Teavigo (BioDeep_00000865241)

Main id: BioDeep_00000000305

 

PANOMIX_OTCML-2023 Antitumor activity BioNovoGene_Lab2019


代谢物信息卡片


(-)-Epigallocatechin gallate (85\\% (-)-epigallocatechin gallate, 10\\% (-)-epigallocatechin, 5\\% (-)- epicatechin gallate)

化学式: C22H18O11 (458.0849)
中文名称: 表没食子儿茶素没食子酸酯, (-)-表没食子儿茶素没食子酸酯
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C1C(C(OC2=CC(=CC(=C21)O)O)C3=CC(=C(C(=C3)O)O)O)OC(=O)C4=CC(=C(C(=C4)O)O)O
InChI: InChI=1S/C22H18O11/c23-10-5-12(24)11-7-18(33-22(31)9-3-15(27)20(30)16(28)4-9)21(32-17(11)6-10)8-1-13(25)19(29)14(26)2-8/h1-6,18,21,23-30H,7H2/t18-,21-/m1/s1

描述信息

COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials
D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents
D020011 - Protective Agents > D016588 - Anticarcinogenic Agents
D020011 - Protective Agents > D016587 - Antimutagenic Agents
D020011 - Protective Agents > D000975 - Antioxidants
D000970 - Antineoplastic Agents
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
(-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4].
(-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4].
(-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4].
(-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4].
(-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4].
(-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4].

同义名列表

59 个代谢物同义名

(-)-Epigallocatechin gallate (85\\% (-)-epigallocatechin gallate, 10\\% (-)-epigallocatechin, 5\\% (-)- epicatechin gallate); Benzoic acid, 3,4,5-trihydroxy-, (2R,3R)-3,4-dihydro-5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)-2H-1-benzopyran-3-yl ester; (2R,3R)-2-(3,4,5-Trihydroxyphenyl)-3,4-dihydro-1[2H]-benzopyran-3,5,7-triol-3-(3,4,5-trihydroxybenzoate); (2R,3R)-5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)-3,4-dihydro-2H-chromen-3-yl 3,4,5-trihydroxybenzoate; 3,4,5-trihydroxybenzoic acid [(2R,3R)-5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)-3-chromanyl] ester; 3,4,5-trihydroxybenzoic acid [(2R,3R)-5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)chroman-3-yl] ester; [(2R,3R)-5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)chroman-3-yl] 3,4,5-trihydroxybenzoate; (−)-cis-2-(3,4,5-Trihydroxyphenyl)-3,4-dihydro-1(2H)-benzopyran-3,5,7-triol 3-gallate; (−)-cis-3,3′,4′,5,5′,7-Hexahydroxy-flavane-3-gallate; Epigallocatechol, 3-gallate, (-)-; (-)-Epigallocatechin-3-o-gallate; (-)-epigallocatechin 3-gallate; (-)-Epigallocatechin-3-gallate; (-)-Epigallocatechol gallate; (−)-Epigallocatechin gallate; (-)-Epigallocatechin gallate; epigallocatechin-3-gallate; Epigallocatechin 3-gallate; Galloyl-L-epigallocatechol; Epigallocatechin Gallate; SDCCGMLS-0066550.P001; Green tea extract; Spectrum3_000244; Spectrum2_000168; Spectrum4_001541; Spectrum5_000102; SpecPlus_000277; Catechin deriv.; Spectrum_000316; SPECTRUM210239; KBioSS_000796; BSPBio_001628; MEGxp0_001166; DivK1c_006373; KBioGR_002002; SMR000449288; KBio2_005932; KBio1_001317; KBio3_001128; ACon1_001054; Tea catechin; MLS000758300; KBio2_003364; KBio2_000796; SPBio_000035; 50299_FLUKA; AIDS-000674; CCRIS 3729; E4143_SIAL; CHEBI:4806; E4268_SIAL; AIDS000674; (-)-EGCG; 989-51-5; Teavigo; C09731; EGCG; Epigallocatechol Gallate; Epigallocatechin 3-gallate



数据库引用编号

15 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(1)

