Catalpol (BioDeep_00000007600)

   

PANOMIX_OTCML-2023 natural product


代谢物信息卡片


(2S,3R,4S,5S,6R)-2-(((1aS,1bS,2S,5aR,6S,6aS)-6-hydroxy-1a-(hydroxymethyl)-1a,1b,2,5a,6,6a-hexahydrooxireno[2,3:4,5]cyclopenta[1,2-c]pyran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

  化学式: C15H22O10 (362.1213)
中文名称: 梓醇
  谱图信息: 最多检出来源 Viridiplantae(plant) 25.37%

分子结构信息

SMILES: C1=COC(C2C1C(C3C2(O3)CO)O)OC4C(C(C(C(O4)CO)O)O)O
InChI: InChI=1S/C15H22O10/c16-3-6-9(19)10(20)11(21)14(23-6)24-13-7-5(1-2-22-13)8(18)12-15(7,4-17)25-12/h1-2,5-14,16-21H,3-4H2

描述信息

Catalpol is an organic molecular entity. It has a role as a metabolite.
Catalpol is a natural product found in Verbascum lychnitis, Plantago atrata, and other organisms with data available.
See also: Rehmannia glutinosa Root (part of).
Catalpol (Catalpinoside), an iridoid glycoside found in Rehmannia glutinosa. Catalpol has neuroprotective, hypoglycemic, anti-inflammatory, anti-cancer, anti-spasmodic, anti-oxidant effects and anti-HBV effects[1][2][3].
Catalpol (Catalpinoside), an iridoid glycoside found in Rehmannia glutinosa. Catalpol has neuroprotective, hypoglycemic, anti-inflammatory, anti-cancer, anti-spasmodic, anti-oxidant effects and anti-HBV effects[1][2][3].

同义名列表

32 个代谢物同义名

(2S,3R,4S,5S,6R)-2-(((1aS,1bS,2S,5aR,6S,6aS)-6-hydroxy-1a-(hydroxymethyl)-1a,1b,2,5a,6,6a-hexahydrooxireno[2,3:4,5]cyclopenta[1,2-c]pyran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol; (1S,5R,6R)-2-[(1S,1bS,2S,5aR,6S)-6-hydroxy-1a-((S)-hydroxymethyl)-1a,1b,2,5a,6,6a-hexahydro-1,3-dioxa-cyclopropa[a]inden-2-yloxy]-6-((S)-hydroxymethyl)-tetrahydro-pyran-3,4,5-triol; beta-D-Glucopyranoside, 1a,1b,2,5a,6,6a-hexahydro-6-hydroxy- 1a-(hydroxymethyl)oxireno(4,5)cyclopenta(1,2-c)pyran-2-yl, (1aS-(1a-alpha,1b-beta,2-beta,5a-beta,6-beta,6a-alpha))-; beta-D-Glucopyranoside, 1a,1b,2,5a,6,6a-hexahydro-6-hydroxy-1a-(hydroxymethyl)oxireno(4,5)cyclopenta(1,2-c)pyran-2-yl, (1aS-(1a-alpha,1b-beta,2-beta,5a-beta,6-beta,6a-alpha))-; beta-D-Glucopyranoside, 1a,1b,2,5a,6,6a-hexahydro-6-hydroxy-1a-(hydroxymethyl)oxireno(4,5)cyclopenta(1,2-c)pyran-2-yl, (1aS-(1aalpha,1bbeta,2beta,5abeta,6beta,6aalpha))-; (1AS-(1aalpha,1bbeta,2beta,5abeta,6beta,6aalpha))-1a,1b,2,5a,6,6a-hexahydro-6-hydroxy-1a-(hydroxymethyl)oxireno(4,5)cyclopenta(1,2-c)pyran-2-yl-beta-D-glucopyranoside; (2S,3R,4S,5S,6R)-2-{[(1S,2S,4S,5S,6R,10S)-5-HYDROXY-2-(HYDROXYMETHYL)-3,9-DIOXATRICYCLO[4.4.0.0(2),?]DEC-7-EN-10-YL]OXY}-6-(HYDROXYMETHYL)OXANE-3,4,5-TRIOL; (2S,3R,4S,5S,6R)-2-[[(1S,2S,4S,5S,6R,10S)-5-hydroxy-2-(hydroxymethyl)-3,9-dioxatricyclo[4.4.0.02,4]dec-7-en-10-yl]oxy]-6-(hydroxymethyl)oxane-3,4,5-triol; (1aS,1bS,2S,5aR,6S,6aS)-1a,1b,2,5a,6,6a-Hexahydro-6-hydroxy-1a-(hydroxymethyl)oxireno[4,5]cyclopenta[1,2-c]pyran-2-yl beta-D-glucopyranoside; Catalposide, des-p-hydroxybenzoyl-; De(p-hydroxybenzoyl)catalposide; Catalpol, >=96\\% (HPLC); Digitalis purpurea L; UNII-JCX5L7JIC2; Catalpinoside; JCX5L7JIC2; Catalpol; Catapol; EINECS 219-324-0; NCGC00163523-01; LMPR01020108; 2415-24-9; C09773; 2-[[5-Hydroxy-2-(hydroxymethyl)-3,9-dioxatricyclo[4.4.0.02,4]dec-7-en-10-yl]oxy]-6-(hydroxymethyl)oxane-3,4,5-triol; CID 53297354; Catalpol; (2S,3R,4S,5S,6R)-2-(((1aS,1bS,2S,5aR,6S,6aS)-6-hydroxy-1a-(hydroxymethyl)-1a,1b,2,5a,6,6a-hexahydrooxireno[2',3':4,5]cyclopenta[1,2-c]pyran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol; 1ST000982; Catalpinoside;(1aS,1bS,2S,5aR,6S,6aS)-1a,1b,2,5a,6,6a-Hexahydro-6-hydroxy-1a-(hydroxymethyl)oxireno[4,5]cyclopenta[1,2-c]pyran-2-yl- ?-D-glucopyranoside; Catalpol (Standard); Catalpol, >=96% (HPLC); LHDWRKICQLTVDL-PZYDOOQISA-N



