Phloretin (BioDeep_00000000335)
Secondary id: BioDeep_00000270635, BioDeep_00000860723
human metabolite PANOMIX_OTCML-2023 blood metabolite natural product Volatile Flavor Compounds
代谢物信息卡片
化学式: C15H14O5 (274.0841194)
中文名称: 根皮素
谱图信息:
最多检出来源 Viridiplantae(plant) 0.04%
Last reviewed on 2024-07-29.
Cite this Page
Phloretin. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/phloretin (retrieved
2024-11-22) (BioDeep RN: BioDeep_00000000335). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C1(O)C=C(O)C(C(=O)CCC2C=CC(O)=CC=2)=C(O)C=1
InChI: InChI=1S/C15H14O5/c16-10-4-1-9(2-5-10)3-6-12(18)15-13(19)7-11(17)8-14(15)20/h1-2,4-5,7-8,16-17,19-20H,3,6H2
描述信息
Phloretin is the aglucone of phlorizin, a plant-derived dihydrochalcone phytochemical reported to promote potent antioxidative activities in peroxynitrite scavenging and the inhibition of lipid peroxidation. Phloretin, which is present in apples, pears and tomatoes, has been found to inhibit the growth of several cancer cells and induce apoptosis of B16 melanoma and HL60 human leukemia cells. Phloretin also inhibits HT-29 cell growth by inducing apoptosis, which may be mediated through changes in mitochondrial membrane permeability and activation of the caspase pathways. Phloretin is a well-known inhibitor of eukaryotic urea transporters, blocks VacA-mediated urea and ion transport (PMID:18158826, 11560962, 18063724, 15671209, 12083758). Phloretin is a biomarker for the consumption of apples. Phloretin has been found to be a metabolite of Escherichia (PMID:23542617).
Phloretin is a member of the class of dihydrochalcones that is dihydrochalcone substituted by hydroxy groups at positions 4, 2, 4 and 6. It has a role as a plant metabolite and an antineoplastic agent. It is functionally related to a dihydrochalcone.
Phloretin is a natural dihydrochalcone found in apples and many other fruits.
Phloretin is a natural product found in Malus doumeri, Populus candicans, and other organisms with data available.
A natural dihydrochalcone found in apples and many other fruits.
Phloretin is a dihydrochalcone, a type of natural phenols. It is the phloroglucin ester of paraoxyhydratropic acid. It can be found in apple tree leaves. Phloretin is a biomarker for the consumption of apples.
A member of the class of dihydrochalcones that is dihydrochalcone substituted by hydroxy groups at positions 4, 2, 4 and 6.
IPB_RECORD: 341; CONFIDENCE confident structure
Phloretin (NSC 407292; RJC 02792) is a flavonoid extracted from Malus pumila Mill., has anti-inflammatory activities. Phloridzin is a specific, competitive and orally active inhibitor of sodium/glucose cotransporters in the intestine (SGLT1) and kidney (SGLT2). Phloretin inhibits Yeast-made GLUT1 as well as Human erythrocyte GLUT1 with IC50values of 49 μM and 61 μM, respectively[1].Phloretin has the potential for the treatment of rheumatoid arthritis (RA)?and allergic airway inflammation[4].
Phloretin (NSC 407292; RJC 02792) is a flavonoid extracted from Malus pumila Mill., has anti-inflammatory activities. Phloridzin is a specific, competitive and orally active inhibitor of sodium/glucose cotransporters in the intestine (SGLT1) and kidney (SGLT2). Phloretin inhibits Yeast-made GLUT1 as well as Human erythrocyte GLUT1 with IC50values of 49 μM and 61 μM, respectively[1].Phloretin has the potential for the treatment of rheumatoid arthritis (RA)?and allergic airway inflammation[4].
Phloretin (NSC 407292; RJC 02792) is a flavonoid extracted from Malus pumila Mill., has anti-inflammatory activities. Phloridzin is a specific, competitive and orally active inhibitor of sodium/glucose cotransporters in the intestine (SGLT1) and kidney (SGLT2). Phloretin inhibits Yeast-made GLUT1 as well as Human erythrocyte GLUT1 with IC50values of 49 μM and 61 μM, respectively[1].Phloretin has the potential for the treatment of rheumatoid arthritis (RA)?and allergic airway inflammation[4].
同义名列表
60 个代谢物同义名
InChI=1/C15H14O5/c16-10-4-1-9(2-5-10)3-6-12(18)15-13(19)7-11(17)8-14(15)20/h1-2,4-5,7-8,16-17,19-20H,3,6H; 3-(4-HYDROXYPHENYL)-1-(2,4,6-TRIHYDROXYPHENYL)-PROPAN-1-ONE [FHFI]; 3-(4-Hydroxy-phenyl)-1-(2,4,6-trihydroxy-phenyl)-propan-1-one; 1-Propanone, 3-(4-hydroxyphenyl)-1-(2,4,6-trihydroxyphenyl)-; 3-(4-Hydroxyphenyl)-1-(2,4,6-trihydroxyphenyl)propan-1-one; 1-(2,4,6-trihydroxyphenyl)-3-(4-hydroxyphenyl)-1-propanone; 3-(4-Hydroxyphenyl)-1-(2,4,6-trihydroxyphenyl)-1-propanone; 3-(4-Hydroxyphenyl)-1-(2,4,6-trihydroxyphenyl)-1-propanon; .beta.-(p-Hydroxyphenyl)-2,4,6-trihydroxypropiophenone; beta-(4-Hydroxyphenyl)-2,4,6-trihydroxypropiophenone; beta-(p-Hydroxyphenyl)-2,4,6-trihydroxypropiophenone; .beta.-(p-Hydroxyphenyl)-2,6-trihydroxypropiophenone; Propiophenone, 2,4,6-trihydroxy-3-(p-hydroxyphenyl)-; 2,4,6-Trihydroxy-3-(4-hydroxyphenyl)-propiophenone; Propiophenone,4,6-trihydroxy-3-(p-hydroxyphenyl)-; 2,4,6-Trihydroxy-3-(4-Hydroxyphenyl)propiophenone; 2,4,6-Trihydroxy-3-(p-hydroxyphenyl)propiophenone; 2,6-Trihydroxy-3-(p-hydroxyphenyl)propiophenone; .beta.-(p-Hydroxyphenyl)phloropropiophenone; beta-(p-Hydroxyphenyl)phloropropiophenone; Phloretin, analytical reference material; 2,4,4,6-Tetrahydroxy-Dihydrochalcone; 2,6-Dihydroxy-4-methoxyacetophenone; 4,2,4,6-Tetrahydroxydihydrochalcone; 2,4,4,6-Tetrahydroxydihydrochalcone; 4-O-Methylphloracetophenone; Phloretin - CAS 60-82-2; Dihydronaringenin; Phloretin, >=99\\%; Spectrum2_000681; BCBcMAP01_000040; PHLORETIN [INCI]; Spectrum3_001036; Spectrum5_001698; Spectrum4_001172; UNII-S5J5OE47MK; PHLORETIN [MI]; Oprea1_824722; Lopac0_001012; DivK1c_006429; KBio3_002071; Tox21_501012; KBio1_001373; KBio2_006911; Tox21_202854; KBio2_004343; KBio2_001775; CAS-60-82-2; SMP1_000238; S5J5OE47MK; Asebogenol; Phloretol; Phloretin; C15H14O5; BP_35; 2uxi; G50; NSC 407292; RJC 02792; Phloretin
