Bergapten (BioDeep_00000000336)
Secondary id: BioDeep_00000398015, BioDeep_00000405730, BioDeep_00000861001
human metabolite PANOMIX_OTCML-2023 natural product
代谢物信息卡片
化学式: C12H8O4 (216.0422568)
中文名称: 5-甲氧基补骨脂素, 佛手柑内酯, 佛手醇甲醚, 佛手苷内酯, 香柑内酯, 佛手烯
谱图信息:
最多检出来源 Viridiplantae(plant) 0.24%
Last reviewed on 2024-09-04.
Cite this Page
Bergapten. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/bergapten (retrieved
2024-11-05) (BioDeep RN: BioDeep_00000000336). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: COc(c21)c(C=3)c(OC(=O)C3)cc(occ2)1
InChI: InChI=1S/C12H8O4/c1-14-12-7-2-3-11(13)16-10(7)6-9-8(12)4-5-15-9/h2-6H,1H3
描述信息
Bergapten, also known as O-methylbergaptol or heraclin, belongs to the class of organic compounds known as 5-methoxypsoralens. These are psoralens containing a methoxy group attached at the C5 position of the psoralen group. Bergapten is found, on average, in the highest concentration within a few different foods, such as anises, figs, and parsnips and in a lower concentration in carrots, fennels, and celery stalks. Bergapten has also been detected, but not quantified, in several different foods, such as coconuts, pepper (c. frutescens), corianders, sesbania flowers, and cardamoms. This could make bergapten a potential biomarker for the consumption of these foods. It is also found in rose hip, sweet marjoram, greenthread tea, and tartary buckwheat. Bergapten is a potentially toxic compound. Bergapten is a major constituent of bergamot oil (Citrus bergamia). Present in celery, especially the outer leaves, and other common grocery vegetables. Implicated in photodermatitis among grocery workers. Bergapten was under investigation in clinical trial NCT00533195 "Comparison of UVA1 Phototherapy Versus Photochemotherapy for Patients With Severe Generalized Atopic Dermatitis".
Grayish-white microcrystalline powder or yellow fluffy solid. (NTP, 1992)
5-methoxypsoralen is a 5-methoxyfurocoumarin that is psoralen substituted by a methoxy group at position 5. It has a role as a hepatoprotective agent and a plant metabolite. It is a member of psoralens, a 5-methoxyfurocoumarin and an organic heterotricyclic compound. It is functionally related to a psoralen.
Bergapten is under investigation in clinical trial NCT00533195 (Comparison of UVA1 Phototherapy Versus Photochemotherapy for Patients With Severe Generalized Atopic Dermatitis).
Bergapten is a natural product found in Ficus auriculata, Ficus virens, and other organisms with data available.
A linear furanocoumarin that has phototoxic and anti-inflammatory properties, with effects similar to METHOXSALEN. It is used in PUVA THERAPY for the treatment of PSORIASIS.
See also: Parsley (part of); Anise (part of); Angelica archangelica root (part of) ... View More ...
Bergapten is a major constituent of bergamot oil (Citrus bergamia). Present in celery, esp. the outer leaves, and other common grocery vegetables. Implicated in photodermatitis among grocery workers. It is also found in rose hip, sweet marjoram, greenthread tea, and tartary buckwheat.
D - Dermatologicals > D05 - Antipsoriatics > D05B - Antipsoriatics for systemic use > D05BA - Psoralens for systemic use
D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins
D000893 - Anti-Inflammatory Agents
D003879 - Dermatologic Agents
CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8020; ORIGINAL_PRECURSOR_SCAN_NO 8017
CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8002; ORIGINAL_PRECURSOR_SCAN_NO 8000
CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7952; ORIGINAL_PRECURSOR_SCAN_NO 7950
CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7968; ORIGINAL_PRECURSOR_SCAN_NO 7967
CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8005; ORIGINAL_PRECURSOR_SCAN_NO 8002
CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8376; ORIGINAL_PRECURSOR_SCAN_NO 8372
[Raw Data] CBA84_Bergapten_pos_20eV.txt
[Raw Data] CBA84_Bergapten_pos_10eV.txt
[Raw Data] CBA84_Bergapten_pos_30eV.txt
[Raw Data] CBA84_Bergapten_pos_40eV.txt
[Raw Data] CBA84_Bergapten_pos_50eV.txt
Bergapten is a natural anti-inflammatory and anti-tumor agent. Bergapten is inhibitory towards mouse and human CYP isoforms.
Bergapten is a natural anti-inflammatory and anti-tumor agent. Bergapten is inhibitory towards mouse and human CYP isoforms.
同义名列表
72 个代谢物同义名
InChI=1/C12H8O4/c1-14-12-7-2-3-11(13)16-10(7)6-9-8(12)4-5-15-9/h2-6H,1H; 6-Hydroxy-4-methoxy-5-benzofuranacrylic acid, .gamma.-lactone; 6-Hydroxy-4-methoxy-5-benzofuranacrylic acid, gamma-lactone; 7H-Furo(3,2-g)(1)benzopyran-7-one, 4-methoxy-; 7H-Furo[3,2-g][1]benzopyran-7-one, 4-methoxy-; 5-19-06-00004 (Beilstein Handbook Reference); 5-Methoxypsoralen with ultraviolet A therapy; 4-Methoxy-7H-furo(3,2-g)(1)benzopyran-7-one; 4-methoxy-7H-furo[3,2-g][1]benzopyran-7-one; 4-Methoxy-7H-furo[3,2-g]benzopyran-7-one; 4-Methoxy-7H-furo[3,2-g]chromen-7-one #; 5-methoxy-2H-furo[3,2-g]chromen-2-one; 4-Methoxyfuro[3,2-g]benzopyrane-7-one; 4-methoxy-7H-furo(3,2-g)chromen-7-one; 4-Methoxy-7H-furo[3,2-g]chromen-7-one; 4-Methoxyfuro[3,2-g]benzopyran-7-one; 5-methoxyfurano[3,2-g]chromen-2-one; 4-Methoxy-furo[3,2-g]chromen-7-one; 4-METHOXYFURO(3,2-G)CHROMEN-7-ONE; 4-methoxyfuro[3,2-g]chromen-7-one; Bergapten, analytical standard; 5-Methoxy-6,7-furanocoumarin; 5-Methoxypsoralen; Bergapten; 5-Methoxypsoralen (obsol.); 5-METHOXYPSORALEN [WHO-DD]; 5-Methoxypsoralen;Heraclin; 5-METHOXYPSORALEN [MART.]; 5-METHOXYPSORALEN (MART.); 5-METHOXYPSORALEN [IARC]; 5-METHOXYPSORALEN (IARC); 5-Methoxyfuranocoumarin; 5-Methoxypsoralen, 99\\%; 7H-Furo[3, 4-methoxy-; 5-methoxypsoralene; 5-Methoxy psoralen; 5 Methoxy Psoralen; 5-methoxy-psoralen; O-Methylbergaptol; 5-methoxypsoralen; 5 methoxypsoralen; Spectrum5_000155; Spectrum4_001478; Spectrum3_000663; Spectrum2_000534; Bergaptene (DCF); UNII-4FVK84C92X; Pentaderm (TN); BERGAPTEN [MI]; DivK1c_000529; MEGxp0_000990; Oprea1_562364; NCI60_042121; KBio2_001274; KBio2_003842; Tox21_303255; KBio2_006410; ACon1_001979; ACon0_000984; KBio1_000529; KBio3_001545; Tox21_202357; IDI1_000529; bergaptene; 4FVK84C92X; BERGAPTAN; Pentaderm; Bergapten; Psoraderm; Heraclin; Majudin; Geralen; 5-Mop