数据库引用编号

27 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

473 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 15 AKT1, BDNF, CASP3, CAT, GAP43, MAPK14, MTOR, NFE2L2, NLRP3, NOS3, PIK3C3, PIK3CA, PRKAA2, TLR4, VEGFA
Peripheral membrane protein 2 GAP43, MTOR
Endosome membrane 1 TLR4
Endoplasmic reticulum membrane 2 HMOX1, MTOR
Cytoplasmic vesicle, autophagosome 1 PIK3C3
Nucleus 11 AKT1, CASP3, HMOX1, MAPK14, MTOR, NFE2L2, NLRP3, NOS3, PPARGC1A, PRKAA2, VEGFA
autophagosome 1 PIK3C3
cytosol 13 AKT1, CASP3, CAT, HMOX1, MAPK14, MTOR, NFE2L2, NLRP3, NOS3, PIK3C3, PIK3CA, PPARGC1A, PRKAA2
dendrite 4 BDNF, GAP43, MTOR, PRKAA2
phagocytic vesicle 1 MTOR
phosphatidylinositol 3-kinase complex, class III 1 PIK3C3
centrosome 1 NFE2L2
nucleoplasm 9 AKT1, CASP3, HMOX1, MAPK14, MTOR, NFE2L2, NOS3, PPARGC1A, PRKAA2
RNA polymerase II transcription regulator complex 1 NFE2L2
Cell membrane 4 AKT1, GAP43, TLR4, TNF
Cytoplasmic side 3 GAP43, HMOX1, MTOR
lamellipodium 2 AKT1, PIK3CA
Cell projection, axon 1 GAP43
Golgi apparatus membrane 2 MTOR, NLRP3
Synapse 1 GAP43
cell cortex 1 AKT1
cell surface 3 TLR4, TNF, VEGFA
glutamatergic synapse 4 AKT1, CASP3, MAPK14, PIK3C3
Golgi apparatus 4 NFE2L2, NOS3, PRKAA2, VEGFA
Golgi membrane 3 MTOR, NLRP3, NOS3
lysosomal membrane 1 MTOR
neuronal cell body 3 CASP3, PRKAA2, TNF
postsynapse 1 AKT1
synaptic vesicle 1 BDNF
Cytoplasm, cytosol 2 NFE2L2, NLRP3
Lysosome 1 MTOR
Presynapse 1 GAP43
endosome 1 PIK3C3
plasma membrane 7 AKT1, GAP43, NFE2L2, NOS3, PIK3CA, TLR4, TNF
Membrane 10 AKT1, BDNF, CAT, HMOX1, MTOR, NLRP3, PIK3C3, PRKAA2, TLR4, VEGFA
axon 2 BDNF, PRKAA2
caveola 1 NOS3
extracellular exosome 1 CAT
Lysosome membrane 1 MTOR
endoplasmic reticulum 3 HMOX1, NLRP3, VEGFA
extracellular space 6 BDNF, CXCL8, HMOX1, IL6, TNF, VEGFA
perinuclear region of cytoplasm 5 BDNF, HMOX1, NOS3, PIK3CA, TLR4
adherens junction 1 VEGFA
intercalated disc 1 PIK3CA
mitochondrion 3 CAT, MAPK14, NLRP3
protein-containing complex 2 AKT1, CAT
intracellular membrane-bounded organelle 1 CAT
Microsome membrane 1 MTOR
postsynaptic density 2 CASP3, GAP43
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Single-pass type I membrane protein 1 TLR4
Secreted 5 BDNF, CXCL8, IL6, NLRP3, VEGFA
extracellular region 8 BDNF, CAT, CXCL8, IL6, MAPK14, NLRP3, TNF, VEGFA
Mitochondrion outer membrane 1 MTOR
mitochondrial outer membrane 2 HMOX1, MTOR
mitochondrial matrix 1 CAT
external side of plasma membrane 2 TLR4, TNF
Secreted, extracellular space, extracellular matrix 1 VEGFA
perikaryon 1 GAP43
microtubule cytoskeleton 1 AKT1
midbody 1 PIK3C3
Cytoplasm, P-body 1 NOS3
P-body 1 NOS3
Early endosome 1 TLR4
cell-cell junction 1 AKT1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
vesicle 1 AKT1
Membrane raft 1 TNF
focal adhesion 1 CAT
spindle 1 AKT1
GABA-ergic synapse 2 GAP43, PIK3C3
extracellular matrix 1 VEGFA
Peroxisome 2 CAT, PIK3C3
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
Nucleus, PML body 2 MTOR, PPARGC1A
PML body 2 MTOR, PPARGC1A
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
secretory granule 1 VEGFA
axoneme 1 PIK3C3
nuclear speck 2 MAPK14, PRKAA2
Cytoplasm, cytoskeleton, microtubule organizing center 1 NLRP3
Inflammasome 1 NLRP3
interphase microtubule organizing center 1 NLRP3
NLRP3 inflammasome complex 1 NLRP3
Cell projection, ruffle 1 TLR4
Late endosome 1 PIK3C3
ruffle 1 TLR4
receptor complex 1 TLR4
ciliary basal body 1 AKT1
chromatin 2 NFE2L2, PPARGC1A
mediator complex 1 NFE2L2
phagocytic cup 2 TLR4, TNF
phagocytic vesicle membrane 1 PIK3C3
cytoskeleton 1 NOS3
spindle pole 1 MAPK14
nuclear envelope 1 MTOR
Endomembrane system 2 MTOR, NLRP3
microtubule organizing center 1 NLRP3
phagophore assembly site 1 PIK3C3
phosphatidylinositol 3-kinase complex, class III, type I 1 PIK3C3
phosphatidylinositol 3-kinase complex, class III, type II 1 PIK3C3
Cell projection, dendrite 1 GAP43
Cytoplasm, Stress granule 1 NOS3
cytoplasmic stress granule 2 NOS3, PRKAA2
filopodium membrane 1 GAP43
lipopolysaccharide receptor complex 1 TLR4
ficolin-1-rich granule lumen 2 CAT, MAPK14
secretory granule lumen 2 CAT, MAPK14
endoplasmic reticulum lumen 2 BDNF, IL6
platelet alpha granule lumen 1 VEGFA
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
endocytic vesicle membrane 1 NOS3
presynaptic endosome 1 PIK3C3
Single-pass type IV membrane protein 1 HMOX1
[Isoform 1]: Nucleus 1 PPARGC1A
protein-DNA complex 1 NFE2L2
death-inducing signaling complex 1 CASP3
nucleotide-activated protein kinase complex 1 PRKAA2
Cytoplasmic vesicle, phagosome 1 MTOR
Cell projection, filopodium membrane 1 GAP43
postsynaptic endosome 1 PIK3C3
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
Autolysosome 1 PIK3C3
catalase complex 1 CAT
interleukin-6 receptor complex 1 IL6
[N-VEGF]: Cytoplasm 1 VEGFA
[VEGFA]: Secreted 1 VEGFA
[Isoform L-VEGF189]: Endoplasmic reticulum 1 VEGFA
[Isoform VEGF121]: Secreted 1 VEGFA
[Isoform VEGF165]: Secreted 1 VEGFA
VEGF-A complex 1 VEGFA
Cell projection, growth cone membrane 1 GAP43
growth cone membrane 1 GAP43
[Neurotrophic factor BDNF precursor form]: Secreted 1 BDNF
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF
[Isoform B4]: Nucleus 1 PPARGC1A
[Isoform B4-8a]: Cytoplasm 1 PPARGC1A
[Isoform B5]: Nucleus 1 PPARGC1A
[Isoform 9]: Nucleus 1 PPARGC1A