PlantCyc(1)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

110 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 14 ABCB1, ADIG, ANG, CCND1, CTNNB1, DYRK1A, HSPA5, MSMP, PIK3CA, PPARG, PTGS2, SNCA, STAT1, TYR
Peripheral membrane protein 1 PTGS2
Endoplasmic reticulum membrane 4 CD4, HMOX1, HSPA5, PTGS2
Nucleus 10 ADIG, ANG, CCND1, CTNNB1, DYRK1A, HMOX1, HSPA5, PPARG, SNCA, STAT1
cytosol 12 ANG, CCND1, COMT, CTNNB1, HMOX1, HSPA5, LEP, PIK3CA, PPARG, PRKCQ, SNCA, STAT1
dendrite 3 COMT, DYRK1A, STAT1
centrosome 2 CCND1, CTNNB1
nucleoplasm 6 CCND1, CTNNB1, DYRK1A, HMOX1, PPARG, STAT1
RNA polymerase II transcription regulator complex 2 PPARG, STAT1
Cell membrane 4 ABCB1, CD4, COMT, CTNNB1
Cytoplasmic side 1 HMOX1
lamellipodium 2 CTNNB1, PIK3CA
Cell projection, axon 1 SNCA
Multi-pass membrane protein 1 ABCB1
Synapse 3 COMT, CTNNB1, SNCA
cell cortex 2 CTNNB1, SNCA
cell junction 1 CTNNB1
cell surface 2 ABCB1, HSPA5
glutamatergic synapse 1 CTNNB1
growth cone 2 ANG, SNCA
neuronal cell body 2 ANG, SNCA
postsynapse 1 SNCA
presynaptic membrane 1 CTNNB1
Lysosome 2 SNCA, TYR
plasma membrane 9 ABCB1, CD4, COMT, CTNNB1, HSPA5, IGHE, PIK3CA, PRKCQ, SNCA
synaptic vesicle membrane 1 SNCA
Membrane 7 ABCB1, ADIG, COMT, CTNNB1, HMOX1, HSPA5, SNCA
apical plasma membrane 1 ABCB1
axon 4 COMT, DYRK1A, SNCA, STAT1
basolateral plasma membrane 1 CTNNB1
caveola 1 PTGS2
extracellular exosome 4 ABCB1, COMT, CTNNB1, HSPA5
endoplasmic reticulum 3 HMOX1, HSPA5, PTGS2
extracellular space 6 ANG, HMOX1, IGHE, LEP, MSMP, SNCA
perinuclear region of cytoplasm 7 CTNNB1, HMOX1, PIK3CA, PPARG, SNCA, STAT1, TYR
Schaffer collateral - CA1 synapse 1 CTNNB1
adherens junction 1 CTNNB1
apicolateral plasma membrane 1 CTNNB1
bicellular tight junction 2 CCND1, CTNNB1
intercalated disc 1 PIK3CA
mitochondrion 2 HSPA5, SNCA
protein-containing complex 5 CTNNB1, HSPA5, PTGS2, SNCA, STAT1
intracellular membrane-bounded organelle 4 COMT, HSPA5, PPARG, TYR
Microsome membrane 1 PTGS2
Single-pass type I membrane protein 3 CD4, IGHE, TYR
Secreted 5 ADIG, ANG, LEP, MSMP, SNCA
extracellular region 5 ADIG, ANG, IGHE, LEP, SNCA
Single-pass membrane protein 1 ADIG
mitochondrial outer membrane 1 HMOX1
Extracellular side 1 COMT
transcription regulator complex 1 CTNNB1
centriolar satellite 1 PRKCQ
Nucleus membrane 1 CCND1
nuclear membrane 1 CCND1
external side of plasma membrane 1 CD4
actin cytoskeleton 2 ANG, SNCA
Z disc 1 CTNNB1
beta-catenin destruction complex 1 CTNNB1
nucleolus 2 ANG, STAT1
Wnt signalosome 1 CTNNB1
Melanosome membrane 1 TYR
midbody 1 HSPA5
Early endosome 1 CD4
apical part of cell 1 CTNNB1
cell-cell junction 1 CTNNB1
Golgi-associated vesicle 1 TYR
Single-pass type II membrane protein 1 COMT
postsynaptic membrane 1 CTNNB1
Apical cell membrane 1 ABCB1
Membrane raft 1 CD4
Cytoplasm, cytoskeleton 1 CTNNB1
focal adhesion 2 CTNNB1, HSPA5
Cell junction, adherens junction 1 CTNNB1
flotillin complex 1 CTNNB1
basement membrane 1 ANG
fascia adherens 1 CTNNB1
lateral plasma membrane 1 CTNNB1
nuclear speck 1 DYRK1A
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
receptor complex 1 PPARG
neuron projection 1 PTGS2
chromatin 2 PPARG, STAT1
IgE immunoglobulin complex 1 IGHE
cell periphery 1 CTNNB1
supramolecular fiber 1 SNCA
Chromosome 1 ANG
cytoskeleton 1 DYRK1A
Cytoplasm, cytoskeleton, cilium basal body 1 CTNNB1
Nucleus, nucleolus 1 ANG
spindle pole 1 CTNNB1
postsynaptic density, intracellular component 1 CTNNB1
microvillus membrane 1 CTNNB1
[Isoform 2]: Cell membrane 1 IGHE
Endomembrane system 1 CTNNB1
Lipid droplet 1 ADIG
Melanosome 2 HSPA5, TYR
Cytoplasm, Stress granule 1 ANG
cytoplasmic stress granule 1 ANG
Nucleus speckle 1 DYRK1A
euchromatin 1 CTNNB1
endoplasmic reticulum lumen 3 CD4, HSPA5, PTGS2
transcription repressor complex 1 CCND1
axon terminus 1 SNCA
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
endocytic vesicle 1 ANG
beta-catenin-TCF complex 1 CTNNB1
immunological synapse 1 PRKCQ
aggresome 1 PRKCQ
Single-pass type IV membrane protein 1 HMOX1
presynaptic active zone cytoplasmic component 1 CTNNB1
clathrin-coated endocytic vesicle membrane 1 CD4
ribonucleoprotein complex 1 DYRK1A
endoplasmic reticulum-Golgi intermediate compartment 1 HSPA5
protein-DNA complex 1 CTNNB1
external side of apical plasma membrane 1 ABCB1
catenin complex 1 CTNNB1
[Isoform 3]: Cell membrane 1 IGHE
cyclin-dependent protein kinase holoenzyme complex 1 CCND1
T cell receptor complex 1 CD4
[Isoform 1]: Secreted 1 IGHE
IgE B cell receptor complex 1 IGHE
immunoglobulin complex, circulating 1 IGHE
angiogenin-PRI complex 1 ANG
inclusion body 1 SNCA
endoplasmic reticulum chaperone complex 1 HSPA5
cyclin D1-CDK4 complex 1 CCND1
beta-catenin-TCF7L2 complex 1 CTNNB1
[Isoform Soluble]: Cytoplasm 1 COMT
[Isoform Membrane-bound]: Cell membrane 1 COMT
cyclin D1-CDK6 complex 1 CCND1
beta-catenin-ICAT complex 1 CTNNB1
Scrib-APC-beta-catenin complex 1 CTNNB1
ISGF3 complex 1 STAT1
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA


文献列表

  • He Peng, Xiaojian Lin, Ying Wang, Jiajun Chen, Qian Zhao, Shengjia Chen, Qi Cheng, Chaojie Chen, Tingting Sang, Hongyu Zhou, Jun Xiao, Wen Wang, Liu Fang, Xingya Wang. Epigallocatechin gallate suppresses mitotic clonal expansion and adipogenic differentiation of preadipocytes through impeding JAK2/STAT3-mediated transcriptional cascades. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2024 Jul; 129(?):155563. doi: 10.1016/j.phymed.2024.155563. [PMID: 38552377]
  • Li He, Lisheng Peng, Lianan Wang, Xiaoyan Jiang, Xinfeng Sun, Haiwen Li, Tong Lin, Zhulin Wu, Sen Lin. Investigation of folate-modified EGCG-loaded thermosensitive nanospheres inducing immunogenic cell death and damage-associated molecular patterns in hepatocellular carcinoma. Biochemical and biophysical research communications. 2024 Jun; 714(?):149976. doi: 10.1016/j.bbrc.2024.149976. [PMID: 38677007]
  • Feng Wei, Delin Li, Xiaodong Chen, Yubing Li, Yuting Zeng, Yilin Cai, Youtao Zeng, Yu Chen, Xiao Ma, Jinhao Zeng. Therapeutic effects of epigallocatechin-3-gallate for inflammatory bowel disease: A preclinical meta-analysis. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2024 Jun; 128(?):155408. doi: 10.1016/j.phymed.2024.155408. [PMID: 38503153]
  • Jingwen Xu, Hezhen Zhang, Mengyu Deng, Haotong Guo, Lifan Cui, Zhengqin Liu, Jing Xu. Formation mechanism of quinoa protein hydrolysate-EGCG complexes at different pH conditions and its effect on the protein hydrolysate-lipid co-oxidation in emulsions. Food research international (Ottawa, Ont.). 2024 Jun; 186(?):114365. doi: 10.1016/j.foodres.2024.114365. [PMID: 38729700]
  • Asako Narai-Kanayama, Sumio Hayakawa, Takayuki Yoshino, Futa Honda, Hiroko Matsuda, Yumiko Oishi. Differential effects of theasinensins and epigallocatechin-3-O-gallate on phospholipid bilayer structure and liposomal aggregation. Biochimica et biophysica acta. Biomembranes. 2024 Jun; 1866(5):184312. doi: 10.1016/j.bbamem.2024.184312. [PMID: 38579959]
  • Ziqiong Zhou, Yan Li, Fangyuan Wang, Guanghao Zhu, Shenglan Qi, Haonan Wang, Yuhe Ma, Rong Zhu, Yuejuan Zheng, Guangbo Ge, Ping Wang. Bioactive components and mechanisms of Pu-erh tea in improving levodopa metabolism in rats through COMT inhibition. Food & function. 2024 May; 15(10):5287-5299. doi: 10.1039/d4fo00538d. [PMID: 38639730]
  • Adam J Lewis, Amanda C Richards, Alejandra A Mendez, Bijaya K Dhakal, Tiffani A Jones, Jamie L Sundsbak, Danelle S Eto, Alexis A Rousek, Matthew A Mulvey. Plant phenolics inhibit focal adhesion kinase and suppress host cell invasion by uropathogenic Escherichia coli. Infection and immunity. 2024 May; 92(5):e0008024. doi: 10.1128/iai.00080-24. [PMID: 38534100]
  • Zhaoxian Zhang, Yaoyi Jia, Chenghui Zhang, Zikang Zhang, Fangsha Jin, Dandan Pan, Daxiang Li, Xiangwei Wu. Efficacy of epigallocatechin gallate (EGCG) and its underlying mechanism in preventing bisphenol-A-induced metabolic disorders in mice. Journal of hazardous materials. 2024 May; 469(?):134098. doi: 10.1016/j.jhazmat.2024.134098. [PMID: 38522198]
  • Tie Hu, Fa-Jia Hu, Huang Huang, Ze-Yu Zhang, Ya-Mei Qiao, Wen-Xiong Huang, Yi-Cheng Wang, Xin-Yi Tang, Song-Qing Lai. Epigallocatechin-3-gallate confers protection against myocardial ischemia/reperfusion injury by inhibiting ferroptosis, apoptosis, and autophagy via modulation of 14-3-3η. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2024 May; 174(?):116542. doi: 10.1016/j.biopha.2024.116542. [PMID: 38574620]
  • Chenlu Ma, Youfa Xie, Xin Huang, Lu Zhang, David Julian McClements, Liqiang Zou, Wei Liu. Encapsulation of (-)-epigallocatechin gallate (EGCG) within phospholipid-based nanovesicles using W/O emulsion-transfer methods: Masking bitterness and delaying release of EGCG. Food chemistry. 2024 Mar; 437(Pt 2):137913. doi: 10.1016/j.foodchem.2023.137913. [PMID: 37939421]
  • Xiangchun Zhang, Xiangde Yang, Jianyun Ruan, Hongping Chen. Epigallocatechin gallate (EGCG) nanoselenium application improves tea quality (Camellia sinensis L.) and soil quality index without losing microbial diversity: A pot experiment under field condition. The Science of the total environment. 2024 Mar; 914(?):169923. doi: 10.1016/j.scitotenv.2024.169923. [PMID: 38199344]
  • Yameng Wang, Shibei Ge, Golam Jalal Ahammed, Haina Gao, Keyin Shen, Qianying Wang, Wenli Wang, Shuangchen Chen, Xin Li. Epigallocatechin-3-gallate-induced tolerance to cadmium stress involves increased flavonoid synthesis and nutrient homeostasis in tomato roots. Plant physiology and biochemistry : PPB. 2024 Mar; 208(?):108468. doi: 10.1016/j.plaphy.2024.108468. [PMID: 38507840]
  • Shuxuan Li, Yao Zhi, Wentao Mu, Mingqian Li, Guoyue Lv. Exploring the effects of epigallocatechin gallate on lipid metabolism in the rat steatotic liver during normothermic machine perfusion: Insights from lipidomics and RNA sequencing. European journal of pharmacology. 2024 Feb; 964(?):176300. doi: 10.1016/j.ejphar.2023.176300. [PMID: 38141939]
  • Ximing Wu, Yijun Wang, Dongxu Wang, Ziqi Wang, Mingchuan Yang, Lumin Yang, Fuming Wang, Wei Wang, Xiangchun Zhang. Formation of EGCG oxidation self-assembled nanoparticles and their antioxidant activity in vitro and hepatic REDOX regulation activity in vivo. Food & function. 2024 Feb; ?(?):. doi: 10.1039/d3fo05309a. [PMID: 38315103]
  • Yanzhou Xia, Hongyan Wang, Zhongwen Xie, Zhi-Hua Liu, Hui-Li Wang. Inhibition of ferroptosis underlies EGCG mediated protection against Parkinson's disease in a Drosophila model. Free radical biology & medicine. 2024 02; 211(?):63-76. doi: 10.1016/j.freeradbiomed.2023.12.005. [PMID: 38092273]