数据库引用编号
32 个数据库交叉引用编号
- ChEBI: CHEBI:18293
- KEGG: C01557
- KEGGdrug: D07521
- PubChem: 2355
- HMDB: HMDB0030637
- Metlin: METLIN43899
- DrugBank: DB12216
- ChEMBL: CHEMBL24171
- Wikipedia: Bergapten
- MeSH: 5-Methoxypsoralen
- ChemIDplus: 0000484208
- MetaCyc: 5-METHOXYFURANOCOUMARIN
- KNApSAcK: C00000575
- foodb: FDB002542
- chemspider: 2265
- CAS: 484-20-8
- MoNA: LU106803
- MoNA: LU106806
- MoNA: LU106805
- MoNA: FIO01009
- MoNA: LU106804
- MoNA: LU106802
- MoNA: FIO01011
- MoNA: LU106801
- MoNA: FIO01010
- MoNA: FIO01013
- MoNA: FIO01012
- medchemexpress: HY-N0370
- PMhub: MS000002786
- 3DMET: B00318
- NIKKAJI: J12.563F
- RefMet: Bergapten
分类词条
相关代谢途径
Reactome(0)
代谢反应
106 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(1)
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
WikiPathways(0)
Plant Reactome(3)
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Secondary metabolism:
GPP + H2O ⟶ PPi + geraniol
- Linear furanocoumarin biosynthesis:
H+ + H2O + TPNH + psoralen ⟶ TPN + bergaptol
INOH(0)
PlantCyc(102)
- linear furanocoumarin biosynthesis:
H+ + NADPH + O2 + psoralen ⟶ H2O + NADP+ + bergaptol
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + H+ + NADPH + O2 ⟶ H2O + NADP+ + acetone + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + H+ + NADPH + O2 ⟶ H2O + NADP+ + acetone + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + H+ + NADPH + O2 ⟶ H2O + NADP+ + acetone + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
(+)-marmesin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + acetone + an oxidized [NADPH-hemoprotein reductase] + psoralen
- linear furanocoumarin biosynthesis:
H+ + NADPH + O2 + psoralen ⟶ H2O + NADP+ + bergaptol
- linear furanocoumarin biosynthesis:
H+ + NADPH + O2 + psoralen ⟶ H2O + NADP+ + bergaptol
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
172 个相关的物种来源信息
- 354485 - Acronychia pedunculata: 10.1016/0031-9422(89)80234-1
- 68527 - Aegle marmelos: 10.1078/094471103322004794
- 4456 - Alocasia macrorrhizos: 10.1007/S10600-008-9114-Z
- 48025 - Ammi: 10.1016/0041-5553(76)90065-3
- 48026 - Ammi majus:
- 40922 - Anethum graveolens:
- 55605 - Angelica acutiloba:
- 357845 - Angelica anomala: 10.1248/YAKUSHI1947.87.9_1118
- 40949 - Angelica archangelica:
- 48101 - Angelica dahurica:
- 52491 - Angelica decursiva:
- 85712 - Angelica gigas:
- 2788934 - Angelica glauca: 10.1080/10286020701273759
- 48115 - Angelica gmelinii: 10.1248/CPB.31.64
- 265806 - Angelica japonica:
- 357850 - Angelica keiskei:
- 46362 - Angelica lucida: 10.1248/CPB.31.64
- 312530 - Angelica pubescens:
- 1080328 - Angelica shikokiana: 10.1016/0378-8741(89)90033-0
- 165353 - Angelica sinensis:
- 2831629 - Angelica taiwaniana:
- 2831630 - Angelica tarokoensis: 10.1002/JCCS.197000012
- 357859 - Angelica ursina:
- 48027 - Anthriscus sylvestris: 10.1248/BPB.30.1340
- 4045 - Apium graveolens:
- 178647 - Arracacia tolucensis: 10.1016/J.JEP.2007.05.015
- 282648 - Asterolasia phebalioides: 10.1016/0305-1978(94)90036-1
- 339519 - Astragalus pycnocephalus: 10.1007/BF00598779
- 76951 - Atalantia ceylanica: 10.1016/S0031-9422(98)00638-4
- 886265 - Balanites aegyptiaca: 10.1055/S-2007-971481
- 53836 - Bituminaria bituminosa: 10.1139/B91-212
- 452763 - Boenninghausenia albiflora:
- 1620273 - Brosimum gaudichaudii:
- 489421 - Cachrys sicula: 10.1016/S0031-9422(00)85511-9
- 1108177 - Campylotropis hirtella: 10.1248/CPB.56.1338
- 47643 - Caragana frutex: 10.1007/BF00575186
- 48032 - Carum carvi: 10.1016/S0031-9422(00)81503-4
- 2706 - Citrus: 10.1002/JSFA.2979
- 37334 - Citrus maxima: 10.1016/S0021-9258(18)51679-3
- 171251 - Citrus medica:
- 37690 - Citrus trifoliata:
- 475932 - Citrus wilsonii: 10.1016/S0021-9258(18)51679-3
- 159034 - Clausena anisata: 10.1016/0031-9422(89)80056-1
- 48111 - Cnidium japonicum: 10.1016/S0031-9422(00)90538-7
- 94007 - Cnidium monnieri:
- 4047 - Coriandrum sativum: 10.1016/S0031-9422(00)81503-4
- 4039 - Daucus carota:
- 489439 - Deverra tortuosa:
- 298346 - Dictamnus albus:
- 354492 - Dinosperma melanophloium: 10.1016/S0305-1978(97)00116-6
- 2749845 - Dinosperma stipitatum: 10.1016/0031-9422(94)85101-8
- 241876 - Dorstenia arifolia:
- 382339 - Dorstenia bahiensis:
- 2604976 - Dorstenia barnimiana: 10.1016/S0031-9422(00)00419-2
- 984796 - Dorstenia brasiliensis:
- 984798 - Dorstenia cayapia: 10.1016/S0031-9422(00)00419-2
- 984801 - Dorstenia contrajerva:
- 984804 - Dorstenia drakena:
- 984806 - Dorstenia elliptica: 10.1016/J.PHYTOCHEM.2003.10.028
- 984809 - Dorstenia foetida: 10.1016/J.PHYTOCHEM.2011.03.008
- 984813 - Dorstenia lindeniana: 10.1016/S0031-9422(00)00419-2
- 2605001 - Dorstenia prorepens: 10.1016/S0031-9422(01)00483-6
- 106723 - Dorstenia psilurus: 10.1016/S0031-9422(00)00419-2
- 1136744 - Esenbeckia berlandieri: 10.1016/S0305-1978(01)00138-7
- 1654694 - Esenbeckia febrifuga: 10.1016/J.PHYMED.2008.02.001
- 1778592 - Euphorbia bivonae: 10.1007/S10600-011-0026-Y
- 241879 - Fatoua pilosa: 10.1002/CBDV.200900326
- 66391 - Fatoua villosa: 10.1002/CBDV.200900326
- 558542 - Feroniella lucida: 10.1080/10286020.2011.572878
- 3494 - Ficus carica:
- 182114 - Ficus glumosa: 10.1590/S0103-50532012000300015
- 66386 - Ficus pumila:
- 1118428 - Ficus tsjakela: 10.21608/BFSA.2001.65755
- 100580 - Ficus virens: 10.21608/BFSA.2001.65755
- 180113 - Garcinia parvifolia: 10.1021/NP8006364
- 48119 - Glehnia littoralis:
- 76967 - Glycosmis pentaphylla: 10.1016/S0031-9422(00)97490-9