文献列表

  • Mei-Feng Zhang, Jing-Hui Wang, Si Sun, Yi-Tong Xu, Dong Wan, Shan Feng, Zhen Tian, Hui-Feng Zhu. Catalpol attenuates ischemic stroke by promoting neurogenesis and angiogenesis via the SDF-1α/CXCR4 pathway. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2024 Jun; 128(?):155362. doi: 10.1016/j.phymed.2024.155362. [PMID: 38522312]
  • Jingjing Yang, Lihua Zhang, Mengyue Zhang, Mingxuan Yang, Lin Zou, Ying Cui, Jing Yang, Xin Chai, Yuefei Wang. Exploration of the Dynamic Variations of the Characteristic Constituents and the Degradation Products of Catalpol during the Process of Radix Rehmanniae. Molecules (Basel, Switzerland). 2024 Feb; 29(3):. doi: 10.3390/molecules29030705. [PMID: 38338449]
  • Yuanjun Li, Xiaoru Zhai, Ligang Ma, Le Zhao, Na An, Weisheng Feng, Longyu Huang, Xiaoke Zheng. Transcriptome Analysis Provides Insights into Catalpol Biosynthesis in the Medicinal Plant Rehmannia glutinosa and the Functional Characterization of RgGES Genes. Genes. 2024 Jan; 15(2):. doi: 10.3390/genes15020155. [PMID: 38397145]
  • Yun Sun, Defen Zhu, Lu Qu, Manping Li, Wenxia Du, Mingming Wang, Yi Zhang, Guifang Chen, Gaoxiong Rao, Xiaoling Yu, Xiangnong Wu, Feng Huang, Xiaoyun Tong. Inhibitory effects of catalpol on DNCB-induced atopic dermatitis and IgE-mediated mast cells reaction. International immunopharmacology. 2024 Jan; 126(?):111274. doi: 10.1016/j.intimp.2023.111274. [PMID: 38041954]
  • Weiqing Hu, Li Zou, Ningxi Yu, Zhizhongbin Wu, Wei Yang, Tianyue Wu, Yulin Liu, Yu Pu, Yunbing Jiang, Jifeng Zhang, Huifeng Zhu, Fang Cheng, Shan Feng. Catalpol rescues LPS-induced cognitive impairment via inhibition of NF-Κb-regulated neuroinflammation and up-regulation of TrkB-mediated BDNF secretion in mice. Journal of ethnopharmacology. 2023 Nov; 319(Pt 3):117345. doi: 10.1016/j.jep.2023.117345. [PMID: 37926114]
  • Pengfei Zhou, Haihua Li, Yujin Lin, Yujun Zhou, Yinzi Chen, Yiheng Li, Xuan Li, Hui Yan, Weiming Lin, Beilu Xu, Huiting Deng, Xiaoqi Qiu. Omics analyses of Rehmannia glutinosa dedifferentiated and cambial meristematic cells reveal mechanisms of catalpol and indole alkaloid biosynthesis. BMC plant biology. 2023 Oct; 23(1):463. doi: 10.1186/s12870-023-04478-3. [PMID: 37794352]
  • Si Sun, Yitong Xu, Ningxi Yu, Meifeng Zhang, Jinghui Wang, Dong Wan, Zhen Tian, Huifeng Zhu. Catalpol Alleviates Ischemic Stroke Through Promoting Angiogenesis and Facilitating Proliferation and Differentiation of Neural Stem Cells via the VEGF-A/KDR Pathway. Molecular neurobiology. 2023 Jul; ?(?):. doi: 10.1007/s12035-023-03459-9. [PMID: 37439957]
  • Yuanfang Kong, Shuanglin Liu, Shaopei Wang, Bin Yang, Wei He, Hehe Li, Siqi Yang, Guoqing Wang, Chunhong Dong. Design, synthesis and anticancer activities evaluation of novel pyrazole modified catalpol derivatives. Scientific reports. 2023 May; 13(1):7756. doi: 10.1038/s41598-023-33403-9. [PMID: 37173367]
  • Shengxi Meng, Huize Chen, Chunjun Deng, Zeyu Meng. Catalpol Mitigates Alzheimer's Disease Progression by Promoting the Expression of Neural Stem Cell Exosomes Released miR-138-5p. Neurotoxicity research. 2023 Feb; 41(1):41-56. doi: 10.1007/s12640-022-00626-z. [PMID: 36595161]
  • Samaneh Rahamouz-Haghighi, Khadijeh Bagheri, Ali Sharafi. In vitro elicitation and detection of apigenin, catalpol and gallic acid in hairy root culture of Plantago major L. and assessment of cytotoxicity and anti-bacterial activity of its methanolic extract. Natural product research. 2023 Feb; 37(4):633-637. doi: 10.1080/14786419.2022.2068543. [PMID: 35503010]
  • Chengkui Cai, Pengcheng Sun, Zhihui Chen, Chao Sun, Liying Tian. Catalpol protects mouse ATDC5 chondrocytes against interleukin-1β-induced catabolism. Histology and histopathology. 2022 Dec; ?(?):18575. doi: 10.14670/hh-18-575. [PMID: 36598130]
  • Yu Xia, Yun Wei Lu, Ren Juan Hao, Gu Ran Yu. Catalpol relieved angiotensin II-induced blood-brain barrier destruction via inhibiting the TLR4 pathway in brain endothelial cells. Pharmaceutical biology. 2022 Dec; 60(1):2210-2218. doi: 10.1080/13880209.2022.2142801. [PMID: 36369944]
  • Jierong Liu, Jikun Du, Yuanhua Li, Fuwei Wang, Daibo Song, Jiantao Lin, Baohong Li, Li Li. Catalpol induces apoptosis in breast cancer in vitro and in vivo: Involvement of mitochondria apoptosis pathway and post-translational modifications. Toxicology and applied pharmacology. 2022 11; 454(?):116215. doi: 10.1016/j.taap.2022.116215. [PMID: 36067808]
  • Yuxin Xiao, Mengfei Tian, Qinglong Liu, Baoti Xu, Yang Peng, Chunjian Zhao, Chunying Li. A novel absorbent, HOF-3@PU: Preparation and application for sustainable and efficient purification of catalpol and ajugol from Rehmannia glutinosa leaves. Natural product research. 2022 Sep; ?(?):1-7. doi: 10.1080/14786419.2022.2119968. [PMID: 36070589]
  • Juan Zhao, Yong Tan, Zhe Feng, Yahong Zhou, Feihong Wang, Ge Zhou, Jing Yan, Xiaowei Nie. Catalpol attenuates polycystic ovarian syndrome by regulating sirtuin 1 mediated NF-κB signaling pathway. Reproductive biology. 2022 Sep; 22(3):100671. doi: 10.1016/j.repbio.2022.100671. [PMID: 35905692]
  • Yang Xie, Ling-Yun Zhong, Xiao Xue, Zhuo Wang, Jin-Ju Song, Jia-Qing Li, Qing Zhang, Yi-Bin Wang, Yan Zeng. [Optimization of processing technology of braised Rehmanniae Radix based on multiple indexes and response surface technology and correlation between components and color]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2022 Sep; 47(18):4927-4937. doi: 10.19540/j.cnki.cjcmm.20220128.306. [PMID: 36164902]