数据库引用编号
30 个数据库交叉引用编号
- ChEBI: CHEBI:17276
- KEGG: C00774
- PubChem: 4788
- HMDB: HMDB0003306
- Metlin: METLIN3405
- DrugBank: DB07810
- ChEMBL: CHEMBL45068
- Wikipedia: Phloretin
- LipidMAPS: LMPK12120525
- MeSH: Phloretin
- ChemIDplus: 0000060822
- MetaCyc: PHLORETIN
- KNApSAcK: C00007936
- foodb: FDB015553
- chemspider: 4624
- CAS: 60-82-2
- MoNA: PB000701
- MoNA: PB000681
- MoNA: PB000682
- MoNA: PB000702
- medchemexpress: HY-N0142
- PMhub: MS000000454
- MetaboLights: MTBLC17276
- PDB-CCD: G50
- 3DMET: B00171
- NIKKAJI: J4.808I
- RefMet: Phloretin
- LOTUS: LTS0003293
- PubChem: 4036
- KNApSAcK: 17276
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
160 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(2)
- flavonoid di-C-glucosylation:
UDP-α-D-glucose + nothofagin ⟶ 3',5'-di-C-glucosylphloretin + H+ + UDP
- phloridzin biosynthesis:
H+ + dihydro-4-coumaroyl-CoA + malonyl-CoA ⟶ CO2 + coenzyme A + phloretin
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(158)
- phloridzin biosynthesis:
NADP+ + dihydro-4-coumaroyl-CoA ⟶ (E)-4-coumaroyl-CoA + H+ + NADPH
- phloridzin biosynthesis:
NADP+ + dihydro-4-coumaroyl-CoA ⟶ (E)-4-coumaroyl-CoA + H+ + NADPH
- phloridzin biosynthesis:
NADP+ + dihydro-4-coumaroyl-CoA ⟶ (E)-4-coumaroyl-CoA + H+ + NADPH
- phloridzin biosynthesis:
NADP+ + dihydro-4-coumaroyl-CoA ⟶ (E)-4-coumaroyl-CoA + H+ + NADPH
- phloridzin biosynthesis:
NADP+ + dihydro-4-coumaroyl-CoA ⟶ (E)-4-coumaroyl-CoA + H+ + NADPH
- phloridzin biosynthesis:
NADP+ + dihydro-4-coumaroyl-CoA ⟶ (E)-4-coumaroyl-CoA + H+ + NADPH
- phloridzin biosynthesis:
NADP+ + dihydro-4-coumaroyl-CoA ⟶ (E)-4-coumaroyl-CoA + H+ + NADPH
- phloridzin biosynthesis:
NADP+ + dihydro-4-coumaroyl-CoA ⟶ (E)-4-coumaroyl-CoA + H+ + NADPH
- phloridzin biosynthesis:
NADP+ + dihydro-4-coumaroyl-CoA ⟶ (E)-4-coumaroyl-CoA + H+ + NADPH
- phloridzin biosynthesis:
NADP+ + dihydro-4-coumaroyl-CoA ⟶ (E)-4-coumaroyl-CoA + H+ + NADPH
- phloridzin biosynthesis:
NADP+ + dihydro-4-coumaroyl-CoA ⟶ (E)-4-coumaroyl-CoA + H+ + NADPH
- phloridzin biosynthesis:
NADP+ + dihydro-4-coumaroyl-CoA ⟶ (E)-4-coumaroyl-CoA + H+ + NADPH
- phloridzin biosynthesis:
NADP+ + dihydro-4-coumaroyl-CoA ⟶ (E)-4-coumaroyl-CoA + H+ + NADPH
- phloridzin biosynthesis:
NADP+ + dihydro-4-coumaroyl-CoA ⟶ (E)-4-coumaroyl-CoA + H+ + NADPH
- phloridzin biosynthesis:
NADP+ + dihydro-4-coumaroyl-CoA ⟶ (E)-4-coumaroyl-CoA + H+ + NADPH
- phloridzin biosynthesis:
NADP+ + dihydro-4-coumaroyl-CoA ⟶ (E)-4-coumaroyl-CoA + H+ + NADPH
- phloridzin biosynthesis:
NADP+ + dihydro-4-coumaroyl-CoA ⟶ (E)-4-coumaroyl-CoA + H+ + NADPH
- phloridzin biosynthesis:
NADP+ + dihydro-4-coumaroyl-CoA ⟶ (E)-4-coumaroyl-CoA + H+ + NADPH
- phloridzin biosynthesis:
NADP+ + dihydro-4-coumaroyl-CoA ⟶ (E)-4-coumaroyl-CoA + H+ + NADPH
- phloridzin biosynthesis:
NADP+ + dihydro-4-coumaroyl-CoA ⟶ (E)-4-coumaroyl-CoA + H+ + NADPH
- phloridzin biosynthesis:
NADP+ + dihydro-4-coumaroyl-CoA ⟶ (E)-4-coumaroyl-CoA + H+ + NADPH
- phloridzin biosynthesis:
NADP+ + dihydro-4-coumaroyl-CoA ⟶ (E)-4-coumaroyl-CoA + H+ + NADPH
- phloridzin biosynthesis:
H+ + dihydro-4-coumaroyl-CoA + malonyl-CoA ⟶ CO2 + coenzyme A + phloretin
- phloridzin biosynthesis:
H+ + dihydro-4-coumaroyl-CoA + malonyl-CoA ⟶ CO2 + coenzyme A + phloretin
- phloridzin biosynthesis:
H+ + dihydro-4-coumaroyl-CoA + malonyl-CoA ⟶ CO2 + coenzyme A + phloretin
- phloridzin biosynthesis:
UDP-α-D-glucose + phloretin ⟶ UDP + phlorizin
- phloridzin biosynthesis:
H+ + dihydro-4-coumaroyl-CoA + malonyl-CoA ⟶ CO2 + coenzyme A + phloretin
- phloridzin biosynthesis:
UDP-α-D-glucose + phloretin ⟶ UDP + phlorizin
- phloridzin biosynthesis:
H+ + dihydro-4-coumaroyl-CoA + malonyl-CoA ⟶ CO2 + coenzyme A + phloretin
- phloridzin biosynthesis:
UDP-α-D-glucose + phloretin ⟶ UDP + phlorizin
- phloridzin biosynthesis:
UDP-α-D-glucose + phloretin ⟶ UDP + phlorizin
- phloridzin biosynthesis:
UDP-α-D-glucose + phloretin ⟶ UDP + phlorizin
- phloridzin biosynthesis:
H+ + dihydro-4-coumaroyl-CoA + malonyl-CoA ⟶ CO2 + coenzyme A + phloretin
- phloridzin biosynthesis:
UDP-α-D-glucose + phloretin ⟶ UDP + phlorizin
- phloridzin biosynthesis:
UDP-α-D-glucose + phloretin ⟶ UDP + phlorizin
- phloridzin biosynthesis:
H+ + dihydro-4-coumaroyl-CoA + malonyl-CoA ⟶ CO2 + coenzyme A + phloretin
- phloridzin biosynthesis:
UDP-α-D-glucose + phloretin ⟶ UDP + phlorizin
- phloridzin biosynthesis:
H+ + dihydro-4-coumaroyl-CoA + malonyl-CoA ⟶ CO2 + coenzyme A + phloretin
- phloridzin biosynthesis:
UDP-α-D-glucose + phloretin ⟶ UDP + phlorizin
- phloridzin biosynthesis:
UDP-α-D-glucose + phloretin ⟶ UDP + phlorizin
- phloridzin biosynthesis:
UDP-α-D-glucose + phloretin ⟶ UDP + phlorizin
- phloridzin biosynthesis:
H+ + dihydro-4-coumaroyl-CoA + malonyl-CoA ⟶ CO2 + coenzyme A + phloretin
- phloridzin biosynthesis:
H+ + dihydro-4-coumaroyl-CoA + malonyl-CoA ⟶ CO2 + coenzyme A + phloretin
- phloridzin biosynthesis:
UDP-α-D-glucose + phloretin ⟶ UDP + phlorizin
- phloridzin biosynthesis:
H+ + dihydro-4-coumaroyl-CoA + malonyl-CoA ⟶ CO2 + coenzyme A + phloretin
- phloridzin biosynthesis:
H+ + dihydro-4-coumaroyl-CoA + malonyl-CoA ⟶ CO2 + coenzyme A + phloretin
- phloridzin biosynthesis:
H+ + dihydro-4-coumaroyl-CoA + malonyl-CoA ⟶ CO2 + coenzyme A + phloretin
- phloridzin biosynthesis:
UDP-α-D-glucose + phloretin ⟶ UDP + phlorizin
- phloridzin biosynthesis:
UDP-α-D-glucose + phloretin ⟶ UDP + phlorizin
- phloridzin biosynthesis:
H+ + dihydro-4-coumaroyl-CoA + malonyl-CoA ⟶ CO2 + coenzyme A + phloretin
- phloridzin biosynthesis:
UDP-α-D-glucose + phloretin ⟶ UDP + phlorizin
- phloridzin biosynthesis:
H+ + dihydro-4-coumaroyl-CoA + malonyl-CoA ⟶ CO2 + coenzyme A + phloretin
- phloridzin biosynthesis:
