Aucubin (BioDeep_00000000176)

 

Secondary id: BioDeep_00000327308

human metabolite PANOMIX_OTCML-2023 Endogenous natural product


代谢物信息卡片


(2S,3R,4S,5S,6R)-2-(((1S,4aR,5S,7aS)-5-hydroxy-7-(hydroxymethyl)-1,4a,5,7a-tetrahydrocyclopenta[c]pyran-1-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

化学式: C15H22O9 (346.1264)
中文名称: 珊瑚木苷, 杜仲苷, 珊瑚苷, 桃叶珊瑚苷
谱图信息: 最多检出来源 Viridiplantae(plant) 40.43%

分子结构信息

SMILES: C1=COC(C2C1C(C=C2CO)O)OC3C(C(C(C(O3)CO)O)O)O
InChI: InChI=1S/C15H22O9/c16-4-6-3-8(18)7-1-2-22-14(10(6)7)24-15-13(21)12(20)11(19)9(5-17)23-15/h1-3,7-21H,4-5H2

描述信息

Aucubin is found in common verbena. Aucubin is a monoterpenoid based compound. Aucubin, like all iridoids, has a cyclopentan-[C]-pyran skeleton. Iridoids can consist of ten, nine, or rarely eight carbons in which C11 is more frequently missing than C10. Aucubin has 10 carbons with the C11 carbon missing. The stereochemical configurations at C5 and C9 lead to cis fused rings, which are common to all iridoids containing carbocylclic- or seco-skeleton in non-rearranged form. Oxidative cleavage at C7-C8 bond affords secoiridoids. The last steps in the biosynthesis of iridoids usually consist of O-glycosylation and O-alkylation. Aucubin, a glycoside iridoid, has an O-linked glucose moiety. Aucubin is an iridoid glycoside. Iridoids are commonly found in plants and function as defensive compounds. Irioids decrease the growth rates of many generalist herbivores. Aucubin is found in the leaves of Aucuba japonica (Cornaceae), Eucommia ulmoides (Eucommiaceae), and Plantago asiatic (Plantaginaceae), etc, plants used in traditional Chinese and folk medicine. Aucubin was found to protect against liver damage induced by carbon tetrachloride or alpha-amanitin in mice and rats when 80 mg/kg was dosed intraperitoneally. Geranyl pyrophosphate is the precursor for iridoids. Geranyl phosphate is generated through the mevalonate pathway or the methylerythritol phosphate pathway. The initial steps of the pathway involve the fusion of three molecules of acetyl-CoA to produce the C6 compound 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). HMG-CoA is then reduced in two steps by the enzyme HMG-CoA reductase. The resulting mevalonate is then sequentially phosphorylated by two separate kinases, mevalonate kinase and phosphomevalonate kinase, to form 5-pyrophosphomevalonate. Phosphosphomevalonate decarboxylase through a concerted decarboxylation reaction affords isopentenyl pyrophosphate (IPP). IPP is the basic C5 building block that is added to prenyl phosphate cosubstrates to form longer chains. IPP is isomerized to the allylic ester dimethylallyl pyrophosphate (DMAPP) by IPP isomerase. Through a multistep process, including the dephosphorylation DMAPP, IPP and DMAPP are combinded to from the C10 compound geranyl pyrophosphate (GPP). Geranyl pyrophosphate is a major branch point for terpenoid synthesis. The cyclizaton reaction to form the iridoid pyrane ring may result from one of two routes: route 1 - a hydride nucleophillic attack on C1 will lead to 1-O-carbonyl atom attack on C3, yielding the lactone ring; route 2 - loss of proton from carbon 4 leads to the formation of a double bond C3-C4; consequently the 3-0-carbonyl atom will attach to C1
Aucubin is a monoterpenoid based compound. Aucubin, like all iridoids, has a cyclopentan-[C]-pyran skeleton. Iridoids can consist of ten, nine, or rarely eight carbons in which C11 is more frequently missing than C10. Aucubin has 10 carbons with the C11 carbon missing. The stereochemical configurations at C5 and C9 lead to cis fused rings, which are common to all iridoids containing carbocylclic- or seco-skeleton in non-rearranged form. Oxidative cleavage at C7-C8 bond affords secoiridoids. The last steps in the biosynthesis of iridoids usually consist of O-glycosylation and O-alkylation. Aucubin, a glycoside iridoid, has an O-linked glucose moiety.; Aucubin is an iridoid glycoside. Iridoids are commonly found in plants and function as defensive compounds. Irioids decrease the growth rates of many generalist herbivores. Aucubin is found in the leaves of Aucuba japonica (Cornaceae), Eucommia ulmoides (Eucommiaceae), and Plantago asiatic (Plantaginaceae), etc, plants used in traditional Chinese and folk medicine. Aucubin was found to protect against liver damage induced by carbon tetrachloride or alpha-amanitin in mice and rats when 80 mg/kg was dosed intraperitoneally.; Geranyl pyrophosphate is the precursor for iridoids. Geranyl phosphate is generated through the mevalonate pathway or the methylerythritol phosphate pathway. The initial steps of the pathway involve the fusion of three molecules of acetyl-CoA to produce the C6 compound 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). HMG-CoA is then reduced in two steps by the enzyme HMG-CoA reductase. The resulting mevalonate is then sequentially phosphorylated by two separate kinases, mevalonate kinase and phosphomevalonate kinase, to form 5-pyrophosphomevalonate. Phosphosphomevalonate decarboxylase through a concerted decarboxylation reaction affords isopentenyl pyrophosphate (IPP). IPP is the basic C5 building block that is added to prenyl phosphate cosubstrates to form longer chains. IPP is isomerized to the allylic ester dimethylallyl pyrophosphate (DMAPP) by IPP isomerase. Through a multistep process, including the dephosphorylation DMAPP, IPP and DMAPP are combinded to from the C10 compound geranyl pyrophosphate (GPP). Geranyl pyrophosphate is a major branch point for terpenoid synthesis.; The cyclizaton reaction to form the iridoid pyrane ring may result from one of two routes: route 1 - a hydride nucleophillic attack on C1 will lead to 1-O-carbonyl atom attack on C3, yielding the lactone ring; route 2 - loss of proton from carbon 4 leads to the formation of a double bond C3-C4; consequently the 3-0-carbonyl atom will attach to C1.
Aucubin is an organic molecular entity. It has a role as a metabolite.
Aucubin is a natural product found in Verbascum lychnitis, Plantago media, and other organisms with data available.
See also: Chaste tree fruit (part of); Rehmannia glutinosa Root (part of); Plantago ovata seed (part of).
Aucubin, an iridoid glucoside, is isolated from Plantago asiatica, Eucommia ulmoides, the leaves of Aucuba japonica and more recently from butterfly larva. Aucubin has many biological activities, such as antioxidant, anti-aging, anti-inflammatory, antimicrobial, anti-fibrotic, anti-cancer, hepatoprotective, neuroprotective and osteoprotective effects[1][2][3].
Aucubin, an iridoid glucoside, is isolated from Plantago asiatica, Eucommia ulmoides, the leaves of Aucuba japonica and more recently from butterfly larva. Aucubin has many biological activities, such as antioxidant, anti-aging, anti-inflammatory, antimicrobial, anti-fibrotic, anti-cancer, hepatoprotective, neuroprotective and osteoprotective effects[1][2][3].

