)
- Tryptophan Metabolism:
L-Tryptophan + Oxygen ⟶ N'-Formylkynurenine
- Tryptophan Metabolism:
L-Tryptophan + Oxygen ⟶ N'-Formylkynurenine
- Tryptophan Metabolism:
L-Tryptophan + Oxygen ⟶ N'-Formylkynurenine
- Tryptophan Metabolism:
L-Tryptophan + Oxygen ⟶ N'-Formylkynurenine
- Tryptophan Metabolism:
L-Tryptophan + Oxygen ⟶ N'-Formylkynurenine
PharmGKB(0)
77 个相关的物种来源信息
- 39271 - Agastache rugosa: 10.1016/S0024-3205(03)00252-2
- 34199 - Aloe vera: 10.1016/S0024-3205(03)00252-2
- 175694 - Andrographis paniculata: 10.1016/S0024-3205(03)00252-2
- 357970 - Angelica biserrata: 10.1016/S0024-3205(03)00252-2
- 165353 - Angelica sinensis: 10.1016/S0024-3205(03)00252-2
- 373122 - Arnebia euchroma: 10.1016/S0024-3205(03)00252-2
- 35608 - Artemisia annua: 10.1016/S0024-3205(03)00252-2
- 13601 - Berberis bealei: 10.1016/S0024-3205(03)00252-2
- 161934 - Beta vulgaris: 10.1111/J.1600-079X.1995.TB00136.X
- 7090 - Bombyx: 10.1016/S0024-3205(03)00252-2
- 161395 - Cistanche deserticola: 10.1016/S0024-3205(03)00252-2
- 558547 - Citrus deliciosa: 10.1016/S0024-3205(03)00252-2
- 85571 - Citrus reticulata: 10.1016/S0024-3205(03)00252-2
- 261450 - Coptis chinensis: 10.1016/S0024-3205(03)00252-2
- 16906 - Cornus officinalis: 10.1016/S0024-3205(03)00252-2
- 3659 - Cucumis sativus: 10.1111/J.1600-079X.1995.TB00136.X
- 869827 - Cucumis sativus var. sativus: 10.1111/J.1600-079X.1995.TB00136.X
- 136205 - Curcuma aeruginosa: 10.1016/S0024-3205(03)00252-2
- 253618 - Epimedium brevicornu: 10.1016/S0024-3205(03)00252-2
- 4392 - Eucommia ulmoides: 10.1016/S0024-3205(03)00252-2
- 76025 - Fallopia multiflora: 10.1016/S0024-3205(03)00252-2
- 126418 - Forsythia suspensa: 10.1016/S0024-3205(03)00252-2
- 114476 - Gardenia jasminoides: 10.1016/S0024-3205(03)00252-2
- 146910 - Gekko hokouensis: 10.1016/S0024-3205(03)00252-2
- 146911 - Gekko japonicus: 10.1016/S0024-3205(03)00252-2
- 50765 - Gentiana macrophylla: 10.1016/S0024-3205(03)00252-2
- 292393 - Gentiana scabra: 10.1016/S0024-3205(03)00252-2
- 74613 - Glycyrrhiza uralensis: 10.1016/S0024-3205(03)00252-2
- 648866 - Grona styracifolia: 10.1016/S0024-3205(03)00252-2
- 9606 - Homo sapiens:
- 9606 - Homo sapiens: -
- 65561 - Hypericum perforatum:
- 35883 - Ipomoea nil: 10.1034/J.1600-079X.2001.310102.X
- 161756 - Isatis tinctoria: 10.1016/S0024-3205(03)00252-2
- 4138 - Leonurus japonicus: 10.1016/S0024-3205(03)00252-2
- 368926 - Lobelia chinensis: 10.1016/S0024-3205(03)00252-2
- 105884 - Lonicera japonica: 10.1016/S0024-3205(03)00252-2
- 112863 - Lycium barbarum: 10.1016/S0024-3205(03)00252-2
- 55057 - Mamestra brassicae: 10.1515/ZNC-1998-9-1025
- 10036 - Mesocricetus auratus: 10.1002/(SICI)1097-0185(199605)245:1<13::AID-AR3>3.0.CO;2-G
- 3498 - Morus alba: 10.1016/S0024-3205(03)00252-2
- 4097 - Nicotiana tabacum: 10.1111/J.1600-079X.1995.TB00136.X
- 100504 - Ophiopogon intermedius: 10.1016/S0024-3205(03)00252-2
- 100506 - Ophiopogon japonicus: 10.1016/S0024-3205(03)00252-2
- 3560 - Oxybasis rubra: 10.1016/S0031-9422(96)00568-7
- 44681 - Panax pseudoginseng: 10.1016/S0024-3205(03)00252-2
- 68554 - Phellodendron amurense: 10.1016/S0024-3205(03)00252-2
- 355332 - Polygala tenuifolia: 10.1016/S0024-3205(03)00252-2
- 261423 - Polygonatum sibiricum: 10.1016/S0024-3205(03)00252-2
- 39358 - Prunella vulgaris: 10.1016/S0024-3205(03)00252-2
- 140311 - Prunus cerasus: 10.1021/JF010321+
- 3893 - Pueraria montana var. lobata: 10.1016/S0024-3205(03)00252-2
- 642527 - Pyrola decorata: 10.1016/S0024-3205(03)00252-2
- 3726 - Raphanus sativus: 10.1016/S0024-3205(03)00252-2
- 99300 - Rehmannia glutinosa: 10.1016/S0024-3205(03)00252-2
- 137221 - Rheum palmatum: 10.1016/S0024-3205(03)00252-2
- 714495 - Rubus chingii: 10.1016/S0024-3205(03)00252-2
- 226208 - Salvia miltiorrhiza: 10.1016/S0024-3205(03)00252-2
- 203717 - Saposhnikovia divaricata: 10.1016/S0024-3205(03)00252-2
- 50507 - Schisandra chinensis: 10.1016/S0024-3205(03)00252-2
- 55038 - Scolopendra subspinipes: 10.1016/S0024-3205(03)00252-2
- 291326 - Scrophularia ningpoensis: 10.1016/S0024-3205(03)00252-2
- 1052904 - Scutellaria amoena: 10.1016/S0024-3205(03)00252-2
- 65409 - Scutellaria baicalensis: 10.1016/S0140-6736(05)64014-7
- 233893 - Scutellaria lateriflora: 10.1016/S0140-6736(05)64014-7
- 4081 - Solanum lycopersicum:
- 4084 - Solanum pimpinellifolium: 10.1111/J.1600-079X.1995.TB00136.X
- 4113 - Solanum tuberosum: 10.1111/J.1600-079X.1995.TB00136.X
- 49840 - Sophora flavescens: 10.1016/S0024-3205(03)00252-2
- 219868 - Syzygium aromaticum: 10.1016/S0024-3205(03)00252-2
- 127999 - Tanacetum parthenium: 10.1016/S0140-6736(05)64014-7
- 227909 - Taxillus chinensis: 10.1016/S0024-3205(03)00252-2
- 43575 - Uncaria rhynchophylla: 10.1016/S0024-3205(03)00252-2
- 316493 - Viola philippica: 10.1016/S0024-3205(03)00252-2
- 81056 - Wolfiporia cocos: 10.1016/S0024-3205(03)00252-2
- 326968 - Ziziphus jujuba: 10.1016/S0024-3205(03)00252-2
- 33090 - 白皮松: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Zhongyi Yang, Xixi Yang, Shimei Wei, Fengfeng Shen, Wei Ji. Exogenous melatonin delays leaves senescence and enhances saline and alkaline stress tolerance in grape seedlings.