UDP-α-D-glucose + phloretin ⟶ UDP + phlorizin
- phloridzin biosynthesis:
UDP-α-D-glucose + phloretin ⟶ UDP + phlorizin
- phloridzin biosynthesis:
UDP-α-D-glucose + phloretin ⟶ UDP + phlorizin
- phloridzin biosynthesis:
H+ + dihydro-4-coumaroyl-CoA + malonyl-CoA ⟶ CO2 + coenzyme A + phloretin
- phloridzin biosynthesis:
H+ + dihydro-4-coumaroyl-CoA + malonyl-CoA ⟶ CO2 + coenzyme A + phloretin
- phloridzin biosynthesis:
H+ + dihydro-4-coumaroyl-CoA + malonyl-CoA ⟶ CO2 + coenzyme A + phloretin
- phloridzin biosynthesis:
H+ + dihydro-4-coumaroyl-CoA + malonyl-CoA ⟶ CO2 + coenzyme A + phloretin
- phloridzin biosynthesis:
UDP-α-D-glucose + phloretin ⟶ UDP + phlorizin
- phloridzin biosynthesis:
UDP-α-D-glucose + phloretin ⟶ UDP + phlorizin
- phloridzin biosynthesis:
UDP-α-D-glucose + phloretin ⟶ UDP + phlorizin
- phloridzin biosynthesis:
NADP+ + dihydro-4-coumaroyl-CoA ⟶ (E)-4-coumaroyl-CoA + H+ + NADPH
- phloridzin biosynthesis:
NADP+ + dihydro-4-coumaroyl-CoA ⟶ (E)-4-coumaroyl-CoA + H+ + NADPH
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- phloridzin biosynthesis:
NADP+ + dihydro-4-coumaroyl-CoA ⟶ (E)-4-coumaroyl-CoA + H+ + NADPH
- phloridzin biosynthesis:
NADP+ + dihydro-4-coumaroyl-CoA ⟶ (E)-4-coumaroyl-CoA + H+ + NADPH
- flavonoid di-C-glucosylation:
H+ + dihydro-4-coumaroyl-CoA + malonyl-CoA ⟶ CO2 + coenzyme A + phloretin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- phloridzin biosynthesis:
H+ + dihydro-4-coumaroyl-CoA + malonyl-CoA ⟶ CO2 + coenzyme A + phloretin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- flavonoid di-C-glucosylation:
naringenin chalcone ⟶ (2S)-naringenin
- flavonoid di-C-glucosylation:
NADP+ + dihydro-4-coumaroyl-CoA ⟶ (E)-4-coumaroyl-CoA + H+ + NADPH
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
60 个相关的物种来源信息
- 97724 - Boesenbergia: LTS0003293
- 97729 - Boesenbergia rotunda: 10.1016/J.BMC.2005.10.019
- 97729 - Boesenbergia rotunda: LTS0003293
- 193304 - Docyniopsis: LTS0003293
- 4345 - Ericaceae: LTS0003293
- 2759 - Eukaryota: LTS0003293
- 261804 - Helichrysum splendidum: 10.1016/0031-9422(79)80041-2
- 9606 - Homo sapiens: -
- 45894 - Kalmia: LTS0003293
- 45902 - Kalmia latifolia: 10.1021/NP50005A008
- 45902 - Kalmia latifolia: LTS0003293
- 45912 - Kalmia procumbens: 10.1016/S0031-9422(00)00200-4
- 45912 - Kalmia procumbens: LTS0003293
- 4447 - Liliopsida: LTS0003293
- 320344 - Lippia: LTS0003293
- 542673 - Lippia origanoides: 10.1016/J.PHYTOCHEM.2011.07.004
- 542673 - Lippia origanoides: LTS0003293
- 3928 - Lythraceae: LTS0003293
- 3398 - Magnoliopsida: LTS0003293
- 3749 - Malus: LTS0003293
- 3750 - Malus domestica:
- 3750 - Malus domestica: 10.1002/MNFR.200500064
- 3750 - Malus domestica: 10.1007/S002170100354
- 3750 - Malus domestica: 10.1016/0031-9422(91)80010-X
- 3750 - Malus domestica: 10.1111/J.1745-4557.2003.TB00243.X
- 3750 - Malus domestica: LTS0003293
- 106551 - Malus doumeri: 10.1248/BPB.29.740
- 2980405 - Malus doumeri: LTS0003293
- 283210 - Malus pumila:
- 283210 - Malus pumila: 10.1002/MNFR.200500064
- 283210 - Malus pumila: 10.1007/S002170100354
- 283210 - Malus pumila: 10.1016/0031-9422(91)80010-X
- 283210 - Malus pumila: 10.1111/J.1745-4557.2003.TB00243.X
- 283210 - Malus pumila: LTS0003293
- 3752 - Malus sylvestris: 10.1016/0031-9422(91)80010-X
- 3752 - Malus sylvestris: LTS0003293
- 7115 - Pieris: LTS0003293
- 317406 - Pieris japonica: 10.1021/NP049698A
- 317406 - Pieris japonica: LTS0003293
- 33090 - Plants: -
- 3689 - Populus: LTS0003293
- 73824 - Populus balsamifera: 10.1016/S0021-9673(00)94139-6
- 73824 - Populus balsamifera: LTS0003293
- 1616482 - Populus candicans: 10.1016/S0021-9673(00)94139-6
- 3694 - Populus trichocarpa: 10.1016/0031-9422(91)83721-V
- 22662 - Punica: LTS0003293
- 22663 - Punica granatum:
- 22663 - Punica granatum: 10.3390/MOLECULES171214821
- 22663 - Punica granatum: LTS0003293
- 3745 - Rosaceae: 10.1016/J.FOODCHEM.2012.03.002
- 3745 - Rosaceae: LTS0003293
- 3688 - Salicaceae: LTS0003293
- 35493 - Streptophyta: LTS0003293
- 58023 - Tracheophyta: LTS0003293
- 21910 - Verbenaceae: LTS0003293
- 33090 - Viridiplantae: LTS0003293
- 4642 - Zingiberaceae: LTS0003293
- 33090 - 巴豆: -
- 33090 - 覆盆子: -
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Yanzhi Yang, Linlan Tao, Yunyun Li, Ying Wu, Qianqian Ran, Dan Li, Shu-Ming Li, Xia Yu, Chun-Mao Yuan, Kang Zhou. Fungal Prenyltransferase AnaPT and Its F265 Mutants Catalyze the Dimethylallylation at the Nonaromatic Carbon of Phloretin.
Journal of agricultural and food chemistry.
2024 Apr; 72(14):8018-8026. doi:
10.1021/acs.jafc.4c00928
. [PMID: 38557039] - Virgile Neyman, Maude Quicray, Frédéric Francis, Catherine Michaux. Toxicological, biochemical, and in silico investigations of three trehalase inhibitors for new ways to control aphids.
Archives of insect biochemistry and physiology.
2024 Apr; 115(4):e22112. doi:
10.1002/arch.22112
. [PMID: 38605672] - Shizi Zhang, Yunfeng Xu, Fang Wang, Liyun Yang, Lijuan Luo, Lingyan Jiang. Transcriptomic and Physiological Analysis of the Effects of Exogenous Phloretin and Pterostilbene on Resistance Responses of Stylosanthes against Anthracnose.
International journal of molecular sciences.
2024 Feb; 25(5):. doi:
10.3390/ijms25052701
. [PMID: 38473948] - Roberta Cassano, Federica Curcio, Roberta Sole, Silvia Mellace, Sonia Trombino. Gallic Acid-Based Hydrogels for Phloretin Intestinal Release: A Promising Strategy to Reduce Oxidative Stress in Chronic Diabetes.
Molecules (Basel, Switzerland).
2024 Feb; 29(5):. doi:
10.3390/molecules29050929
. [PMID: 38474441] - Meng Zhang, Xue Zhuang, Siqi Li, Yansong Wang, Xiangyu Zhang, Jinlian Li, Dongmei Wu. Designed Fabrication of Phloretin-Loaded Propylene Glycol Binary Ethosomes: Stability, Skin Permeability and Antioxidant Activity.