- 239644 - Halosciastrum melanotilingia:
- 165499 - Hansenia forbesii:
- 54724 - Hansenia weberbaueriana:
- 63009 - Heracleum aconitifolium: 10.1007/BF00580082
- 380072 - Heracleum asperum:
- 99506 - Heracleum candicans: 10.1016/S0040-4020(01)82304-8
- 1162817 - Heracleum candolleanum: 10.1248/CPB.53.701
- 380073 - Heracleum dissectum:
- 380075 - Heracleum grandiflorum:
- 376866 - Heracleum lehmannianum: 10.1007/BF00570685
- 380076 - Heracleum leskovii: 10.1007/BF01134615
- 380077 - Heracleum mantegazzianum:
- 40918 - Heracleum maximum:
- 99507 - Heracleum moellendorffii: 10.1007/BF00563460
- 996940 - Heracleum moellendorffii var. paucivittatum: 10.1007/BF00600845
- 360621 - Heracleum persicum: 10.1016/S0031-9422(00)85242-5
- 376867 - Heracleum ponticum: 10.1007/BF00563460
- 692011 - Heracleum rapula: 10.1080/10286020290019677
- 40919 - Heracleum sphondylium:
- 542670 - Heracleum stevenii: 10.1111/J.1600-0536.1983.TB04386.X
- 692013 - Heracleum vicinum: 10.1248/CPB.53.701
- 473995 - Heracleum yungningense: 10.1248/CPB.53.701
- 9606 - Homo sapiens: -
- 2749842 - Leionema ambiens: 10.1016/0031-9422(92)83450-D
- 48042 - Levisticum officinale:
- 49551 - Ligusticum: 10.1016/0031-9422(75)85149-1
- 159053 - Limonia acidissima:
- 194324 - Maclura cochinchinensis: 10.1021/NP000406P
- 681588 - Magydaris pastinacea: 10.1021/NP50050A046
- 496675 - Meeboldia yunnanensis:
- 1487095 - Melicope borbonica: 10.1016/S0378-8741(98)00137-8
- 1487105 - Melicope denhamii: 10.1016/J.TET.2012.01.007
- 1336624 - Melicope latifolia: 10.1016/0031-9422(90)80154-9
- 1331801 - Metrodorea flavida: 10.1016/0031-9422(96)00232-4
- 549427 - Metrodorea nigra: 10.1016/0031-9422(95)00504-Z
- 2901850 - Murraya exotica: 10.1016/S0031-9422(00)97490-9
- 43711 - Murraya paniculata: 10.1016/S0031-9422(00)97490-9
- 354507 - Orixa japonica:
- 374961 - Paris dunniana: 10.1248/CPB.54.897
- 4041 - Pastinaca sativa:
- 4043 - Petroselinum crispum:
- 49563 - Peucedanum japonicum:
- 2927891 - Peucedanum mashanense: 10.1055/S-0036-1596440
- 203712 - Peucedanum officinale: 10.1007/BF02066241
- 52477 - Peucedanum ostruthium: 10.1016/S0031-9422(00)80344-1
- 1572681 - Peucedanum palustre: 10.1055/S-2006-961919
- 408989 - Peucedanum tauricum: 10.1016/J.PHYTOCHEM.2005.01.022
- 282637 - Phebalium filifolium: 10.1016/0031-9422(92)83450-D
- 282633 - Phebalium squamulosum: 10.1016/0031-9422(92)83450-D
- 354508 - Phellodendron chinense: 10.1139/B91-065
- 271192 - Pimpinella anisum:
- 40959 - Pimpinella saxifraga: 10.1007/BF00899143
- 33090 - Plants: -
- 948492 - Pleurospermum rivulorum: 10.1016/S0031-9422(97)00123-4
- 46147 - Portulaca oleracea: 10.1002/HLCA.201000250
- 1585705 - Prangos lipskyi: 10.1007/BF00570686
- 1585712 - Prangos tschimganica: 10.1248/CPB.49.877
- 325744 - Prangos uloptera:
- 884312 - Prionosciadium thapsoides: 10.1021/NP800387W
- 405848 - Psilopeganum sinense: 10.1016/0305-1978(88)90011-7
- 282620 - Rhadinothamnus anceps:
- 452790 - Ruta chalepensis:
- 37565 - Ruta graveolens:
- 675743 - Ruta macrophylla: 10.1007/BF00055511
- 266085 - Ruta montana:
- 452794 - Ruta pinnata: 10.1139/B93-109
- 23513 - Rutaceae: 10.1351/PAC200173030617
- 35974 - Santalum Album L\uff0e: -
- 203717 - Saposhnikovia divaricata:
- 1161150 - Scabiosa comosa:
- 491195 - Semenovia dasycarpa:
- 2502068 - Seseli dichotomum: 10.1016/S0040-4039(00)72373-2
- 460996 - Seseli mairei: 10.1016/S0040-4039(00)72373-2
- 63039 - Seseli peucedanoides: 10.1016/J.PHYTOCHEM.2005.01.022
- 2502079 - Seseli ponticum: 10.1016/S0040-4039(00)72373-2
- 223585 - Seseli tortuosum: 10.1016/S0040-4039(00)72373-2
- 496698 - Seseli yunnanense: 10.1016/S0040-4039(00)72373-2
- 210365 - Skimmia japonica: 10.1055/S-2006-962141
- 354518 - Skimmia laureola: 10.1016/S0031-9422(00)81759-8
- 354521 - Tetradium daniellii:
- 452800 - Thamnosma texana: 10.1016/S0031-9422(00)80348-9
- 63045 - Thysselinum palustre: 10.1055/S-2006-961919
- 491192 - Tordyliopsis brunonis: 10.1021/NP50048A034
- 489417 - Tordylium apulum: 10.1055/S-2006-957398
- 1898452 - Trichocline caulescens: 10.1016/S0031-9422(00)98112-3
- 3908 - Vicia sativa: 10.1007/BF00598366
- 159071 - Zanthoxylum ailanthoides:
- 2839963 - Zanthoxylum asiaticum: 10.1055/S-0034-1368568
- 1500039 - Zanthoxylum echinocarpum: 10.1021/NP800689B
- 1056472 - Zanthoxylum mayu:
- 354530 - Zanthoxylum schinifolium:
- 2714546 - Zanthoxylum tragodes: 10.1248/YAKUSHI1947.73.7_770
- 2099548 - Zanthoxylum zanthoxyloides: 10.1021/NP50046A035
- 94328 - Zingiber Officinale Roscoe: -
- 33090 - 蛇床子: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Tianshu Xu, Jiyuan Yin, Xuan Dai, Tianyuan Liu, Hanfen Shi, Yueyi Zhang, Shan Wang, Gaiyue Yue, Yanfei Zhang, Dandan Zhao, Sihua Gao, Marc Prentki, Lili Wang, Dongwei Zhang. Cnidii Fructus: A traditional Chinese medicine herb and source of antiosteoporotic drugs.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2024 Jun; 128(?):155375. doi:
10.1016/j.phymed.2024.155375
. [PMID: 38507853] - Chong Gao, Zhong-He Hu, Zhen-Yu Cui, Yu-Chen Jiang, Jia-Yi Dou, Zhao-Xu Li, Li-Hua Lian, Ji-Xing Nan, Yan-Ling Wu. Angelica dahurica extract and its effective component bergapten alleviated hepatic fibrosis by activating FXR signaling pathway.
Journal of natural medicines.
2024 Mar; 78(2):427-438. doi:
10.1007/s11418-024-01780-8
. [PMID: 38334900] - Tong Luo, Xin Jia, Wan-di Feng, Jin-Yong Wang, Fang Xie, Ling-Dong Kong, Xue-Jiao Wang, Rui Lian, Xia Liu, Ying-Jie Chu, Yao Wang, An-Long Xu. Bergapten inhibits NLRP3 inflammasome activation and pyroptosis via promoting mitophagy.
Acta pharmacologica Sinica.
2023 May; ?(?):. doi:
10.1038/s41401-023-01094-7
. [PMID: 37142684] - Magdalena Bartnik. Efficient Separation of the Methoxyfuranocoumarins Peucedanin, 8-Methoxypeucedanin, and Bergapten by Centrifugal Partition Chromatography (CPC).