  • Mingchuan Yang, Ximing Wu, Yufeng He, Xiuli Li, Lumin Yang, Tingting Song, Fuming Wang, Chung S Yang, Jinsong Zhang. EGCG oxidation-derived polymers induce apoptosis in digestive tract cancer cells via regulating the renin-angiotensin system. Food & function. 2024 Jan; ?(?):. doi: 10.1039/d3fo03795a. [PMID: 38293823]
  • Nicolette Frank, Douglas Dickinson, William Garcia, Yutao Liu, Hongfang Yu, Jingwen Cai, Sahaj Patel, Bo Yao, Xiaocui Jiang, Stephen Hsu. Feasibility Study of Developing a Saline-Based Antiviral Nanoformulation Containing Lipid-Soluble EGCG: A Potential Nasal Drug to Treat Long COVID. Viruses. 2024 01; 16(2):. doi: 10.3390/v16020196. [PMID: 38399972]
  • Kunlin Ou, Quan Zhang, Feifei Xi, Huizhen Ni, Jiebo Lu, Xuejing Lyu, Chonggang Wang, Qiyuan Li, Qin Wang. Prenatal EGCG consumption impacts hepatic glycogen synthesis and lipid metabolism in adult mice. International journal of biological macromolecules. 2024 Jan; 260(Pt 1):129491. doi: 10.1016/j.ijbiomac.2024.129491. [PMID: 38228202]
  • Ana Paula Dias Moreno, Priscyla Daniely Marcato, Letícia Bueno Silva, Sérgio Luiz de Souza Salvador, Marina Constante Gabriel Del Arco, Juliana Cristina Biazzoto de Moraes, Roberto Santana da Silva, Andiara De Rossi. Antibacterial Activity of Epigallocatechin-3-gallate (EGCG) Loaded Lipid-chitosan Hybrid Nanoparticle against Planktonic Microorganisms. Journal of oleo science. 2024; 73(5):709-716. doi: 10.5650/jos.ess23155. [PMID: 38692893]
  • Rattiyaporn Kanlaya, Rasiyakapat Kuljiratansiri, Paleerath Peerapen, Visith Thongboonkerd. The inhibitory effects of epigallocatechin-3-gallate on calcium oxalate monohydrate crystal growth, aggregation and crystal-cell adhesion. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2024 Jan; 170(?):115988. doi: 10.1016/j.biopha.2023.115988. [PMID: 38061137]
  • Xian He, Wanshui Yang, Qihong Zhao, Xinsheng Qin. Controlled oxidation and digestion of Pickering emulsions stabilized by quinoa protein and (-)-epigallocatechin-3-gallate (EGCG) hybrid particles. International journal of biological macromolecules. 2023 Dec; 253(Pt 2):126755. doi: 10.1016/j.ijbiomac.2023.126755. [PMID: 37678683]
  • Yongling Ning, Zhiying Yuan, Qing Wang, Jia He, Weidong Zhu, Dan-Ni Ren, Da Wo. Epigallocatechin-3-gallate promotes wound healing response in diabetic mice by activating keratinocytes and promoting re-epithelialization. Phytotherapy research : PTR. 2023 Dec; ?(?):. doi: 10.1002/ptr.8099. [PMID: 38140774]
  • Maha K A Khalifa, Somaia A Abdel-Sattar, Omnya M Amin, Neveen A Kohaf, Heba S Zaky, Marwa A Abd El-Fattah, Kamilia H A Mohammed, Noha M Badawi, Ihab Mansoor, Heba A Eassa. Effectiveness of epigallocatechin gallate nanoparticles on the in-vivo treatment of Alzheimer's disease in a rat/mouse model: a systematic review. Daru : journal of Faculty of Pharmacy, Tehran University of Medical Sciences. 2023 Dec; ?(?):. doi: 10.1007/s40199-023-00494-8. [PMID: 38079104]
  • Hong Xu, Xu Zhong, Taotao Wang, Shanshan Wu, Huanan Guan, Dongxu Wang. (-)-Epigallocatechin-3-Gallate Reduces Perfluorodecanoic Acid-Exacerbated Adiposity and Hepatic Lipid Accumulation in High-Fat Diet-Fed Male C57BL/6J Mice. Molecules (Basel, Switzerland). 2023 Nov; 28(23):. doi: 10.3390/molecules28237832. [PMID: 38067561]
  • Zhiqiang Fan, Yubin Zhou, Bin Gan, Yuling Li, Huizhi Chen, Xinsheng Peng, Yanfang Zhou. Collagen-EGCG Combination Synergistically Prevents UVB-Induced Skin Photoaging in Nude Mice. Macromolecular bioscience. 2023 Oct; ?(?):e2300251. doi: 10.1002/mabi.202300251. [PMID: 37863121]
  • Juan Song, Xudong Yu, Chengzhi Lv, Dong Wang. Single-step assembly of lipid-gelatin-epigallocatechin-3-gallate hybrid nanoparticles for cancer therapy. Anti-cancer drugs. 2023 10; 34(9):1010-1017. doi: 10.1097/cad.0000000000001484. [PMID: 36728959]
  • Qiuting Yu, Ning Zhang, Xiaowen Gan, Linglin Chen, Rui Wang, Ronggan Liang, Jie Jian. EGCG attenuated acute myocardial infarction by inhibiting ferroptosis via miR-450b-5p/ACSL4 axis. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2023 Oct; 119(?):154999. doi: 10.1016/j.phymed.2023.154999. [PMID: 37597361]
  • Chao Liu, Hao Wu, Hongxia Duan, Yan Hou, Shuangqing Wang, Yanhong Liu, Xintong Zhang, Heming Zhao, Liming Gong, Hongshuang Wan, Bowen Zeng, Xiuquan Quan, Minhu Cui, Liqing Chen, Mingji Jin, Qiming Wang, Zhonggao Gao, Wei Huang. An EGCG-mediated self-assembled micellar complex acts as a bioactive drug carrier. Food chemistry. 2023 Aug; 418(?):135939. doi: 10.1016/j.foodchem.2023.135939. [PMID: 36948024]
  • Yuqing Cui, Zisheng Han, Li Lian, Liang Zhang. The inhibition effects of chlorogenic acid on the formation of colored oxidation products of (-)-epigallocatechin gallate under enzymatic oxidation. Food chemistry. 2023 Aug; 417(?):135895. doi: 10.1016/j.foodchem.2023.135895. [PMID: 36931012]
  • Wei Zhu, Patricia I Oteiza. NADPH oxidase 1: A target in the capacity of dimeric ECG and EGCG procyanidins to inhibit colorectal cancer cell invasion. Redox biology. 2023 Jul; 65(?):102827. doi: 10.1016/j.redox.2023.102827. [PMID: 37516013]
  • Sitan Ye, Haiyong Weng, Lirong Xiang, Liangquan Jia, Jinchai Xu. Synchronously Predicting Tea Polyphenol and Epigallocatechin Gallate in Tea Leaves Using Fourier Transform-Near-Infrared Spectroscopy and Machine Learning. Molecules (Basel, Switzerland). 2023 Jul; 28(14):. doi: 10.3390/molecules28145379. [PMID: 37513250]
  • Won-Young Bae, Do-Un Lee, Hyung-Seok Yu, Na-Kyoung Lee, Hyun-Dong Paik. Fermentation of Inula britannica using Lactobacillus plantarum SY12 increases of epigallocatechin gallate and attenuates toxicity. Food chemistry. 2023 Jul; 429(?):136844. doi: 10.1016/j.foodchem.2023.136844. [PMID: 37454617]