Molecules (Basel, Switzerland).
2023 Dec; 29(1):. doi:
10.3390/molecules29010066
. [PMID: 38202649] - Hui-Rong Bai, Jing Li, Li-Juan Lang, Yi Hao, Bei Jiang, Chao-Jiang Xiao. Crystal structure of phloridzin and its distribution changes in flowering and fruiting stage of Malus rockii.
Zeitschrift fur Naturforschung. C, Journal of biosciences.
2023 Nov; 78(11-12):383-387. doi:
10.1515/znc-2023-0046
. [PMID: 37608519] - Jiawen Wang, Yuanyuan Zhao, Bingtao Zhai, Jiangxue Cheng, Jing Sun, Xiaofei Zhang, Dongyan Guo. Phloretin Transfersomes for Transdermal Delivery: Design, Optimization, and In Vivo Evaluation.
Molecules (Basel, Switzerland).
2023 Sep; 28(19):. doi:
10.3390/molecules28196790
. [PMID: 37836633] - Jyoti Chhimwal, Rakesh Kumar Dhritlahre, Prince Anand, Ruchika, Vikram Patial, Ankit Saneja, Yogendra S Padwad. Amorphous solid dispersion augments the bioavailability of phloretin and its therapeutic efficacy via targeting mTOR/SREBP-1c axis in NAFLD mice.
Biomaterials advances.
2023 Sep; 154(?):213627. doi:
10.1016/j.bioadv.2023.213627
. [PMID: 37748276] - Yule Wang, Yuduan Ding, Qian Zhao, Chen Wu, Cecilia H Deng, Jingru Wang, Yufan Wang, Yanfang Yan, Rui Zhai, Yar-Khing Yauk, Fengwang Ma, Ross G Atkinson, Pengmin Li. Dihydrochalcone glycoside biosynthesis in Malus is regulated by two MYB-like transcription factors and is required for seed development.
The Plant journal : for cell and molecular biology.
2023 Aug; ?(?):. doi:
10.1111/tpj.16444
. [PMID: 37648286] - Richmond Djorgbenoo, Weixin Wang, Yingdong Zhu, Shengmin Sang. Detoxification of the Lipid Peroxidation Aldehyde, 4-Hydroxynonenal, by Apple Phloretin In Vitro and in Mice.
Journal of agricultural and food chemistry.
2023 Jul; ?(?):. doi:
10.1021/acs.jafc.3c01038
. [PMID: 37418694] - Shiv Kumar, Jyoti Chhimwal, Suresh Kumar, Rahul Singh, Vikram Patial, Rituraj Purohit, Yogendra S Padwad. Phloretin and phlorizin mitigates inflammatory stress and alleviate adipose and hepatic insulin resistance by abrogating PPARγ S273-Cdk5 interaction in type 2 diabetic mice.
Life sciences.
2023 Apr; ?(?):121668. doi:
10.1016/j.lfs.2023.121668
. [PMID: 37023949] - Su-Min Woo, Ngoc Anh Nguyen, Jeong-Eun Seon, Jin Jang, Su-Min Yee, Ngoc Tan Cao, Harim Choi, Chul-Ho Yun, Hyung-Sik Kang. 3-OH Phloretin Inhibits High-Fat Diet-Induced Obesity and Obesity-Induced Inflammation by Reducing Macrophage Infiltration into White Adipose Tissue.
Molecules (Basel, Switzerland).
2023 Feb; 28(4):. doi:
10.3390/molecules28041851
. [PMID: 36838843] - Heqin Yan, Wei Zheng, Zhouchen Ye, Jing Yu, Yougen Wu. Comparison of the Main Metabolites in Different Maturation Stages of Camelliavietnamensis Huang Seeds.
Molecules (Basel, Switzerland).
2022 Oct; 27(20):. doi:
10.3390/molecules27206817
. [PMID: 36296410] - Jinqian Chen, Hao Zhang, Xia Hu, Mengyuan Xu, Yanjun Su, Chunze Zhang, Yuan Yue, Xiaomin Zhang, Xinyu Wang, Wei Cui, Zhenyu Zhao, Xichuan Li. Phloretin exhibits potential food-drug interactions by inhibiting human UDP-glucuronosyltransferases in vitro.
Toxicology in vitro : an international journal published in association with BIBRA.
2022 Oct; 84(?):105447. doi:
10.1016/j.tiv.2022.105447
. [PMID: 35868516] - Fernanda Sayuri Itou da Silva, Paulo Francisco Veiga Bizerra, Márcio Shigueaki Mito, Renato Polimeni Constantin, Eduardo Makiyama Klosowski, Byanca Thais Lima de Souza, Paulo Vinicius Moreira da Costa Menezes, Paulo Sérgio Alves Bueno, Letícia Fernanda Nanami, Rogério Marchiosi, Wanderley Dantas Dos Santos, Osvaldo Ferrarese-Filho, Emy Luiza Ishii-Iwamoto, Rodrigo Polimeni Constantin. The metabolic and toxic acute effects of phloretin in the rat liver.
Chemico-biological interactions.
2022 Sep; 364(?):110054. doi:
10.1016/j.cbi.2022.110054
. [PMID: 35872042] - Jyoti Chhimwal, Abhishek Goel, Mahesh Sukapaka, Vikram Patial, Yogendra Padwad. Phloretin mitigates oxidative injury, inflammation, and fibrogenic responses via restoration of autophagic flux in in vitro and preclinical models of NAFLD.
The Journal of nutritional biochemistry.
2022 09; 107(?):109062. doi:
10.1016/j.jnutbio.2022.109062
. [PMID: 35609858] - Swapnil Tripathi, Dharati Parmar, Shabrin Fathima, Samir Raval, Gyanendra Singh. Coenzyme Q10, Biochanin A and Phloretin Attenuate Cr(VI)-Induced Oxidative Stress and DNA Damage by Stimulating Nrf2/HO-1 Pathway in the Experimental Model.
Biological trace element research.
2022 Aug; ?(?):. doi:
10.1007/s12011-022-03358-5
. [PMID: 35953644] - Alexander M Firsov, Ljudmila S Khailova, Tatyana I Rokitskaya, Elena A Kotova, Yuri N Antonenko. Antibiotic Pyrrolomycin as an Efficient Mitochondrial Uncoupler.
Biochemistry. Biokhimiia.
2022 Aug; 87(8):812-822. doi:
10.1134/s0006297922080120
. [PMID: 36171648] - Yingdong Zhu, Weixin Wang, Qiju Huang, Changlin Hu, Shengmin Sang. Metabolic Investigation on the Interaction Mechanism between Dietary Dihydrochalcone Intake and Lipid Peroxidation Product Acrolein Reduction.
Molecular nutrition & food research.
2022 05; 66(9):e2101107. doi:
10.1002/mnfr.202101107
. [PMID: 35194934] - Swapnil Tripathi, Shabrin Fhatima, Dharati Parmar, Dhirendra Pratap Singh, SukhDev Mishra, Rajeev Mishra, Gyanendra Singh. Therapeutic effects of CoenzymeQ10, Biochanin A and Phloretin against arsenic and chromium induced oxidative stress in mouse (Mus musculus) brain.
3 Biotech.
2022 May; 12(5):116. doi:
10.1007/s13205-022-03171-w
. [PMID: 35547012] - Wenbo Mao, Yujuan Fan, Xu Wang, Guize Feng, Yan You, Haidong Li, Yongyan Chen, Jialin Yang, Hongbo Weng, Xiaoyan Shen. Phloretin ameliorates diabetes-induced endothelial injury through AMPK-dependent anti-EndMT pathway.
Pharmacological research.
2022 05; 179(?):106205. doi:
10.1016/j.phrs.2022.106205
. [PMID: 35381340] - Liyuan Gu, Rui Sun, Wenjuan Wang, Qiang Xia. Nanostructured lipid carriers for the encapsulation of phloretin: preparation and in vitro characterization studies.
Chemistry and physics of lipids.