Molecules (Basel, Switzerland).
2023 Feb; 28(4):. doi:
10.3390/molecules28041923
. [PMID: 36838916] - Piseth Nhoek, Sungjin Ahn, Pisey Pel, Young-Mi Kim, Jungmoo Huh, Hyun Woo Kim, Minsoo Noh, Young-Won Chin. Alkaloids and Coumarins with Adiponectin-Secretion-Promoting Activities from the Leaves of Orixa japonica.
Journal of natural products.
2023 01; 86(1):138-148. doi:
10.1021/acs.jnatprod.2c00844
. [PMID: 36529937] - Noura S Dosoky, Prabodh Satyal, William N Setzer. Authentication of Citrus spp. Cold-Pressed Essential Oils by Their Oxygenated Heterocyclic Components.
Molecules (Basel, Switzerland).
2022 Sep; 27(19):. doi:
10.3390/molecules27196277
. [PMID: 36234812] - Kriti Juneja, Till Beuerle, Debabrata Sircar. Enhanced Accumulation of Biologically Active Coumarin and Furanocoumarins in Callus Culture and Field-grown Plants of Ruta chalepensis Through LED Light-treatment.
Photochemistry and photobiology.
2022 09; 98(5):1100-1109. doi:
10.1111/php.13610
. [PMID: 35191044] - Yanni Yang, Juanping Han, Renju G Lilly, Qin Yang, Yanjie Guo. Bergapten mediated inflammatory and apoptosis through AMPK/eNOS/AKT signaling pathway of isoproterenol-induced myocardial infarction in Wistar rats.
Journal of biochemical and molecular toxicology.
2022 Sep; 36(9):e23143. doi:
10.1002/jbt.23143
. [PMID: 35815753] - Muhammad Faheem, Arif-Ullah Khan, Muhammad Waqas Saleem, Fawad Ali Shah, Fawad Ali, Abdul Waheed Khan, Shupeng Li. Neuroprotective Effect of Natural Compounds in Paclitaxel-Induced Chronic Inflammatory Pain.
Molecules (Basel, Switzerland).
2022 Aug; 27(15):. doi:
10.3390/molecules27154926
. [PMID: 35956877] - Huan Shi, Ya-Qing Chang, Xie Feng, Gui-Ya Yang, Yu-Guang Zheng, Qian Zheng, Lan-Lan Zhang, Dan Zhang, Long Guo. Chemical comparison and discrimination of two plant sources of Angelicae dahuricae Radix, Angelica dahurica and Angelica dahurica var. formosana, by HPLC-Q/TOF-MS and quantitative analysis of multiple components by a single marker.
Phytochemical analysis : PCA.
2022 Jul; 33(5):776-791. doi:
10.1002/pca.3129
. [PMID: 35470493] - Maria Magdalena Quetglas-Llabrés, Cristina Quispe, Jesús Herrera-Bravo, Marcelo D Catarino, Olívia R Pereira, Susana M Cardoso, Kamal Dua, Dinesh Kumar Chellappan, Kavita Pabreja, Saurabh Satija, Meenu Mehta, Antoni Sureda, Miquel Martorell, Dinara Satmbekova, Balakyz Yeskaliyeva, Javad Sharifi-Rad, Naeem Rasool, Monica Butnariu, Iulia Cristina Bagiu, Radu Vasile Bagiu, Daniela Calina, William C Cho. Pharmacological Properties of Bergapten: Mechanistic and Therapeutic Aspects.
Oxidative medicine and cellular longevity.
2022; 2022(?):8615242. doi:
10.1155/2022/8615242
. [PMID: 35509838] - Christina L Burnett, Wilma F Bergfeld, Donald V Belsito, Ronald A Hill, Curtis D Klaassen, Daniel C Liebler, James G Marks, Ronald C Shank, Thomas J Slaga, Paul W Snyder, Lillian J Gill, Bart Heldreth. Safety Assessment of Citrus Plant- and Seed-Derived Ingredients as Used in Cosmetics.
International journal of toxicology.
2021 12; 40(3_suppl):39S-52S. doi:
10.1177/10915818211040027
. [PMID: 34406100] - Youdan Liang, Long Xie, Kai Liu, Yi Cao, Xiaolin Dai, Xian Wang, Jing Lu, Xumin Zhang, Xiaofang Li. Bergapten: A review of its pharmacology, pharmacokinetics, and toxicity.
Phytotherapy research : PTR.
2021 Nov; 35(11):6131-6147. doi:
10.1002/ptr.7221
. [PMID: 34347307] - Komal Latif, Arif-Ullah Khan, Muhammad Izhar Ul Haque, Komal Naeem. Bergapten Attenuates Nitroglycerin-Induced Migraine Headaches through Inhibition of Oxidative Stress and Inflammatory Mediators.
ACS chemical neuroscience.
2021 09; 12(18):3303-3313. doi:
10.1021/acschemneuro.1c00146
. [PMID: 34455773] - Shumaila Arshad, Maqsoodur Rehman, Juwairiya Zulfiqar, Saima Najam, Mulazim Hussain Asim, Farah Abid. Compatibility analysis of bergapten with different pharmaceutical excipients used in nanostructured lipid carriers.
Pakistan journal of pharmaceutical sciences.
2019 Nov; 32(6(Supplementary)):2879-2885. doi:
"
. [PMID: 32024628] - Unwoo Kang, Ah-Reum Han, Yangkang So, Chang Hyun Jin, Seung Mok Ryu, Dongho Lee, Eun Kyoung Seo. Furanocoumarins from the Roots of Angelica dahurica with Inhibitory Activity against Intracellular Reactive Oxygen Species Accumulation.
Journal of natural products.
2019 09; 82(9):2601-2607. doi:
10.1021/acs.jnatprod.9b00547
. [PMID: 31464439] - Christina L Burnett, Monice M Fiume, Wilma F Bergfeld, Donald V Belsito, Ronald A Hill, Curtis D Klaassen, Daniel C Liebler, James G Marks, Ronald C Shank, Thomas J Slaga, Paul W Snyder, Lillian J Gill, Bart Heldreth. Safety Assessment of Citrus-Derived Peel Oils as Used in Cosmetics.
International journal of toxicology.
2019 Sep; 38(2_suppl):33S-59S. doi:
10.1177/1091581819862504
. [PMID: 31522650] - Gurjit Singh, Anudeep Kaur, Jashanpreet Kaur, Manpreet S Bhatti, Palwinder Singh, Rajbir Bhatti. Bergapten inhibits chemically induced nociceptive behavior and inflammation in mice by decreasing the expression of spinal PARP, iNOS, COX-2 and inflammatory cytokines.
Inflammopharmacology.
2019 Aug; 27(4):749-760. doi:
10.1007/s10787-019-00585-6
. [PMID: 30953227] - Gurjit Singh, Amritpal Singh, Palwinder Singh, Rajbir Bhatti. Bergapten Ameliorates Vincristine-Induced Peripheral Neuropathy by Inhibition of Inflammatory Cytokines and NFκB Signaling.
ACS chemical neuroscience.
2019 06; 10(6):3008-3017. doi:
10.1021/acschemneuro.9b00206
. [PMID: 31064179] - Yi He, Zeng Zisan, Zhenhui Lu, Li Zheng, Jinmin Zhao. Bergapten alleviates osteoarthritis by regulating the ANP32A/ATM signaling pathway.
FEBS open bio.
2019 06; 9(6):1144-1152. doi:
10.1002/2211-5463.12648
. [PMID: 31037830] - Guiping Chen, Qiang Xu, Min Dai, Xuqiang Liu. Bergapten suppresses RANKL-induced osteoclastogenesis and ovariectomy-induced osteoporosis via suppression of NF-κB and JNK signaling pathways.