  • Tingting Zheng, Mengyao Cui, Huan Chen, Jinrui Wang, Hanyi Ye, Qianqian Zhang, Shuhui Sun, Yifan Feng, Yinghua Zhang, Wei Liu, Renping Chen, Ying Li, Zhengqi Dong. Co-assembled nanocomplexes comprising epigallocatechin gallate and berberine for enhanced antibacterial activity against multidrug resistant Staphylococcus aureus. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2023 Jul; 163(?):114856. doi: 10.1016/j.biopha.2023.114856. [PMID: 37196539]
  • Jing-Hua Zou, Fei Chen, Yi-Lin Li, Hao Chen, Tong-Ke Sun, Si-Meng Du, Jun Zhang. Effects of green tea extract epigallocatechin-3-gallate (EGCG) on orthodontic tooth movement and root resorption in rats. Archives of oral biology. 2023 Jun; 150(?):105691. doi: 10.1016/j.archoralbio.2023.105691. [PMID: 37043987]
  • Guohuo Wu, Huijun Cheng, Huimin Guo, Zhuang Li, Daxiang Li, Zhongwen Xie. Tea polyphenol EGCG ameliorates obesity-related complications by regulating lipidomic pathway in leptin receptor knockout rats. The Journal of nutritional biochemistry. 2023 Apr; ?(?):109349. doi: 10.1016/j.jnutbio.2023.109349. [PMID: 37085056]
  • Jie Li, Qianqian Wang, Shuaijun Zou, Juxingsi Song, Peipei Zhang, Fan Wang, Yichao Huang, Qian He, Liming Zhang. Protective Effects of Epigallocatechin-3-gallate (EGCG) against the Jellyfish Nemopilema nomurai Envenoming. Toxins. 2023 04; 15(4):. doi: 10.3390/toxins15040283. [PMID: 37104221]
  • Rachel Churm, Liam M Williams, Gareth Dunseath, Sarah L Prior, Richard M Bracken. The polyphenol epigallocatechin gallate lowers circulating catecholamine concentrations and alters lipid metabolism during graded exercise in man: a randomized cross-over study. European journal of nutrition. 2023 Apr; 62(3):1517-1526. doi: 10.1007/s00394-023-03092-1. [PMID: 36695951]
  • Ping Xiang, Qiufang Zhu, Luhuan Zhang, Puzhen Xu, Lijia Liu, Yuanyuan Li, Bosi Cheng, Xingjian Wang, Jianghong Liu, Yutao Shi, Liangyu Wu, Jinke Lin. Integrative analyses of transcriptome and metabolome reveal comprehensive mechanisms of Epigallocatechin-3-gallate (EGCG) biosynthesis in response to ecological factors in tea plant (Camellia sinensis). Food research international (Ottawa, Ont.). 2023 04; 166(?):112591. doi: 10.1016/j.foodres.2023.112591. [PMID: 36914346]
  • Jia-Jia Wen, Ming-Zhi Li, Chun-Hua Chen, Tao Hong, Jing-Rui Yang, Xiao-Jun Huang, Fang Geng, Jie-Lun Hu, Shao-Ping Nie. Tea polyphenol and epigallocatechin gallate ameliorate hyperlipidemia via regulating liver metabolism and remodeling gut microbiota. Food chemistry. 2023 Mar; 404(Pt A):134591. doi: 10.1016/j.foodchem.2022.134591. [PMID: 36444016]
  • Zongde Jiang, Feng Zhou, Huixia Huo, Zisheng Han, Chunyin Qin, Chi-Tang Ho, Liang Zhang, Xiaochun Wan. Formation Mechanism of Di-N-ethyl-2-pyrrolidinone-Substituted Epigallocatechin Gallate during High-Temperature Roasting of Tea. Journal of agricultural and food chemistry. 2023 Feb; 71(6):2975-2989. doi: 10.1021/acs.jafc.2c07071. [PMID: 36734013]
  • Jördis Klose, Lu Li, Melanie Pahl, Farina Bendt, Ulrike Hübenthal, Christian Jüngst, Patrick Petzsch, Astrid Schauss, Karl Köhrer, Ping Chung Leung, Chi Chiu Wang, Katharina Koch, Julia Tigges, Xiaohui Fan, Ellen Fritsche. Application of the adverse outcome pathway concept for investigating developmental neurotoxicity potential of Chinese herbal medicines by using human neural progenitor cells in vitro. Cell biology and toxicology. 2023 02; 39(1):319-343. doi: 10.1007/s10565-022-09730-4. [PMID: 35701726]
  • Dmitry B Kiselevsky, Olga V Samuilova, Vitaly D Samuilov. Epigallocatechin Gallate: pH-Dependent Redox Properties and Effect on Respiration, Photosynthesis, and Cell Death in Pea Plants. Biochemistry. Biokhimiia. 2023 Feb; 88(2):211-220. doi: 10.1134/s0006297923020050. [PMID: 37072325]
  • Weiqin Wang, Xuefeng Li, Fanli Shi, Zhenhai Zhang, Huixia Lv. Study on the preparation of EGCG-γ-Cyclodextrin inclusion complex and its drug-excipient combined therapeutic effects on the treatment of DSS-induced acute ulcerative colitis in mice. International journal of pharmaceutics. 2023 Jan; 630(?):122419. doi: 10.1016/j.ijpharm.2022.122419. [PMID: 36423710]
  • Yuan Cheng, Mingzhu Liu, Qing Yu, Shuaishuai Huang, Shuyu Han, Jingu Shi, Hongling Wei, Jianwei Zou, Pengfei Li. Effect of EGCG Extracted from Green Tea against Largemouth Bass Virus Infection. Viruses. 2023 01; 15(1):. doi: 10.3390/v15010151. [PMID: 36680191]
  • Hongmei Yin, Qiaohua Yan, Guoqiang Cheng, Li Zhang, Meiqing Li, Tingting Hu, Sihui Gao, Yuanhang Chen, Huaqiao Tang, Jie Luo. The antivirulence activity, transcriptomics of EGCG and its protective effects on zebrafish infected by Aeromonas hydrophila. Frontiers in cellular and infection microbiology. 2023; 13(?):1271448. doi: 10.3389/fcimb.2023.1271448. [PMID: 37868352]
  • Juxin Pei, Jun Mei, Gan Wu, Huijie Yu, Jing Xie. Gum tragacanth-sodium alginate active coatings containing epigallocatechin gallate reduce hydrogen peroxide content and inhibit lipid and protein oxidations of large yellow croaker (Larimichthys crocea) during superchilling storage. Food chemistry. 2022 Dec; 397(?):133792. doi: 10.1016/j.foodchem.2022.133792. [PMID: 35917785]
  • Badriyah Alotaibi, Thanaa A El-Masry, Engy Elekhnawy, Aya H El-Kadem, Asmaa Saleh, Walaa A Negm, Dalia H Abdelkader. Aqueous core epigallocatechin gallate PLGA nanocapsules: characterization, antibacterial activity against uropathogens, and in vivo reno-protective effect in cisplatin induced nephrotoxicity. Drug delivery. 2022 Dec; 29(1):1848-1862. doi: 10.1080/10717544.2022.2083725. [PMID: 35708451]