2022 01; 242(?):105150. doi:
10.1016/j.chemphyslip.2021.105150
. [PMID: 34673008] - Bolin Lian, Yuanyuan Li, Qilei Yang, Lanlan Xie, Qian Zhang, Yanjie Liu, Xiuhua Zhao, Shujun Li. Phloretin loaded porous starch (Ph-PS): Preparation, characterization, in vitro release and protective effect against oxidative stress in vivo zebrafish model.
International journal of biological macromolecules.
2021 Dec; 193(Pt B):2047-2053. doi:
10.1016/j.ijbiomac.2021.11.036
. [PMID: 34774597] - Samer Al-Samir, Maximilian Prill, Claudiu T Supuran, Gerolf Gros, Volker Endeward. CO2 permeability of the rat erythrocyte membrane and its inhibition.
Journal of enzyme inhibition and medicinal chemistry.
2021 Dec; 36(1):1602-1606. doi:
10.1080/14756366.2021.1952194
. [PMID: 34261373] - Antonio Casado-Díaz, Ángel Rodríguez-Ramos, Bárbara Torrecillas-Baena, Gabriel Dorado, José Manuel Quesada-Gómez, María Ángeles Gálvez-Moreno. Flavonoid Phloretin Inhibits Adipogenesis and Increases OPG Expression in Adipocytes Derived from Human Bone-Marrow Mesenchymal Stromal-Cells.
Nutrients.
2021 Nov; 13(11):. doi:
10.3390/nu13114185
. [PMID: 34836440] - Jie Ren, Puze Li, Dong Yan, Min Li, Jinsong Qi, Mingyong Wang, Genshen Zhong, Minna Wu. Interplay between the Gut Microbiome and Metabolism in Ulcerative Colitis Mice Treated with the Dietary Ingredient Phloretin.
Journal of microbiology and biotechnology.
2021 Oct; 31(10):1409-1419. doi:
10.4014/jmb.2104.04038
. [PMID: 34373435] - Hong Hu, Xi Bai, Kexing Xu, Cheng Zhang, Liang Chen. Effect of phloretin on growth performance, serum biochemical parameters and antioxidant profile in heat-stressed broilers.
Poultry science.
2021 Aug; 100(8):101217. doi:
10.1016/j.psj.2021.101217
. [PMID: 34161850] - Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
Cell reports.
2021 04; 35(4):109040. doi:
10.1016/j.celrep.2021.109040
. [PMID: 33910017] - Gyanendra Singh, Riddhi Thaker, Anupama Sharma, Dharati Parmar. Therapeutic effects of biochanin A, phloretin, and epigallocatechin-3-gallate in reducing oxidative stress in arsenic-intoxicated mice.
Environmental science and pollution research international.
2021 Apr; 28(16):20517-20536. doi:
10.1007/s11356-020-11740-w
. [PMID: 33410021] - Ankur Kumar Tanwar, Neha Dhiman, Amit Kumar, Vikas Jaitak. Engagement of phytoestrogens in breast cancer suppression: Structural classification and mechanistic approach.
European journal of medicinal chemistry.
2021 Mar; 213(?):113037. doi:
10.1016/j.ejmech.2020.113037
. [PMID: 33257172] - Harun Un, Rustem Anil Ugan, Muhammet Ali Gurbuz, Yasin Bayir, Aysenur Kahramanlar, Gokce Kaya, Elif Cadirci, Zekai Halici. Phloretin and phloridzin guard against cisplatin-induced nephrotoxicity in mice through inhibiting oxidative stress and inflammation.
Life sciences.
2021 Feb; 266(?):118869. doi:
10.1016/j.lfs.2020.118869
. [PMID: 33309722] - Theresa Saenger, Florian Hübner, Viktoria Lindemann, Kristina Ganswind, Hans-Ulrich Humpf. Urinary Biomarkers for Orange Juice Consumption.
Molecular nutrition & food research.
2021 01; 65(2):e2000781. doi:
10.1002/mnfr.202000781
. [PMID: 33216459] - Arya V S, Kanthlal S K. Phloretin Ameliorates Acetic Acid Induced Colitis Through Modulation of Immune and Inflammatory Reactions in Rats.
Endocrine, metabolic & immune disorders drug targets.
2021; 21(1):163-172. doi:
10.2174/1871530320666200624120257
. [PMID: 32579511] - Takeshi Yokoyama, Mineyuki Mizuguchi. Transthyretin Amyloidogenesis Inhibitors: From Discovery to Current Developments.
Journal of medicinal chemistry.
2020 12; 63(23):14228-14242. doi:
10.1021/acs.jmedchem.0c00934
. [PMID: 32914975] - Yule Wang, Yar-Khing Yauk, Qian Zhao, Cyril Hamiaux, Zhengcao Xiao, Kularajathevan Gunaseelan, Lei Zhang, Sumathi Tomes, Elena López-Girona, Janine Cooney, Houhua Li, David Chagné, Fengwang Ma, Pengmin Li, Ross G Atkinson. Biosynthesis of the Dihydrochalcone Sweetener Trilobatin Requires Phloretin Glycosyltransferase2.
Plant physiology.
2020 10; 184(2):738-752. doi:
10.1104/pp.20.00807
. [PMID: 32732350] - Meizi Liu, Dandan Wang, Yang Li, Xuemiao Li, Guangning Zong, Shuang Fei, Xue Yang, Jianping Lin, Xiaoqiang Wang, Yuequan Shen. Crystal Structures of the C-Glycosyltransferase UGT708C1 from Buckwheat Provide Insights into the Mechanism of C-Glycosylation.
The Plant cell.
2020 09; 32(9):2917-2931. doi:
10.1105/tpc.20.00002
. [PMID: 32699169] - Seda Karabulut, Mahmut Toprak. Biophysical study of phloretin with human serum albumin in liposomes using spectroscopic methods.
European biophysics journal : EBJ.
2020 Sep; 49(6):463-472. doi:
10.1007/s00249-020-01452-x
. [PMID: 32705322] - Ngoc Anh Nguyen, Jin Jang, Thien-Kim Le, Thi Huong Ha Nguyen, Su-Min Woo, Su-Kyoung Yoo, Young Ju Lee, Ki Deok Park, Soo-Jin Yeom, Geun-Joong Kim, Hyung-Sik Kang, Chul-Ho Yun. Biocatalytic Production of a Potent Inhibitor of Adipocyte Differentiation from Phloretin Using Engineered CYP102A1.
Journal of agricultural and food chemistry.
2020 Jun; 68(24):6683-6691. doi:
10.1021/acs.jafc.0c03156
. [PMID: 32468814] - Yong Xia, Hua Feng, Zhen-Wei Li, Kuan-Xiao Tang, Hai-Qing Gao, Wei-Ling Wang, Xiao-Pei Cui, Xiao-Li Li. Low-dose phloretin alleviates diabetic atherosclerosis through endothelial KLF2 restoration.
Bioscience, biotechnology, and biochemistry.
2020 Apr; 84(4):815-823. doi:
10.1080/09168451.2019.1699396
. [PMID: 31791197] - Fan Wang, Xiaonian Xiao, Yiting Yuan, Jing Liu, Yuezhen Liu, Xing Yi. Solubilization of phloretin via steviol glycoside-based solid dispersion and micelles.
Food chemistry.
2020 Mar; 308(?):125569. doi:
10.1016/j.foodchem.2019.125569
. [PMID: 31644967] - Meng Zhang, Fu-Dong Li, Kai Li, Zi-Long Wang, Yu-Xi Wang, Jun-Bin He, Hui-Fei Su, Zhong-Yi Zhang, Chang-Biao Chi, Xiao-Meng Shi, Cai-Hong Yun, Zhi-Yong Zhang, Zhen-Ming Liu, Liang-Ren Zhang, Dong-Hui Yang, Ming Ma, Xue Qiao, Min Ye. Functional Characterization and Structural Basis of an Efficient Di-C-glycosyltransferase from Glycyrrhiza glabra.
Journal of the American Chemical Society.
2020 02; 142(7):3506-3512. doi:
10.1021/jacs.9b12211
. [PMID: 31986016] - Athanasios Koutsos, Samantha Riccadonna, Maria M Ulaszewska, Pietro Franceschi, Kajetan Trošt, Amanda Galvin, Tanya Braune, Francesca Fava, Daniele Perenzoni, Fulvio Mattivi, Kieran M Tuohy, Julie A Lovegrove. Two apples a day lower serum cholesterol and improve cardiometabolic biomarkers in mildly hypercholesterolemic adults: a randomized, controlled, crossover trial.