Plant signaling & behavior.
2024 Dec; 19(1):2334511. doi:
10.1080/15592324.2024.2334511
. [PMID: 38650457] - Faisal Zulfiqar, Anam Moosa, Hayssam M Ali, John T Hancock, Jean Wan Hong Yong. Synergistic interplay between melatonin and hydrogen sulfide enhances cadmium-induced oxidative stress resistance in stock (Matthiola incana L.).
Plant signaling & behavior.
2024 Dec; 19(1):2331357. doi:
10.1080/15592324.2024.2331357
. [PMID: 38564424] - Quan Gu, Chenyang Xie, Song Zhang, Tingyan Zhou, Na Li, Congshan Xu, Zhou Zhou, Chuyan Wang, Ziping Chen. Transcriptomic analysis provides insights into the molecular mechanism of melatonin-mediated cadmium tolerance in Medicago sativa L.
Ecotoxicology and environmental safety.
2024 Jun; 278(?):116411. doi:
10.1016/j.ecoenv.2024.116411
. [PMID: 38714085] - Gaoxuan Shao, Ying Liu, Lu Lu, Lei Wang, Guang Ji, Hanchen Xu. Therapeutic potential of traditional Chinese medicine in the prevention and treatment of digestive inflammatory cancer transformation: Portulaca oleracea L. as a promising drug.
Journal of ethnopharmacology.
2024 Jun; 327(?):117999. doi:
10.1016/j.jep.2024.117999
. [PMID: 38447616] - Guangdong Li, Laiqing Yan, Likai Wang, Wenkui Ma, Hao Wu, Shengyu Guan, Yujun Yao, Shoulong Deng, Hai Yang, Jinlong Zhang, Xiaosheng Zhang, Haixin Wu, Changjiu He, Pengyun Ji, Zhengxing Lian, Yingjie Wu, Lu Zhang, Guoshi Liu. Ovarian overexpression of ASMT gene increases follicle numbers in transgenic sheep: Association with lipid metabolism.
International journal of biological macromolecules.
2024 Jun; 269(Pt 2):131803. doi:
10.1016/j.ijbiomac.2024.131803
. [PMID: 38670205] - Aline de Camargo Santos, Bruce Schaffer, Andreas G Ioannou, Pamela Moon, Muhammad Shahid, Diane Rowland, Barry Tillman, Matthew Bremgartner, Vasileios Fotopoulos, Elias Bassil. Melatonin seed priming improves early establishment and water stress tolerance of peanut.
Plant physiology and biochemistry : PPB.
2024 Jun; 211(?):108664. doi:
10.1016/j.plaphy.2024.108664
. [PMID: 38703498] - Muhammad Imran Ghani, Benlin Yi, Muhammad Saad Rehmani, Xi Wei, Junaid Ali Siddiqui, Ruidong Fan, Yanjiang Liu, Mohamed A El-Sheikh, Xiaoyulong Chen, Parvaiz Ahmad. Potential of melatonin and Trichoderma harzianum inoculation in ameliorating salt toxicity in watermelon: Insights into antioxidant system, leaf ultrastructure, and gene regulation.
Plant physiology and biochemistry : PPB.
2024 Jun; 211(?):108639. doi:
10.1016/j.plaphy.2024.108639
. [PMID: 38688113] - Yangyang Tao, Qinglong Zhao, Chengbo Lu, Weilin Yong, Mingyuan Xu, Zhuo Wang, Xiaoping Leng. Melatonin suppresses atherosclerosis by ferroptosis inhibition via activating NRF2 pathway.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology.
2024 May; 38(10):e23678. doi:
10.1096/fj.202400427rr
. [PMID: 38780199] - Tian-Ji Xia, Su-Wei Jin, Yong-Guang Liu, Shan-Shan Zhang, Zhi Wang, Xin-Min Liu, Rui-Le Pan, Ning Jiang, Yong-Hong Liao, Ming-Zhu Yan, Qi Chang. Shen Yuan extract exerts a hypnotic effect via the tryptophan/5-hydroxytryptamine/melatonin pathway in mice.
Journal of ethnopharmacology.
2024 May; 326(?):117992. doi:
10.1016/j.jep.2024.117992
. [PMID: 38428654] - Ihsan Muhammad, Fahim Ullah, Shakeel Ahmad, Bandar M AlMunqedhi, Dunia A Al Farraj, Mohamed S Elshikh, Weijun Shen. A meta-analysis of photosynthetic efficiency and stress mitigation by melatonin in enhancing wheat tolerance.
BMC plant biology.
2024 May; 24(1):427. doi:
10.1186/s12870-024-05132-2
. [PMID: 38769501] - Shirin Rahmanzadeh-Ishkeh, Habib Shirzad, Zahra Tofighi, Mohammad Fattahi, Youbert Ghosta. Exogenous melatonin prolongs raspberry postharvest life quality by increasing some antioxidant and enzyme activity and phytochemical contents.
Scientific reports.
2024 05; 14(1):11508. doi:
10.1038/s41598-024-62111-1
. [PMID: 38769439] - Masoomeh Nabaei, Rayhaneh Amooaghaie, Mansour Ghorbanpour, Alimohammad Ahadi. Crosstalk between melatonin and nitric oxide restrains Cadmium-induced oxidative stress and enhances vinblastine biosynthesis in Catharanthus roseus (L) G Don.
Plant cell reports.