  • Atala B Jena, Umesh C Dash, Asim K Duttaroy. An in silico investigation on the interactions of curcumin and epigallocatechin-3-gallate with NLRP3 Inflammasome complex. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2022 Dec; 156(?):113890. doi: 10.1016/j.biopha.2022.113890. [PMID: 36270255]
  • Jing Hu, Ruoyi Xu, Jing Hu, Weijun Deng. Dual stabilization of Pickering emulsion with epigallocatechin gallate loaded mesoporous silica nanoparticles. Food chemistry. 2022 Dec; 396(?):133675. doi: 10.1016/j.foodchem.2022.133675. [PMID: 35843003]
  • Adchara Prommaban, Suwannee Sriyab, Pachabadee Marsup, Waranya Neimkhum, Jakkapan Sirithunyalug, Songyot Anuchapreeda, Chaiwat To-Anun, Wantida Chaiyana. Comparison of chemical profiles, antioxidation, inhibition of skin extracellular matrix degradation, and anti-tyrosinase activity between mycelium and fruiting body of Cordyceps militaris and Isaria tenuipes. Pharmaceutical biology. 2022 Dec; 60(1):225-234. doi: 10.1080/13880209.2021.2025255. [PMID: 35068295]
  • Guo Huang, Hainan Jin, Guichen Liu, Shuyuan Yang, Lianzhou Jiang, Yan Zhang, Xiaonan Sui. An insight into the changes in conformation and emulsifying properties of soy β-conglycinin and glycinin as affected by EGCG: Multi-spectral analysis. Food chemistry. 2022 Nov; 394(?):133484. doi: 10.1016/j.foodchem.2022.133484. [PMID: 35717913]
  • Xiaowei Sun, Priyankar Dey, Richard S Bruno, Jiangjiang Zhu. EGCG and catechin relative to green tea extract differentially modulate the gut microbial metabolome and liver metabolome to prevent obesity in mice fed a high-fat diet. The Journal of nutritional biochemistry. 2022 11; 109(?):109094. doi: 10.1016/j.jnutbio.2022.109094. [PMID: 35777589]
  • Yan Li, Jingping Ge, Ke Ma, Jie Kong. Epigallocatechin-3-gallate exerts protective effect on epithelial function via PI3K/AKT signaling in thrombosis. Microvascular research. 2022 11; 144(?):104408. doi: 10.1016/j.mvr.2022.104408. [PMID: 35878868]
  • Yi-Ping Luo, Xiao-Fang Tang, Yi-Chi Zhang, Su-Mei Chen, Qiong Wu, Wen-Juan Li. Epigallocatechin-3-gallate alleviates galactose-induced aging impairment via gut-brain communication. Food & function. 2022 Oct; 13(21):11200-11209. doi: 10.1039/d2fo00994c. [PMID: 36218221]
  • Jaganmay Sarkar, Manjusri Das, Md Sariful Islam Howlader, Prateeksha Prateeksha, Derek Barthels, Hiranmoy Das. Epigallocatechin-3-gallate inhibits osteoclastic differentiation by modulating mitophagy and mitochondrial functions. Cell death & disease. 2022 10; 13(10):908. doi: 10.1038/s41419-022-05343-1. [PMID: 36307395]
  • Luka Šturm, Iztok Prislan, Rodrigo González-Ortega, Polona Mrak, Tina Snoj, Gregor Anderluh, Nataša Poklar Ulrih. Interactions of (-)-epigallocatechin-3-gallate with model lipid membranes. Biochimica et biophysica acta. Biomembranes. 2022 10; 1864(10):183999. doi: 10.1016/j.bbamem.2022.183999. [PMID: 35820494]
  • Yuko Sugita, Takahisa Furukawa. Effect of Green Tea and Tea Catechin on the Visual Motion Processing for Optokinetic Responses in Mice. Neuroscience. 2022 10; 501(?):42-51. doi: 10.1016/j.neuroscience.2022.08.013. [PMID: 35987428]
  • Ming-Shan Chen, Bruce Chi-Kang Tsai, Maria Angelina Sitorus, Chia-Hua Kuo, Wei-Wen Kuo, Tung-Sheng Chen, Chien-Yao Fu, Tsung-Jung Ho, Chih-Yang Huang, Da-Tong Ju. Epigallocatechin-3-Gallate Pretreatment Improves Autologous Adipose-derived Stem Cells Against Rheumatoid Arthritis-induced Neuroinflammation in the Brain of Collagen-induced Rats. Neurotoxicity research. 2022 Oct; 40(5):1223-1234. doi: 10.1007/s12640-022-00544-0. [PMID: 35829999]
  • Wenjuan Wang, Zhe Dong, Liyuan Gu, Bi Wu, Suping Ji, Qiang Xia. Impact of internal aqueous phase gelation on in vitro lipid digestion of epigallocatechin gallate-loaded W1 /O/W2 double emulsions incorporated in alginate hydrogel beads. Journal of food science. 2022 Oct; 87(10):4596-4608. doi: 10.1111/1750-3841.16317. [PMID: 36102167]
  • Chao-Tzu Liu, Jason T C Tzen. Exploring The Relative Astringency of Tea Catechins and Distinct Astringent Sensation of Catechins and Flavonol Glycosides via an In Vitro Assay Composed of Artificial Oil Bodies. Molecules (Basel, Switzerland). 2022 Sep; 27(17):. doi: 10.3390/molecules27175679. [PMID: 36080445]
  • Yan Li, Jing-Ping Ge, Ke Ma, Yuan-Yuan Yin, Juan He, Jian-Ping Gu. The combination of EGCG with warfarin reduces deep vein thrombosis in rabbits through modulating HIF-1α and VEGF via the PI3K/AKT and ERK1/2 signaling pathways. Chinese journal of natural medicines. 2022 Sep; 20(9):679-690. doi: 10.1016/s1875-5364(22)60172-9. [PMID: 36162953]
  • Lumin Yang, Lijie Jia, Xiuli Li, Ke Zhang, Xiaoxiao Wang, Yufeng He, Meng Hao, Margaret P Rayman, Jinsong Zhang. Prooxidant activity-based guideline for a beneficial combination of (-)-epigallocatechin-3-gallate and chlorogenic acid. Food chemistry. 2022 Aug; 386(?):132812. doi: 10.1016/j.foodchem.2022.132812. [PMID: 35364491]
  • Xiaoge Jiang, An Lin, Shijia Li, Yangyang Shi, Fangjie Zhou, Grace Gomez Felix Gomez, Richard L Gregory, Chaoliang Zhang, Song Chen, Ruijie Huang. Effects of artificial honey and epigallocatechin-3-gallate on streptococcus pyogenes. BMC microbiology. 2022 08; 22(1):207. doi: 10.1186/s12866-022-02611-0. [PMID: 36028794]
  • Mi Zhou, Jiaqi Dong, Junqing Huang, Wen Ye, Zhousan Zheng, Kangbo Huang, Yihui Pan, Junjie Cen, Yanping Liang, Guannan Shu, Sheng Ye, Xuanxuan Lu, Jiaxing Zhang. Chitosan-Gelatin-EGCG Nanoparticle-Meditated LncRNA TMEM44-AS1 Silencing to Activate the P53 Signaling Pathway for the Synergistic Reversal of 5-FU Resistance in Gastric Cancer. Advanced science (Weinheim, Baden-Wurttemberg, Germany). 2022 08; 9(22):e2105077. doi: 10.1002/advs.202105077. [PMID: 35717675]