The American journal of clinical nutrition.
2020 02; 111(2):307-318. doi:
10.1093/ajcn/nqz282
. [PMID: 31840162] - Xin Shen, Libin Wang, Nan Zhou, Shouchang Gai, Xueying Liu, Shengyong Zhang. Beneficial effects of combination therapy of phloretin and metformin in streptozotocin-induced diabetic rats and improved insulin sensitivity in vitro.
Food & function.
2020 Jan; 11(1):392-403. doi:
10.1039/c9fo01326a
. [PMID: 31821397] - Danli Cui, Shuyun Liu, Minghai Tang, Yongzhi Lu, Meng Zhao, Ruiwen Mao, Chengshi Wang, Yujia Yuan, Lan Li, Younan Chen, Jingqiu Cheng, Yanrong Lu, Jingping Liu. Phloretin ameliorates hyperuricemia-induced chronic renal dysfunction through inhibiting NLRP3 inflammasome and uric acid reabsorption.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2020 Jan; 66(?):153111. doi:
10.1016/j.phymed.2019.153111
. [PMID: 31790902] - Chieh-Shan Wu, Shih-Chao Lin, Shiming Li, Yu-Chih Chiang, Nicole Bracci, Caitlin W Lehman, Kuo-Tung Tang, Chi-Chien Lin. Phloretin alleviates dinitrochlorobenzene-induced dermatitis in BALB/c mice.
International journal of immunopathology and pharmacology.
2020 Jan; 34(?):2058738420929442. doi:
10.1177/2058738420929442
. [PMID: 32571120] - Guoguo Jin, Zhenjiang Zhao, Tania Chakraborty, Aikyadeep Mandal, Arka Roy, Souvik Roy, Zhiping Guo. Decrypting the Molecular Mechanistic Pathways Delineating the Chemotherapeutic Potential of Ruthenium-Phloretin Complex in Colon Carcinoma Correlated with the Oxidative Status and Increased Apoptotic Events.
Oxidative medicine and cellular longevity.
2020; 2020(?):7690845. doi:
10.1155/2020/7690845
. [PMID: 32566099] - Guang Yang, Xuelian Yin, Dongjie Ma, Zhejun Su. Anticancer activity of Phloretin against the human oral cancer cells is due to G0/G1 cell cycle arrest and ROS mediated cell death.
Journal of B.U.ON. : official journal of the Balkan Union of Oncology.
2020 Jan; 25(1):344-349. doi:
. [PMID: 32277653]
- Mohd Adil, Mohd Hassan Baig, H P Vasantha Rupasinghe. Impact of Citral and Phloretin, Alone and in Combination, on Major Virulence Traits of Streptococcus pyogenes.
Molecules (Basel, Switzerland).
2019 Nov; 24(23):. doi:
10.3390/molecules24234237
. [PMID: 31766432] - Tobie D Lee, Olivia W Lee, Kyle R Brimacombe, Lu Chen, Rajarshi Guha, Sabrina Lusvarghi, Bethilehem G Tebase, Carleen Klumpp-Thomas, Robert W Robey, Suresh V Ambudkar, Min Shen, Michael M Gottesman, Matthew D Hall. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Molecular pharmacology.
2019 11; 96(5):629-640. doi:
10.1124/mol.119.115964
. [PMID: 31515284] - Shalini Dixit, Priyanka Maurya, Madhumita Srivastava, Karuna Shanker, Dnyaneshwar U Bawankule, Madan M Gupta, Lalit Kumar Rai. Quantitation of dietary dihydrochalcones in Indian crabapple (Malus sikkimensis) using validated high-performance liquid chromatography.
Journal of chromatographic science.
2019 Aug; 57(8):679-687. doi:
10.1093/chromsci/bmz040
. [PMID: 31298265] - Arokia Vijaya Anand Mariadoss, Ramachandran Vinayagam, Baojun Xu, Karthikkumar Venkatachalam, Vijayalakshmi Sankaran, Shalini Vijayakumar, Sandya Rani Bakthavatsalam, Sadiq A Mohamed, Ernest David. Phloretin loaded chitosan nanoparticles enhance the antioxidants and apoptotic mechanisms in DMBA induced experimental carcinogenesis.
Chemico-biological interactions.
2019 Aug; 308(?):11-19. doi:
10.1016/j.cbi.2019.05.008
. [PMID: 31071336] - Arokia Vijaya Anand Mariadoss, Ramachandran Vinayagam, Vijayalakshmi Senthilkumar, Manickam Paulpandi, Kadarkarai Murugan, Baojun Xu, Gothandam K M, Venkata Subbaiah Kotakadi, Ernest David. Phloretin loaded chitosan nanoparticles augments the pH-dependent mitochondrial-mediated intrinsic apoptosis in human oral cancer cells.
International journal of biological macromolecules.
2019 Jun; 130(?):997-1008. doi:
10.1016/j.ijbiomac.2019.03.031
. [PMID: 30844461] - Danuta Zielinska, José Moisés Laparra-Llopis, Henryk Zielinski, Dorota Szawara-Nowak, Juan Antonio Giménez-Bastida. Role of Apple Phytochemicals, Phloretin and Phloridzin, in Modulating Processes Related to Intestinal Inflammation.
Nutrients.
2019 May; 11(5):. doi:
10.3390/nu11051173
. [PMID: 31130634] - Zecai Zhang, Shan Li, Hongyang Cao, Peng Shen, Jiuxi Liu, Yunhe Fu, Yongguo Cao, Naisheng Zhang. The protective role of phloretin against dextran sulfate sodium-induced ulcerative colitis in mice.
Food & function.
2019 Jan; 10(1):422-431. doi:
10.1039/c8fo01699b
. [PMID: 30604787] - Go Hasegawa, Kotomi Akatsuka, Yuichi Nakashima, Yumiko Yokoe, Narumi Higo, Motoyuki Shimonaka. Tamoxifen inhibits the proliferation of non‑melanoma skin cancer cells by increasing intracellular calcium concentration.
International journal of oncology.
2018 Nov; 53(5):2157-2166. doi:
10.3892/ijo.2018.4548
. [PMID: 30226592] - Giulia Martelli, Daria Giacomini. Antibacterial and antioxidant activities for natural and synthetic dual-active compounds.
European journal of medicinal chemistry.
2018 Oct; 158(?):91-105. doi:
10.1016/j.ejmech.2018.09.009
. [PMID: 30205261] - Min Xu, Weiguang Gu, Zhou Shen, Fang Wang. Anticancer Activity of Phloretin Against Human Gastric Cancer Cell Lines Involves Apoptosis, Cell Cycle Arrest, and Inhibition of Cell Invasion and JNK Signalling Pathway.
Medical science monitor : international medical journal of experimental and clinical research.
2018 Sep; 24(?):6551-6558. doi:
10.12659/msm.910542
. [PMID: 30224626] - Jieun Kim, Prasannavenkatesh Durai, Dasom Jeon, In Duk Jung, Seung Jun Lee, Yeong-Min Park, Yangmee Kim. Phloretin as a Potent Natural TLR2/1 Inhibitor Suppresses TLR2-Induced Inflammation.
Nutrients.
2018 Jul; 10(7):. doi:
10.3390/nu10070868
. [PMID: 29976865] - Ayumu Takeno, Ippei Kanazawa, Masakazu Notsu, Ken-Ichiro Tanaka, Toshitsugu Sugimoto. Phloretin Promotes Adipogenesis via Mitogen-Activated Protein Kinase Pathways in Mouse Marrow Stromal ST2 Cells.
International journal of molecular sciences.
2018 Jun; 19(6):. doi:
10.3390/ijms19061772
. [PMID: 29904032] - Kuan-Hsun Wu, Chi-Tang Ho, Zhao-Feng Chen, Li-Ching Chen, Jacqueline Whang-Peng, Teng-Nan Lin, Yuan-Soon Ho. The apple polyphenol phloretin inhibits breast cancer cell migration and proliferation via inhibition of signals by type 2 glucose transporter.
Journal of food and drug analysis.