同义名列表

31 个代谢物同义名

(2S,3R,4S,5S,6R)-2-(((1S,4aR,5S,7aS)-5-hydroxy-7-(hydroxymethyl)-1,4a,5,7a-tetrahydrocyclopenta[c]pyran-1-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol; (2S,3R,4S,5S,6R)-2-((1S,4aR,5S,7aS)-5-hydroxy-7-(hydroxymethyl)-1,4a,5,7a-tetrahydrocyclopenta[c]pyran-1-yloxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol; (2S,3R,4S,5S,6R)-2-[[(1S,4aR,5S,7aS)-5-hydroxy-7-(hydroxymethyl)-1,4a,5,7a-tetrahydrocyclopenta[c]pyran-1-yl]oxy]-6-(hydroxymethyl)tetrahydropyran-3,4,5-triol; (2S,3R,4S,5S,6R)-2-((1S,4aR,5R,7aS)-5-Hydroxy-7-hydroxymethyl-1,4a,5,7a-tetrahydro-cyclopenta[c]pyran-1-yloxy)-6-hydroxymethyl-tetrahydro-pyran-3,4,5-triol; (2S,3R,4S,5S,6R)-2-[[(1S,4aR,5S,7aS)-5-hydroxy-7-(hydroxymethyl)-1,4a,5,7a-tetrahydrocyclopenta[c]pyran-1-yl]oxy]-6-(hydroxymethyl)oxane-3,4,5-triol; (2S,3R,4S,5S,6R)-2-{[(1S,4aR,5S,7aS)-5-hydroxy-7-(hydroxymethyl)-1H,4aH,5H,7aH-cyclopenta[c]pyran-1-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol; (1S-(1alpha,4aalpha,5alpha,7aalpha))-1,4a,5,7a-Tetrahydro-5-hydroxy-7-(hydroxymethyl)cyclopenta(c)pyran-1-yl-beta-D-glucopyranoside; .beta.-D-Glucopyranoside, (1S,4aR,5S,7aS)-1,4a,5,7a-tetrahydro-5-hydroxy-7-(hydroxymethyl)cyclopenta[c]pyran-1-yl; (1S,4AR,5S,7AS)-1,4A,5,7A-TETRAHYDRO-5-HYDROXY-7-(HYDROXYMETHYL)CYCLOPENTA(C)PYRAN-1-YL-.BETA.-D-GLUCOPYRANOSIDE; (1S,4aR,5S,7aS)-1,4a,5,7a-Tetrahydro-5-hydroxy-7-(hydroxymethyl)cyclopenta[c]pyran-1-yl beta-D-glucopyranoside; (1S,4AR,5S,7AS)-1,4A,5,7A-TETRAHYDRO-5-HYDROXY-7-(HYDROXYMETHYL)CYCLOPENTA(C)PYRAN-1-YL-beta-D-GLUCOPYRANOSIDE; 2-{[5-hydroxy-7-(hydroxymethyl)-1H,4aH,5H,7aH-cyclopenta[c]pyran-1-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol; B-D-GLUCOPYRANOSIDE, (1S,4AR,5S,7AS)-1,4A,5,7A-TETRAHYDRO-5-HYDROXY-7-(HYDROXYMETHYL)CYCLOPENTA[C]PYRAN-1-YL; 1,4a,5,7a-Tetrahydro-5-hydroxy-7-hydroxymethylcyclopenta(c)pyran-1-yl-beta-D-glucopyranoside; Aucubin, primary pharmaceutical reference standard; AUCUBIN (CONSTITUENT OF CHASTE TREE); Aucubin, analytical standard; RJWJHRPNHPHBRN-FKVJWERZSA-N; UNII-2G52GS8UML; MEGxp0_001729; ACon1_002452; AUCUBIN [MI]; aucubuside; rhinanthin; 2G52GS8UML; Aucuboside; NSC407293; Rhimantin; Aucubine; Aucubin; Aucubin



