Telobufotoxin (BioDeep_00000000421)

   

PANOMIX_OTCML-2023


代谢物信息卡片


5-[(3S,5S,8R,9S,10R,13R,14S,17R)-3,5,14-trihydroxy-10,13-dimethyl-2,3,4,6,7,8,9,11,12,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl]pyran-2-one

化学式: C24H34O5 (402.2406)
中文名称: 端粒细胞生成素, 远华蟾毒精
谱图信息: 最多检出来源 Chinese Herbal Medicine(otcml) 33.66%

分子结构信息

SMILES: C1[C@]2(C)[C@@]3([H])CC[C@]4(C)[C@@]([H])(C5=COC(=O)C=C5)CC[C@]4(O)[C@]3([H])CC[C@]2(O)C[C@@H](O)C1
InChI: InChI=1S/C24H34O5/c1-21-9-5-16(25)13-23(21,27)11-7-19-18(21)6-10-22(2)17(8-12-24(19,22)28)15-3-4-20(26)29-14-15/h3-4,14,16-19,25,27-28H,5-13H2,1-2H3

描述信息

Telocinobufagin is a steroid lactone. It is functionally related to a bufanolide.
Telocinobufagin is a natural product found in Bufo gargarizans, Bufo bufo, and other organisms with data available.
D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides
D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides
Telocinobufagin is one of anti-hepatoma constituent in Venenum Bufonis.
Telocinobufagin is one of anti-hepatoma constituent in Venenum Bufonis.

同义名列表

20 个代谢物同义名

5-[(3S,5S,8R,9S,10R,13R,14S,17R)-3,5,14-trihydroxy-10,13-dimethyl-2,3,4,6,7,8,9,11,12,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl]pyran-2-one; Bufa-20,22-dienolide, 3,5,14-trihydroxy-, (3beta,5beta)-; 5-beta-BUFA-20,22-DIENOLIDE, 3-beta,5,14-TRIHYDROXY-; 5beta-Bufa-20,22-dienolide, 3beta,5,14-trihydroxy-; 3beta,5beta,14beta-trihydroxy-bufa-20,22-dienolide; 3-beta,5,14-Trihydroxy-5-beta-bufa-20,22-dienolide; 3beta,5,14-Trihydroxy-5beta-bufa-20,22-dienolide; Bufa-20, 3,5,14-trihydroxy-, (3.beta.,5.beta.)-; 3beta,5beta,14-trihydroxy-bufa-20,22-dienolide; 4-18-00-02553 (Beilstein Handbook Reference); 5.beta.-Bufa-20, 3.beta.,5,14-trihydroxy-; 3,5,14-Trihydroxybufa-20,22-dienolide; Telobufotoxin;Telocinobufogenin; Telocinobufogenin; Telecinobufagin; Telocinobufagin; Telobufotoxin; ST 24:4;O5; SCHEMBL866976; Telocinobufagin