2024 May; 43(6):139. doi:
10.1007/s00299-024-03229-4
. [PMID: 38735908] - Yajuan Duan, Xianxu Wang, Yan Jiao, Yangyang Liu, Yue Li, Yongze Song, Lei Wang, Xiaohong Tong, Yan Jiang, Shaodong Wang, Sui Wang. Elucidating the role of exogenous melatonin in mitigating alkaline stress in soybeans across different growth stages: a transcriptomic and metabolomic approach.
BMC plant biology.
2024 May; 24(1):380. doi:
10.1186/s12870-024-05101-9
. [PMID: 38720246] - Nanqin Mei, Jingwen Liang, Danielle M McRae, Zoya Leonenko. Localized surface plasmon resonance and atomic force microscopy study of model lipid membranes and their interactions with amyloid and melatonin.
Nanotechnology.
2024 May; 35(30):. doi:
10.1088/1361-6528/ad403b
. [PMID: 38636478] - Guohui Li, Muhammad Aamir Manzoor, Guoyu Wang, Shiping Huang, Xiaoyuan Ding, Muhammad Abdullah, Ming Zhang, Cheng Song. Comparative analysis of POD genes and their expression under multiple hormones in Pyrus bretschenedri.
BMC genomic data.
2024 May; 25(1):41. doi:
10.1186/s12863-024-01229-7
. [PMID: 38711007] - Yuanyuan Fu, Penghui Li, Zhuanyun Si, Shoutian Ma, Yang Gao. Seeds Priming with Melatonin Improves Root Hydraulic Conductivity of Wheat Varieties under Drought, Salinity, and Combined Stress.
International journal of molecular sciences.
2024 May; 25(9):. doi:
10.3390/ijms25095055
. [PMID: 38732273] - Huanyu Cai, Renjian Li, Yu Chen, Ruiqing Bi, Xueru Fang, Peng Wu, Weilong Xu, Longzhu Bao, Zhu Liu, Jun Li, Guotian Li, Huailong Teng. Rational modification of melatonin for broad-spectrum antifungal agents discovery.
Journal of pineal research.
2024 May; 76(4):e12960. doi:
10.1111/jpi.12960
. [PMID: 38747028] - Davood Dorranipour, Fahimeh Pourjafari, Reza Malekpour-Afshar, Mohsen Basiri, Mehran Hosseini. Assessment of melatonin's therapeutic effectiveness against hepatic steatosis induced by a high-carbohydrate high-fat diet in rats.
Naunyn-Schmiedeberg's archives of pharmacology.
2024 05; 397(5):2971-2985. doi:
10.1007/s00210-023-02784-z
. [PMID: 37864588] - Yuanyuan Li, Congcong Zhang, Xu Lu, Haokai Yan, Guojie Nai, Meishuang Gong, Ying Lai, Zhihui Pu, Li Wei, Shaoying Ma, Sheng Li. Impact of exogenous melatonin foliar application on physiology and fruit quality of wine grapes (Vitis vinifera) under salt stress.
Functional plant biology : FPB.
2024 05; 51(?):. doi:
10.1071/fp24019
. [PMID: 38743838] - Etienne Challet, Paul Pévet. Melatonin in energy control: Circadian time-giver and homeostatic monitor.
Journal of pineal research.
2024 May; 76(4):e12961. doi:
10.1111/jpi.12961
. [PMID: 38751172] - Jian-Bo Jin, Jing Li, Hong-Bo Wang, Jing-Bo Hu, Chun-Lin Yang. Engineering of VCAM-1-targeted nanostructured lipid carriers for delivery of melatonin against acute lung injury through SIRT1/NLRP3 mediated pyroptosis signaling pathway.
International journal of biological macromolecules.
2024 May; 266(Pt 1):130637. doi:
10.1016/j.ijbiomac.2024.130637
. [PMID: 38490396] - Elena Martinez-Cayuelas, Teresa Gavela-Pérez, María Rodrigo-Moreno, Rebeca Losada-Del Pozo, Beatriz Moreno-Vinues, Carmen Garces, Leandro Soriano-Guillén. Sleep Problems, Circadian Rhythms, and Their Relation to Behavioral Difficulties in Children and Adolescents with Autism Spectrum Disorder.
Journal of autism and developmental disorders.
2024 May; 54(5):1712-1726. doi:
10.1007/s10803-023-05934-7
. [PMID: 36869970] - Qingyun Guan, Zixu Wang, Jing Cao, Yulan Dong, Shusheng Tang, Yaoxing Chen. Melatonin restores hepatic lipid metabolic homeostasis disrupted by blue light at night in high-fat diet-fed mice.
Journal of pineal research.
2024 May; 76(4):e12963. doi:
10.1111/jpi.12963
. [PMID: 38779971] - Weifeng He, Xueting Wang, Xin Yang, Gaoman Zhang, Junrou Zhang, Li Chen, Piye Niu, Tian Chen. Melatonin mitigates manganese-induced neural damage via modulation of gut microbiota-metabolism in mice.
The Science of the total environment.
2024 May; 923(?):171474. doi:
10.1016/j.scitotenv.2024.171474
. [PMID: 38447734] - Wenlong Zhang, Yuqi Sun, Hongfeng Wang, Mingfeng Xu, Chunmei He, Congcong Wang, Yongli Yu, Zongshen Zhang, Lingye Su. Exogenous Melatonin Enhances Dihydrochalcone Accumulation in Lithocarpus litseifolius Leaves via Regulating Hormonal Crosstalk and Transcriptional Profiling.
International journal of molecular sciences.
2024 Apr; 25(9):. doi:
10.3390/ijms25094592
. [PMID: 38731810] - María Elena Soto, Israel Pérez-Torres, Linaloe Manzano-Pech, Adrían Palacios-Chavarría, Rafael Ricardo Valdez-Vázquez, Verónica Guarner-Lans, Elizabeth Soria-Castro, Eulises Díaz-Díaz, Vicente Castrejón-Tellez. Redox Homeostasis Alteration Is Restored through Melatonin Treatment in COVID-19 Patients: A Preliminary Study.
International journal of molecular sciences.
2024 Apr; 25(8):. doi:
10.3390/ijms25084543
. [PMID: 38674128] - Ihsan Muhammad, Shakeel Ahmad, Weijun Shen. Melatonin-Mediated Molecular Responses in Plants: Enhancing Stress Tolerance and Mitigating Environmental Challenges in Cereal Crop Production.
International journal of molecular sciences.
2024 Apr; 25(8):. doi:
10.3390/ijms25084551
. [PMID: 38674136] - Mohamed Yassine El Brouzi, Mouloud Lamtai, Oussama Zghari, Abdelghafour El Hamzaoui, Ayoub Rezqaoui, Zahra Hadch, Nada Fath, Ali Ouichou, Aboubaker El Hessni, Abdelhalem Mesfioui. Melatonin is a Neuroprotective and Antioxidant Agent against Neurotoxicity Induced by an Intrahippocampal Injection of Nickel in Rats.