数据库引用编号

25 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

719 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 14 BCL2, CA1, CASP3, CAT, HMGB1, MTOR, NFE2L2, NLRP3, PRKAA2, PTGS1, PTGS2, STAT3, TLR4, VEGFA
Peripheral membrane protein 5 GORASP1, HMGB1, MTOR, PTGS1, PTGS2
Endosome membrane 1 TLR4
Endoplasmic reticulum membrane 5 BCL2, HMOX1, MTOR, PTGS1, PTGS2
Nucleus 10 BCL2, CASP3, HMGB1, HMOX1, MTOR, NFE2L2, NLRP3, PRKAA2, STAT3, VEGFA
cytosol 10 BCL2, CA1, CASP3, CAT, HMOX1, MTOR, NFE2L2, NLRP3, PRKAA2, STAT3
dendrite 2 MTOR, PRKAA2
phagocytic vesicle 1 MTOR
centrosome 1 NFE2L2
nucleoplasm 7 CASP3, HMGB1, HMOX1, MTOR, NFE2L2, PRKAA2, STAT3
RNA polymerase II transcription regulator complex 2 NFE2L2, STAT3
Cell membrane 3 HMGB1, TLR4, TNF
Cytoplasmic side 3 GORASP1, HMOX1, MTOR
Golgi apparatus membrane 3 GORASP1, MTOR, NLRP3
Synapse 1 ACAN
cell surface 4 HMGB1, TLR4, TNF, VEGFA
glutamatergic synapse 2 ACAN, CASP3
Golgi apparatus 5 GORASP1, NFE2L2, PRKAA2, PTGS1, VEGFA
Golgi membrane 3 GORASP1, MTOR, NLRP3
lysosomal membrane 1 MTOR
neuronal cell body 3 CASP3, PRKAA2, TNF
Cytoplasm, cytosol 2 NFE2L2, NLRP3
Lysosome 1 MTOR
endosome 1 HMGB1
plasma membrane 5 HMGB1, NFE2L2, STAT3, TLR4, TNF
Membrane 8 BCL2, CAT, HMOX1, MTOR, NLRP3, PRKAA2, TLR4, VEGFA
axon 2 CCK, PRKAA2
caveola 1 PTGS2
extracellular exosome 3 CA1, CAT, PTGS1
Lysosome membrane 1 MTOR
endoplasmic reticulum 6 BCL2, HMGB1, HMOX1, NLRP3, PTGS2, VEGFA
extracellular space 7 ACAN, CCK, HMGB1, HMOX1, IL6, TNF, VEGFA
lysosomal lumen 1 ACAN
perinuclear region of cytoplasm 2 HMOX1, TLR4
adherens junction 1 VEGFA
mitochondrion 3 BCL2, CAT, NLRP3
protein-containing complex 3 BCL2, CAT, PTGS2
intracellular membrane-bounded organelle 2 CAT, PTGS1
Microsome membrane 3 MTOR, PTGS1, PTGS2
postsynaptic density 1 CASP3
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Single-pass type I membrane protein 1 TLR4
Secreted 5 CCK, HMGB1, IL6, NLRP3, VEGFA
extracellular region 8 ACAN, CAT, CCK, HMGB1, IL6, NLRP3, TNF, VEGFA
Mitochondrion outer membrane 2 BCL2, MTOR
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 3 BCL2, HMOX1, MTOR
mitochondrial matrix 1 CAT
Extracellular side 1 HMGB1
transcription regulator complex 1 STAT3
photoreceptor outer segment 1 PTGS1
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 2 TLR4, TNF
Secreted, extracellular space, extracellular matrix 2 ACAN, VEGFA
Early endosome 1 TLR4
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Membrane raft 1 TNF
pore complex 1 BCL2
focal adhesion 1 CAT
GABA-ergic synapse 1 ACAN
cis-Golgi network 1 GORASP1
extracellular matrix 1 VEGFA
Peroxisome 1 CAT
basement membrane 1 ACAN
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
Nucleus, PML body 1 MTOR
PML body 1 MTOR
collagen-containing extracellular matrix 1 ACAN
secretory granule 1 VEGFA
nuclear speck 1 PRKAA2
Cytoplasm, cytoskeleton, microtubule organizing center 1 NLRP3
Inflammasome 1 NLRP3
interphase microtubule organizing center 1 NLRP3
NLRP3 inflammasome complex 1 NLRP3
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
Cell projection, ruffle 1 TLR4
ruffle 1 TLR4
receptor complex 1 TLR4
neuron projection 2 PTGS1, PTGS2
chromatin 2 NFE2L2, STAT3
mediator complex 1 NFE2L2
phagocytic cup 2 TLR4, TNF
Chromosome 1 HMGB1
nuclear envelope 1 MTOR
Endomembrane system 3 MTOR, NLRP3, PTGS1
microtubule organizing center 1 NLRP3
cytoplasmic stress granule 1 PRKAA2
myelin sheath 1 BCL2
lipopolysaccharide receptor complex 1 TLR4
ficolin-1-rich granule lumen 2 CAT, HMGB1
secretory granule lumen 2 CAT, HMGB1
Golgi lumen 1 ACAN
endoplasmic reticulum lumen 2 IL6, PTGS2
transcription repressor complex 1 HMGB1
platelet alpha granule lumen 1 VEGFA
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 GORASP1
perineuronal net 1 ACAN
Golgi apparatus, cis-Golgi network membrane 1 GORASP1
Single-pass type IV membrane protein 1 HMOX1
endoplasmic reticulum-Golgi intermediate compartment 1 HMGB1
protein-DNA complex 1 NFE2L2
death-inducing signaling complex 1 CASP3
nucleotide-activated protein kinase complex 1 PRKAA2
condensed chromosome 1 HMGB1
Cytoplasmic vesicle, phagosome 1 MTOR
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
catalase complex 1 CAT
alphav-beta3 integrin-HMGB1 complex 1 HMGB1
interleukin-6 receptor complex 1 IL6
BAD-BCL-2 complex 1 BCL2
[N-VEGF]: Cytoplasm 1 VEGFA
[VEGFA]: Secreted 1 VEGFA
[Isoform L-VEGF189]: Endoplasmic reticulum 1 VEGFA
[Isoform VEGF121]: Secreted 1 VEGFA
[Isoform VEGF165]: Secreted 1 VEGFA
VEGF-A complex 1 VEGFA
perisynaptic extracellular matrix 1 ACAN
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Weili Li, Jing Cao, Yawen Zhang, Guanjing Ling, Nannan Tan, Yan Wei, Yuqin Zhang, Xiaoping Wang, Weina Qian, Jinchi Jiang, Jingmei Zhang, Wei Wang, Yong Wang. Aucubin alleviates doxorubicin-induced cardiotoxicity through crosstalk between NRF2 and HIPK2 mediating autophagy and apoptosis. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2024 May; 127(?):155473. doi: 10.1016/j.phymed.2024.155473. [PMID: 38422972]
  • Xuejuan Liang, Dan Wan, Lei Tan, Hao Liu. Dynamic changes of endophytic bacteria in the bark and leaves of medicinal plant Eucommia ulmoides in different seasons. Microbiological research. 2024 Mar; 280(?):127567. doi: 10.1016/j.micres.2023.127567. [PMID: 38103467]
  • Chunbo Dong, Qiuyu Shao, Qingsong Ran, Xu Li, Yanfeng Han. Interactions of rhizosphere microbiota-environmental factors-pharmacological active ingredients of Eucommia ulmoides. Planta. 2024 Feb; 259(3):59. doi: 10.1007/s00425-024-04338-w. [PMID: 38311641]