数据库引用编号

16 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 15 AIMP2, BCL2, BIRC5, CASP9, CDH1, CST3, CTNNB1, JAK2, MAPK8, MAPK9, MCL1, MTOR, PIK3CA, PIK3R6, STAT3
Peripheral membrane protein 3 JAK2, MTOR, PIK3R6
Endoplasmic reticulum membrane 3 BCL2, CD4, MTOR
Nucleus 14 AIMP2, BCL2, BIRC5, CASP9, CDH1, CTNNB1, JAK2, MAPK8, MAPK9, MCL1, MTOR, PARP1, STAT3, TBX21
cytosol 15 AIMP2, BCL2, BIRC5, CASP9, CDH1, CTNNB1, JAK2, MAPK8, MAPK9, MCL1, MTOR, PARP1, PIK3CA, PIK3R6, STAT3
dendrite 1 MTOR
nuclear body 1 PARP1
phagocytic vesicle 1 MTOR
trans-Golgi network 1 CDH1
centrosome 1 CTNNB1
nucleoplasm 11 ATP2B1, BIRC5, CDH1, CTNNB1, JAK2, MAPK8, MAPK9, MCL1, MTOR, PARP1, STAT3
RNA polymerase II transcription regulator complex 1 STAT3
Cell membrane 6 ATP2B1, CD4, CD8A, CDH1, CTNNB1, PIK3R6
Cytoplasmic side 1 MTOR
lamellipodium 3 CDH1, CTNNB1, PIK3CA
Multi-pass membrane protein 1 ATP2B1
Golgi apparatus membrane 1 MTOR
Synapse 3 ATP2B1, CTNNB1, MAPK8
cell cortex 1 CTNNB1
cell junction 2 CDH1, CTNNB1
glutamatergic synapse 4 ATP2B1, CDH1, CTNNB1, JAK2
Golgi apparatus 2 CDH1, CST3
Golgi membrane 1 MTOR
lysosomal membrane 1 MTOR
neuronal cell body 1 TBX21
postsynapse 2 CDH1, JAK2
presynaptic membrane 2 ATP2B1, CTNNB1
Cytoplasm, cytosol 2 AIMP2, PARP1
Lysosome 1 MTOR
endosome 1 CDH1
plasma membrane 11 ATP2B1, CD4, CD8A, CDH1, CST3, CTNNB1, JAK2, MAPK9, PIK3CA, PIK3R6, STAT3
synaptic vesicle membrane 1 ATP2B1
Membrane 10 AIMP2, ATP2B1, BCL2, CDH1, CTNNB1, JAK2, MCL1, MTOR, PARP1, PIK3R6
axon 1 MAPK8
basolateral plasma membrane 2 ATP2B1, CTNNB1
caveola 1 JAK2
extracellular exosome 4 ATP2B1, CDH1, CST3, CTNNB1
Lysosome membrane 1 MTOR
endoplasmic reticulum 2 BCL2, CST3
extracellular space 1 CST3
perinuclear region of cytoplasm 3 CDH1, CTNNB1, PIK3CA
Schaffer collateral - CA1 synapse 2 CTNNB1, MAPK9
adherens junction 2 CDH1, CTNNB1
apicolateral plasma membrane 1 CTNNB1
bicellular tight junction 1 CTNNB1
intercalated disc 1 PIK3CA
mitochondrion 5 BCL2, CASP9, MAPK9, MCL1, PARP1
protein-containing complex 5 BCL2, BIRC5, CASP9, CTNNB1, PARP1
intracellular membrane-bounded organelle 1 ATP2B1
Microsome membrane 1 MTOR
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Single-pass type I membrane protein 3 CD4, CD8A, CDH1
Secreted 1 CST3
extracellular region 3 CD8A, CDH1, CST3
cytoplasmic side of plasma membrane 2 CDH1, JAK2
Mitochondrion outer membrane 2 BCL2, MTOR
Single-pass membrane protein 2 BCL2, MCL1
mitochondrial outer membrane 3 BCL2, MCL1, MTOR
[Isoform 2]: Secreted 1 CD8A
transcription regulator complex 3 CTNNB1, PARP1, STAT3
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 ATP2B1
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 2 BCL2, MCL1
nuclear membrane 2 BCL2, CDH1
external side of plasma membrane 2 CD4, CD8A
actin cytoskeleton 1 CDH1
Z disc 1 CTNNB1
beta-catenin destruction complex 1 CTNNB1
microtubule cytoskeleton 1 BIRC5
nucleolus 1 PARP1
Wnt signalosome 1 CTNNB1
midbody 1 BIRC5
Early endosome 1 CD4
apical part of cell 1 CTNNB1
cell-cell junction 1 CTNNB1
vesicle 1 CST3
postsynaptic membrane 1 CTNNB1