Biochemical and biophysical research communications.
2019 02; 509(2):329-334. doi:
10.1016/j.bbrc.2018.12.112
. [PMID: 30579598] - Md Moshfekus Saleh-E-In, Ayan Roy, Muhammad Abdullah Al-Mansur, Choudhury Mahmood Hasan, Md Matiur Rahim, Nasim Sultana, Shamim Ahmed, Md Rabiul Islam, Johannes van Staden. Isolation and in silico prediction of potential drug-like compounds from Anethum sowa L. root extracts targeted towards cancer therapy.
Computational biology and chemistry.
2019 Feb; 78(?):242-259. doi:
10.1016/j.compbiolchem.2018.11.025
. [PMID: 30584950] - Shakti Prasad Pattanayak, Pritha Bose, Priyashree Sunita, Mohd Usman Mohd Siddique, Antonio Lapenna. Bergapten inhibits liver carcinogenesis by modulating LXR/PI3K/Akt and IDOL/LDLR pathways.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2018 Dec; 108(?):297-308. doi:
10.1016/j.biopha.2018.08.145
. [PMID: 30227322] - Man Liao, Gengshen Song, Xiaoye Cheng, Xinpeng Diao, Yupeng Sun, Lantong Zhang. Simultaneous Determination of Six Coumarins in Rat Plasma and Metabolites Identification of Bergapten in Vitro and in Vivo.
Journal of agricultural and food chemistry.
2018 May; 66(18):4602-4613. doi:
10.1021/acs.jafc.7b05637
. [PMID: 29663811] - Yi Yang, Kangdi Zheng, Wenjie Mei, Yandong Wang, Chuqin Yu, Bangwei Yu, Shanbin Deng, Jinhua Hu. Anti-inflammatory and proresolution activities of bergapten isolated from the roots of Ficus hirta in an in vivo zebrafish model.
Biochemical and biophysical research communications.
2018 02; 496(2):763-769. doi:
10.1016/j.bbrc.2018.01.071
. [PMID: 29337062] - Prashant Joshi, Vinay R Sonawane, Ibidapo S Williams, Glen J P McCann, Linda Gatchie, Rajni Sharma, Naresh Satti, Bhabatosh Chaudhuri, Sandip B Bharate. Identification of karanjin isolated from the Indian beech tree as a potent CYP1 enzyme inhibitor with cellular efficacy via screening of a natural product repository.
MedChemComm.
2018 Feb; 9(2):371-382. doi:
10.1039/c7md00388a
. [PMID: 30108931] - Camilo Soto-Argel, Diego Hidalgo, Javier Palazon, Purificación Corchete. Extracellular chromone derivatives in cell cultures of Pimpinella anisum. Influence of elicitation with methyl jasmonate and 2β-methyl cyclodextrins.
Biotechnology letters.
2018 Feb; 40(2):413-418. doi:
10.1007/s10529-017-2482-3
. [PMID: 29185164] - Vincenzo Sicari. Optimization of the Supercritical Carbon Dioxide Separation of Bergapten from Bergamot Essential Oil.
Journal of AOAC International.
2018 Jan; 101(1):293-297. doi:
10.5740/jaoacint.17-0190
. [PMID: 28762330] - Sony George, Ramaswamy Venkataraman, Sabulal Baby. Melicodenine I, a new quinolinone alkaloid from Melicope denhamii leaves.
Natural product research.
2017 Apr; 31(8):890-895. doi:
10.1080/14786419.2016.1253075
. [PMID: 27817202] - Qunqun Guo, Guicai Du, Hongwei He, Hongkai Xu, Daosen Guo, Ronggui Li. Two nematicidal furocoumarins from Ficus carica L. leaves and their physiological effects on pine wood nematode (Bursaphelenchus xylophilus).
Natural product research.
2016 Sep; 30(17):1969-73. doi:
10.1080/14786419.2015.1094804
. [PMID: 26479900] - Marta Santoro, Carmela Guido, Francesca De Amicis, Diego Sisci, Erika Cione, Dolce Vincenza, Ada Donà, Maria Luisa Panno, Saveria Aquila. Bergapten induces metabolic reprogramming in breast cancer cells.
Oncology reports.
2016 Jan; 35(1):568-76. doi:
10.3892/or.2015.4327
. [PMID: 26459431] - Krystyna Skalicka-Woźniak, Marta Mendel, Magdalena Chłopecka, Natalia Dziekan. Isolation and evaluation of the myorelaxant effect of bergapten on isolated rat jejunum.
Pharmaceutical biology.
2016; 54(1):48-54. doi:
10.3109/13880209.2015.1014570
. [PMID: 25885935] - Giuseppe Mancuso, Gigliola Borgonovo, Leonardo Scaglioni, Angela Bassoli. Phytochemicals from Ruta graveolens Activate TAS2R Bitter Taste Receptors and TRP Channels Involved in Gustation and Nociception.
Molecules (Basel, Switzerland).
2015 Oct; 20(10):18907-22. doi:
10.3390/molecules201018907
. [PMID: 26501253] - Jin-Long Li, Li-Xin Gao, Fan-Wang Meng, Chun-Lan Tang, Ru-Jun Zhang, Jing-Ya Li, Cheng Luo, Jia Li, Wei-Min Zhao. PTP1B inhibitors from stems of Angelica keiskei (Ashitaba).
Bioorganic & medicinal chemistry letters.
2015; 25(10):2028-32. doi:
10.1016/j.bmcl.2015.04.003
. [PMID: 25891102] - Jing Li, Bo Ma, Qi Zhang, Xiaojing Yang, Jingjing Sun, Bowen Tang, Guangbo Cui, Di Yao, Lei Liu, Guiying Gu, Jianwei Zhu, Ping Wei, Pingkai Ouyang. Simultaneous determination of osthole, bergapten and isopimpinellin in rat plasma and tissues by liquid chromatography-tandem mass spectrometry.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2014 Nov; 970(?):77-85. doi:
10.1016/j.jchromb.2014.06.014
. [PMID: 25240925] - Sidney J Stohs, Howard Miller, Felice Romano. Absence of furanocoumarins in Advantra Z® (Citrus aurantium, bitter orange) extracts.
Journal of dietary supplements.
2014 Sep; 11(3):288-93. doi:
10.3109/19390211.2014.937047
. [PMID: 25026202] - Cheryl E Ainslie-Waldman, Scott W Simpkins, Pramod Upadhyaya, Steven G Carmella, Stephen S Hecht, Sabrina P Trudo. Contamination of deconjugation enzymes derived from Helix pomatia with the plant bioactive compounds 3,3'-diindolylmethane, 5-methoxypsoralen, and 8-methoxypsoralen.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2013 Dec; 62(?):188-93. doi:
10.1016/j.fct.2013.08.055
. [PMID: 23994708] - Christian Celia, Elena Trapasso, Marcello Locatelli, Michele Navarra, Cinzia Anna Ventura, Joy Wolfram, Maria Carafa, Valeria Maria Morittu, Domenico Britti, Luisa Di Marzio, Donatella Paolino. Anticancer activity of liposomal bergamot essential oil (BEO) on human neuroblastoma cells.
Colloids and surfaces. B, Biointerfaces.
2013 Dec; 112(?):548-53. doi:
10.1016/j.colsurfb.2013.09.017
. [PMID: 24099646] - Y Gao, Y Z Liu, X-M Zhang, Y Zhou, X Zhang, C-Y Dong. Pharmacokinetic studies of bergapten in dog plasma by using a LC-MS/MS method studies.
Drug research.
2013 Jul; 63(7):338-41. doi:
10.1055/s-0033-1341426
. [PMID: 23549759] - Taryn O'Neill, John A Johnson, Duncan Webster, Christopher A Gray. The Canadian medicinal plant Heracleum maximum contains antimycobacterial diynes and furanocoumarins.
