Pinostilbene (BioDeep_00000000904)

   

PANOMIX_OTCML-2023 natural product


代谢物信息卡片


3-[2-(4-hydroxyphenyl)vinyl]-5-methoxy-phenol;Pinostilbene

化学式: C15H14O3 (242.0943)
中文名称: 松茋
谱图信息: 最多检出来源 Viridiplantae(plant) 11.01%

分子结构信息

SMILES: COC1=CC(=CC(=C1)O)C=CC2=CC=C(C=C2)O
InChI: InChI=1S/C15H14O3/c1-18-15-9-12(8-14(17)10-15)3-2-11-4-6-13(16)7-5-11/h2-10,16-17H,1H3/b3-2+

描述信息

3-methoxy-4,5-dihydroxy-trans-stilbene is a stilbenoid that is trans-resveratrol in which one of the meta-hydroxy groups is converted to the corresponding methyl ether. It is functionally related to a trans-resveratrol.
3-Methoxy-4,5-dihydroxy-trans-stilbene is a natural product found in Soymida febrifuga, Rumex bucephalophorus, and other organisms with data available.
A stilbenoid that is trans-resveratrol in which one of the meta-hydroxy groups is converted to the corresponding methyl ether.
Pinostilbene (trans-Pinostilbene) is a major metabolite of Pterostilbene. Pinostilbene exhibits inhibitory effects on colon cancer cells[1].
Pinostilbene (trans-Pinostilbene) is a major metabolite of Pterostilbene. Pinostilbene exhibits inhibitory effects on colon cancer cells[1].

同义名列表

28 个代谢物同义名

3-[2-(4-hydroxyphenyl)vinyl]-5-methoxy-phenol;Pinostilbene; Phenol, 3-(2-(4-hydroxyphenyl)ethenyl)-5-methoxy-, (E)-; Phenol, 3-((1E)-2-(4-hydroxyphenyl)ethenyl)-5-methoxy-; Phenol, 3-[(E)-2-(4-hydroxyphenyl)ethenyl]-5-methoxy-; 3-((1E)-2-(4-Hydroxyphenyl)ethenyl)-5-methoxyphenol; 3-[(1E)-2-(4-hydroxyphenyl)ethenyl]-5-methoxyphenol; 3-[(E)-2-(4-hydroxyphenyl)ethenyl]-5-methoxy-phenol; 3-[(E)-2-(4-hydroxyphenyl)ethenyl]-5-methoxyphenol; Phenol, 3-[2-(4-hydroxyphenyl)ethenyl]-5-methoxy-; 3-[(E)-2-(4-hydroxyphenyl)vinyl]-5-methoxy-phenol; Phenol, 3-(2-(4-hydroxyphenyl)ethenyl)-5-methoxy-; 3-(2-(4-Hydroxyphenyl)ethenyl)-5-methoxyphenol; 3-[2-(4-hydroxyphenyl)ethenyl]-5-methoxyphenol; (e)-3-(4-hydroxystyryl)-5-methoxyphenol; 3,4-Dihydroxy-5-methoxy-trans-stilbene; 3-Methoxy-4,5-dihydroxy-trans-stilbene; trans-3,4-dihydroxy-5-methoxystilbene; 3,4-dihydroxy-5-methoxystilbene; resveratrol monomethyl ether; KUWZXOMQXYWKBS-NSCUHMNNSA-N; 3-methoxyresveratrol; Pinostilbene hydrate; Pinostilbene, trans-; trans-Pinostilbene; UNII-4PAK325BEM; Pinostilbene; 4PAK325BEM; Pinostilbene



数据库引用编号

18 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

82 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(1)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(81)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