  • Jikun Du, Jierong Liu, Xiaoman Huang, Yuanhua Li, Daibo Song, Qin Li, Jiantao Lin, Baohong Li, Li Li. Catalpol Ameliorates Neurotoxicity in N2a/APP695swe Cells and APP/PS1 Transgenic Mice. Neurotoxicity research. 2022 Aug; 40(4):961-972. doi: 10.1007/s12640-022-00524-4. [PMID: 35699892]
  • Xin Xiao, Wen-Hua Xu, Xiao-Qing Zhang, Jun-Feng Ding, Yue Jiang, Jun Tu. [Anti-oxidative and anti-apoptotic effects and molecular mechanisms of catalpol against H_2O_2-induced oxidative damage in pancreatic β cells (INS-1 cells)]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2022 Aug; 47(16):4403-4410. doi: 10.19540/j.cnki.cjcmm.20220119.402. [PMID: 36046869]
  • Hong-Jin Wang, Hai-Feng Ran, Yue Yin, Xiao-Gang Xu, Bao-Xiang Jiang, Shi-Qi Yu, Yi-Jin Chen, Hui-Jing Ren, Shan Feng, Ji-Fen Zhang, Yi Chen, Qiang Xue, Xiao-Yu Xu. Catalpol improves impaired neurovascular unit in ischemic stroke rats via enhancing VEGF-PI3K/AKT and VEGF-MEK1/2/ERK1/2 signaling. Acta pharmacologica Sinica. 2022 Jul; 43(7):1670-1685. doi: 10.1038/s41401-021-00803-4. [PMID: 34795412]
  • Dan Chen, Jing Guo, Longguang Li. Catalpol promotes mitochondrial biogenesis in chondrocytes. Archives of physiology and biochemistry. 2022 Jun; 128(3):802-808. doi: 10.1080/13813455.2020.1727927. [PMID: 32096418]
  • Linluo Zhang, Changqing Li, Ling Fu, Zhichao Yu, Gengrui Xu, Jie Zhou, Meiyu Shen, Zhe Feng, Huaxu Zhu, Tong Xie, Lingling Zhou, Xueping Zhou. Protection of catalpol against triptolide-induced hepatotoxicity by inhibiting excessive autophagy via the PERK-ATF4-CHOP pathway. PeerJ. 2022; 10(?):e12759. doi: 10.7717/peerj.12759. [PMID: 35036109]
  • Yuting Huang, Hirokazu Ando, Mai Tsujino, Kazuki Yoshihara, Li Zhang, Yohei Sasaki. Study on Catalpol Content in Rehmannia glutinosa Root, an Important Ingredient in Kampo Prescriptions. Biological & pharmaceutical bulletin. 2022; 45(7):955-961. doi: 10.1248/bpb.b21-01095. [PMID: 35786603]
  • Cong Cong, Xiaohong Yuan, Ying Hu, Wenjing Chen, Yong Wang, Lei Tao. Catalpol Alleviates Ang II-Induced Renal Injury Through NF-κB Pathway and TGF-β1/Smads Pathway. Journal of cardiovascular pharmacology. 2022 01; 79(1):e116-e121. doi: 10.1097/fjc.0000000000001148. [PMID: 34654783]
  • Yuxi Di, Mingfei Zhang, Yichang Chen, Ruonan Sun, Meiyu Shen, Fengxiang Tian, Pei Yang, Feiya Qian, Lingling Zhou. Catalpol Inhibits Tregs-to-Th17 Cell Transdifferentiation by Up-Regulating Let-7g-5p to Reduce STAT3 Protein Levels. Yonsei medical journal. 2022 Jan; 63(1):56-65. doi: 10.3349/ymj.2022.63.1.56. [PMID: 34913284]
  • Lingling Song, Xiaohui Wu, Junming Wang, Yuechen Guan, Yueyue Zhang, Mingzhu Gong, Yanmei Wang, Bingyin Li. Antidepressant effect of catalpol on corticosterone-induced depressive-like behavior involves the inhibition of HPA axis hyperactivity, central inflammation and oxidative damage probably via dual regulation of NF-κB and Nrf2. Brain research bulletin. 2021 12; 177(?):81-91. doi: 10.1016/j.brainresbull.2021.09.002. [PMID: 34500039]
  • Aimin Liu, Buxin Zhang, Wei Zhao, Yuanhui Tu, Qingxing Wang, Jing Li. Catalpol ameliorates psoriasis-like phenotypes via SIRT1 mediated suppression of NF-κB and MAPKs signaling pathways. Bioengineered. 2021 12; 12(1):183-195. doi: 10.1080/21655979.2020.1863015. [PMID: 33323018]
  • Sara Muhammad El-Hanboshy, Maged Wasfy Helmy, Mohammad Mahmoud Abd-Alhaseeb. Catalpol synergistically potentiates the anti-tumour effects of regorafenib against hepatocellular carcinoma via dual inhibition of PI3K/Akt/mTOR/NF-κB and VEGF/VEGFR2 signaling pathways. Molecular biology reports. 2021 Nov; 48(11):7233-7242. doi: 10.1007/s11033-021-06715-0. [PMID: 34596810]
  • Junming Wang, Rongxing Chen, Chen Liu, Xiaohui Wu, Yueyue Zhang. Antidepressant mechanism of catalpol: Involvement of the PI3K/Akt/Nrf2/HO-1 signaling pathway in rat hippocampus. European journal of pharmacology. 2021 Oct; 909(?):174396. doi: 10.1016/j.ejphar.2021.174396. [PMID: 34332921]
  • Anmei Shu, Qiu Du, Jing Chen, Yuyan Gao, Yihui Zhu, Gaohong Lv, Jinfu Lu, Yuping Chen, Huiqin Xu. Catalpol ameliorates endothelial dysfunction and inflammation in diabetic nephropathy via suppression of RAGE/RhoA/ROCK signaling pathway. Chemico-biological interactions. 2021 Oct; 348(?):109625. doi: 10.1016/j.cbi.2021.109625. [PMID: 34416245]
  • Xiaohui Wu, Junming Wang, Lingling Song, Yuechen Guan, Can Cao, Ying Cui, Yueyue Zhang, Chen Liu. Catalpol Weakens Depressive-like Behavior in Mice with Streptozotocin-induced Hyperglycemia via PI3K/AKT/Nrf2/HO-1 Signaling Pathway. Neuroscience. 2021 10; 473(?):102-118. doi: 10.1016/j.neuroscience.2021.07.029. [PMID: 34358633]
  • Xumin Zhang, Kai Liu, Mingyi Shi, Long Xie, Mao Deng, Huijuan Chen, Xiaofang Li. Therapeutic potential of catalpol and geniposide in Alzheimer's and Parkinson's diseases: A snapshot of their underlying mechanisms. Brain research bulletin. 2021 09; 174(?):281-295. doi: 10.1016/j.brainresbull.2021.06.020. [PMID: 34216649]
  • Samar Rezq, Mona F Mahmoud, Assem M El-Shazly, Mohamed A El Raey, Mansour Sobeh. Anti-Inflammatory, Antipyretic, and Analgesic Properties of Potamogeton perfoliatus Extract: In Vitro and In Vivo Study. Molecules (Basel, Switzerland). 2021 Aug; 26(16):. doi: 10.3390/molecules26164826. [PMID: 34443414]