Membrane raft 2 CD4, JAK2
pore complex 1 BCL2
Cytoplasm, cytoskeleton 1 CTNNB1
Cytoplasm, cytoskeleton, spindle 1 BIRC5
focal adhesion 2 CTNNB1, JAK2
microtubule 1 BIRC5
spindle 1 BIRC5
Cell junction, adherens junction 2 CDH1, CTNNB1
flotillin complex 2 CDH1, CTNNB1
Nucleus, PML body 1 MTOR
PML body 1 MTOR
fascia adherens 1 CTNNB1
lateral plasma membrane 3 ATP2B1, CDH1, CTNNB1
nuclear speck 1 MAPK9
interphase microtubule organizing center 1 BIRC5
receptor complex 1 CD8A
chromatin 3 PARP1, STAT3, TBX21
cell projection 1 ATP2B1
cell periphery 1 CTNNB1
Chromosome 2 BIRC5, PARP1
cytoskeleton 1 JAK2
Cytoplasm, cytoskeleton, cilium basal body 1 CTNNB1
centriole 1 BIRC5
Golgi apparatus, trans-Golgi network 1 CDH1
Nucleus, nucleolus 1 PARP1
spindle pole 1 CTNNB1
nuclear replication fork 1 PARP1
chromosome, telomeric region 1 PARP1
nuclear chromosome 1 BIRC5
postsynaptic density, intracellular component 1 CTNNB1
Basolateral cell membrane 1 ATP2B1
microvillus membrane 1 CTNNB1
site of double-strand break 1 PARP1
nuclear envelope 2 MTOR, PARP1
Endomembrane system 3 CTNNB1, JAK2, MTOR
endosome lumen 1 JAK2
Chromosome, centromere 1 BIRC5
Chromosome, centromere, kinetochore 1 BIRC5
myosin complex 1 MCL1
Nucleus, nucleoplasm 1 MCL1
euchromatin 2 CTNNB1, JAK2
Presynaptic cell membrane 1 ATP2B1
myelin sheath 1 BCL2
plasma membrane raft 1 CD8A
ficolin-1-rich granule lumen 1 CST3
endoplasmic reticulum lumen 2 CD4, CST3
phosphatidylinositol 3-kinase complex 2 PIK3CA, PIK3R6
phosphatidylinositol 3-kinase complex, class IA 2 PIK3CA, PIK3R6
tertiary granule lumen 1 CST3
kinetochore 1 BIRC5
beta-catenin-TCF complex 1 CTNNB1
anaphase-promoting complex 1 CDH1
immunological synapse 1 ATP2B1
apoptosome 1 CASP9
chromosome, centromeric region 1 BIRC5
presynaptic active zone cytoplasmic component 1 CTNNB1
clathrin-coated endocytic vesicle membrane 1 CD4
chromosome passenger complex 1 BIRC5
[Isoform 2]: Nucleus 1 CDH1
extrinsic component of cytoplasmic side of plasma membrane 1 JAK2
cytoplasmic microtubule 1 BIRC5
protein-DNA complex 2 CTNNB1, PARP1
spindle microtubule 1 BIRC5
survivin complex 1 BIRC5
basal dendrite 1 MAPK8
apical junction complex 1 CDH1
[Isoform 1]: Cell membrane 1 CD8A
aminoacyl-tRNA synthetase multienzyme complex 1 AIMP2
Cell junction, desmosome 1 CDH1
desmosome 1 CDH1
Cytoplasmic vesicle, phagosome 1 MTOR
extrinsic component of plasma membrane 1 JAK2
granulocyte macrophage colony-stimulating factor receptor complex 1 JAK2
interleukin-12 receptor complex 1 JAK2
interleukin-23 receptor complex 1 JAK2
catenin complex 2 CDH1, CTNNB1
site of DNA damage 1 PARP1
T cell receptor complex 2 CD4, CD8A
[Poly [ADP-ribose] polymerase 1, processed N-terminus]: Chromosome 1 PARP1
[Poly [ADP-ribose] polymerase 1, processed C-terminus]: Cytoplasm 1 PARP1
BAD-BCL-2 complex 1 BCL2
photoreceptor ribbon synapse 1 ATP2B1
beta-catenin-TCF7L2 complex 1 CTNNB1
beta-catenin-ICAT complex 1 CTNNB1
Scrib-APC-beta-catenin complex 1 CTNNB1
phosphatidylinositol 3-kinase complex, class IB 2 PIK3CA, PIK3R6
caspase complex 1 CASP9