  • Elizabeth Rubio-Rodríguez, Ileana Vera-Reyes, Aída Araceli Rodríguez-Hernández, Alma Rosa López-Laredo, Ana C Ramos-Valdivia, Gabriela Trejo-Tapia. Mixed elicitation with salicylic acid and hydrogen peroxide modulates the phenolic and iridoid pathways in Castilleja tenuiflora plants. Planta. 2023 Jun; 258(1):20. doi: 10.1007/s00425-023-04177-1. [PMID: 37326881]
  • Serpil Demirci, Cemalettin Alp, Hüseyin Akşit, Yakup Ulutaş, Ahmet Altay, Esma Yeniçeri, Ekrem Köksal, Nurettin Yaylı. Isolation, characterization and anticancer activity of secondary metabolites from Verbascum speciosum. Chemical biology & drug design. 2023 Feb; ?(?):. doi: 10.1111/cbdd.14211. [PMID: 36756721]
  • Ping Yang, Qiaoyue Zhang, Hengyan Shen, Xinyu Bai, Ping Liu, Tao Zhang. Research progress on the protective effects of aucubin in neurological diseases. Pharmaceutical biology. 2022 Dec; 60(1):1088-1094. doi: 10.1080/13880209.2022.2074057. [PMID: 35634723]
  • Zhen Xu, Hang Yang, Xiaoqin Li, Xiaoying Xu, Hongxin Tan, Xiangjun Leng. Dietary effects of aucubin on growth and flesh quality of grass carp (Ctenopharyngodon idellus) based on metabolomics. Journal of animal science. 2022 Oct; 100(10):. doi: 10.1093/jas/skac273. [PMID: 35985277]
  • Han Huang, Yuan-Hang Chang, Jian Xu, Hai-Yan Ni, Heng Zhao, Bo-Wen Zhai, Thomas Efferth, Cheng-Bo Gu, Yu-Jie Fu. Aucubin as a natural potential anti-acute hepatitis candidate: Inhibitory potency and hepatoprotective mechanism. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2022 Jul; 102(?):154170. doi: 10.1016/j.phymed.2022.154170. [PMID: 35609387]
  • Yan Zhang, Li-Dong Tang, Jian-Ying Wang, Hao Wang, Xiao-Yun Chen, Lei Zhang, Ying Yuan. Anti-inflammatory effects of aucubin in cellular and animal models of rheumatoid arthritis. Chinese journal of natural medicines. 2022 Jun; 20(6):458-472. doi: 10.1016/s1875-5364(22)60182-1. [PMID: 35750385]
  • Carlos E Rodríguez-López, Yindi Jiang, Mohamed O Kamileen, Benjamin R Lichman, Benke Hong, Brieanne Vaillancourt, C Robin Buell, Sarah E O'Connor. Phylogeny-Aware Chemoinformatic Analysis of Chemical Diversity in Lamiaceae Enables Iridoid Pathway Assembly and Discovery of Aucubin Synthase. Molecular biology and evolution. 2022 04; 39(4):. doi: 10.1093/molbev/msac057. [PMID: 35298643]
  • Yongfeng Zhang, Xin Liu, Yangyang Li, Minkai Song, Yutong Li, Anhui Yang, Yaqin Zhang, Di Wang, Min Hu. Aucubin slows the development of osteoporosis by inhibiting osteoclast differentiation via the nuclear factor erythroid 2-related factor 2-mediated antioxidation pathway. Pharmaceutical biology. 2021 Dec; 59(1):1556-1565. doi: 10.1080/13880209.2021.1996614. [PMID: 34757891]
  • Ying Chun Li, Jin Cheng Hao, Bo Shang, Cheng Zhao, Li Juan Wang, Kai Lin Yang, Xiao Zhou He, Qian Qian Tian, Zhao Liang Wang, Hui Ling Jing, Yang Li, Yan Jun Cao. Neuroprotective effects of aucubin on hydrogen peroxide-induced toxicity in human neuroblastoma SH-SY5Y cells via the Nrf2/HO-1 pathway. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2021 Jul; 87(?):153577. doi: 10.1016/j.phymed.2021.153577. [PMID: 33994055]
  • Marta Dąbrowska, Eliana B Souto, Izabela Nowak. Lipid Nanoparticles Loaded with Iridoid Glycosides: Development and Optimization Using Experimental Factorial Design. Molecules (Basel, Switzerland). 2021 May; 26(11):. doi: 10.3390/molecules26113161. [PMID: 34070620]
  • Iva Potočnjak, Jelena Marinić, Lara Batičić, Lidija Šimić, Dalibor Broznić, Robert Domitrović. Aucubin administered by either oral or parenteral route protects against cisplatin-induced acute kidney injury in mice. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2020 Aug; 142(?):111472. doi: 10.1016/j.fct.2020.111472. [PMID: 32504734]
  • Xianhui Lian, Ning Wang, Lin Ma, Hui Jiang, Dong Bai, Hongyu Xue, Qiang Ma. Determination of aucubin by supramolecular solvent-based dispersive liquid-liquid microextraction and UPLC-MS/MS: Application to a pharmacokinetic study in rats with type 1 diabetes. Journal of pharmaceutical and biomedical analysis. 2020 Jul; 186(?):113301. doi: 10.1016/j.jpba.2020.113301. [PMID: 32353680]
  • Xiangchang Zeng, Fei Guo, Dongsheng Ouyang. A review of the pharmacology and toxicology of aucubin. Fitoterapia. 2020 Jan; 140(?):104443. doi: 10.1016/j.fitote.2019.104443. [PMID: 31790767]
  • Eunsoo Jung, Su-Bin Park, Woo Kwon Jung, Hyung Rae Kim, Junghyun Kim. Aucubin, An Active Ingredient in Aucuba japonica, Prevents N-methyl-N-nitrosourea-induced Retinal Degeneration in Mice. Molecules (Basel, Switzerland). 2019 Dec; 24(24):. doi: 10.3390/molecules24244437. [PMID: 31817154]
  • Eunsoo Jung, Su-Bin Park, Woo Kwon Jung, Hyung Rae Kim, Junghyun Kim. Antiglycation Activity of Aucubin In Vitro and in Exogenous Methylglyoxal Injected Rats. Molecules (Basel, Switzerland). 2019 Oct; 24(20):. doi: 10.3390/molecules24203653. [PMID: 31658696]
  • Kazufumi Toume, Zhiyan Hou, Huanhuan Yu, Mitsuru Kato, Miki Maesaka, Yanjing Bai, Shiho Hanazawa, Yuewei Ge, Tsugunobu Andoh, Katsuko Komatsu. Search of anti-allodynic compounds from Plantaginis Semen, a crude drug ingredient of Kampo formula "Goshajinkigan". Journal of natural medicines. 2019 Sep; 73(4):761-768. doi: 10.1007/s11418-019-01327-2. [PMID: 31190267]
  • Shaofeng Yang, Linghui Li, Liguo Zhu, Chao Zhang, Zhaoyong Li, Yantao Guo, Ying Nie, Zhenhua Luo. Aucubin inhibits IL-1β- or TNF-α-induced extracellular matrix degradation in nucleus pulposus cell through blocking the miR-140-5p/CREB1 axis. Journal of cellular physiology. 2019 08; 234(8):13639-13648. doi: 10.1002/jcp.28044. [PMID: 30637726]
  • Bingyu Shen, Chenxu Zhao, Yue Wang, Yi Peng, Jiaqi Cheng, Zheng Li, Lin Wu, Meiyu Jin, Haihua Feng. Aucubin inhibited lipid accumulation and oxidative stress via Nrf2/HO-1 and AMPK signalling pathways. Journal of cellular and molecular medicine. 2019 06; 23(6):4063-4075. doi: 10.1111/jcmm.14293. [PMID: 30950217]