2018 01; 26(1):221-231. doi:
10.1016/j.jfda.2017.03.009
. [PMID: 29389559] - Kun Zhou, Lingyu Hu, Pengmin Li, Xiaoqing Gong, Fengwang Ma. Genome-wide identification of glycosyltransferases converting phloretin to phloridzin in Malus species.
Plant science : an international journal of experimental plant biology.
2017 Dec; 265(?):131-145. doi:
10.1016/j.plantsci.2017.10.003
. [PMID: 29223335] - Gyeong Han Jeong, Jae-Hyeon Cho, Seong-Ho Kim, Tae Hoon Kim. Plasma-induced dimerization of phloridzin as a new class of anti-adipogenic agents.
Bioorganic & medicinal chemistry letters.
2017 11; 27(21):4889-4892. doi:
10.1016/j.bmcl.2017.09.035
. [PMID: 28958622] - Robert S Jones, Mark D Parker, Marilyn E Morris. Quercetin, Morin, Luteolin, and Phloretin Are Dietary Flavonoid Inhibitors of Monocarboxylate Transporter 6.
Molecular pharmaceutics.
2017 09; 14(9):2930-2936. doi:
10.1021/acs.molpharmaceut.7b00264
. [PMID: 28513167] - Mosaab Yahyaa, Samah Ali, Rachel Davidovich-Rikanati, Muhammad Ibdah, Alona Shachtier, Yoram Eyal, Efraim Lewinsohn, Mwafaq Ibdah. Characterization of three chalcone synthase-like genes from apple (Malus x domestica Borkh.).
Phytochemistry.
2017 Aug; 140(?):125-133. doi:
10.1016/j.phytochem.2017.04.022
. [PMID: 28482241] - Sandra Salazar-Aguilar, Lucero Del Mar Ruiz-Posadas, Jorge Cadena-Iñiguez, Marcos Soto-Hernández, Edelmiro Santiago-Osorio, Itzen Aguiñiga-Sánchez, Ana Rocío Rivera-Martínez, Juan Francisco Aguirre-Medina. Sechium edule (Jacq.) Swartz, a New Cultivar with Antiproliferative Potential in a Human Cervical Cancer HeLa Cell Line.
Nutrients.
2017 Jul; 9(8):. doi:
10.3390/nu9080798
. [PMID: 28757593] - Davide Barreca, Monica Currò, Ersilia Bellocco, Silvana Ficarra, Giuseppina Laganà, Ester Tellone, Maria Laura Giunta, Giuseppa Visalli, Daniela Caccamo, Antonio Galtieri, Riccardo Ientile. Neuroprotective effects of phloretin and its glycosylated derivative on rotenone-induced toxicity in human SH-SY5Y neuronal-like cells.
BioFactors (Oxford, England).
2017 Jul; 43(4):549-557. doi:
10.1002/biof.1358
. [PMID: 28401997] - Takamitsu Ito, Shunsuke Fujimoto, Fumiaki Suito, Makoto Shimosaka, Goro Taguchi. C-Glycosyltransferases catalyzing the formation of di-C-glucosyl flavonoids in citrus plants.
The Plant journal : for cell and molecular biology.
2017 Jul; 91(2):187-198. doi:
10.1111/tpj.13555
. [PMID: 28370711] - Andrew P Dare, Yar-Khing Yauk, Sumathi Tomes, Tony K McGhie, Ria S Rebstock, Janine M Cooney, Ross G Atkinson. Silencing a phloretin-specific glycosyltransferase perturbs both general phenylpropanoid biosynthesis and plant development.
The Plant journal : for cell and molecular biology.
2017 Jul; 91(2):237-250. doi:
10.1111/tpj.13559
. [PMID: 28370633] - Sary Alsanea, Mingming Gao, Dexi Liu. Phloretin Prevents High-Fat Diet-Induced Obesity and Improves Metabolic Homeostasis.
The AAPS journal.
2017 05; 19(3):797-805. doi:
10.1208/s12248-017-0053-0
. [PMID: 28197827] - Hongyan Dong, Michael G Wade. Application of a nonradioactive assay for high throughput screening for inhibition of thyroid hormone uptake via the transmembrane transporter MCT8.
Toxicology in vitro : an international journal published in association with BIBRA.
2017 Apr; 40(?):234-242. doi:
10.1016/j.tiv.2017.01.014
. [PMID: 28119167] - Theresa Saenger, Florian Hübner, Hans-Ulrich Humpf. Short-term biomarkers of apple consumption.
Molecular nutrition & food research.
2017 03; 61(3):. doi:
10.1002/mnfr.201600629
. [PMID: 27794196] - Xin Shen, Nan Zhou, Le Mi, Zishuo Hu, Libin Wang, Xueying Liu, Shengyong Zhang. Phloretin exerts hypoglycemic effect in streptozotocin-induced diabetic rats and improves insulin resistance in vitro.
Drug design, development and therapy.
2017; 11(?):313-324. doi:
10.2147/dddt.s127010
. [PMID: 28223777] - Davide Barreca, Giuseppina Laganà, Giovanni Toscano, Pietro Calandra, Mikhail A Kiselev, Domenico Lombardo, Ersilia Bellocco. The interaction and binding of flavonoids to human serum albumin modify its conformation, stability and resistance against aggregation and oxidative injuries.
Biochimica et biophysica acta. General subjects.
2017 Jan; 1861(1 Pt B):3531-3539. doi:
10.1016/j.bbagen.2016.03.014
. [PMID: 26971858] - S S Efimova, L V Schagina, O S Ostroumova. DIPOLE-MODIFYING EFFECT OF STYRYLPYRIDINIUM DYES AND FLAVONOIDS ON THE MODEL MEMBRANES OF DIFFERENT LIPID COMPOSITIONS.
Tsitologiia.
2017 ; 59(3):229-35. doi:
"
. [PMID: 30183188] - Chethan Sampath, Shengmin Sang, Mohamed Ahmedna. In vitro and in vivo inhibition of aldose reductase and advanced glycation end products by phloretin, epigallocatechin 3-gallate and [6]-gingerol.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2016 Dec; 84(?):502-513. doi:
10.1016/j.biopha.2016.09.073
. [PMID: 27685794] - Tamás Kovács, Gyula Batta, Tímea Hajdu, Ágnes Szabó, Tímea Váradi, Florina Zákány, István Csomós, János Szöllősi, Peter Nagy. The Dipole Potential Modifies the Clustering and Ligand Binding Affinity of ErbB Proteins and Their Signaling Efficiency.
Scientific reports.
2016 10; 6(?):35850. doi:
10.1038/srep35850
. [PMID: 27775011] - Mosaab Yahyaa, Rachel Davidovich-Rikanati, Yoram Eyal, Alona Sheachter, Sally Marzouk, Efraim Lewinsohn, Mwafaq Ibdah. Identification and characterization of UDP-glucose:Phloretin 4'-O-glycosyltransferase from Malus x domestica Borkh.
Phytochemistry.
2016 Oct; 130(?):47-55. doi:
10.1016/j.phytochem.2016.06.004
. [PMID: 27316677] - Daoyuan Ren, Yafei Liu, Yan Zhao, Xingbin Yang. Hepatotoxicity and endothelial dysfunction induced by high choline diet and the protective effects of phloretin in mice.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2016 Aug; 94(?):203-12. doi:
10.1016/j.fct.2016.06.004
. [PMID: 27316781] - Mehdi Aliomrani, Mohammad Reza Sepand, Hamid Reza Mirzaei, Ali Reza Kazemi, Saeid Nekonam, Omid Sabzevari. Effects of phloretin on oxidative and inflammatory reaction in rat model of cecal ligation and puncture induced sepsis.
Daru : journal of Faculty of Pharmacy, Tehran University of Medical Sciences.
2016 May; 24(1):15. doi:
10.1186/s40199-016-0154-9
. [PMID: 27150961] - Olly Sanny Hutabarat, Henryk Flachowsky, Ionela Regos, Silvija Miosic, Christine Kaufmann, Shadab Faramarzi, Mohammed Zobayer Alam, Christian Gosch, Andreas Peil, Klaus Richter, Magda-Viola Hanke, Dieter Treutter, Karl Stich, Heidi Halbwirth. Transgenic apple plants overexpressing the chalcone 3-hydroxylase gene of Cosmos sulphureus show increased levels of 3-hydroxyphloridzin and reduced susceptibility to apple scab and fire blight.