  • Deng-Qiu Xu, Lei Zhao, Si-Jia Li, Xiao-Fei Huang, Chun-Jie Li, Li-Xin Sun, Xi-Hua Li, Lu-Yong Zhang, Zhen-Zhou Jiang. Catalpol counteracts the pathology in a mouse model of Duchenne muscular dystrophy by inhibiting the TGF-β1/TAK1 signaling pathway. Acta pharmacologica Sinica. 2021 Jul; 42(7):1080-1089. doi: 10.1038/s41401-020-00515-1. [PMID: 32939036]
  • Marta Dąbrowska, Eliana B Souto, Izabela Nowak. Lipid Nanoparticles Loaded with Iridoid Glycosides: Development and Optimization Using Experimental Factorial Design. Molecules (Basel, Switzerland). 2021 May; 26(11):. doi: 10.3390/molecules26113161. [PMID: 34070620]
  • Fangzheng Sun, Zhenghua Wang, Xiaoyu Wang. Chloroquine enhances catalpol's ability to promote apoptosis by inhibiting catalpol's autophagy-promoting effect on gastric cancer. Journal of B.U.ON. : official journal of the Balkan Union of Oncology. 2021 May; 26(3):924-931. doi: ". [PMID: 34268955]
  • Yihui Zhu, Qiu Du, Ni Jiao, Anmei Shu, Yuyan Gao, Jing Chen, Gaohong Lv, Jinfu Lu, Yuping Chen, Huiqin Xu. Catalpol ameliorates diabetes-induced testicular injury and modulates gut microbiota. Life sciences. 2021 Feb; 267(?):118881. doi: 10.1016/j.lfs.2020.118881. [PMID: 33310037]
  • Jiangnan Zhang, Tingting Zhao, Changyuan Wang, Qiang Meng, Xiaokui Huo, Chong Wang, Pengyuan Sun, Huijun Sun, Xiaodong Ma, Jingjing Wu, Kexin Liu. Catalpol-Induced AMPK Activation Alleviates Cisplatin-Induced Nephrotoxicity through the Mitochondrial-Dependent Pathway without Compromising Its Anticancer Properties. Oxidative medicine and cellular longevity. 2021; 2021(?):7467156. doi: 10.1155/2021/7467156. [PMID: 33510841]
  • Samaneh Rahamooz-Haghighi, Khadijeh Bagheri, Ali Sharafi, Hossein Danafar. Establishment and elicitation of transgenic root culture of Plantago lanceolata and evaluation of its anti-bacterial and cytotoxicity activity. Preparative biochemistry & biotechnology. 2021; 51(3):207-224. doi: 10.1080/10826068.2020.1805757. [PMID: 32845793]
  • Zedong Xiang, Shaoping Wang, Haoran Li, Pingping Dong, Fan Dong, Zhen Li, Long Dai, Jiayu Zhang. Detection and Identification of Catalpol Metabolites in the Rat Plasma, Urine and Faeces Using Ultra-high Performance Liquid Chromatography-Q Exactive Hybrid Quadrupole-orbitrap High-resolution Accurate Mass Spectrometry. Current drug metabolism. 2021; 22(3):173-184. doi: 10.2174/1389200221999201125205515. [PMID: 33243112]
  • Hongjin Wang, Xiaogang Xu, Yue Yin, Shiqi Yu, Huijing Ren, Qiang Xue, Xiaoyu Xu. Catalpol protects vascular structure and promotes angiogenesis in cerebral ischemic rats by targeting HIF-1α/VEGF. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2020 Nov; 78(?):153300. doi: 10.1016/j.phymed.2020.153300. [PMID: 32866905]
  • Dengqiu Xu, Xiaofei Huang, Hozeifa M Hassan, Lu Wang, Sijia Li, Zhenzhou Jiang, Luyong Zhang, Tao Wang. Hypoglycaemic effect of catalpol in a mouse model of high-fat diet-induced prediabetes. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme. 2020 Oct; 45(10):1127-1137. doi: 10.1139/apnm-2020-0075. [PMID: 32294390]
  • Dengqiu Xu, Lei Zhao, Jingwei Jiang, Sijia Li, Zeren Sun, Xiaofei Huang, Chunjie Li, Tao Wang, Lixin Sun, Xihua Li, Zhenzhou Jiang, Luyong Zhang. A potential therapeutic effect of catalpol in Duchenne muscular dystrophy revealed by binding with TAK1. Journal of cachexia, sarcopenia and muscle. 2020 10; 11(5):1306-1320. doi: 10.1002/jcsm.12581. [PMID: 32869445]
  • Kah Heng Yap, Gan Sook Yee, Mayuren Candasamy, Swee Ching Tan, Shadab Md, Abu Bakar Abdul Majeed, Subrat Kumar Bhattamisra. Catalpol Ameliorates Insulin Sensitivity and Mitochondrial Respiration in Skeletal Muscle of Type-2 Diabetic Mice Through Insulin Signaling Pathway and AMPK/SIRT1/PGC-1α/PPAR-γ Activation. Biomolecules. 2020 09; 10(10):. doi: 10.3390/biom10101360. [PMID: 32987623]
  • Jing Chen, Yuwei Yang, Zhiyang Lv, Anmei Shu, Qiu Du, Wei Wang, Yuping Chen, Huiqin Xu. Study on the inhibitive effect of Catalpol on diabetic nephropathy. Life sciences. 2020 Sep; 257(?):118120. doi: 10.1016/j.lfs.2020.118120. [PMID: 32693244]
  • Xingjuan Gao, Jiaju Xu, Hongbo Liu. Protective effects of catalpol on mitochondria of hepatocytes in cholestatic liver injury. Molecular medicine reports. 2020 09; 22(3):2424-2432. doi: 10.3892/mmr.2020.11337. [PMID: 32705256]
  • Jin Yan, Disi Deng, Yeke Wu, Keming Wu, Jie Qu, Fei Li. Catalpol protects rat ovarian granulosa cells against oxidative stress and apoptosis through modulating the PI3K/Akt/mTOR signaling pathway. Bioscience reports. 2020 04; 40(4):. doi: 10.1042/bsr20194032. [PMID: 32227125]
  • Jiahong Meng, Wenkan Zhang, Cong Wang, Wei Zhang, Chenhe Zhou, Guangyao Jiang, Jianqiao Hong, Shigui Yan, Weiqi Yan. Catalpol suppresses osteoclastogenesis and attenuates osteoclast-derived bone resorption by modulating PTEN activity. Biochemical pharmacology. 2020 01; 171(?):113715. doi: 10.1016/j.bcp.2019.113715. [PMID: 31751538]
  • Xiang Tian, Qin Ru, Qi Xiong, Ruojian Wen, Yong Chen. Catalpol Attenuates Hepatic Steatosis by Regulating Lipid Metabolism via AMP-Activated Protein Kinase Activation. BioMed research international. 2020; 2020(?):6708061. doi: 10.1155/2020/6708061. [PMID: 32420361]
  • Xiang Tian, Qi Xiong, Lin Chen, Jian Ruo Wen, Qin Ru. [Intervention of Catalpol on High-fat Diet Induced Nonalcoholic Fatty Liver Disease in Mice]. Zhongguo yi xue ke xue yuan xue bao. Acta Academiae Medicinae Sinicae. 2019 Dec; 41(6):746-755. doi: 10.3881/j.issn.1000-503x.11110. [PMID: 31907123]