  • Wan Seok Kang, Eunsoo Jung, Junghyun Kim. Aucuba japonica Extract and Aucubin Prevent Desiccating Stress-Induced Corneal Epithelial Cell Injury and Improve Tear Secretion in a Mouse Model of Dry Eye Disease. Molecules (Basel, Switzerland). 2018 Oct; 23(10):. doi: 10.3390/molecules23102599. [PMID: 30314275]
  • Yan-Ling Qiu, Xiao-Ning Cheng, Feng Bai, Li-Yun Fang, Hui-Zhong Hu, Da-Qing Sun. Aucubin protects against lipopolysaccharide-induced acute pulmonary injury through regulating Nrf2 and AMPK pathways. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2018 Oct; 106(?):192-199. doi: 10.1016/j.biopha.2018.05.070. [PMID: 29958143]
  • Dong Wu, Danmeng Yu, Yujia Zhang, Juane Dong, Dengwu Li, Dongmei Wang. Metabolite Profiles, Bioactivity, and HPLC Fingerprint of Different Varieties of Eucommia ulmoides Oliv.: Towards the Utilization of Medicinal and Commercial Chinese Endemic Tree. Molecules (Basel, Switzerland). 2018 Jul; 23(8):. doi: 10.3390/molecules23081898. [PMID: 30061494]
  • Geum-Hwa Lee, Hwa-Young Lee, Min-Kyung Choi, An-Hong Choi, Tai-Sun Shin, Han-Jung Chae. Eucommia ulmoides leaf (EUL) extract enhances NO production in ox-LDL-treated human endothelial cells. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2018 Jan; 97(?):1164-1172. doi: 10.1016/j.biopha.2017.11.035. [PMID: 29136955]
  • Lu Chen, Yue Yang, Lusha Zhang, Chunxiao Li, Joel Wake Coffie, Xiao Geng, Lizhen Qiu, Xingyu You, Zhirui Fang, Min Song, Xiumei Gao, Hong Wang. Aucubin promotes angiogenesis via estrogen receptor beta in a mouse model of hindlimb ischemia. The Journal of steroid biochemistry and molecular biology. 2017 09; 172(?):149-159. doi: 10.1016/j.jsbmb.2017.07.007. [PMID: 28711487]
  • Karina Pezo Shirley, L Jack Windsor, George J Eckert, Richard L Gregory. In Vitro Effects of Plantago Major Extract, Aucubin, and Baicalein on Candida albicans Biofilm Formation, Metabolic Activity, and Cell Surface Hydrophobicity. Journal of prosthodontics : official journal of the American College of Prosthodontists. 2017 Aug; 26(6):508-515. doi: 10.1111/jopr.12411. [PMID: 26618515]
  • Pei-Yu Lv, Han Feng, Wei-Hua Huang, Ying-Ying Tian, Ya-Qin Wang, Yu-Hua Qin, Xiao-Hui Li, Kai Hu, Hong-Hao Zhou, Dong-Sheng Ouyang. Aucubin and its hydrolytic derivative attenuate activation of hepatic stellate cells via modulation of TGF-β stimulation. Environmental toxicology and pharmacology. 2017 Mar; 50(?):234-239. doi: 10.1016/j.etap.2017.02.012. [PMID: 28199906]
  • Jin Wang, Ying Li, Wei-Hua Huang, Xiang-Chang Zeng, Xiao-Hui Li, Jian Li, Jun Zhou, Jian Xiao, Bo Xiao, Dong-Sheng Ouyang, Kai Hu. The Protective Effect of Aucubin from Eucommia ulmoides Against Status Epilepticus by Inducing Autophagy and Inhibiting Necroptosis. The American journal of Chinese medicine. 2017; 45(3):557-573. doi: 10.1142/s0192415x17500331. [PMID: 28387136]
  • Jing An, Fangdi Hu, Changhong Wang, Zijia Zhang, Li Yang, Zhengtao Wang. Pharmacokinetics and tissue distribution of five active ingredients of Eucommiae cortex in normal and ovariectomized mice by UHPLC-MS/MS. Xenobiotica; the fate of foreign compounds in biological systems. 2016 Sep; 46(9):793-804. doi: 10.3109/00498254.2015.1129470. [PMID: 27232980]
  • A Venditti, C Frezza, M Riccardelli, S Foddai, M Nicoletti, M Serafini, A Bianco. Secondary metabolites from Scrophularia canina L. Natural product research. 2016 Jul; 30(14):1665-9. doi: 10.1080/14786419.2015.1122598. [PMID: 26675659]
  • Yan-Fei Liu, Guo-Ru Shi, Xin Wang, Chun-Lei Zhang, Yan Wang, Ruo-Yun Chen, De-Quan Yu. Bioactive Iridoid Glycosides from the Whole Plants of Rehmannia chingii. Journal of natural products. 2016 Feb; 79(2):428-33. doi: 10.1021/acs.jnatprod.5b01126. [PMID: 26859776]
  • Alessandro Venditti, Claudio Frezza, Mauro Serafini, Armandodoriano Bianco. Iridoids and phenylethanoid from Pedicularis kerneri Dalla Torre growing in Dolomites, Italy. Natural product research. 2016; 30(3):327-31. doi: 10.1080/14786419.2015.1060230. [PMID: 26207992]
  • A Venditti, C Frezza, M Riccardelli, S Foddai, M Nicoletti, M Serafini, A Bianco. Unusual molecular pattern in Ajugoideae subfamily: the case of Ajuga genevensis L. from Dolomites. Natural product research. 2016; 30(9):1098-102. doi: 10.1080/14786419.2015.1102140. [PMID: 26508158]
  • Nicole Wäschke, Christine Hancock, Monika Hilker, Elisabeth Obermaier, Torsten Meiners. Does vegetation complexity affect host plant chemistry, and thus multitrophic interactions, in a human-altered landscape?. Oecologia. 2015 Sep; 179(1):281-92. doi: 10.1007/s00442-015-3347-x. [PMID: 25986560]
  • A Venditti, M Serafini, M Nicoletti, A Bianco. Terpenoids of Linaria alpina (L.) Mill. from Dolomites, Italy. Natural product research. 2015; 29(21):2041-4. doi: 10.1080/14786419.2015.1018252. [PMID: 25738749]
  • Lin Zhang, Yu-Liang Ma, Yang Liu, Yuan-Gang Zu. Development and validation of high liquid performance chromatography-tandem mass spectrometry method for simultaneous determination of geniposidic acid and aucubin in rat plasma for pharmacokinetic study after oral administration of Du-zhong tea extract. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2014 Jul; 963(?):62-9. doi: 10.1016/j.jchromb.2014.04.033. [PMID: 24929551]
  • Helga Pankoke, Torsten Buschmann, Caroline Müller. Role of plant β-glucosidases in the dual defense system of iridoid glycosides and their hydrolyzing enzymes in Plantago lanceolata and Plantago major. Phytochemistry. 2013 Oct; 94(?):99-107. doi: 10.1016/j.phytochem.2013.04.016. [PMID: 23773298]