Neurotoxicity research.
2024 Apr; 42(2):24. doi:
10.1007/s12640-024-00700-8
. [PMID: 38598025] - Runan Hu, Yanjing Huang, Yuli Geng, Zhuo Liu, Fan Li, Zhuo Zhang, Wenwen Ma, Kunkun Song, Haoxu Dong, Yufan Song, Mingmin Zhang. Jiawei Buzhong Yiqi decoction ameliorates polycystic ovary syndrome via oocyte-granulosa cell communication.
Journal of ethnopharmacology.
2024 Apr; 323(?):117654. doi:
10.1016/j.jep.2023.117654
. [PMID: 38158097] - Mona H Soliman, Suliman M S Alghanem, Ibtisam M Alsudays, Abdullah Alaklabi, Basmah M Alharbi, Hadba Al-Amrah, Ehab Azab, Ghalia S H Alnusairi. Co-application of titanium nanoparticles and melatonin effectively lowered chromium toxicity in lemon balm (Melissa officinalis L.) through modifying biochemical characteristics.
Environmental science and pollution research international.
2024 Apr; 31(17):25258-25272. doi:
10.1007/s11356-024-32771-7
. [PMID: 38468007] - Ruina Zhang, Cong Liu, Daolun Yu, Deyong She, Yan Yu, Yongping Cai, Naifu Chen. Melatonin protects oogenesis from hypobaric hypoxia-induced fertility damage in mice.
Zygote (Cambridge, England).
2024 Apr; 32(2):161-169. doi:
10.1017/s0967199424000017
. [PMID: 38465746] - Izabela Kołodziejczyk, Andrzej Kaźmierczak. Melatonin - This is important to know.
The Science of the total environment.
2024 Apr; 919(?):170871. doi:
10.1016/j.scitotenv.2024.170871
. [PMID: 38340815] - Kun Yang, Jiang-Yan Yong, Yan He, Lu Yu, Gui-Ning Luo, Jilan Chen, Yi-Man Ge, You-Jun Yang, Wei-Jun Ding, Yi-Mei Hu. Melatonin restores DNFB-induced dysbiosis of skin microbiota in a mouse model of atopic dermatitis.
Life sciences.
2024 Apr; 342(?):122513. doi:
10.1016/j.lfs.2024.122513
. [PMID: 38387700] - Osama Alam, Latif Ullah Khan, Adeel Khan, Saleh H Salmen, Mohammad Javed Ansari, Fizza Mehwish, Mushtaq Ahmad, Qamar U Zaman, Hua-Feng Wang. Functional characterisation of Dof gene family and expression analysis under abiotic stresses and melatonin-mediated tolerance in pitaya (Selenicereus undatus).
Functional plant biology : FPB.
2024 04; 51(?):. doi:
10.1071/fp23269
. [PMID: 38569561] - Prateek Grover, Ashwani Kumar Singh, Ajeet Kumar, Mrigank Honparkhe, Navdeep Singh, Prahlad Singh. Effect of exogenous melatonin implant on post-thaw semen quality of buffalo bulls.
Reproduction in domestic animals = Zuchthygiene.
2024 Apr; 59(4):e14562. doi:
10.1111/rda.14562
. [PMID: 38591843] - Yulei Zhu, Jieying Guo, Fang Wu, Hanqi Yu, Jiahuan Min, Yingtong Zhao, Changhua Tan, Yuanwei Liu, Chuanqiang Xu. Exogenous Melatonin Application Accelerated the Healing Process of Oriental Melon Grafted onto Squash by Promoting Lignin Accumulation.
International journal of molecular sciences.
2024 Mar; 25(7):. doi:
10.3390/ijms25073690
. [PMID: 38612499] - Woong June Park. Have All of the Phytohormonal Properties of Melatonin Been Verified?.
International journal of molecular sciences.
2024 Mar; 25(6):. doi:
10.3390/ijms25063550
. [PMID: 38542522] - Muhammad Aamir Manzoor, Yan Xu, Zhengxin Lv, Jieming Xu, Yuxuan Wang, Wanxia Sun, Xunju Liu, Li Wang, Muhammad Abdullah, Ruie Liu, Songtao Jiu, Caixi Zhang. Comparative genomics of N-acetyl-5-methoxytryptamine members in four Prunus species with insights into bud dormancy and abiotic stress responses in Prunus avium.
Plant cell reports.
2024 Mar; 43(4):89. doi:
10.1007/s00299-024-03184-0
. [PMID: 38462577] - Can Ning, Wenguang Xiao, Zengenni Liang, You Wu, Hui Fan, Siqi Wang, Xiangyi Kong, Yongkang Wang, Aoao Wu, Yuanyuan Li, Zhihang Yuan, Jing Wu, Chenglin Yang. Melatonin alleviates T-2 toxin-induced oxidative damage, inflammatory response, and apoptosis in piglet spleen and thymus.
International immunopharmacology.
2024 Mar; 129(?):111653. doi:
10.1016/j.intimp.2024.111653
. [PMID: 38354511] - Cheng-Wei Qiu, Marvin Richmond, Yue Ma, Shuo Zhang, Wenxing Liu, Xue Feng, Imrul Mosaddek Ahmed, Feibo Wu. Melatonin enhances cadmium tolerance in rice via long non-coding RNA-mediated modulation of cell wall and photosynthesis.
Journal of hazardous materials.
2024 Mar; 465(?):133251. doi:
10.1016/j.jhazmat.2023.133251
. [PMID: 38141306] - Masoud Maleki, Abdolali Shojaeiyan, Ali Mokhtassi-Bidgoli. Differential responses of two fenugreek (Trigonella foenum-graecum L.) landraces pretreated with melatonin to prolonged drought stress and subsequent recovery.
BMC plant biology.
2024 Mar; 24(1):161. doi:
10.1186/s12870-024-04835-w
. [PMID: 38429697] - Sunjeet Kumar, Shihai Wang, Mengzhao Wang, Shah Zeb, Mohammad Nauman Khan, Yanli Chen, Guopeng Zhu, Zhixin Zhu. Enhancement of sweetpotato tolerance to chromium stress through melatonin and glutathione: Insights into photosynthetic efficiency, oxidative defense, and growth parameters.
Plant physiology and biochemistry : PPB.