  • Subrat Kumar Bhattamisra, Kah Heng Yap, Vikram Rao, Hira Choudhury. Multiple Biological Effects of an Iridoid Glucoside, Catalpol and Its Underlying Molecular Mechanisms. Biomolecules. 2019 12; 10(1):. doi: 10.3390/biom10010032. [PMID: 31878316]
  • Mingyan Wei, Tao Yang, Qian Li, Dongdong Zhou, Zongpan Du, Yongping Fan. Protective effects of catalpol and rhein in murine experimental autoimmune encephalomyelitis via regulation of T helper (Th) 1, Th2, Th17, and regulatory T cell responses. Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan. 2019 12; 39(6):809-817. doi: . [PMID: 32186151]
  • Eun Mi Choi, Kwang Sik Suh, Woon-Won Jung, Soojin Yun, So Young Park, Sang Ouk Chin, Sang Youl Rhee, Suk Chon. Catalpol protects against 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced cytotoxicity in osteoblastic MC3T3-E1 cells. Journal of applied toxicology : JAT. 2019 12; 39(12):1710-1719. doi: 10.1002/jat.3896. [PMID: 31429101]
  • Jiangnan Zhang, Ran Bi, Qiang Meng, Changyuan Wang, Xiaokui Huo, Zhihao Liu, Chong Wang, Pengyuan Sun, Huijun Sun, Xiaodong Ma, Jingjing Wu, Kexin Liu. Catalpol alleviates adriamycin-induced nephropathy by activating the SIRT1 signalling pathway in vivo and in vitro. British journal of pharmacology. 2019 12; 176(23):4558-4573. doi: 10.1111/bph.14822. [PMID: 31378931]
  • Xiaodong Zhang, Caixia Li, Lianchun Wang, Yahong Fei, Wensheng Qin. Analysis of Centranthera grandiflora Benth Transcriptome Explores Genes of Catalpol, Acteoside and Azafrin Biosynthesis. International journal of molecular sciences. 2019 Nov; 20(23):. doi: 10.3390/ijms20236034. [PMID: 31795510]
  • Huihui Ren, Dan Wang, Lu Zhang, Xiaonang Kang, Yaling Li, Xinrong Zhou, Gang Yuan. Catalpol induces autophagy and attenuates liver steatosis in ob/ob and high-fat diet-induced obese mice. Aging. 2019 11; 11(21):9461-9477. doi: 10.18632/aging.102396. [PMID: 31697646]
  • Haixia Yuan, Xinqiang Ni, Min Zheng, Xinmin Han, Yuchen Song, Minfeng Yu. Effect of catalpol on behavior and neurodevelopment in an ADHD rat model. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2019 Oct; 118(?):109033. doi: 10.1016/j.biopha.2019.109033. [PMID: 31545235]
  • Ying Bai, Ruyuan Zhu, Yimiao Tian, Rui Li, Beibei Chen, Hao Zhang, Bingke Xia, Dandan Zhao, Fangfang Mo, Dongwei Zhang, Sihua Gao. Catalpol in Diabetes and its Complications: A Review of Pharmacology, Pharmacokinetics, and Safety. Molecules (Basel, Switzerland). 2019 Sep; 24(18):. doi: 10.3390/molecules24183302. [PMID: 31514313]
  • Weixiang Sun, Yuyan Gao, Yushi Ding, Ying Cao, Jing Chen, Gaohong Lv, Jinfu Lu, Bin Yu, Meilin Peng, Huiqin Xu, Yun Sun. Catalpol ameliorates advanced glycation end product-induced dysfunction of glomerular endothelial cells via regulating nitric oxide synthesis by inducible nitric oxide synthase and endothelial nitric oxide synthase. IUBMB life. 2019 09; 71(9):1268-1283. doi: 10.1002/iub.2032. [PMID: 30861639]
  • Yanlin Li, Hai Wang, Xu Yang. Effects of catalpol on bronchial asthma and its relationship with cytokines. Journal of cellular biochemistry. 2019 06; 120(6):8992-8998. doi: 10.1002/jcb.28170. [PMID: 30536454]
  • Huimin Hu, Changyuan Wang, Yue Jin, Qiang Meng, Qi Liu, Zhihao Liu, Kexin Liu, Xiaoyu Liu, Huijun Sun. Catalpol Inhibits Homocysteine-induced Oxidation and Inflammation via Inhibiting Nox4/NF-κB and GRP78/PERK Pathways in Human Aorta Endothelial Cells. Inflammation. 2019 Feb; 42(1):64-80. doi: 10.1007/s10753-018-0873-9. [PMID: 30315526]
  • Yu Zhu, Yanmao Wang, Yachao Jia, Jia Xu, Yimin Chai. Catalpol promotes the osteogenic differentiation of bone marrow mesenchymal stem cells via the Wnt/β-catenin pathway. Stem cell research & therapy. 2019 01; 10(1):37. doi: 10.1186/s13287-019-1143-y. [PMID: 30670092]
  • Yuan Wang, Yali Shao, Yuqing Gao, Guoran Wan, Dong Wan, Huifeng Zhu, Yan Qiu, Xiyue Ye. Catalpol prevents denervated muscular atrophy related to the inhibition of autophagy and reduces BAX/BCL2 ratio via mTOR pathway. Drug design, development and therapy. 2019; 13(?):243-253. doi: 10.2147/dddt.s188968. [PMID: 30643390]
  • Liu-Qiang Zhang, Kai-Xian Chen, Yi-Ming Li. Bioactivities of Natural Catalpol Derivatives. Current medicinal chemistry. 2019; 26(33):6149-6173. doi: 10.2174/0929867326666190620103813. [PMID: 31218947]
  • I-Cheng Chen, Chia-Ning Chang, Wan-Ling Chen, Te-Hsien Lin, Chih-Ying Chao, Chih-Hsin Lin, Hsuan-Yuan Lin, Mei-Ling Cheng, Mu-Chun Chiang, Jung-Yaw Lin, Yih-Ru Wu, Guey-Jen Lee-Chen, Chiung-Mei Chen. Targeting Ubiquitin Proteasome Pathway with Traditional Chinese Medicine for Treatment of Spinocerebellar Ataxia Type 3. The American journal of Chinese medicine. 2019; 47(1):63-95. doi: 10.1142/s0192415x19500046. [PMID: 30612452]
  • Ali El-Gamal, Shaza Al-Massarani, Ghada Fawzy, Hanan Ati, Adnan Al-Rehaily, Omer Basudan, Maged Abdel-Kader, Nurhayat Tabanca, James Becnel. Chemical Composition of Buddleja polystachya Aerial Parts and its Bioactivity against Aedes aegypti. Natural product research. 2018 Dec; 32(23):2775-2782. doi: 10.1080/14786419.2017.1378213. [PMID: 28942684]
  • Jin-Hua Tao, Min Zhao, Shu Jiang, Wei Zhang, Bo-Hui Xu, Jin-Ao Duan. UPLC-Q-TOF/MS-based metabolic profiling comparison of four major bioactive components in normal and CKD rat plasma, urine and feces following oral administration of Cornus officinalis Sieb and Rehmannia glutinosa Libosch herb couple extract. Journal of pharmaceutical and biomedical analysis. 2018 Nov; 161(?):254-261. doi: 10.1016/j.jpba.2018.08.051. [PMID: 30172880]