  • Christian Ulrich Baden, Stephan Franke, Susanne Dobler. Host dependent iridoid glycoside sequestration patterns in Cionus hortulanus. Journal of chemical ecology. 2013 Aug; 39(8):1112-4. doi: 10.1007/s10886-013-0323-y. [PMID: 23846185]
  • Hwa-Young Lee, Geum-Hwa Lee, Mi-Rin Lee, Hye-Kyung Kim, Nan-young Kim, Seung-Hyun Kim, Yong-Chul Lee, Hyung-Ryong Kim, Han-Jung Chae. Eucommia ulmoides Oliver extract, aucubin, and geniposide enhance lysosomal activity to regulate ER stress and hepatic lipid accumulation. PloS one. 2013; 8(12):e81349. doi: 10.1371/journal.pone.0081349. [PMID: 24349058]
  • A Venditti, A M Serrilli, M Di Cecco, G Ciaschetti, T Andrisano, A Bianco. Phytochemical composition of polar fraction of Stachys germanica L. subsp. salviifolia (Ten.) Gams, a typical plant of Majella National Park. Natural product research. 2013; 27(2):190-3. doi: 10.1080/14786419.2012.661732. [PMID: 22372659]
  • A Venditti, A M Serrilli, M Di Cecco, G Ciaschetti, T Andrisano, A Bianco. Phytochemical analysis of Plantago sempervirens from Majella National Park. Natural product research. 2012 Nov; 26(21):2035-9. doi: 10.1080/14786419.2011.633520. [PMID: 22081901]
  • Qin Wang, Mao Xing, Weihai Chen, Jifen Zhang, Hongyi Qi, Xiaoyu Xu. HPLC-APCI-MS/MS method for the determination of catalpol in rat plasma and cerebrospinal fluid: application to an in vivo pharmacokinetic study. Journal of pharmaceutical and biomedical analysis. 2012 Nov; 70(?):337-43. doi: 10.1016/j.jpba.2012.05.016. [PMID: 22677654]
  • Hong Yu Xue, Ya Nan Lu, Xue Mei Fang, Yong Ping Xu, Gui Zhen Gao, Li Ji Jin. Neuroprotective properties of aucubin in diabetic rats and diabetic encephalopathy rats. Molecular biology reports. 2012 Oct; 39(10):9311-8. doi: 10.1007/s11033-012-1730-9. [PMID: 22810648]
  • Wei Xu, Zhipeng Deng, Hong Guo, Peixue Ling. A rapid and sensitive determination of aucubin in rat plasma by liquid chromatography-tandem mass spectrometry and its pharmacokinetic application. Biomedical chromatography : BMC. 2012 Sep; 26(9):1066-70. doi: 10.1002/bmc.1748. [PMID: 22113886]
  • Helga Pankoke, M Deane Bowers, Susanne Dobler. The interplay between toxin-releasing β-glucosidase and plant iridoid glycosides impairs larval development in a generalist caterpillar, Grammia incorrupta (Arctiidae). Insect biochemistry and molecular biology. 2012 Jun; 42(6):426-34. doi: 10.1016/j.ibmb.2012.02.004. [PMID: 22446106]
  • Erzsébet Háznagy-Radnai, Ágnes Balogh, Szilvia Czigle, Imre Máthé, Judit Hohmann, Gábor Blazsó. Antiinflammatory activities of Hungarian Stachys species and their iridoids. Phytotherapy research : PTR. 2012 Apr; 26(4):505-9. doi: 10.1002/ptr.3582. [PMID: 21887806]
  • Zhen Liu, Zhiwei Xu, Hanyu Zhou, Gang Cao, Xiao-Dong Cong, Yun Zhang, Bao-Chang Cai. Simultaneous determination of four bioactive compounds in Verbena officinalis L. by using high-performance liquid chromatography. Pharmacognosy magazine. 2012 Apr; 8(30):162-5. doi: 10.4103/0973-1296.96575. [PMID: 22701291]
  • Niaz Ali, Syed Wadood Ali Shah, Ismail Shah, Ghayour Ahmed, Mehreen Ghias, Imran Khan, Waqar Ali. Anthelmintic and relaxant activities of Verbascum Thapsus Mullein. BMC complementary and alternative medicine. 2012 Mar; 12(?):29. doi: 10.1186/1472-6882-12-29. [PMID: 22463730]
  • Jie Zheng, Duan Liu, Su-qing Zhao, Juan Su, Qiu-ping Yan, Lei Chen, Yi Xiao, Chun-mei Zhang. [Enzymatic extraction and antibacterial activity of aucubin from Eucommia ulmoides leaves]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2012 Feb; 35(2):304-6. doi: ". [PMID: 22822679]
  • Iclal Saracoglu, U Sebnem Harput. In vitro cytotoxic activity and structure activity relationships of iridoid glucosides derived from Veronica species. Phytotherapy research : PTR. 2012 Jan; 26(1):148-52. doi: 10.1002/ptr.3546. [PMID: 21678519]
  • Li Liu, Hongyue Ma, Yuping Tang, Wenxing Chen, Yin Lu, Jianming Guo, Jin-Ao Duan. Discovery of estrogen receptor α modulators from natural compounds in Si-Wu-Tang series decoctions using estrogen-responsive MCF-7 breast cancer cells. Bioorganic & medicinal chemistry letters. 2012 Jan; 22(1):154-63. doi: 10.1016/j.bmcl.2011.11.041. [PMID: 22137340]
  • Sándor Gonda, László Tóth, Gyöngyi Gyémánt, Mihály Braun, Tamás Emri, Gábor Vasas. Effect of high relative humidity on dried Plantago lanceolata L. leaves during long-term storage: effects on chemical composition, colour and microbiological quality. Phytochemical analysis : PCA. 2012 Jan; 23(1):88-93. doi: 10.1002/pca.1329. [PMID: 21618310]
  • Sebastian E W Opitz, Jean-Luc Boevé, Zoltán Tamás Nagy, Gontran Sonet, Frank Koch, Caroline Müller. Host shifts from Lamiales to Brassicaceae in the sawfly genus Athalia. PloS one. 2012; 7(4):e33649. doi: 10.1371/journal.pone.0033649. [PMID: 22485146]
  • Minna Laurentz, Joanneke H Reudler, Johanna Mappes, Ville Friman, Suvi Ikonen, Carita Lindstedt. Diet quality can play a critical role in defense efficacy against parasitoids and pathogens in the Glanville fritillary (Melitaea cinxia). Journal of chemical ecology. 2012 Jan; 38(1):116-25. doi: 10.1007/s10886-012-0066-1. [PMID: 22273742]
  • S Vargas, K Ndjoko Ioset, A-E Hay, J-R Ioset, S Wittlin, K Hostettmann. Screening medicinal plants for the detection of novel antimalarial products applying the inhibition of β-hematin formation. Journal of pharmaceutical and biomedical analysis. 2011 Dec; 56(5):880-6. doi: 10.1016/j.jpba.2011.06.026. [PMID: 21872416]
  • Rui Zhang, Yang Yao, Yingping Wang, Guixing Ren. Antidiabetic activity of isoquercetin in diabetic KK -Ay mice. Nutrition & metabolism. 2011 Dec; 8(?):85. doi: 10.1186/1743-7075-8-85. [PMID: 22133267]
  • Iclal Saracoglu, F Handan Oztunca, Akito Nagatsu, U Sebnem Harput. Iridoid content and biological activities of Veronica cuneifolia subsp. cuneifolia and V. cymbalaria. Pharmaceutical biology. 2011 Nov; 49(11):1150-7. doi: 10.3109/13880209.2011.575790. [PMID: 21595571]