  • Han Peng, Fereidoon Shahidi. Enzymatic Synthesis and Antioxidant Activity of Mono- and Diacylated Epigallocatechin Gallate and Related By-Products. Journal of agricultural and food chemistry. 2022 Jul; 70(29):9227-9242. doi: 10.1021/acs.jafc.2c03086. [PMID: 35830611]
  • Chenhao Yang, Zekun Wang, Yue Gao, Man Li, Yuqing Li, Chunxue Dai, Yunsheng Wang, Dongdong Sun. EGCG-coated silver nanoparticles self-assemble with selenium nanowires for treatment of drug-resistant bacterial infections by generating ROS and disrupting biofilms. Nanotechnology. 2022 Jul; 33(41):. doi: 10.1088/1361-6528/ac7db0. [PMID: 35777311]
  • Qiuhong Mou, Zhongli Jia, Min Luo, Lingjuan Liu, Xupei Huang, Junjun Quan, Jie Tian. Epigallocatechin-3-gallate exerts cardioprotective effects related to energy metabolism in pressure overload-induced cardiac dysfunction. Archives of biochemistry and biophysics. 2022 07; 723(?):109217. doi: 10.1016/j.abb.2022.109217. [PMID: 35427576]
  • Akane Hayashi, Shimpei Terasaka, Yuko Nukada, Akiyo Kameyama, Masayuki Yamane, Ryuta Shioi, Masazumi Iwashita, Kohjiro Hashizume, Osamu Morita. 4″-Sulfation Is the Major Metabolic Pathway of Epigallocatechin-3-gallate in Humans: Characterization of Metabolites, Enzymatic Analysis, and Pharmacokinetic Profiling. Journal of agricultural and food chemistry. 2022 Jul; 70(27):8264-8273. doi: 10.1021/acs.jafc.2c02150. [PMID: 35786898]
  • Joseph George, Mutsumi Tsuchishima, Mikihiro Tsutsumi. Epigallocatechin-3-gallate inhibits osteopontin expression and prevents experimentally induced hepatic fibrosis. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2022 Jul; 151(?):113111. doi: 10.1016/j.biopha.2022.113111. [PMID: 35594711]
  • Lijie Jia, Fuming Wang, Ke Zhang, Dongxu Wang, Xiaoxiao Wang, Xiuli Li, Jinsong Zhang. l-Theanine Inhibits (-)-Epigallocatechin-3-gallate Oxidation via Chelating Copper. Journal of agricultural and food chemistry. 2022 Jun; 70(25):7751-7761. doi: 10.1021/acs.jafc.2c01379. [PMID: 35696521]
  • Ayan Pradhan, Shilpa Sengupta, Ritika Sengupta, Mitali Chatterjee. Attenuation of methotrexate induced hepatotoxicity by epigallocatechin 3-gallate. Drug and chemical toxicology. 2022 Jun; ?(?):1-9. doi: 10.1080/01480545.2022.2085738. [PMID: 35698845]
  • Henry M Sanders, Marius M Kostelic, Ciara K Zak, Michael T Marty. Lipids and EGCG Affect α-Synuclein Association and Disruption of Nanodiscs. Biochemistry. 2022 06; 61(11):1014-1021. doi: 10.1021/acs.biochem.2c00160. [PMID: 35616927]
  • Chao Zhang, Lan Wang, Yixiang Xu, Yunyuan Huang, Junyang Huang, Jin Zhu, Wei Wang, Wangsheng Li, Annan Sun, Xiaokang Li, Haiyan Zhang, Jian Li. Discovery of novel dual RAGE/SERT inhibitors for the potential treatment of the comorbidity of Alzheimer's disease and depression. European journal of medicinal chemistry. 2022 Jun; 236(?):114347. doi: 10.1016/j.ejmech.2022.114347. [PMID: 35430560]
  • Sana Iram, Safikur Rahman, Shahid Ali, Jihoe Kim. Tetranectin targeting by epigallocatechin gallate suppresses colon cancer cell proliferation. International journal of biological macromolecules. 2022 Jun; 209(Pt A):211-219. doi: 10.1016/j.ijbiomac.2022.03.160. [PMID: 35358581]
  • Chengcheng Ruan, Yingqun Nian, Quan Chen, Na Li, Xiaoqian He, Chunbao Li, Bing Hu. Higher affinity of polyphenol to zein than to amyloid fibrils leading to nanoparticle-embed network wall scaffold to construct amyloid fibril-zein-EGCG hydrogels for coating of beef. Food research international (Ottawa, Ont.). 2022 06; 156(?):111187. doi: 10.1016/j.foodres.2022.111187. [PMID: 35651045]
  • Xinru Gao, Jiahao Wang, Jiamiao Shi, Qinru Sun, Ning Jia, Hui Li. The Efficacy Mechanism of Epigallocatechin Gallate against Pre-Eclampsia based on Network Pharmacology and Molecular Docking. Reproductive sciences (Thousand Oaks, Calif.). 2022 06; 29(6):1859-1873. doi: 10.1007/s43032-022-00894-2. [PMID: 35211881]
  • Yan Wang, Yu-Fan Xiang, Ai-Lin Liu. Comparative and Combined Effects of Epigallocatechin-3-gallate and Caffeine in Reducing Lipid Accumulation in Caenorhabditis elegans. Plant foods for human nutrition (Dordrecht, Netherlands). 2022 Jun; 77(2):279-285. doi: 10.1007/s11130-022-00978-z. [PMID: 35633414]
  • Ximing Wu, Mingchuan Yang, Yufeng He, Fuming Wang, Yashuai Kong, Tie-Jun Ling, Jinsong Zhang. EGCG-derived polymeric oxidation products enhance insulin sensitivity in db/db mice. Redox biology. 2022 05; 51(?):102259. doi: 10.1016/j.redox.2022.102259. [PMID: 35168078]
  • Peng-Wei Yu, Peng-Fei Fu, Lei Zeng, Yan-Li Qi, Xiu-Qing Li, Qi Wang, Guo-Yu Yang, Hua-Wei Li, Jiang Wang, Bei-Bei Chu, Meng-Di Wang. EGCG Restricts PRRSV Proliferation by Disturbing Lipid Metabolism. Microbiology spectrum. 2022 04; 10(2):e0227621. doi: 10.1128/spectrum.02276-21. [PMID: 35404086]
  • Chaoqun Dong, Zhigang Wang, Peng Shen, Yingguo Chen, Jinshu Wang, Hongbo Wang. Epigallocatechin-3-gallate suppresses the growth of human osteosarcoma by inhibiting the Wnt/β-catenin signalling pathway. Bioengineered. 2022 04; 13(4):8490-8502. doi: 10.1080/21655979.2022.2051805. [PMID: 35348430]
  • Qun Wang, Ling Wang, Abdullah, Wenni Tian, Mingyue Song, Yong Cao, Jie Xiao. Co-delivery of EGCG and lycopene via a pickering double emulsion induced synergistic hypolipidemic effect. Food & function. 2022 Mar; 13(6):3419-3430. doi: 10.1039/d2fo00169a. [PMID: 35234799]