2024 Mar; 208(?):108509. doi:
10.1016/j.plaphy.2024.108509
. [PMID: 38461751] - Javad Ghasemian-Yadegari, Ahmad Adineh, Hamidreza Mohammadi, Shima Davari, Yousef Veisani, Hori Ghaneialvar, Ali Aidy, Naser Abbasi, Elahe Karimi. Attenuation of cannabis withdrawal symptoms by Prosopis farcta extract, its luteolin and melatonin in mice: Involvement of brain-derived neurotrophic factor and dopamine.
Cell biochemistry and function.
2024 Mar; 42(2):e3980. doi:
10.1002/cbf.3980
. [PMID: 38491827] - Qian-Kun Lv, Kang-Xin Tao, Xiao-Yu Yao, Meng-Zhu Pang, Bing-Er Cao, Chun-Feng Liu, Fen Wang. Melatonin MT1 receptors regulate the Sirt1/Nrf2/Ho-1/Gpx4 pathway to prevent α-synuclein-induced ferroptosis in Parkinson's disease.
Journal of pineal research.
2024 Mar; 76(2):e12948. doi:
10.1111/jpi.12948
. [PMID: 38488331] - Razieh Mansoori, Sohrab Kazemi, Darya Almasi, Seyed Mohammad Hosseini, Bardia Karim, Majid Nabipour, Ali Akbar Moghadamnia. Therapeutic benefit of melatonin in 5-fluorouracil-induced renal and hepatic injury.
Basic & clinical pharmacology & toxicology.
2024 Mar; 134(3):397-411. doi:
10.1111/bcpt.13976
. [PMID: 38129993] - Davood Dorranipour, Fahimeh Pourjafari, Reza Malekpour-Afshar, Mohsen Basiri, Mehran Hosseini. Astrocyte response to melatonin treatment in rats under high-carbohydrate high-fat diet.
Journal of chemical neuroanatomy.
2024 Mar; 136(?):102389. doi:
10.1016/j.jchemneu.2024.102389
. [PMID: 38215799] - Tengteng Gao, Danni Zhang, Wentao Shen, Shuo Xu, Xumei Jia, Xiaomin Liu, Kexin Tan, Yi Zhou, Zhijun Zhang, Fengwang Ma, Chao Li. MdASMT9-mediated melatonin biosynthesis enhances basal thermotolerance in apple plants.
Plant, cell & environment.
2024 Mar; 47(3):751-764. doi:
10.1111/pce.14791
. [PMID: 38164091] - Sang-Mo Kang, Arjun Adhikari, Eun-Hae Kwon, Ho-Jun Gam, Jin Ryeol Jeon, Ji-In Woo, In-Jung Lee. Influence of N-Acetylglucosamine and Melatonin Interaction in Modeling the Photosynthetic Component and Metabolomics of Cucumber under Salinity Stress.
International journal of molecular sciences.
2024 Feb; 25(5):. doi:
10.3390/ijms25052844
. [PMID: 38474090] - Chunran Zhou, Peijuan Miao, Qinyong Dong, Dong Li, Canping Pan. Multiomics Explore the Detoxification Mechanism of Nanoselenium and Melatonin on Bensulfuron Methyl in Wheat Plants.
Journal of agricultural and food chemistry.
2024 Feb; 72(8):3958-3972. doi:
10.1021/acs.jafc.3c08429
. [PMID: 38363203] - Susana I L Gomes, Bruno Guimarães, Ivana Fenoglio, Paolo Gasco, Ana Gonzalez Paredes, Magda Blosi, Anna L Costa, Janeck J Scott-Fordsmand, Mónica J B Amorim. Advanced materials - Food grade melatonin-loaded Lipid Surfactant Submicron Particles (LSSP)-environmental impacts.
The Science of the total environment.
2024 Feb; 913(?):169748. doi:
10.1016/j.scitotenv.2023.169748
. [PMID: 38160813] - Vasiliki Vougeleka, Samuele Risoli, Costas Saitanis, Evgenios Agathokleous, Georgia Ntatsi, Giacomo Lorenzini, Cristina Nali, Elisa Pellegrini, Claudia Pisuttu. Exogenous application of melatonin protects bean and tobacco plants against ozone damage by improving antioxidant enzyme activities, enhancing photosynthetic performance, and preventing membrane damage.
Environmental pollution (Barking, Essex : 1987).
2024 Feb; 343(?):123180. doi:
10.1016/j.envpol.2023.123180
. [PMID: 38142812] - Hongmei Di, Chenlu Zhang, Aolian Zhou, Huanhuan Huang, Yi Tang, Huanxiu Li, Zhi Huang, Fen Zhang, Bo Sun. Transcriptome Analysis Reveals the Mechanism by Which Exogenous Melatonin Treatment Delays Leaf Senescence of Postharvest Chinese Kale (Brassica oleracea var. alboglabra).
International journal of molecular sciences.
2024 Feb; 25(4):. doi:
10.3390/ijms25042250
. [PMID: 38396927] - Yunzhi Liu, Junrong Xu, Xuefang Lu, Mengxiao Huang, Yuanzhi Mao, Chuanghao Li, Wenjin Yu, Changxia Li. Carbon monoxide is involved in melatonin-enhanced drought resistance in tomato seedlings by enhancing chlorophyll synthesis pathway.
BMC plant biology.
2024 Feb; 24(1):97. doi:
10.1186/s12870-024-04793-3
. [PMID: 38331770] - Muaz Ameen, Asma Zafar, Athar Mahmood, Muhammad Anjum Zia, Kashif Kamran, Muhammad Mansoor Javaid, Muhammad Yasin, Bilal Ahmad Khan. Melatonin as a master regulatory hormone for genetic responses to biotic and abiotic stresses in model plant Arabidopsis thaliana: a comprehensive review.
Functional plant biology : FPB.
2024 Feb; ?(?):. doi:
10.1071/fp23248
. [PMID: 38310885] - Dan Zhou, Hai-Yan Li, Xiu-Jun Wang, Qing-Wei Li. Effects of exogenous melatonin on the osmotic regulation and antioxidant capacity of Ginkgo biloba seedlings under salt stress.
Ying yong sheng tai xue bao = The journal of applied ecology.
2024 Feb; 35(2):431-438. doi:
10.13287/j.1001-9332.202402.001
. [PMID: 38523101] - Soumya Mukherjee, Suchismita Roy, Marino B Arnao. Nanovehicles for melatonin: a new journey for agriculture.
Trends in plant science.
2024 02; 29(2):232-248. doi:
10.1016/j.tplants.2023.11.016
. [PMID: 38123438] - Yongteng Zhao, Qingwei Wang, Dan Gu, Feiyan Huang, Jiani Liu, Lei Yu, Xuya Yu. Melatonin, a phytohormone for enhancing the accumulation of high-value metabolites and stress tolerance in microalgae: Applications, mechanisms, and challenges.