  • Gui-qin Zhao, Zhi-feng Yin, Yu-cui Liu, Hong-bo Li. [Iridoid glycosides from buds of Jasminum officinale L. var. grandiflorum]. Yao xue xue bao = Acta pharmaceutica Sinica. 2011 Oct; 46(10):1221-4. doi: . [PMID: 22242454]
  • Zeliha Akdemir, Ciğdem Kahraman, I Irem Tatlı, Esra Küpeli Akkol, Ipek Süntar, Hikmet Keles. Bioassay-guided isolation of anti-inflammatory, antinociceptive and wound healer glycosides from the flowers of Verbascum mucronatum Lam. Journal of ethnopharmacology. 2011 Jul; 136(3):436-43. doi: 10.1016/j.jep.2010.05.059. [PMID: 20621642]
  • Joanneke H Reudler, Arjen Biere, Jeff A Harvey, Saskya van Nouhuys. Differential performance of a specialist and two generalist herbivores and their parasitoids on Plantago lanceolata. Journal of chemical ecology. 2011 Jul; 37(7):765-78. doi: 10.1007/s10886-011-9983-7. [PMID: 21691810]
  • Evan C Lampert, M Deane Bowers. A comparison of sample preparation techniques for quantifying iridoid glycosides sequestered by lepidopteran larvae. Journal of chemical ecology. 2011 May; 37(5):496-9. doi: 10.1007/s10886-011-9941-4. [PMID: 21475987]
  • Hisae Oku, Yuko Ogawa, Emiko Iwaoka, Kyoko Ishiguro. Allergy-preventive effects of chlorogenic acid and iridoid derivatives from flower buds of Lonicera japonica. Biological & pharmaceutical bulletin. 2011; 34(8):1330-3. doi: 10.1248/bpb.34.1330. [PMID: 21804227]
  • Yuri Kim, Joseph A Hollenbaugh, Dong-Hyun Kim, Baek Kim. Novel PI3K/Akt inhibitors screened by the cytoprotective function of human immunodeficiency virus type 1 Tat. PloS one. 2011; 6(7):e21781. doi: 10.1371/journal.pone.0021781. [PMID: 21765914]
  • Hasan Kirmizibekmez, Irem Atay, Marcel Kaiser, Reto Brun, Michelle M Cartagena, Néstor M Carballeira, Erdem Yesilada, Deniz Tasdemir. Antiprotozoal activity of Melampyrum arvense and its metabolites. Phytotherapy research : PTR. 2011 Jan; 25(1):142-6. doi: 10.1002/ptr.3233. [PMID: 20623589]
  • Ming Ho, Tsai-Chung Li, Shan-Yu Su. The Association between Traditional Chinese Dietary and Herbal Therapies and Uterine Involution in Postpartum Women. Evidence-based complementary and alternative medicine : eCAM. 2011; 2011(?):918291. doi: 10.1155/2011/918291. [PMID: 21584195]
  • Anne Mraja, Sybille B Unsicker, Michael Reichelt, Jonathan Gershenzon, Christiane Roscher. Plant community diversity influences allocation to direct chemical defence in Plantago lanceolata. PloS one. 2011; 6(12):e28055. doi: 10.1371/journal.pone.0028055. [PMID: 22174766]
  • Eibhlín McCarthy, Jim M O'Mahony. What's in a Name? Can Mullein Weed Beat TB Where Modern Drugs Are Failing?. Evidence-based complementary and alternative medicine : eCAM. 2011; 2011(?):. doi: 10.1155/2011/239237. [PMID: 20953419]
  • Ripu M Kunwar, Keshab P Shrestha, Rainer W Bussmann. Traditional herbal medicine in far-west Nepal: a pharmacological appraisal. Journal of ethnobiology and ethnomedicine. 2010 Dec; 6(?):35. doi: 10.1186/1746-4269-6-35. [PMID: 21144003]
  • Chunmei Liu, Yuping Tang, Yongqing Hua, Erxin Shang, Jinao Duan, Dekang Wu, Anwei Ding. [Bio-activity evaluation of Qinlian Siwu decoction on inhibiting mice uterine contraction in vitro and its components analysis]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2010 Dec; 35(24):3362-7. doi: . [PMID: 21438408]
  • Hyun-Ja Jeong, In-Young Choi, Min-Ho Kim, Hyung-Min Kim, Phil-Dong Moon, Jin-Woo Hong, Soo-Hyun Kim. Chungsim-Yeunja-Tang decreases the inflammatory response in peripheral blood mononuclear cells from patients with cerebral infarction through an NF-κB dependent mechanism. Journal of neuroinflammation. 2010 Nov; 7(?):85. doi: 10.1186/1742-2094-7-85. [PMID: 21108840]
  • Hai-Ping Zhang, Liang Tao. [Studies on the chemical constituents of Buddleja albiflora (II)]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2010 Jun; 33(6):922-4. doi: ". [PMID: 21049618]
  • Sebastian E W Opitz, Søren R Jensen, Caroline Müller. Sequestration of glucosinolates and iridoid glucosides in sawfly species of the genus Athalia and their role in defense against ants. Journal of chemical ecology. 2010 Feb; 36(2):148-57. doi: 10.1007/s10886-010-9740-3. [PMID: 20127151]
  • Rong Lu, Yuan Gu, Duanyun Si, Changxiao Liu. Quantitation of catalpol in rat plasma by liquid chromatography/electrospray ionization tandem mass spectrometry and its pharmacokinetic study. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2009 Nov; 877(29):3589-94. doi: 10.1016/j.jchromb.2009.08.047. [PMID: 19744895]
  • N R Rathod, I Raghuveer, H R Chitme, R Chandra. Free Radical Scavenging Activity of Calotropis gigantea on Streptozotocin-Induced Diabetic Rats. Indian journal of pharmaceutical sciences. 2009 Nov; 71(6):615-21. doi: 10.4103/0250-474x.59542. [PMID: 20376213]
  • Yibin Feng, Kwok-Fan Cheung, Ning Wang, Ping Liu, Tadashi Nagamatsu, Yao Tong. Chinese medicines as a resource for liver fibrosis treatment. Chinese medicine. 2009 Aug; 4(?):16. doi: 10.1186/1749-8546-4-16. [PMID: 19695098]
  • Rui Yang, Jiahui Zhang, Xuemei Sun, Min Sun. [Hairy root culture optimization and aucubin medical composition production of Eucommia ulmoides]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2009 Aug; 34(15):1902-5. doi: . [PMID: 19894530]
  • Bong Hyun Kim, Kyoung Sik Park, Il-Moo Chang. Elucidation of anti-inflammatory potencies of Eucommia ulmoides bark and Plantago asiatica seeds. Journal of medicinal food. 2009 Aug; 12(4):764-9. doi: 10.1089/jmf.2008.1239. [PMID: 19735174]