文献列表

  • Jie Li, Ru Ma, Jun-Lin Lv, Yu-Shan Ren, Yu-Jun Tan, Hao-Mai Wang, Zhui-En Wang, Bin-Sheng Wang, Jia-Ning Yu, Yu-Liang Wang, Jun Tian, Qiu-Sheng Zheng. Telocinobufagin, a PLK1 suppressor that inhibits tumor growth and metastasis by modulating CDC25c and CTCF in HNSCC cells. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2024 May; 127(?):155440. doi: 10.1016/j.phymed.2024.155440. [PMID: 38452691]
  • Yili Shen, Haijian Cai, Shenjie Ma, Wenjing Zhu, Haiyang Zhao, Jifa Li, Hua Ye, Lehe Yang, Chengguang Zhao, Xiaoying Huang, Zhongxiao Xiao. Telocinobufagin Has Antitumor Effects in Non-Small-Cell Lung Cancer by Inhibiting STAT3 Signaling. Journal of natural products. 2022 04; 85(4):765-775. doi: 10.1021/acs.jnatprod.1c00761. [PMID: 35200033]
  • Dongzhu Tu, Jing Ning, Liwei Zou, Ping Wang, Yani Zhang, Xiangge Tian, Feng Zhang, Jiang Zheng, Guangbo Ge. Unique Oxidative Metabolism of Bufalin Generates Two Reactive Metabolites That Strongly Inactivate Human Cytochrome P450 3A. Journal of medicinal chemistry. 2022 03; 65(5):4018-4029. doi: 10.1021/acs.jmedchem.1c01875. [PMID: 35094507]
  • Shi-Wen Zhou, Jing-Yu Quan, Zi-Wei Li, Ge Ye, Zhuo Shang, Ze-Ping Chen, Lei Wang, Xin-Yuan Li, Xiao-Qi Zhang, Jie Li, Jun-Shan Liu, Hai-Yan Tian. Bufadienolides from the Eggs of the Toad Bufo bufo gargarizans and Their Antimelanoma Activities. Journal of natural products. 2021 05; 84(5):1425-1433. doi: 10.1021/acs.jnatprod.0c00840. [PMID: 33882233]
  • Fatimah K Khalaf, Iman Tassavvor, Amal Mohamed, Yiliang Chen, Deepak Malhotra, Zijian Xie, Jiang Tian, Steven T Haller, Kristen Westfall, W H Wilson Tang, David J Kennedy. Epithelial and Endothelial Adhesion of Immune Cells Is Enhanced by Cardiotonic Steroid Signaling Through Na+/K+-ATPase-α-1. Journal of the American Heart Association. 2020 02; 9(3):e013933. doi: 10.1161/jaha.119.013933. [PMID: 32013704]
  • Fatimah K Khalaf, Prabhatchandra Dube, Andrew L Kleinhenz, Deepak Malhotra, Amira Gohara, Christopher A Drummond, Jiang Tian, Steven T Haller, Zijian Xie, David J Kennedy. Proinflammatory Effects of Cardiotonic Steroids Mediated by NKA α-1 (Na+/K+-ATPase α-1)/Src Complex in Renal Epithelial Cells and Immune Cells. Hypertension (Dallas, Tex. : 1979). 2019 07; 74(1):73-82. doi: 10.1161/hypertensionaha.118.12605. [PMID: 31132948]
  • Luciana S Amaral, Jainne Martins Ferreira, Danilo Predes, José Garcia Abreu, François Noël, Luis Eduardo M Quintas. Telocinobufagin and Marinobufagin Produce Different Effects in LLC-PK1 Cells: A Case of Functional Selectivity of Bufadienolides. International journal of molecular sciences. 2018 Sep; 19(9):. doi: 10.3390/ijms19092769. [PMID: 30223494]
  • David J Kennedy, Fatimah K Khalaf, Brendan Sheehy, Malory E Weber, Brendan Agatisa-Boyle, Julijana Conic, Kayla Hauser, Charles M Medert, Kristen Westfall, Philip Bucur, Olga V Fedorova, Alexei Y Bagrov, W H Wilson Tang. Telocinobufagin, a Novel Cardiotonic Steroid, Promotes Renal Fibrosis via Na⁺/K⁺-ATPase Profibrotic Signaling Pathways. International journal of molecular sciences. 2018 Aug; 19(9):. doi: 10.3390/ijms19092566. [PMID: 30158457]