43 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 13 ADIG, AIMP2, AR, CASP3, CAT, CYP1A1, FABP4, FASN, MARVELD1, PPARG, TJP1, TXN, TYR
Peripheral membrane protein 3 CYP1A1, CYP1B1, TJP1
Endoplasmic reticulum membrane 3 CYP1A1, CYP1A2, CYP1B1
Nucleus 11 ADIG, AIMP2, AR, CASP3, FABP4, JUN, MARVELD1, PARP1, PPARG, TJP1, TXN
cytosol 10 AIMP2, AR, CASP3, CAT, FABP4, FASN, PARP1, PPARG, TJP1, TXN
nuclear body 1 PARP1
nucleoplasm 6 AR, CASP3, JUN, PARP1, PPARG, TXN
RNA polymerase II transcription regulator complex 2 JUN, PPARG
Cell membrane 3 CLDN1, MARVELD1, TJP1
Cytoplasmic side 1 TJP1
Multi-pass membrane protein 2 CLDN1, MARVELD1
cell junction 1 TJP1
cell surface 1 WIF1
glutamatergic synapse 1 CASP3
Golgi apparatus 1 FASN
Golgi membrane 1 INS
mitochondrial inner membrane 1 CYP1A1
neuronal cell body 1 CASP3
Cytoplasm, cytosol 2 AIMP2, PARP1
Lysosome 1 TYR
plasma membrane 5 AR, CLDN1, FASN, MARVELD1, TJP1
Membrane 9 ADIG, AIMP2, AR, CAT, CLDN1, CYP1B1, FASN, MARVELD1, PARP1
apical plasma membrane 2 CLDN1, TJP1
basolateral plasma membrane 2 CLDN1, TJP1
extracellular exosome 4 CAT, FABP4, FASN, TXN
extracellular space 1 INS
perinuclear region of cytoplasm 2 PPARG, TYR
Cell junction, tight junction 2 CLDN1, TJP1
adherens junction 1 TJP1
apicolateral plasma membrane 1 TJP1
bicellular tight junction 2 CLDN1, TJP1
gap junction 1 TJP1
intercalated disc 1 TJP1
intercellular canaliculus 1 TJP1
mitochondrion 5 CAT, CYP1A1, CYP1B1, PARP1, TJP1
protein-containing complex 5 AR, CAT, CLDN1, PARP1, TJP1
intracellular membrane-bounded organelle 6 CAT, CYP1A1, CYP1A2, CYP1B1, PPARG, TYR
Microsome membrane 3 CYP1A1, CYP1A2, CYP1B1
postsynaptic density 1 CASP3
Single-pass type I membrane protein 1 TYR
Secreted 3 ADIG, INS, TXN
extracellular region 5 ADIG, CAT, INS, TXN, WIF1
Single-pass membrane protein 1 ADIG
mitochondrial matrix 1 CAT
transcription regulator complex 2 JUN, PARP1
nucleolus 1 PARP1
Melanosome membrane 1 TYR
apical part of cell 1 TJP1
Golgi-associated vesicle 1 TYR
Mitochondrion inner membrane 1 CYP1A1
Cytoplasm, cytoskeleton 1 MARVELD1
focal adhesion 1 CAT
Peroxisome 1 CAT
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
lateral plasma membrane 1 CLDN1
nuclear speck 1 AR
receptor complex 1 PPARG
chromatin 4 AR, JUN, PARP1, PPARG
cell projection 1 TJP1
Chromosome 1 PARP1
cytoskeleton 1 MARVELD1
Cell projection, podosome 1 TJP1
podosome 1 TJP1
Nucleus, nucleolus 1 PARP1
nuclear replication fork 1 PARP1
chromosome, telomeric region 1 PARP1
nuclear chromosome 1 JUN
Basolateral cell membrane 1 CLDN1
site of double-strand break 1 PARP1
nuclear envelope 1 PARP1
endosome lumen 1 INS
Lipid droplet 2 ADIG, FABP4
Melanosome 2 FASN, TYR
euchromatin 1 JUN
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 2 CAT, INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 1 INS
transport vesicle 1 INS
tight junction 2 CLDN1, TJP1
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
protein-DNA complex 1 PARP1
death-inducing signaling complex 1 CASP3
apical junction complex 1 TJP1
aminoacyl-tRNA synthetase multienzyme complex 1 AIMP2
site of DNA damage 1 PARP1
transcription factor AP-1 complex 1 JUN
catalase complex 1 CAT
[Poly [ADP-ribose] polymerase 1, processed N-terminus]: Chromosome 1 PARP1
[Poly [ADP-ribose] polymerase 1, processed C-terminus]: Cytoplasm 1 PARP1
glycogen granule 1 FASN