  • Jingyu Zhi, Yajing Li, Zhongyi Zhang, Chaofei Yang, Xiaotong Geng, Miao Zhang, Xinrong Li, Xin Zuo, Mingjie Li, Yong Huang, Fengqing Wang, Caixia Xie. Molecular Regulation of Catalpol and Acteoside Accumulation in Radial Striation and non-Radial Striation of Rehmannia glutinosa Tuberous Root. International journal of molecular sciences. 2018 Nov; 19(12):. doi: 10.3390/ijms19123751. [PMID: 30486279]
  • Lauren E Bradley, Caitlin A Kelly, M Deane Bowers. Host Plant Suitability in a Specialist Herbivore, Euphydryas anicia (Nymphalidae): Preference, Performance and Sequestration. Journal of chemical ecology. 2018 Nov; 44(11):1051-1057. doi: 10.1007/s10886-018-1012-7. [PMID: 30175378]
  • Jing Liu, He-Ran Zhang, Yan-Bao Hou, Xiao-Long Jing, Xin-Yi Song, Xiu-Ping Shen. Global gene expression analysis in liver of db/db mice treated with catalpol. Chinese journal of natural medicines. 2018 Aug; 16(8):590-598. doi: 10.1016/s1875-5364(18)30096-7. [PMID: 30197124]
  • Chenyang Liu, Kang Chen, Yunwei Lu, Zhuyuan Fang, Guran Yu. Catalpol provides a protective effect on fibrillary Aβ1-42 -induced barrier disruption in an in vitro model of the blood-brain barrier. Phytotherapy research : PTR. 2018 Jun; 32(6):1047-1055. doi: 10.1002/ptr.6043. [PMID: 29479743]
  • Baogang Fei, Wei Dai, Shouhe Zhao. Efficacy, Safety, and Cost of Therapy of the Traditional Chinese Medicine, Catalpol, in Patients Following Surgical Resection for Locally Advanced Colon Cancer. Medical science monitor : international medical journal of experimental and clinical research. 2018 May; 24(?):3184-3192. doi: 10.12659/msm.907569. [PMID: 29763415]
  • Fangjie Bi, Yujia Xu, Quansan Sun. Catalpol pretreatment attenuates cardiac dysfunction following myocardial infarction in rats. Anatolian journal of cardiology. 2018 May; 19(5):296-302. doi: 10.14744/anatoljcardiol.2018.33230. [PMID: 29724983]
  • Pingting Zhu, Yu Wu, Aihua Yang, Xingsheng Fu, Ming Mao, Zhaoguo Liu. Catalpol suppressed proliferation, growth and invasion of CT26 colon cancer by inhibiting inflammation and tumor angiogenesis. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2017 Nov; 95(?):68-76. doi: 10.1016/j.biopha.2017.08.049. [PMID: 28826099]
  • Yun-Seo Kil, Seong Min Kim, Unwoo Kang, Hae Young Chung, Eun Kyoung Seo. Peroxynitrite-Scavenging Glycosides from the Stem Bark of Catalpa ovata. Journal of natural products. 2017 08; 80(8):2240-2251. doi: 10.1021/acs.jnatprod.7b00139. [PMID: 28787158]
  • Tao Yang, Qi Zheng, Su Wang, Ling Fang, Lei Liu, Hui Zhao, Lei Wang, Yongping Fan. Effect of catalpol on remyelination through experimental autoimmune encephalomyelitis acting to promote Olig1 and Olig2 expressions in mice. BMC complementary and alternative medicine. 2017 May; 17(1):240. doi: 10.1186/s12906-017-1642-2. [PMID: 28464811]
  • Yanyan Chen, Yongzheng Zhang, Mingyuan Xu, Junqi Luan, Shengai Piao, Shuang Chi, Hai Wang. Catalpol alleviates ovalbumin-induced asthma in mice: Reduced eosinophil infiltration in the lung. International immunopharmacology. 2017 Feb; 43(?):140-146. doi: 10.1016/j.intimp.2016.12.011. [PMID: 27992791]
  • Yang Liu, Qing Tang, Siying Shao, Yi Chen, Weihai Chen, Xiaoyu Xu. Lyophilized Powder of Catalpol and Puerarin Protected Cerebral Vessels from Ischemia by Its Anti-apoptosis on Endothelial Cells. International journal of biological sciences. 2017; 13(3):327-338. doi: 10.7150/ijbs.17751. [PMID: 28367097]
  • Yun-Pei Zhang, Chun-Shui Pan, Li Yan, Yu-Ying Liu, Bai-He Hu, Xin Chang, Quan Li, Dan-Dan Huang, Hao-Yu Sun, Ge Fu, Kai Sun, Jing-Yu Fan, Jing-Yan Han. Catalpol restores LPS-elicited rat microcirculation disorder by regulation of a network of signaling involving inhibition of TLR-4 and SRC. American journal of physiology. Gastrointestinal and liver physiology. 2016 12; 311(6):G1091-G1104. doi: 10.1152/ajpgi.00159.2016. [PMID: 27789455]
  • Wan Dong, Yang Xian, Wang Yuan, Zhu Huifeng, Wang Tao, Liu Zhiqiang, Feng Shan, Fu Ya, Wang Hongli, Wang Jinghuan, Qin Lei, Zou Li, Qi Hongyi. Catalpol stimulates VEGF production via the JAK2/STAT3 pathway to improve angiogenesis in rats' stroke model. Journal of ethnopharmacology. 2016 Sep; 191(?):169-179. doi: 10.1016/j.jep.2016.06.030. [PMID: 27301615]
  • Varun Kumar, Neha Sharma, Hemant Sood, Rajinder Singh Chauhan. Exogenous feeding of immediate precursors reveals synergistic effect on picroside-I biosynthesis in shoot cultures of Picrorhiza kurroa Royle ex Benth. Scientific reports. 2016 07; 6(?):29750. doi: 10.1038/srep29750. [PMID: 27418367]
  • Dan-Dan Tang, Jiao Zhang, Ji-Rui Wang, Ji-Fen Zhang, Xiao-Yu Xu. [Borneol promotes oral absorption and penetration into brain of puerarin and catalpol]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2016 Jul; 41(14):2720-2726. doi: 10.4268/cjcmm20161425. [PMID: 28905612]
  • Kyoung Sik Park. Catalpol reduces the production of inflammatory mediators via PPAR-γ activation in human intestinal Caco-2 cells. Journal of natural medicines. 2016 Jul; 70(3):620-6. doi: 10.1007/s11418-016-0988-y. [PMID: 27007911]
  • Jian-jun Li, Mei-ling Ren, Jun Wang, Shu-wu Sun, Wen-xi Ma. [Research on Breeding of the New Rehmannia glutinosa Variety]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2016 Jul; 39(7):1452-6. doi: ". [PMID: 30199615]