Bioresource technology.
2024 Feb; 393(?):130093. doi:
10.1016/j.biortech.2023.130093
. [PMID: 38000641] - Laha Supriya, Deepika Dake, Mehanathan Muthamilarasan, Gudipalli Padmaja. Melatonin-mediated regulation of autophagy is independent of ABA under drought stress in sensitive variety of Gossypium hirsutum L.
Plant physiology and biochemistry : PPB.
2024 Feb; 207(?):108409. doi:
10.1016/j.plaphy.2024.108409
. [PMID: 38346368] - Golam Jalal Ahammed, Zhe Li, Jingying Chen, Yifan Dong, Kehao Qu, Tianmeng Guo, Fenghua Wang, Airong Liu, Shuangchen Chen, Xin Li. Reactive oxygen species signaling in melatonin-mediated plant stress response.
Plant physiology and biochemistry : PPB.
2024 Feb; 207(?):108398. doi:
10.1016/j.plaphy.2024.108398
. [PMID: 38359555] - Tengteng Gao, Xiaomin Liu, Shuo Xu, Xi Yu, Danni Zhang, Kexin Tan, Yi Zhou, Xumei Jia, Zhijun Zhang, Fengwang Ma, Chao Li. Melatonin confers tolerance to nitrogen deficiency through regulating MdHY5 in apple plants.
The Plant journal : for cell and molecular biology.
2024 Feb; 117(4):1115-1129. doi:
10.1111/tpj.16542
. [PMID: 37966861] - Sunjeet Kumar, Yang Liu, Mengzhao Wang, Mohammad Nauman Khan, Shihai Wang, Yongping Li, Yanli Chen, Guopeng Zhu. Alleviating sweetpotato salt tolerance through exogenous glutathione and melatonin: A profound mechanism for active oxygen detoxification and preservation of photosynthetic organs.
Chemosphere.
2024 Feb; 350(?):141120. doi:
10.1016/j.chemosphere.2024.141120
. [PMID: 38199502] - Daniel Cortés-Montaña, María Josefa Bernalte-García, Mónica Palomino-Vasco, Manuel Joaquín Serradilla, Belén Velardo-Micharet. Effect of preharvest melatonin applications at dusk on quality and bioactive compounds content of early sweet cherries.
Journal of the science of food and agriculture.
2024 Feb; 104(3):1583-1590. doi:
10.1002/jsfa.13040
. [PMID: 37819712] - Minmin He, Gui Geng, Shuyang Mei, Gang Wang, Lihua Yu, Yao Xu, Yuguang Wang. Melatonin modulates the tolerance of plants to water stress: morphological response of the molecular mechanism.
Functional plant biology : FPB.
2024 02; 51(?):. doi:
10.1071/fp23199
. [PMID: 38354692] - Aylin Balci-Ozyurt, Anıl Yirün, Deniz Arca Cakır, N Dilara Zeybek, Didem Oral, Suna Sabuncuoğlu, Pınar Erkekoğlu. Evaluation of possible cytotoxic, genotoxic and epigenotoxic effects of titanium dioxide nanoparticles and possible protective effect of melatonin.
Toxicology mechanisms and methods.
2024 Feb; 34(2):109-121. doi:
10.1080/15376516.2023.2259980
. [PMID: 37794599] - Xinyu Zhi, Haojie Lu, Dongyue Ma, Jinxia Liu, Li Luo, Ludi Wang, Yu Qin. Melatonin protects photoreceptor cells against ferroptosis in dry AMD disorder by inhibiting GSK-3B/Fyn-dependent Nrf2 nuclear translocation.
Biochimica et biophysica acta. Molecular basis of disease.
2024 02; 1870(2):166969. doi:
10.1016/j.bbadis.2023.166969
. [PMID: 38008231] - Xiaoxu Yang, Dajun Liu, Chang Liu, Mengdi Li, Zhishan Yan, Yu Zhang, Guojun Feng. Possible melatonin-induced salt stress tolerance pathway in Phaseolus vulgaris L. using transcriptomic and metabolomic analyses.
BMC plant biology.
2024 Jan; 24(1):72. doi:
10.1186/s12870-023-04705-x
. [PMID: 38267871] - Mehdi Arabasadi, Amin Ebrahimi, Mohammad-Reza Amerian, Ehsan Ebrahimibasabi, Elham Azadvari. The amelioration of salt stress-induced damage in fenugreek through the application of cold plasma and melatonin.
Plant physiology and biochemistry : PPB.
2024 Jan; 207(?):108382. doi:
10.1016/j.plaphy.2024.108382
. [PMID: 38271864] - Thanh Huyen Pham, Xingyu Tian, Huimin Zhao, Tong Li, Litang Lu. Genome-wide characterization of COMT family and regulatory role of CsCOMT19 in melatonin synthesis in Camellia sinensis.
BMC plant biology.
2024 Jan; 24(1):51. doi:
10.1186/s12870-023-04702-0
. [PMID: 38225581] - Yu Xia, Dongliu Luo, Anqi Xu, Bing Zhao, Hongjin Lin, Haidong Yao, Shu Li. Insight into the mechanism of melatonin in attenuating PCB126-induced liver injury: Resistance to ROS-dependent NETs formation to alleviate inflammation and lipid metabolism dysfunction.
Ecotoxicology and environmental safety.
2024 Jan; 270(?):115923. doi:
10.1016/j.ecoenv.2023.115923
. [PMID: 38171107] - Zakirullah Khan, Rahmatullah Jan, Saleem Asif, Muhammad Farooq, Yoon-Hee Jang, Eun-Gyeong Kim, Nari Kim, Kyung-Min Kim. Exogenous melatonin induces salt and drought stress tolerance in rice by promoting plant growth and defense system.
Scientific reports.
2024 01; 14(1):1214. doi:
10.1038/s41598-024-51369-0
. [PMID: 38216610] - Rongqing Miao, Zhiqi Li, Yue Yuan, Xiufeng Yan, Qiuying Pang, Aiqin Zhang. Endogenous melatonin involved in plant salt response by impacting auxin signaling.
Plant cell reports.
2024 Jan; 43(2):33. doi:
10.1007/s00299-023-03097-4
. [PMID: 38200226] - Yu Sun, Haiyan Jin, Jia He, Jinyu Lai, Hao Lin, Xiangyu Liu. Melatonin alleviates ischemic stroke by inhibiting ferroptosis through the CYP1B1/ACSL4 pathway.
Environmental toxicology.