Planta.
2016 May; 243(5):1213-24. doi:
10.1007/s00425-016-2475-9
. [PMID: 26895335] - Evgeny G Chulkov, Olga S Ostroumova. Phloretin modulates the rate of channel formation by polyenes.
Biochimica et biophysica acta.
2016 Feb; 1858(2):289-94. doi:
10.1016/j.bbamem.2015.12.004
. [PMID: 26657529] - Sergey V Abkin, Olga S Ostroumova, Elena Y Komarova, Darya A Meshalkina, Maxim A Shevtsov, Boris A Margulis, Irina V Guzhova. Phloretin increases the anti-tumor efficacy of intratumorally delivered heat-shock protein 70 kDa (HSP70) in a murine model of melanoma.
Cancer immunology, immunotherapy : CII.
2016 Jan; 65(1):83-92. doi:
10.1007/s00262-015-1778-1
. [PMID: 26646850] - Qi Liu, Hualiang Zeng, Shujing Jiang, Li Zhang, Fuzhu Yang, Xiaoqing Chen, Hua Yang. Separation of polyphenols from leaves of Malus hupehensis (Pamp.) Rehder by off-line two-dimensional High Speed Counter-Current Chromatography combined with recycling elution mode.
Food chemistry.
2015 Nov; 186(?):139-45. doi:
10.1016/j.foodchem.2014.09.037
. [PMID: 25976803] - Tadatoshi Tanino, Noriaki Nagai, Yoshinori Funakami. Phloridzin-sensitive transport of echinacoside and acteoside and altered intestinal absorption route after application of Cistanche tubulosa extract.
The Journal of pharmacy and pharmacology.
2015 Oct; 67(10):1457-65. doi:
10.1111/jphp.12450
. [PMID: 26179928] - Xuan Zhou, Shui Liu, Wenhua Li, Bing Zhang, Bowen Liu, Yan Liu, Xuming Deng, Liping Peng. Phloretin derived from apple can reduce alpha-hemolysin expression in methicillin-resistant Staphylococcus aureus USA300.
World journal of microbiology & biotechnology.
2015 Aug; 31(8):1259-65. doi:
10.1007/s11274-015-1879-1
. [PMID: 26026280] - N Barlas, G Karabulut. Haematological and histopathological effects of apigenin, phloretin and myricetin based on uterotrophic assay in immature Wistar female albino rats.
Human & experimental toxicology.
2015 Jul; 34(7):755-68. doi:
10.1177/0960327114557903
. [PMID: 25378093] - Andreas Üllen, Christoph Nusshold, Toma Glasnov, Robert Saf, David Cantillo, Gerald Eibinger, Helga Reicher, Günter Fauler, Eva Bernhart, Seth Hallstrom, Nora Kogelnik, Klaus Zangger, C Oliver Kappe, Ernst Malle, Wolfgang Sattler. Covalent adduct formation between the plasmalogen-derived modification product 2-chlorohexadecanal and phloretin.
Biochemical pharmacology.
2015 Feb; 93(4):470-81. doi:
10.1016/j.bcp.2014.12.017
. [PMID: 25576489] - Huixiao Hong, William S Branham, Hui Wen Ng, Carrie L Moland, Stacey L Dial, Hong Fang, Roger Perkins, Daniel Sheehan, Weida Tong. Human sex hormone-binding globulin binding affinities of 125 structurally diverse chemicals and comparison with their binding to androgen receptor, estrogen receptor, and α-fetoprotein.
Toxicological sciences : an official journal of the Society of Toxicology.
2015 Feb; 143(2):333-48. doi:
10.1093/toxsci/kfu231
. [PMID: 25349334] - Andrea C Cutró, Guillermo Montich, Oscar A Roveri. Effect of phloretin on the binding of 1-anilino-8-naphtalene sulfonate (ANS) to 1,2-Dimyristoyl-sn-glycero-3-phosphocoline (DMPC) vesicles in the gel and liquid-crystalline state.
The Journal of membrane biology.
2015 Feb; 248(1):137-44. doi:
10.1007/s00232-014-9750-0
. [PMID: 25380679] - S S Efimova, V V Zakharov, O S Ostroumova. [The influence of dipole modifiers on the channel-forming activity of amyloid and amyloid-like peptides in lipid bilayers].
Tsitologiia.
2015; 57(2):144-52. doi:
"
. [PMID: 26035972] - Alexandre P Garneau, Gabriel A Carpentier, Andrée-Anne Marcoux, Rachelle Frenette-Cotton, Charles F Simard, Wilfried Rémus-Borel, Luc Caron, Mariève Jacob-Wagner, Micheline Noël, Jonathan J Powell, Richard Bélanger, François Côté, Paul Isenring. Aquaporins Mediate Silicon Transport in Humans.
PloS one.
2015; 10(8):e0136149. doi:
10.1371/journal.pone.0136149
. [PMID: 26313002] - Yuliya V Kucherenko, Ingolf Bernhardt. Natural antioxidants improve red blood cell 'survival' in non-leukoreduced blood samples.
Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology.
2015; 35(5):2055-68. doi:
10.1159/000374012
. [PMID: 25871329] - Gang Shu, Nai-Sheng Lu, Xiao-Tong Zhu, Yong Xu, Min-Qing Du, Qiu-Ping Xie, Can-Jun Zhu, Qi Xu, Song-Bo Wang, Li-Na Wang, Ping Gao, Qian-Yun Xi, Yong-Liang Zhang, Qing-Yan Jiang. Phloretin promotes adipocyte differentiation in vitro and improves glucose homeostasis in vivo.
The Journal of nutritional biochemistry.
2014 Dec; 25(12):1296-308. doi:
10.1016/j.jnutbio.2014.07.007
. [PMID: 25283330] - Davide Barreca, Ersilia Bellocco, Giuseppina Laganà, Giovanna Ginestra, Carlo Bisignano. Biochemical and antimicrobial activity of phloretin and its glycosilated derivatives present in apple and kumquat.
Food chemistry.
2014 Oct; 160(?):292-7. doi:
10.1016/j.foodchem.2014.03.118
. [PMID: 24799241] - Eun-Jung Lee, Jung-Lye Kim, Yun-Ho Kim, Min-Kyung Kang, Ju-Hyun Gong, Young-Hee Kang. Phloretin promotes osteoclast apoptosis in murine macrophages and inhibits estrogen deficiency-induced osteoporosis in mice.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2014 Sep; 21(10):1208-15. doi:
10.1016/j.phymed.2014.04.002
. [PMID: 24932975] - Yuta Hidaka, Koji Asami. Measurement of dipole potential in bilayer lipid membranes by dielectric spectroscopy.
The Journal of membrane biology.
2014 Aug; 247(8):721-7. doi:
10.1007/s00232-014-9697-1
. [PMID: 24935731] - Ai-Ren Zuo, Yan-Ying Yu, Qing-Long Shu, Li-Xiang Zheng, Xiao-Min Wang, Shu-Hong Peng, Yan-Fei Xie, Shu-Wen Cao. Hepatoprotective effects and antioxidant, antityrosinase activities of phloretin and phloretin isonicotinyl hydrazone.
Journal of the Chinese Medical Association : JCMA.
2014 Jun; 77(6):290-301. doi:
10.1016/j.jcma.2014.01.007
. [PMID: 24613711] - Xu Lijia, Jianru Guo, QianQian Chen, Jiang Baoping, Wei Zhang. Quantitation of phlorizin and phloretin using an ultra high performance liquid chromatography-electrospray ionization tandem mass spectrometric method.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2014 Jun; 960(?):67-72. doi:
10.1016/j.jchromb.2014.04.007
. [PMID: 24786222] - Olga S Ostroumova, Svetlana S Efimova, Ekaterina V Mikhailova, Ludmila V Schagina. The interaction of dipole modifiers with amphotericin-ergosterol complexes. Effects of phospholipid and sphingolipid membrane composition.
European biophysics journal : EBJ.
2014 May; 43(4-5):207-15. doi:
10.1007/s00249-014-0946-0
. [PMID: 24563224]