  • Yi-Wu Dang, Peng Lin, Li-Min Liu, Rong-Quan He, Li-Jie Zhang, Zhi-Gang Peng, Xiao-Jiao Li, Gang Chen. In silico analysis of the potential mechanism of telocinobufagin on breast cancer MCF-7 cells. Pathology, research and practice. 2018 May; 214(5):631-643. doi: 10.1016/j.prp.2018.03.029. [PMID: 29656985]
  • Alana N Godinho, Graciana T Costa, Nádia O Oliveira, Bruno A Cardi, Daniel Esdras A Uchoa, Edilberto R Silveira, Luis Eduardo M Quintas, François G Noël, Manassés C Fonteles, Krishnamurti M Carvalho, Cláudia F Santos, Lucília M A Lessa, Nilberto R F do Nascimento. Effects of cardiotonic steroids on isolated perfused kidney and NHE3 activity in renal proximal tubules. Biochimica et biophysica acta. General subjects. 2017 Aug; 1861(8):1943-1950. doi: 10.1016/j.bbagen.2017.05.012. [PMID: 28506883]
  • Shun-Tian Liang, Yuan Li, Xiao-Wu Li, Jun-Jiang Wang, Fu-Xian Tan, Qin-Rui Han, Lu Li, Xue-Qing Yao, Xue-Gang Sun. [Mechanism of colon cancer cell apoptosis induced by telocinobufagin: role of oxidative stress and apoptosis pathway]. Nan fang yi ke da xue xue bao = Journal of Southern Medical University. 2016 Jun; 36(7):921-6. doi: . [PMID: 27435769]
  • Shuai-Cheng Wu, Ben-Dong Fu, Hai-Qing Shen, Peng-Fei Yi, Li-Yan Zhang, Shuang Lv, Xun Guo, Fang Xia, Yong-Li Wu, Xu-Bin Wei. Telocinobufagin enhances the Th1 immune response and protects against Salmonella typhimurium infection. International immunopharmacology. 2015 Apr; 25(2):353-62. doi: 10.1016/j.intimp.2015.02.005. [PMID: 25687199]
  • Hai-Yan Tian, Shi-Lin Luo, Jun-Shan Liu, Lei Wang, Ying Wang, Dong-Mei Zhang, Xiao-Qi Zhang, Ren-Wang Jiang, Wen-Cai Ye. C23 steroids from the venom of Bufo bufo gargarizans. Journal of natural products. 2013 Oct; 76(10):1842-7. doi: 10.1021/np400174f. [PMID: 24050254]
  • Dong-Mei Zhang, Jun-Shan Liu, Ming-Kuen Tang, Anita Yiu, Hui-hui Cao, Lei Jiang, Judy Yuet-Wa Chan, Hai-Yan Tian, Kwok-Pui Fung, Wen-Cai Ye. Bufotalin from Venenum Bufonis inhibits growth of multidrug resistant HepG2 cells through G2/M cell cycle arrest and apoptosis. European journal of pharmacology. 2012 Oct; 692(1-3):19-28. doi: 10.1016/j.ejphar.2012.06.045. [PMID: 22841670]
  • Fanghua Qi, Anyuan Li, Yoshinori Inagaki, Norihiro Kokudo, Sumihito Tamura, Munehiro Nakata, Wei Tang. Antitumor activity of extracts and compounds from the skin of the toad Bufo bufo gargarizans Cantor. International immunopharmacology. 2011 Mar; 11(3):342-9. doi: 10.1016/j.intimp.2010.12.007. [PMID: 21185919]
  • Natália Araújo Touza, Elisa Suzana Carneiro Pôças, Luis Eduardo M Quintas, Geraldino Cunha-Filho, Maria Lucília Santos, François Noël. Inhibitory effect of combinations of digoxin and endogenous cardiotonic steroids on Na+/K+-ATPase activity in human kidney membrane preparation. Life sciences. 2011 Jan; 88(1-2):39-42. doi: 10.1016/j.lfs.2010.10.027. [PMID: 21047518]