2024 Jan; ?(?):. doi:
10.1002/tox.24136
. [PMID: 38205686] - Lydia Pui Ying Lam, Andy C W Lui, Laura E Bartley, Bunzo Mikami, Toshiaki Umezawa, Clive Lo. Multifunctional 5-hydroxyconiferaldehyde O-methyltransferase (CAldOMT) in plant metabolism.
Journal of experimental botany.
2024 Jan; ?(?):. doi:
10.1093/jxb/erae011
. [PMID: 38198655] - Gaia Favero, Igor Golic, Francesca Arnaboldi, Annalisa Cappella, Aleksandra Korac, Maria Monsalve, Alessandra Stacchiotti, Rita Rezzani. Cardiometabolic Changes in Sirtuin1-Heterozygous Mice on High-Fat Diet and Melatonin Supplementation.
International journal of molecular sciences.
2024 Jan; 25(2):. doi:
10.3390/ijms25020860
. [PMID: 38255934] - Hao Yang, Yaqiong Wu, Jilu Che, Wenlong Wu, Lianfei Lyu, Weilin Li. LC-MS and GC-MS Metabolomics Analyses Revealed That Different Exogenous Substances Improved the Quality of Blueberry Fruits under Soil Cadmium Toxicity.
Journal of agricultural and food chemistry.
2024 Jan; 72(1):904-915. doi:
10.1021/acs.jafc.3c05879
. [PMID: 38112527] - Mao Li, Qizhe Cai, Yinpei Liang, Yaofei Zhao, Yaoshan Hao, Yingying Qin, Xinrui Qiao, Yuanhuai Han, Hongying Li. Mapping and Screening of Candidate Gene Regulating the Biomass Yield of Sorghum (Sorghum bicolor L.).
International journal of molecular sciences.
2024 Jan; 25(2):. doi:
10.3390/ijms25020796
. [PMID: 38255870] - Lamiaa M Mahmoud, Nabil Killiny, Manjul Dutt. Melatonin supplementation enhances browning suppression and improves transformation efficiency and regeneration of transgenic rough lemon plants (Citrus × jambhiri).
PloS one.
2024; 19(3):e0294318. doi:
10.1371/journal.pone.0294318
. [PMID: 38446779] - M Nasir Khan, Manzer H Siddiqui, Mazen A AlSolami, Zahid Hameed Siddiqui. Melatonin-regulated heat shock proteins and mitochondrial ATP synthase induce drought tolerance through sustaining ROS homeostasis in H2S-dependent manner.
Plant physiology and biochemistry : PPB.
2024 Jan; 206(?):108231. doi:
10.1016/j.plaphy.2023.108231
. [PMID: 38056039] - Samira Barangi, Soghra Mehri, Zahra Moosavi, Fatemeh Yarmohammadi, A Wallace Hayes, Gholamreza Karimi. Melatonin attenuates liver injury in arsenic-treated rats: The potential role of the Nrf2/HO-1, apoptosis, and miR-34a/Sirt1/autophagy pathways.
Journal of biochemical and molecular toxicology.
2024 Jan; 38(1):e23635. doi:
10.1002/jbt.23635
. [PMID: 38229313] - Lei Wang, Mohsin Tanveer, Hongling Wang, Marino B Arnao. Melatonin as a key regulator in seed germination under abiotic stress.
Journal of pineal research.
2024 Jan; 76(1):e12937. doi:
10.1111/jpi.12937
. [PMID: 38241678] - Antonio Cano, Josefa Hernández-Ruiz, Marino B Arnao. Common Methods of Extraction and Determination of Phytomelatonin in Plants.
Methods in molecular biology (Clifton, N.J.).
2024; 2798(?):161-181. doi:
10.1007/978-1-0716-3826-2_11
. [PMID: 38587742] - Xinmu Zhang, Bin Peng, Shenqi Zhang, Jian Wang, Xiong Yuan, Sharon Peled, Wu Chen, Jinyin Ding, Wei Li, Andrew Zhang, Qiaofeng Wu, Irina G Stavrovskaya, Chengliang Luo, Bharati Sinha, Yanyang Tu, Xiaojing Yuan, Mingchang Li, Shuqing Liu, Jianfang Fu, Ali Aziz-Sultan, Bruce S Kristal, Gil Alterovitz, Rose Du, Shuanhu Zhou, Xin Wang. The MT1 receptor as the target of ramelteon neuroprotection in ischemic stroke.
Journal of pineal research.
2024 Jan; 76(1):e12925. doi:
10.1111/jpi.12925
. [PMID: 37986632] - Juliana M B de Morais, Ellen M S Cruz, Virgínia M Concato, Milena C de Souza, Yasmin M Santos, Débora H Quadreli, Fabrício S R Inoue, Francielle B Ferreira, Glaura S A Fernandes, Danielle L Bidóia, Rayanne R B Machado, Luiz Gustavo A Chuffa, Wander R Pavanelli, Fábio R F Seiva. Unraveling the impact of melatonin treatment: Oxidative stress, metabolic responses, and morphological changes in HuH7.5 hepatocellular carcinoma cells.
Pathology, research and practice.
2024 Jan; 253(?):155056. doi:
10.1016/j.prp.2023.155056
. [PMID: 38183817] - Yang Xu, Ru Xu, Shuhao Li, Shengxiang Ran, Jinwei Wang, Yuqi Zhou, Hongdou Gao, Fenglin Zhong. The mechanism of melatonin promotion on cucumber seedling growth at different nitrogen levels.
Plant physiology and biochemistry : PPB.
2024 Jan; 206(?):108263. doi:
10.1016/j.plaphy.2023.108263
. [PMID: 38100887] - Zhiya Deng, Man He, Hongbin Hu, Wenqian Zhang, Yaoyuan Zhang, Yue Ge, Tongtong Ma, Jie Wu, Lulan Li, Maomao Sun, Sheng An, Jiaxin Li, Qiaobing Huang, Shenhai Gong, Jiaxing Zhang, Zhongqing Chen, Zhenhua Zeng. Melatonin attenuates sepsis-induced acute kidney injury by promoting mitophagy through SIRT3-mediated TFAM deacetylation.
Autophagy.
2024 01; 20(1):151-165. doi:
10.1080/15548627.2023.2252265
. [PMID: 37651673] - Francisco J Corpas, Marta Rodríguez-Ruiz, María J Campos, Jorge Taboada, José M Palma. Electrochemical Detection of Total Antioxidant Capacity (TAC) in Plant Tissues from Different Origins.
Methods in molecular biology (Clifton, N.J.).