Journal of ethnopharmacology.
2013 May; 147(1):232-7. doi:
10.1016/j.jep.2013.03.009
. [PMID: 23501157] - Pravin O Patil, Sanjay B Bari, Sandip D Firke, Prashant K Deshmukh, Shailesh T Donda, Dilip A Patil. A comprehensive review on synthesis and designing aspects of coumarin derivatives as monoamine oxidase inhibitors for depression and Alzheimer's disease.
Bioorganic & medicinal chemistry.
2013 May; 21(9):2434-50. doi:
10.1016/j.bmc.2013.02.017
. [PMID: 23517722] - Yan-xu Chang, Qiu-Hong Zhang, Jin Li, Ling Zhang, Xin-rong Guo, Jun He, Peng Zhang, Lin Ma, Yan-ru Deng, Bo-li Zhang, Xiu-mei Gao. Simultaneous determination of scopoletin, psoralen, bergapten, xanthotoxin, columbianetin acetate, imperatorin, osthole and isoimperatorin in rat plasma by LC-MS/MS for pharmacokinetic studies following oral administration of Radix Angelicae Pubescentis extract.
Journal of pharmaceutical and biomedical analysis.
2013 Apr; 77(?):71-5. doi:
10.1016/j.jpba.2012.12.031
. [PMID: 23384552] - Stavros E Bariamis, Marilena Marin, Constantinos M Athanassopoulos, Christos Kontogiorgis, Zinovia Tsimali, Dionissios Papaioannou, Giovanni Sindona, Giovanni Romeo, Konstantinos Avgoustakis, Dimitra Hadjipavlou-Litina. Syntheses and evaluation of the antioxidant activity of novel methoxypsoralen derivatives.
European journal of medicinal chemistry.
2013 Feb; 60(?):155-69. doi:
10.1016/j.ejmech.2012.11.043
. [PMID: 23291118] - Věra Schulzová, Luboš Babička, Jana Hajšlová. Furanocoumarins in celeriac from different farming systems: a 3-year study.
Journal of the science of food and agriculture.
2012 Nov; 92(14):2849-54. doi:
10.1002/jsfa.5629
. [PMID: 22407843] - Nallely E Sandoval-Montemayor, Abraham García, Elizabeth Elizondo-Treviño, Elvira Garza-González, Laura Alvarez, María del Rayo Camacho-Corona. Chemical composition of hexane extract of Citrus aurantifolia and anti-Mycobacterium tuberculosis activity of some of its constituents.
Molecules (Basel, Switzerland).
2012 Sep; 17(9):11173-84. doi:
10.3390/molecules170911173
. [PMID: 22992784] - Zhao Chen, Jiajing Wang, Danxia Chen, Guorong Fan, Yutian Wu. Sodium desoxycholate-assisted capillary electrochromatography with methacrylate ester-based monolithic column on fast separation and determination of coumarin analogs in Angelica dahurica extract.
Electrophoresis.
2012 Sep; 33(18):2884-91. doi:
10.1002/elps.201200120
. [PMID: 22930555] - Renuka Diwan, Nutan Malpathak. Effect of polyamines on shoot multiplication and furanocoumarin production in Ruta graveolens cultures.
Natural product communications.
2012 Jul; 7(7):895-8. doi:
"
. [PMID: 22908575] - F Conforti, G Menichini, L Zanfini, R Tundis, G A Statti, E Provenzano, F Menichini, F Somma, C Alfano. Evaluation of phototoxic potential of aerial components of the fig tree against human melanoma.
Cell proliferation.
2012 Jun; 45(3):279-85. doi:
10.1111/j.1365-2184.2012.00816.x
. [PMID: 22469077] - Wei-Xia Liu, Feng-Lan Jia, Yue-Ying He, Bao-Xu Zhang. Protective effects of 5-methoxypsoralen against acetaminophen-induced hepatotoxicity in mice.
World journal of gastroenterology.
2012 May; 18(18):2197-202. doi:
10.3748/wjg.v18.i18.2197
. [PMID: 22611312] - Krystyna Skalicka-Woźniak, Kazimierz Głowniak. Pressurized liquid extraction of coumarins from fruits of Heracleum leskowii with application of solvents with different polarity under increasing temperature.
Molecules (Basel, Switzerland).
2012 Apr; 17(4):4133-41. doi:
10.3390/molecules17044133
. [PMID: 22481536] - Faiyaz Ahmed, Asna Urooj. Cardioprotective activity of standardized extract of Ficus racemosa stem bark against doxorubicin-induced toxicity.
Pharmaceutical biology.
2012 Apr; 50(4):468-73. doi:
10.3109/13880209.2011.613848
. [PMID: 22136326] - Yufeng Ma, Wen Li, Fangdi Hu, Yikai Shi, Yingyan Bi, Shilan Feng. [Phamacokinetic study of bergapten in rats plasma by LC-MS/MS].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2012 Feb; 37(3):381-3. doi:
10.4268/cjcmm20120326
. [PMID: 22568245] - Mongi Saoudi, Abdelfattah El Feki. Protective Role of Ficus carica Stem Extract against Hepatic Oxidative Damage Induced by Methanol in Male Wistar Rats.
Evidence-based complementary and alternative medicine : eCAM.
2012; 2012(?):150458. doi:
10.1155/2012/150458
. [PMID: 22203864] - Fengguang Guo, Jiaxin Lei, Yucheng Sun, Yong Hun Chi, Feng Ge, Bhimanagouda S Patil, Hisashi Koiwa, Rensen Zeng, Keyan Zhu-Salzman. Antagonistic regulation, yet synergistic defense: effect of bergapten and protease inhibitor on development of cowpea bruchid Callosobruchus maculatus.
PloS one.
2012; 7(8):e41877. doi:
10.1371/journal.pone.0041877
. [PMID: 22927917] - Siddaraju M Nanjundaiah, David Y-W Lee, Zhongze Ma, Harry H S Fong, Lixing Lao, Brian M Berman, Kamal D Moudgil. Modified huo-luo-xiao-ling dan suppresses adjuvant arthritis by inhibiting chemokines and matrix-degrading enzymes.
Evidence-based complementary and alternative medicine : eCAM.
2012; 2012(?):589256. doi:
10.1155/2012/589256
. [PMID: 22474510] - Yingchun Zhang, Haiyu Xu, Xiaomeng Chen, Chang Chen, Haijun Wang, Fanyun Meng, Hongjun Yang, Luqi Huang. Simultaneous quantification of 17 constituents from Yuanhu Zhitong tablet using rapid resolution liquid chromatography coupled with a triple quadrupole electrospray tandem mass spectrometry.
Journal of pharmaceutical and biomedical analysis.
2011 Nov; 56(3):497-504. doi:
10.1016/j.jpba.2011.06.008
. [PMID: 21733652] - Min Kyung Kim, Dong-Hyug Yang, Mihye Jung, Eun Ha Jung, Han Young Eom, Joon Hyuk Suh, Jung Won Min, Unyong Kim, Hyeyoung Min, Jinwoong Kim, Sang Beom Han. Simultaneous determination of chromones and coumarins in Radix Saposhnikoviae by high performance liquid chromatography with diode array and tandem mass detectors.
Journal of chromatography. A.
2011 Sep; 1218(37):6319-30. doi:
10.1016/j.chroma.2011.06.103
. [PMID: 21807369] - Sekhar K Bose, Saikat Dewanjee, Ranabir Sahu, Sankar P Dey. Effect of bergapten from Heracleum nepalense root on production of proinflammatory cytokines.
Natural product research.
2011 Sep; 25(15):1444-9. doi:
10.1080/14786410902800665
. [PMID: 19662568] - Iii-Min Chung, Sun-Jin Kim, Min-A Yeo, Se-Won Park, Hyung-In Moon. Immunotoxicity activity of natural furocoumarins from milky sap of Ficus carica L. against Aedes aegypti L.