文献列表

  • You Chul Chung, Chang-Gu Hyun. Inhibitory Effects of Pinostilbene on Adipogenesis in 3T3-L1 Adipocytes: A Study of Possible Mechanisms. International journal of molecular sciences. 2021 Dec; 22(24):. doi: 10.3390/ijms222413446. [PMID: 34948240]
  • Daniela P Herrera, Andrea M Chánique, Ascensión Martínez-Márquez, Roque Bru-Martínez, Robert Kourist, Loreto P Parra, Andreas Schüller. Rational Design of Resveratrol O-methyltransferase for the Production of Pinostilbene. International journal of molecular sciences. 2021 Apr; 22(9):. doi: 10.3390/ijms22094345. [PMID: 33919396]
  • Veronika Leláková, Karel Šmejkal, Karolina Jakubczyk, Ondřej Veselý, Přemysl Landa, Jiří Václavík, Pavel Bobáľ, Hana Pížová, Veronika Temml, Theresa Steinacher, Daniela Schuster, Sebastian Granica, Zuzana Hanáková, Jan Hošek. Parallel in vitro and in silico investigations into anti-inflammatory effects of non-prenylated stilbenoids. Food chemistry. 2019 Jul; 285(?):431-440. doi: 10.1016/j.foodchem.2019.01.128. [PMID: 30797367]
  • Annick D van den Brand, Judith Villevoye, Sandra M Nijmeijer, Martin van den Berg, Majorie B M van Duursen. Anti-tumor properties of methoxylated analogues of resveratrol in malignant MCF-7 but not in non-tumorigenic MCF-10A mammary epithelial cell lines. Toxicology. 2019 06; 422(?):35-43. doi: 10.1016/j.tox.2019.04.009. [PMID: 31004704]
  • Takao Koeduka, Miki Hatada, Hideyuki Suzuki, Shiro Suzuki, Kenji Matsui. Molecular cloning and functional characterization of an O-methyltransferase catalyzing 4'-O-methylation of resveratrol in Acorus calamus. Journal of bioscience and bioengineering. 2019 May; 127(5):539-543. doi: 10.1016/j.jbiosc.2018.10.011. [PMID: 30471982]
  • Veronika Jarosova, Ondrej Vesely, Petr Marsik, Jose Diogenes Jaimes, Karel Smejkal, Pavel Kloucek, Jaroslav Havlik. Metabolism of Stilbenoids by Human Faecal Microbiota. Molecules (Basel, Switzerland). 2019 Mar; 24(6):. doi: 10.3390/molecules24061155. [PMID: 30909544]
  • Kyung Taek Heo, Byeongsan Lee, Sangkeun Son, Jong Seog Ahn, Jae-Hyuk Jang, Young-Soo Hong. Production of Bioactive 3'-Hydroxystilbene Compounds Using the Flavin-Dependent Monooxygenase Sam5. Journal of microbiology and biotechnology. 2018 Jul; 28(7):1105-1111. doi: 10.4014/jmb.1804.04007. [PMID: 30021423]
  • Daisuke Uesugi, Hiroki Hamada, Kei Shimoda, Naoji Kubota, Shin-Ichi Ozaki, Naoki Nagatani. Synthesis, oxygen radical absorbance capacity, and tyrosinase inhibitory activity of glycosides of resveratrol, pterostilbene, and pinostilbene. Bioscience, biotechnology, and biochemistry. 2017 Feb; 81(2):226-230. doi: 10.1080/09168451.2016.1240606. [PMID: 27756183]
  • Mingji Li, Konstantin Schneider, Mette Kristensen, Irina Borodina, Jens Nielsen. Engineering yeast for high-level production of stilbenoid antioxidants. Scientific reports. 2016 11; 6(?):36827. doi: 10.1038/srep36827. [PMID: 27833117]