  • Hong-Yu Xue, Lei Jin, Li-Ji Jin, Xiao-Yu Li, Peng Zhang, Yong-Sheng Ma, Ya-Nan Lu, Yan-Qiu Xia, Yong-Ping Xu. Aucubin prevents loss of hippocampal neurons and regulates antioxidative activity in diabetic encephalopathy rats. Phytotherapy research : PTR. 2009 Jul; 23(7):980-6. doi: 10.1002/ptr.2734. [PMID: 19140154]
  • Alison Elizabeth Bennett, James D Bever, M Deane Bowers. Arbuscular mycorrhizal fungal species suppress inducible plant responses and alter defensive strategies following herbivory. Oecologia. 2009 Jul; 160(4):771-9. doi: 10.1007/s00442-009-1338-5. [PMID: 19408016]
  • Anna Fontana, Michael Reichelt, Stefan Hempel, Jonathan Gershenzon, Sybille B Unsicker. The effects of arbuscular mycorrhizal fungi on direct and indirect defense metabolites of Plantago lanceolata L. Journal of chemical ecology. 2009 Jul; 35(7):833-43. doi: 10.1007/s10886-009-9654-0. [PMID: 19568812]
  • Gerlinde Barbra De Deyn, A Biere, W H van der Putten, R Wagenaar, J N Klironomos. Chemical defense, mycorrhizal colonization and growth responses in Plantago lanceolata L. Oecologia. 2009 Jun; 160(3):433-42. doi: 10.1007/s00442-009-1312-2. [PMID: 19271240]
  • Sung-Hwa Sohn, Eunjung Ko, Sung-Bae Jeon, Beom-Joon Lee, Sung-Hoon Kim, Mi-Sook Dong, Dong-Ung Lee, Jong-Hwan Kwak, Yangseok Kim, Minkyu Shin, Moochang Hong, Hyunsu Bae. The genome-wide expression profile of Scrophularia ningpoensis-treated thapsigargin-stimulated U-87MG cells. Neurotoxicology. 2009 May; 30(3):368-76. doi: 10.1016/j.neuro.2009.02.006. [PMID: 19442820]
  • Jing Li, Xiaoyan Huang, Xianjie Du, Wenji Sun, Yongmin Zhang. Study of chemical composition and antimicrobial activity of leaves and roots of Scrophularia ningpoensis. Natural product research. 2009; 23(8):775-80. doi: 10.1080/14786410802696247. [PMID: 19418360]
  • Maher M El-Domiaty, Michael Wink, Mahmoud M Abdel Aal, Maged M Abou-Hashem, Rehab H Abd-Alla. Antihepatotoxic activity and chemical constituents of Buddleja asiatica Lour. Zeitschrift fur Naturforschung. C, Journal of biosciences. 2009 Jan; 64(1-2):11-9. doi: 10.1515/znc-2009-1-203. [PMID: 19323260]
  • V Petitto, M Serafini, M Ballero, S Foddai, A Stanzione, M Nicoletti. Iridoids from Euphrasia genargentea, a rare Sardinian endemism. Natural product research. 2009; 23(5):431-5. doi: 10.1080/14786410802041063. [PMID: 19296385]
  • Hui Li, Jiangyu Hu, Hui Ouyang, Yanan Li, Hui Shi, Chengjin Ma, Yongkang Zhang. Extraction of aucubin from seeds of Eucommia ulmoides Oliv. using supercritical carbon dioxide. Journal of AOAC International. 2009 Jan; 92(1):103-10. doi: 10.1093/jaoac/92.1.103. [PMID: 19382566]
  • E Háznagy-Radnai, B Réthy, Sz Czigle, I Zupkó, E Wéber, T Martinek, Gy Falkay, I Máthé. Cytotoxic activities of Stachys species. Fitoterapia. 2008 Dec; 79(7-8):595-7. doi: 10.1016/j.fitote.2008.06.009. [PMID: 18672034]
  • J H Reudler Talsma, A Biere, J A Harvey, S van Nouhuys. Oviposition cues for a specialist butterfly--plant chemistry and size. Journal of chemical ecology. 2008 Sep; 34(9):1202-12. doi: 10.1007/s10886-008-9519-y. [PMID: 18612691]
  • Jing-Song Ou, Da-De Huang, Zhi-Jun Ou. A potential agent for treating non-small cell lung cancer. Clinical and experimental pharmacology & physiology. 2008 Sep; 35(9):985-6. doi: 10.1111/j.1440-1681.2008.04993.x. [PMID: 18782201]
  • HongYu Xue, LiJi Jin, Lei Jin, Peng Zhang, DanQing Li, YanQiu Xia, YaNan Lu, YongPing Xu. Neuroprotection of aucubin in primary diabetic encephalopathy. Science in China. Series C, Life sciences. 2008 Jun; 51(6):495-502. doi: 10.1007/s11427-008-0069-x. [PMID: 18488169]
  • N A Ibrahim, A S Shalaby, R S Farag, G S Elbaroty, S M Nofal, E M Hassan. Gynecological efficacy and chemical investigation of Vitex agnus-castus L. fruits growing in Egypt. Natural product research. 2008 Apr; 22(6):537-46. doi: 10.1080/14786410701592612. [PMID: 18415863]
  • Lei Jin, Hong-Yu Xue, Li-Ji Jin, Shu-Ying Li, Yong-Ping Xu. Antioxidant and pancreas-protective effect of aucubin on rats with streptozotocin-induced diabetes. European journal of pharmacology. 2008 Mar; 582(1-3):162-7. doi: 10.1016/j.ejphar.2007.12.011. [PMID: 18230397]
  • Ye Zhao, Yang Li, Xiang Wang, Wenji Sun. The experimental study of Cortex Eucommiae on meridian tropsim: the distribution study of aucubin in rat tissues. Journal of pharmaceutical and biomedical analysis. 2008 Jan; 46(2):368-73. doi: 10.1016/j.jpba.2007.09.028. [PMID: 17988817]
  • H Fleer, E J Verspohl. Antispasmodic activity of an extract from Plantago lanceolata L. and some isolated compounds. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2007 Jun; 14(6):409-15. doi: 10.1016/j.phymed.2006.05.006. [PMID: 17298877]
  • Emanuela P Kostadinova, Kalina I Alipieva, Tetsuo Kokubun, Rilka M Taskova, Nedjalka V Handjieva. Phenylethanoids, iridoids and a spirostanol saponin from Veronica turrilliana. Phytochemistry. 2007 May; 68(9):1321-6. doi: 10.1016/j.phytochem.2007.02.014. [PMID: 17399747]
  • Esra Kupeli, I Irem Tatli, Zeliha S Akdemir, Erdem Yesilada. Bioassay-guided isolation of anti-inflammatory and antinociceptive glycoterpenoids from the flowers of Verbascum lasianthum Boiss. ex Bentham. Journal of ethnopharmacology. 2007 Apr; 110(3):444-50. doi: 10.1016/j.jep.2006.10.004. [PMID: 17123759]
  • Katja Sesterhenn, Melanie Distl, Michael Wink. Occurrence of iridoid glycosides in in vitro cultures and intact plants of Scrophularia nodosa L. Plant cell reports. 2007 Mar; 26(3):365-71. doi: 10.1007/s00299-006-0233-3. [PMID: 16972093]
  • Kamel E Ben Jilani, Jun Panee, Qingping He, Marla J Berry, Ping-An Li. Overexpression of selenoprotein H reduces Ht22 neuronal cell death after UVB irradiation by preventing superoxide formation. International journal of biological sciences. 2007 Feb; 3(4):198-204. doi: 10.7150/ijbs.3.198. [PMID: 17389926]