Immunopharmacology and immunotoxicology.
2011 Sep; 33(3):515-8. doi:
10.3109/08923973.2010.543907
. [PMID: 21214422] - Man Liu, Xiaowei Shi, Wei Yang, Songchen Liu, Na Wang, Rui Shi, Shi Qiao, Qiao Wang, Yongli Wang. Quantitative analysis of nine coumarins in rat urine and bile after oral administration of Radix Glehniae extract by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry.
Biomedical chromatography : BMC.
2011 Jul; 25(7):783-93. doi:
10.1002/bmc.1517
. [PMID: 20878664] - Helge Joa, Sylvia Vogl, Atanas G Atanasov, Martin Zehl, Thomas Nakel, Nanang Fakhrudin, Elke H Heiss, Paolo Picker, Ernst Urban, Christoph Wawrosch, Johannes Saukel, Gottfried Reznicek, Brigitte Kopp, Verena M Dirsch. Identification of ostruthin from Peucedanum ostruthium rhizomes as an inhibitor of vascular smooth muscle cell proliferation.
Journal of natural products.
2011 Jun; 74(6):1513-6. doi:
10.1021/np200072a
. [PMID: 21627108] - Sailesh Konda, Howard I Maibach. Percutaneous penetration of 5-methoxypsoralen in rhesus monkeys.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2011 May; 49(5):1092-5. doi:
10.1016/j.fct.2011.01.018
. [PMID: 21281688] - Monica Borgatti, Irene Mancini, Nicoletta Bianchi, Alessandra Guerrini, Ilaria Lampronti, Damiano Rossi, Gianni Sacchetti, Roberto Gambari. Bergamot (Citrus bergamia Risso) fruit extracts and identified components alter expression of interleukin 8 gene in cystic fibrosis bronchial epithelial cell lines.
BMC biochemistry.
2011 Apr; 12(?):15. doi:
10.1186/1471-2091-12-15
. [PMID: 21496221] - Eunjin Shin, Chul Lee, Sang Hyun Sung, Young Choong Kim, Bang Yeon Hwang, Mi Kyeong Lee. Antifibrotic activity of coumarins from Cnidium monnieri fruits in HSC-T6 hepatic stellate cells.
Journal of natural medicines.
2011 Apr; 65(2):370-4. doi:
10.1007/s11418-010-0485-7
. [PMID: 21082271] - Marta Ferreira Maia, Sarah J Moore. Plant-based insect repellents: a review of their efficacy, development and testing.
Malaria journal.
2011 Mar; 10 Suppl 1(?):S11. doi:
10.1186/1475-2875-10-s1-s11
. [PMID: 21411012] - Yuma Iwai, Kouki Murakami, Yasuyuki Gomi, Toshihiro Hashimoto, Yoshinori Asakawa, Yoshinobu Okuno, Toyokazu Ishikawa, Dai Hatakeyama, Noriko Echigo, Takashi Kuzuhara. Anti-influenza activity of marchantins, macrocyclic bisbibenzyls contained in liverworts.
PloS one.
2011; 6(5):e19825. doi:
10.1371/journal.pone.0019825
. [PMID: 21625478] - Roberto Gambari. Predictive analyses of biological effects of natural products: from plant extracts to biomolecular laboratory and computer modeling.
Evidence-based complementary and alternative medicine : eCAM.
2011; 2011(?):383290. doi:
10.1093/ecam/nep096
. [PMID: 19752166] - Daya L Chothani, H U Vaghasiya. A review on Balanites aegyptiaca Del (desert date): phytochemical constituents, traditional uses, and pharmacological activity.
Pharmacognosy reviews.
2011 Jan; 5(9):55-62. doi:
10.4103/0973-7847.79100
. [PMID: 22096319] - N Kaushal, S Naz, Ak Tiwary. Angelica archengelica extract induced perturbation of rat skin and tight junctional protein (ZO-1) of HaCaT cells.
Daru : journal of Faculty of Pharmacy, Tehran University of Medical Sciences.
2011; 19(1):1-11. doi:
NULL
. [PMID: 22615634] - Rui Deng, Jing Zhang, Weizao Luo, Lin Zhou, Haijie Zheng, Yi Zhang. [Quantitative determination of six coumarins in Angelica dahurica var. formosana by RRLC-UV].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2010 Dec; 35(23):3184-7. doi:
. [PMID: 21355245]
- Man Liu, Dezhi Kong, Wei Yang, Qiao Wang, Lantong Zhang. [Determination of five coumarins in radix glehniae by micellar electrokinetic capillary chromatography].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2010 Jul; 35(14):1840-4. doi:
10.4268/cjcmm20101416
. [PMID: 20939281] - S B Chandrasekar, M Bhanumathy, A T Pawar, T Somasundaram. Phytopharmacology of Ficus religiosa.
Pharmacognosy reviews.
2010 Jul; 4(8):195-9. doi:
10.4103/0973-7847.70918
. [PMID: 22228961] - Sumit Paliwal, Makoto Ogura, Samir Mitragotri. Rapid sampling of molecules via skin for diagnostic and forensic applications.
Pharmaceutical research.
2010 Jul; 27(7):1255-63. doi:
10.1007/s11095-010-0081-2
. [PMID: 20238151] - Domenico Bonamonte, Caterina Foti, Nicola Lionetti, Luigi Rigano, Gianni Angelini. Photoallergic contact dermatitis to 8-methoxypsoralen in Ficus carica.
Contact dermatitis.
2010 Jun; 62(6):343-8. doi:
10.1111/j.1600-0536.2010.01713.x
. [PMID: 20557340] - Bo Zhao, Xinbao Yang, Xiuwei Yang, Lianxue Zhang. [Chemical constituents of roots of Saposhnikovia divaricata].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2010 Jun; 35(12):1569-72. doi:
10.4268/cjcmm20101214
. [PMID: 20815209] - Paulo D Picon, Rafael V Picon, Andry F Costa, Guilherme B Sander, Karine M Amaral, Ana L Aboy, Amélia T Henriques. Randomized clinical trial of a phytotherapic compound containing Pimpinella anisum, Foeniculum vulgare, Sambucus nigra, and Cassia augustifolia for chronic constipation.
BMC complementary and alternative medicine.
2010 Apr; 10(?):17. doi:
10.1186/1472-6882-10-17
. [PMID: 20433751] - Jiajing Wang, Danxia Chen, Zhao Chen, Guorong Fan, Yutian Wu. Fast separation and determination of coumarins in Fructus cnidii extracts by CEC using poly(butyl methacrylate-co-ethylene dimethacrylate-co-[2-(methacryloyloxy)ethyl] trimethylammonium chloride) monolithic columns.
Journal of separation science.
2010 Apr; 33(8):1099-108. doi:
10.1002/jssc.200900657
. [PMID: 20187027] - Valerie Beatrice Tsassi, Hidayat Hussain, Bouberte Yemele Meffo, Simeon F Kouam, Etienne Dongo, Barbara Schulz, Ivan R Greene, Karsten Krohn. Antimicrobial coumarins from the stem bark of Afraegle paniculata.
Natural product communications.
2010 Apr; 5(4):559-61. doi:
"
. [PMID: 20433072] - Christiane Lohr, Nicole Raquet, Dieter Schrenk. Application of the concept of relative photomutagenic potencies to selected furocoumarins in V79 cells.
Toxicology in vitro : an international journal published in association with BIBRA.