  • Dan-Dan Tang, Jiao Zhang, Ji-Rui Wang, Ji-Fen Zhang, Xiao-Yu Xu. [Effects of different preparation technologies on concentrations of puerarin and catalpol in plasma and brain of rats after oral administration]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2016 Mar; 41(5):940-947. doi: 10.4268/cjcmm20160529. [PMID: 28875652]
  • Yan-Fei Liu, Guo-Ru Shi, Xin Wang, Chun-Lei Zhang, Yan Wang, Ruo-Yun Chen, De-Quan Yu. Bioactive Iridoid Glycosides from the Whole Plants of Rehmannia chingii. Journal of natural products. 2016 Feb; 79(2):428-33. doi: 10.1021/acs.jnatprod.5b01126. [PMID: 26859776]
  • Min Zhao, Jinhua Tao, Dawei Qian, Pei Liu, Er-xin Shang, Shu Jiang, Jianming Guo, Shu-lan Su, Jin-ao Duan, Leyue Du. Simultaneous determination of loganin, morroniside, catalpol and acteoside in normal and chronic kidney disease rat plasma by UPLC-MS for investigating the pharmacokinetics of Rehmannia glutinosa and Cornus officinalis Sieb drug pair extract. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2016 Jan; 1009-1010(?):122-9. doi: 10.1016/j.jchromb.2015.12.020. [PMID: 26720701]
  • Jin-hua Tao, Min Zhao, Dong-geng Wang, Chi Yang, Le-Yue Du, Wen-qian Qiu, Shu Jiang. Biotransformation and metabolic profile of catalpol with human intestinal microflora by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2016 Jan; 1009-1010(?):163-9. doi: 10.1016/j.jchromb.2015.12.007. [PMID: 26741989]
  • Caiqing Zhang, Qingfa Liu, Fengyun Dong, Liqun Li, Juan Du, Qi Xie, Hesheng Hu, Suhua Yan, Xia Zhou, Changsheng Li, Corrinne G Lobe, Ju Liu. Catalpol downregulates vascular endothelial‑cadherin expression and induces vascular hyperpermeability. Molecular medicine reports. 2016 Jan; 13(1):373-8. doi: 10.3892/mmr.2015.4522. [PMID: 26549479]
  • Shasha Yang, Huacong Deng, Qunzhou Zhang, Jing Xie, Hui Zeng, Xiaolong Jin, Zixi Ling, Qiaoyun Shan, Momo Liu, Yuefei Ma, Juan Tang, Qianping Wei. Amelioration of Diabetic Mouse Nephropathy by Catalpol Correlates with Down-Regulation of Grb10 Expression and Activation of Insulin-Like Growth Factor 1 / Insulin-Like Growth Factor 1 Receptor Signaling. PloS one. 2016; 11(3):e0151857. doi: 10.1371/journal.pone.0151857. [PMID: 26986757]
  • Min Zhao, Dawei Qian, Pei Liu, Er-xin Shang, Shu Jiang, Jianming Guo, Shu-lan Su, Jin-ao Duan, Leyue Du, Jinhua Tao. Comparative pharmacokinetics of catalpol and acteoside in normal and chronic kidney disease rats after oral administration of Rehmannia glutinosa extract. Biomedical chromatography : BMC. 2015 Dec; 29(12):1842-8. doi: 10.1002/bmc.3505. [PMID: 26031219]
  • Nannan Lai, Jianhai Zhang, Xingyan Ma, Bin Wang, Xiuming Miao, Zhaoxia Wang, Yuqi Guo, Li Wang, Chengfang Yao, Xia Li, Guosheng Jiang. Regulatory Effect of Catalpol on Th1/Th2 cells in Mice with Bone Loss Induced by Estrogen Deficiency. American journal of reproductive immunology (New York, N.Y. : 1989). 2015 Dec; 74(6):487-98. doi: 10.1111/aji.12423. [PMID: 26303620]
  • Tiantian Zhu, Liuqiang Zhang, Shuang Ling, Fei Qian, Yiming Li, Jin-Wen Xu. Anti-Inflammatory Activity Comparison among Scropoliosides-Catalpol Derivatives with 6-O-Substituted Cinnamyl Moieties. Molecules (Basel, Switzerland). 2015 Nov; 20(11):19823-36. doi: 10.3390/molecules201119659. [PMID: 26540037]
  • Jun-Ming Wang, Lian-He Yang, Yue-Yue Zhang, Chun-Ling Niu, Ying Cui, Wei-Sheng Feng, Gui-Fang Wang. BDNF and COX-2 participate in anti-depressive mechanisms of catalpol in rats undergoing chronic unpredictable mild stress. Physiology & behavior. 2015 Nov; 151(?):360-8. doi: 10.1016/j.physbeh.2015.08.008. [PMID: 26255123]
  • Jian-Hui Guo, Yang Liu, Zheng-Jun Lv, Wen-Juan Wei, Xin Guan, Qing-Lin Guan, Zhi-Qian Leng, Jing-Yuan Zhao, Hui Miao, Jing Liu. Potential Neurogenesis of Human Adipose-Derived Stem Cells on Electrospun Catalpol-Loaded Composite Nanofibrous Scaffolds. Annals of biomedical engineering. 2015 Oct; 43(10):2597-608. doi: 10.1007/s10439-015-1311-x. [PMID: 25824369]
  • Helga Pankoke, Ingo Höpfner, Agnieszka Matuszak, Wolfram Beyschlag, Caroline Müller. The effects of mineral nitrogen limitation, competition, arbuscular mycorrhiza, and their respective interactions, on morphological and chemical plant traits of Plantago lanceolata. Phytochemistry. 2015 Oct; 118(?):149-61. doi: 10.1016/j.phytochem.2015.07.014. [PMID: 26296746]
  • Nicole Wäschke, Christine Hancock, Monika Hilker, Elisabeth Obermaier, Torsten Meiners. Does vegetation complexity affect host plant chemistry, and thus multitrophic interactions, in a human-altered landscape?. Oecologia. 2015 Sep; 179(1):281-92. doi: 10.1007/s00442-015-3347-x. [PMID: 25986560]
  • Shengqiang Tong, Lin Chen, Qing Zhang, Jian Liu, Jizhong Yan, Yoichiro Ito. Separation of catalpol from Rehmannia glutinosa Libosch. by high-speed countercurrent chromatography. Journal of chromatographic science. 2015 May; 53(5):725-9. doi: 10.1093/chromsci/bmu114. [PMID: 25214499]
  • Di Jin, Ming Cao, Xin Mu, Guoliang Yang, Wei Xue, Yiran Huang, Haige Chen. Catalpol Inhibited the Proliferation of T24 Human Bladder Cancer Cells by Inducing Apoptosis Through the Blockade of Akt-Mediated Anti-apoptotic Signaling. Cell biochemistry and biophysics. 2015 Apr; 71(3):1349-56. doi: 10.1007/s12013-014-0355-0. [PMID: 25388838]
  • Zhuang Li, Wei-ku Zhang, Yue Zhang, Geng-ni Di, Hui-hua Qu, Yan Zhao, Qing-guo Wang, Jie-kun Xu. [Synthesis, identification of artificial antigen of catalpol and preliminary study of immunogenicity]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2015 Apr; 40(7):1287-90. doi: NULL. [PMID: 26281548]