  • Wan Chen, Samuel Chao Ming Yeo, Xue Fen Chuang, Hai-Shu Lin. Determination of pinostilbene in rat plasma by LC-MS/MS: Application to a pharmacokinetic study. Journal of pharmaceutical and biomedical analysis. 2016 Feb; 120(?):316-21. doi: 10.1016/j.jpba.2015.12.051. [PMID: 26771130]
  • Sun-Young Kang, Jae Kyoung Lee, Oksik Choi, Cha Young Kim, Jae-Hyuk Jang, Bang Yeon Hwang, Young-Soo Hong. Biosynthesis of methylated resveratrol analogs through the construction of an artificial biosynthetic pathway in E. coli. BMC biotechnology. 2014 Jul; 14(?):67. doi: 10.1186/1472-6750-14-67. [PMID: 25033820]
  • Yu Jeong Jeong, Chul Han An, Su Gyeong Woo, Hyung Jae Jeong, Young-Min Kim, Su-Jin Park, Byung Dae Yoon, Cha Young Kim. Production of pinostilbene compounds by the expression of resveratrol O-methyltransferase genes in Escherichia coli. Enzyme and microbial technology. 2014 Jan; 54(?):8-14. doi: 10.1016/j.enzmictec.2013.09.005. [PMID: 24267561]
  • Yuta Ito, Takakazu Mitani, Naoki Harada, Atsushi Isayama, Shinji Tanimori, Shigeo Takenaka, Yoshihisa Nakano, Hiroshi Inui, Ryoichi Yamaji. Identification of carbonyl reductase 1 as a resveratrol-binding protein by affinity chromatography using 4'-amino-3,5-dihydroxy-trans-stilbene. Journal of nutritional science and vitaminology. 2013; 59(4):358-64. doi: 10.3177/jnsv.59.358. [PMID: 24064738]
  • Shiby Paul, Cassia S Mizuno, Hong Jin Lee, Xi Zheng, Sarah Chajkowisk, John M Rimoldi, Allan Conney, Nanjoo Suh, Agnes M Rimando. In vitro and in vivo studies on stilbene analogs as potential treatment agents for colon cancer. European journal of medicinal chemistry. 2010 Sep; 45(9):3702-8. doi: 10.1016/j.ejmech.2010.05.019. [PMID: 20627379]
  • Suresh Awale, Tatsuya Miyamoto, Thein Zaw Linn, Feng Li, Nwet Nwet Win, Yasuhiro Tezuka, Hiroyasu Esumi, Shigetoshi Kadota. Cytotoxic constituents of Soymida febrifuga from Myanmar. Journal of natural products. 2009 Sep; 72(9):1631-6. doi: 10.1021/np9003323. [PMID: 19689125]
  • Zohar Kerem, Gilly Regev-Shoshani, Moshe A Flaishman, Lior Sivan. Resveratrol and two monomethylated stilbenes from Israeli Rumex bucephalophorus and their antioxidant potential. Journal of natural products. 2003 Sep; 66(9):1270-2. doi: 10.1021/np030087c. [PMID: 14510615]
  • Kittisak Likhitwitayawuid, Kanokporn Sawasdee, Kanyawim Kirtikara. Flavonoids and stilbenoids with COX-1 and COX-2 inhibitory activity from Dracaena loureiri. Planta medica. 2002 Sep; 68(9):841-3. doi: 10.1055/s-2002-34403. [PMID: 12357401]
  • C H Rolfs, H Kindl. Stilbene Synthase and Chalcone Synthase : Two Different Constitutive Enzymes in Cultured Cells of Picea excelsa. Plant physiology. 1984 Jun; 75(2):489-92. doi: 10.1104/pp.75.2.489. [PMID: 16663649]