2010 Mar; 24(2):558-66. doi:
10.1016/j.tiv.2009.10.017
. [PMID: 19883747] - Wei Yang, Chao Feng, Dezhi Kong, Xiaowei Shi, Yang Cui, Man Liu, Qiao Wang, Yongli Wang, Lantong Zhang. Simultaneous and sensitive determination of xanthotoxin, psoralen, isoimpinellin and bergapten in rat plasma by liquid chromatography-electrospray ionization mass spectrometry.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2010 Feb; 878(5-6):575-82. doi:
10.1016/j.jchromb.2009.12.035
. [PMID: 20116347] - Masashi Kawami, Ryoko Yumoto, Junya Nagai, Varaporn Buraphacheep Junyaprasert, Noppamas Soonthornchareonnon, Denpong Patanasethanont, Bung-orn Sripanidkulchai, Mikihisa Takano. Effect of Thai plant extracts on P-glycoprotein function and viability in paclitaxel-resistant HepG2 cells.
Drug metabolism and pharmacokinetics.
2010; 25(2):155-62. doi:
10.2133/dmpk.25.155
. [PMID: 20460821] - Guo-Qang Liu, Jing Dong, Hong Wang, Yuki Hashi, Shi-Zhong Chen. Differentiation of four pairs of furocoumarin isomers by electrospray ionization tandem mass spectrometry.
European journal of mass spectrometry (Chichester, England).
2010; 16(2):215-20. doi:
10.1255/ejms.1070
. [PMID: 20212330] - Danxia Chen, Jiajing Wang, Yunyun Jiang, Tingting Zhou, Guorong Fan, Yutian Wu. Separation and determination of coumarins in Fructus cnidii extracts by pressurized capillary electrochromatography using a packed column with a monolithic outlet frit.
Journal of pharmaceutical and biomedical analysis.
2009 Dec; 50(5):695-702. doi:
10.1016/j.jpba.2009.05.026
. [PMID: 19608371] - Andreia P Oliveira, Patrícia Valentão, José A Pereira, Branca M Silva, Fernando Tavares, Paula B Andrade. Ficus carica L.: Metabolic and biological screening.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2009 Nov; 47(11):2841-6. doi:
10.1016/j.fct.2009.09.004
. [PMID: 19747518] - Elena Nicolis, Ilaria Lampronti, Maria Cristina Dechecchi, Monica Borgatti, Anna Tamanini, Valentino Bezzerri, Nicoletta Bianchi, Martina Mazzon, Irene Mancini, Maria Grazia Giri, Paolo Rizzotti, Roberto Gambari, Giulio Cabrini. Modulation of expression of IL-8 gene in bronchial epithelial cells by 5-methoxypsoralen.
International immunopharmacology.
2009 Nov; 9(12):1411-22. doi:
10.1016/j.intimp.2009.08.013
. [PMID: 19720161] - Renuka Diwan, Nutan Malpathak. Furanocoumarins: novel topoisomerase I inhibitors from Ruta graveolens L.
Bioorganic & medicinal chemistry.
2009 Oct; 17(19):7052-5. doi:
10.1016/j.bmc.2009.04.023
. [PMID: 19736019] - Nicole Raquet, Dieter Schrenk. Relative photomutagenicity of furocoumarins and limettin in the hypoxanthine phosphoribosyl transferase assay in V79 cells.
Chemical research in toxicology.
2009 Sep; 22(9):1639-47. doi:
10.1021/tx9002287
. [PMID: 19725558] - V P Veerapur, K R Prabhakar, Vipan Kumar Parihar, Machendar Reddy Kandadi, S Ramakrishana, B Mishra, B S Satish Rao, K K Srinivasan, K I Priyadarsini, M K Unnikrishnan. Ficus racemosa Stem Bark Extract: A Potent Antioxidant and a Probable Natural Radioprotector.
Evidence-based complementary and alternative medicine : eCAM.
2009 Sep; 6(3):317-24. doi:
10.1093/ecam/nem119
. [PMID: 18955240] - Marcello Iriti, Franco Faoro. Chemical diversity and defence metabolism: how plants cope with pathogens and ozone pollution.
International journal of molecular sciences.
2009 Jul; 10(8):3371-3399. doi:
10.3390/ijms10083371
. [PMID: 20111684] - Takuro Maruyama, Ahmed Abbaskhan, Muhammad Iqbal Choudhary, Yoshisuke Tsuda, Yukihiro Goda, Michel Farille, Jean-Pierre Reduron. Botanical origin of Indian celery seed (fruit).
Journal of natural medicines.
2009 Jul; 63(3):248-53. doi:
10.1007/s11418-009-0321-0
. [PMID: 19214654] - Nicoletta Bianchi, Cristina Zuccato, Ilaria Lampronti, Monica Borgatti, Roberto Gambari. Fetal Hemoglobin Inducers from the Natural World: A Novel Approach for Identification of Drugs for the Treatment of {beta}-Thalassemia and Sickle-Cell Anemia.
Evidence-based complementary and alternative medicine : eCAM.
2009 Jun; 6(2):141-51. doi:
10.1093/ecam/nem139
. [PMID: 18955291] - Kailan Zhou, Bing Wu, Yulei Zhuang, Liqin Ding, Zhihui Liu, Feng Qiu. [Chemical constituents of fresh celery].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2009 Jun; 34(12):1512-5. doi:
. [PMID: 19777835]
- Alessandra Guerrini, Ilaria Lampronti, Nicoletta Bianchi, Cristina Zuccato, Giulia Breveglieri, Francesca Salvatori, Irene Mancini, Damiano Rossi, Rocco Potenza, Francesco Chiavilli, Gianni Sacchetti, Roberto Gambari, Monica Borgatti. Bergamot (Citrus bergamia Risso) fruit extracts as γ-globin gene expression inducers: phytochemical and functional perspectives.
Journal of agricultural and food chemistry.
2009 May; 57(10):4103-11. doi:
10.1021/jf803489p
. [PMID: 19371028] - Yena Li, Shangjun Yang, Shaoyan Bai. [Studies on chemical constituents from roots of Angelica polymorpha].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2009 Apr; 34(7):854-7. doi:
. [PMID: 19623980]
- Ying-Ku Lin, Ming-Thau Sheu, Chia-Hui Huang, Hsiu-O Ho. Development of a reversed-phase high-performance liquid chromatographic method for analyzing furanocoumarin components in citrus fruit juices and Chinese herbal medicines.
Journal of chromatographic science.
2009 Mar; 47(3):211-5. doi:
10.1093/chromsci/47.3.211
. [PMID: 19298708] - Aya Ishikawa, Tatsuya Kuma, Hiroyuki Sasaki, Nobuhiro Sasaki, Yoshihiro Ozeki, Nobuyuki Kobayashi, Yoshie Kitamura. Constitutive expression of bergaptol O-methyltransferase in Glehnia littoralis cell cultures.
Plant cell reports.
2009 Feb; 28(2):257-65. doi:
10.1007/s00299-008-0631-9
. [PMID: 18974989] - Peng Zhang, Xiu-Wei Yang. [Studies on chemical constituents in roots and rhizomes of Notopterygium incisum].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2008 Dec; 33(24):2918-21. doi:
. [PMID: 19294850]
- Aleksandra Orlita, Matylda Sidwa-Gorycka, Monika Paszkiewicz, Edmund Malinski, Jolanta Kumirska, Ewa M Siedlecka, Ewa Łojkowska, Piotr Stepnowski. Application of chitin and chitosan as elicitors of coumarins and fluoroquinolone alkaloids in Ruta graveolens L. (common rue).
Biotechnology and applied biochemistry.
2008 Oct; 51(Pt 2):91-6. doi:
10.1042/ba20070200
. [PMID: 18211259] - Claudio Gardana, Federico Nalin, Paolo Simonetti. Evaluation of flavonoids and furanocoumarins from Citrus bergamia (Bergamot) juice and identification of new compounds.
Molecules (Basel, Switzerland).
2008 Sep; 13(9):2220-8. doi:
10.3390/molecules13092220
. [PMID: 18830151]