2024; 2798(?):1-9. doi:
10.1007/978-1-0716-3826-2_1
. [PMID: 38587732] - Francesca Garofoli, Valentina Franco, Patrizia Accorsi, Riccardo Albertini, Micol Angelini, Carlo Asteggiano, Salvatore Aversa, Elena Ballante, Renato Borgatti, Raffaella F Cabini, Camilla Caporali, Luisa Chiapparini, Sara Cociglio, Elisa Fazzi, Stefania Longo, Laura Malerba, Valeria Materia, Laura Mazzocchi, Cecilia Naboni, Michela Palmisani, Anna Pichiecchio, Lorenzo Pinelli, Camilla Pisoni, Lorenzo Preda, Alice Riboli, Francesco M Risso, Vittoria Rizzo, Elisa Rognone, Anna M Simoncelli, Paola Villani, Chryssoula Tzialla, Stefano Ghirardello, Simona Orcesi. Fate of melatonin orally administered in preterm newborns: Antioxidant performance and basis for neuroprotection.
Journal of pineal research.
2024 Jan; 76(1):e12932. doi:
10.1111/jpi.12932
. [PMID: 38111174] - Raheel Munir, Muhammad Umair Yasin, Muhammad Afzal, Mehmood Jan, Sajid Muhammad, Nazia Jan, Chen Nana, Faisal Munir, Hamza Iqbal, Faiza Tawab, Yinbo Gan. Melatonin alleviated cadmium accumulation and toxicity by modulating phytohormonal balance and antioxidant metabolism in rice.
Chemosphere.
2024 Jan; 346(?):140590. doi:
10.1016/j.chemosphere.2023.140590
. [PMID: 37914045] - Hongyan Cao, Qing Yang, Tianyi Wang, Tingting Du, Zhihua Song, Biying Dong, Ting Chen, Yifan Wei, Jingyi Xue, Dong Meng, Yujie Fu. Melatonin-mediated CcARP1 alters F-actin dynamics by phosphorylation of CcADF9 to balance root growth and salt tolerance in pigeon pea.
Plant biotechnology journal.
2024 Jan; 22(1):98-115. doi:
10.1111/pbi.14170
. [PMID: 37688588] - Xianjiao Liu, Jinyan Li, Mengdie Shi, Jun Fu, Yubo Wang, Weili Kang, Jinyan Liu, Fenxia Zhu, Kehe Huang, Xingxiang Chen, Yunhuan Liu. Melatonin improves cholestatic liver disease via the gut-liver axis.
Journal of pineal research.
2024 Jan; 76(1):e12929. doi:
10.1111/jpi.12929
. [PMID: 38047407] - Yiying Lv, Yongteng Zhao, Yuansheng He, Jiming Wang, Yuanxian Zheng, Xiaolong Chen, Feiyan Huang, Jiani Liu, Lei Yu. Synergistic effects of gamma-aminobutyric acid and melatonin on seed germination and cadmium tolerance in tomato.
Plant signaling & behavior.
2023 12; 18(1):2216001. doi:
10.1080/15592324.2023.2216001
. [PMID: 37302802] - Evelin Bachmeier, Fernando Martin Wietz, Daniela Josefina Porta, Lorena Moine, Claudio Gastón Dubersarsky, Catalina Melchora Francia, Maria Elena Samar, Maria Angelica Rivoira, Marcelo Adrian Mazzeo. [Melatonin reverses oxidative damage in the submandibular gland of rats treated with Cyclophosphamide].
Revista de la Facultad de Ciencias Medicas (Cordoba, Argentina).
2023 12; 80(4):404-419. doi:
10.31053/1853.0605.v80.n4.40930
. [PMID: 38150204] - Yanqing Wu, Jiao Liu, Hao Wu, Yiming Zhu, Irshad Ahmad, Guisheng Zhou. The Roles of Mepiquate Chloride and Melatonin in the Morpho-Physiological Activity of Cotton under Abiotic Stress.
International journal of molecular sciences.
2023 Dec; 25(1):. doi:
10.3390/ijms25010235
. [PMID: 38203405] - Junduo Li, Kai Lv, Jieping Wu, Yaping Xie, Junxia Zhang, Ningbo Zhang, Weirong Xu. Exogenous Melatonin Promotes Cold Tolerance in Grape Seedlings: Physiological, Transcriptomic, and Functional Evidence.
Journal of agricultural and food chemistry.
2023 Dec; 71(50):19970-19985. doi:
10.1021/acs.jafc.3c05907
. [PMID: 38055343] - Arjun Adhikari, Appiah Gregory Aneefi, Hairkham Sisuvanh, Santivong Singkham, Masele Valentine Pius, Farida Akter, Eun-Hae Kwon, Sang-Mo Kang, Youn-Ji Woo, Byung-Wook Yun, In-Jung Lee. Dynamics of Humic Acid, Silicon, and Biochar under Heavy Metal, Drought, and Salinity with Special Reference to Phytohormones, Antioxidants, and Melatonin Synthesis in Rice.
International journal of molecular sciences.
2023 Dec; 24(24):. doi:
10.3390/ijms242417369
. [PMID: 38139197] - Dejan Petrović, Marina Deljanin Ilić, Dejan Simonović, Milovan Stojanović, Milica Stanković, Slaviša Stanišić, Sanja Stojanović, Nebojša Arsić, Dušan T Sokolović. The role of melatonin in preventing amiodarone-induced rat liver damage.
Canadian journal of physiology and pharmacology.
2023 Dec; ?(?):. doi:
10.1139/cjpp-2023-0253
. [PMID: 38079620] - Anna Migni, Francesca Mancuso, Tiziano Baroni, Gabriele Di Sante, Mario Rende, Francesco Galli, Desirée Bartolini. Melatonin as a Repairing Agent in Cadmium- and Free Fatty Acid-Induced Lipotoxicity.
Biomolecules.
2023 12; 13(12):. doi:
10.3390/biom13121758
. [PMID: 38136629] - Congge Liu, Haijing Cheng, Shuwei Wang, Dashi Yu, Yunmin Wei. Physiological and Transcriptomic Analysis Reveals That Melatonin Alleviates Aluminum Toxicity in Alfalfa (Medicago sativa L.).
International journal of molecular sciences.
2023 Dec; 24(24):. doi:
10.3390/ijms242417221
. [PMID: 38139053] - Shirin Hekmatirad, Milad Moloudizargari, Marjan Fallah, Atena Rahimi, Vahdat Poortahmasebi, Mohammad Hossein Asghari. Cancer-associated immune cells and their modulation by melatonin.
Immunopharmacology and immunotoxicology.
2023 Dec; 45(6):788-801. doi:
10.1080/08923973.2023.2239489
. [PMID: 37489565]