  • Jingkui Li, Xiaochi Ma, Fengyun Li, Jingkui Wang, Huirong Chen, Gang Wang, Xia Lv, Changkai Sun, Jingming Jia. Preparative separation and purification of bufadienolides from Chinese traditional medicine of ChanSu using high-speed counter-current chromatography. Journal of separation science. 2010 May; 33(9):1325-30. doi: 10.1002/jssc.200900782. [PMID: 20201046]
  • Yongguo Cao, Yu Song, Na An, Sheng Zeng, Dacheng Wang, Lu Yu, Tongfei Zhu, Tingdi Zhang, Jian Cui, Changfang Zhou, Xuming Deng. The effects of telocinobufagin isolated from Chan Su on the activation and cytokine secretion of immunocytes in vitro. Fundamental & clinical pharmacology. 2009 Aug; 23(4):457-64. doi: 10.1111/j.1472-8206.2009.00696.x. [PMID: 19709323]
  • Xiao Chi Ma, Bao Jing Zhang, Xin Lan Xin, Shan Shan Huang, Sha Deng, Hou Li Zhang, Xiao Hong Shu, Yun Peng Diao, Jian Cui. Simultaneous quantification of seven major bufadienolides in three traditional Chinese medicinal preparations of chansu by HPLC-DAD. Natural product communications. 2009 Feb; 4(2):179-84. doi: . [PMID: 19370919]
  • André Gustavo Tempone, Daniel Carvalho Pimenta, Ivo Lebrun, Patrícia Sartorelli, Noemi N Taniwaki, Heitor Franco de Andrade, Marta Maria Antoniazzi, Carlos Jared. Antileishmanial and antitrypanosomal activity of bufadienolides isolated from the toad Rhinella jimi parotoid macrogland secretion. Toxicon : official journal of the International Society on Toxinology. 2008 Jul; 52(1):13-21. doi: 10.1016/j.toxicon.2008.05.008. [PMID: 18588907]
  • Yan Liang, Ai-hua Liu, Song Qin, Jiang-hao Sun, Min Yang, Ping Li, De-an Guo. Simultaneous determination and pharmacokinetics of five bufadienolides in rat plasma after oral administration of Chansu extract by SPE-HPLC method. Journal of pharmaceutical and biomedical analysis. 2008 Feb; 46(3):442-8. doi: 10.1016/j.jpba.2007.11.001. [PMID: 18093784]
  • Wilhelm Schoner, Georgios Scheiner-Bobis. Endogenous and exogenous cardiac glycosides and their mechanisms of action. American journal of cardiovascular drugs : drugs, devices, and other interventions. 2007; 7(3):173-89. doi: 10.2165/00129784-200707030-00004. [PMID: 17610345]
  • Yutaka Komiyama, Xian Hui Dong, Noriko Nishimura, Hiroya Masaki, Masamichi Yoshika, Midori Masuda, Hakuo Takahashi. A novel endogenous digitalis, telocinobufagin, exhibits elevated plasma levels in patients with terminal renal failure. Clinical biochemistry. 2005 Jan; 38(1):36-45. doi: 10.1016/j.clinbiochem.2004.08.005. [PMID: 15607315]
  • T Nogawa, Y Kamano, A Yamashita, G R Pettit. Isolation and structure of five new cancer cell growth inhibitory bufadienolides from the Chinese traditional drug Ch'an Su. Journal of natural products. 2001 Sep; 64(9):1148-52. doi: 10.1021/np0101088. [PMID: 11575946]