  • Tung-Sheng Chen, Wei-Yu Liao, Chi-Wen Huang, Chin-Hsien Chang. Adipose-Derived Stem Cells Preincubated with Green Tea EGCG Enhance Pancreatic Tissue Regeneration in Rats with Type 1 Diabetes through ROS/Sirt1 Signaling Regulation. International journal of molecular sciences. 2022 Mar; 23(6):. doi: 10.3390/ijms23063165. [PMID: 35328586]
  • Jing-Jing Yao, Qian-Qian Ma, Wen-Wen Shen, Liu-Cheng Li, Dong Hu. Nano-enabled delivery of EGCG ameliorates silica-induced pulmonary fibrosis in rats. Toxicology. 2022 03; 469(?):153114. doi: 10.1016/j.tox.2022.153114. [PMID: 35114310]
  • Daisuke Takahashi, Eri Matsunaga, Tomohiro Yamashita, Jose M M Caaveiro, Yoshito Abe, Tadashi Ueda. Compound screening identified gossypetin and isoquercitrin as novel inhibitors for amyloid fibril formations of Vλ6 proteins associated with AL amyloidosis. Biochemical and biophysical research communications. 2022 03; 596(?):22-28. doi: 10.1016/j.bbrc.2022.01.066. [PMID: 35108650]
  • Qiuxin Wu, Jike Song, Yan'e Gao, Yingying Zou, Junguo Guo, Xiuyan Zhang, Dongmei Liu, Dadong Guo, Hongsheng Bi. Epigallocatechin gallate enhances human lens epithelial cell survival after UVB irradiation via the mitochondrial signaling pathway. Molecular medicine reports. 2022 Mar; 25(3):. doi: 10.3892/mmr.2022.12603. [PMID: 35039875]
  • Takashi Tanaka, Miho Yasumatsu, Mayu Hirotani, Yosuke Matsuo, Na Li, Hong-Tao Zhu, Yoshinori Saito, Kanji Ishimaru, Ying-Jun Zhang. New degradation mechanism of black tea pigment theaflavin involving condensation with epigallocatechin-3-O-gallate. Food chemistry. 2022 Feb; 370(?):131326. doi: 10.1016/j.foodchem.2021.131326. [PMID: 34656020]
  • Rui Yang, Tianhua Ma, Lina Shi, Qiaoe Wang, Liqun Zhang, Fenglu Zhang, Zhiwei Wang, Zhongkai Zhou. The formation of phycocyanin-EGCG complex for improving the color protection stability exposing to light. Food chemistry. 2022 Feb; 370(?):130985. doi: 10.1016/j.foodchem.2021.130985. [PMID: 34537426]
  • Yahui Zhang, Shuya Han, Yin Wang, Haihua Zhang, Chenhuan Yu, Dingkui Qin, Qizhen Du, Peng Jin. Excess serum Na level in rats administered with high doses of (-)-epigallocatechin gallate-casein nanoparticles prepared with sodium caseinate. Food & function. 2022 Feb; 13(3):1291-1298. doi: 10.1039/d1fo02890a. [PMID: 35028655]
  • Wei-Chung Chiou, Jui-Chieh Chen, Yun-Ti Chen, Jinn-Moon Yang, Lih-Hwa Hwang, Yi-Shuan Lyu, Hsin-Yi Yang, Cheng Huang. The inhibitory effects of PGG and EGCG against the SARS-CoV-2 3C-like protease. Biochemical and biophysical research communications. 2022 02; 591(?):130-136. doi: 10.1016/j.bbrc.2020.12.106. [PMID: 33454058]
  • Xiwang Li, Jin Zhang, Songbo Lin, Yuxian Xing, Xin Zhang, Meng Ye, Yali Chang, Huawei Guo, Xiaoling Sun. (+)-Catechin, epicatechin and epigallocatechin gallate are important inducible defensive compounds against Ectropis grisescens in tea plants. Plant, cell & environment. 2022 02; 45(2):496-511. doi: 10.1111/pce.14216. [PMID: 34719788]
  • Meng Shi, Emma Watson, Michael Conlon, Luz Sanguansri, Mary Ann Augustin. Impact of Co-Delivery of EGCG and Tuna Oil within a Broccoli Matrix on Human Gut Microbiota, Phenolic Metabolites and Short Chain Fatty Acids In Vitro. Molecules (Basel, Switzerland). 2022 Jan; 27(3):. doi: 10.3390/molecules27030656. [PMID: 35163921]
  • Henry M Sanders, Blagojce Jovcevski, Michael T Marty, Tara L Pukala. Structural and mechanistic insights into amyloid-β and α-synuclein fibril formation and polyphenol inhibitor efficacy in phospholipid bilayers. The FEBS journal. 2022 01; 289(1):215-230. doi: 10.1111/febs.16122. [PMID: 34268903]
  • Tomokazu Ohishi, Takayuki Hishiki, Mirza S Baig, Sajjan Rajpoot, Uzma Saqib, Tomohiko Takasaki, Yukihiko Hara. Epigallocatechin gallate (EGCG) attenuates severe acute respiratory coronavirus disease 2 (SARS-CoV-2) infection by blocking the interaction of SARS-CoV-2 spike protein receptor-binding domain to human angiotensin-converting enzyme 2. PloS one. 2022; 17(7):e0271112. doi: 10.1371/journal.pone.0271112. [PMID: 35830431]
  • Hua Wei, Qi Ge, Ling-Yu Zhang, Jing Xie, Rui-Huan Gan, You-Guang Lu, Da-Li Zheng. EGCG inhibits growth of tumoral lesions on lip and tongue of K-Ras transgenic mice through the Notch pathway. The Journal of nutritional biochemistry. 2022 01; 99(?):108843. doi: 10.1016/j.jnutbio.2021.108843. [PMID: 34407449]
  • Xiaoyi Huang, Yang Chu, Hua Ren, Xiaofen Pang. Antioxidation Function of EGCG by Activating Nrf2/HO-1 Pathway in Mice with Coronary Heart Disease. Contrast media & molecular imaging. 2022; 2022(?):8639139. doi: 10.1155/2022/8639139. [PMID: 35919501]
  • Giovanni Grandi, Maria Chiara Del Savio, Chiara Melotti, Lia Feliciello, Fabio Facchinetti. Vitamin D and green tea extracts for the treatment of uterine fibroids in late reproductive life: a pilot, prospective, daily-diary based study. Gynecological endocrinology : the official journal of the International Society of Gynecological Endocrinology. 2022 Jan; 38(1):63-67. doi: 10.1080/09513590.2021.1991909. [PMID: 34658291]
  • Rackhyun Park, Minsu Jang, Yea-In Park, Yeonjeong Park, Woochul Jung, Jayhyun Park, Junsoo Park. Epigallocatechin Gallate (EGCG), a Green Tea Polyphenol, Reduces Coronavirus Replication in a Mouse Model. Viruses. 2021 12; 13(12):. doi: 10.3390/v13122533. [PMID: 34960802]
  • Tomonori Unno, Yoshiharu Araki, Shun Inagaki, Makoto Kobayashi, Masaki Ichitani, Takanobu Takihara, Hitoshi Kinugasa. Fructooligosaccharides Increase in Plasma Concentration of (-)-Epigallocatechin-3-Gallate in Rats. Journal of agricultural and food chemistry. 2021 Dec; 69(49):14849-14855. doi: 10.1021/acs.jafc.1c05991. [PMID: 34870993]
  • Qianjin Xie, Xiaqiang Cai, Xu Dong, Ying Wang, Minghui Sun, Lingling Tai, Yan Xu. Effects of epigallocatechin-3-gallate combined with ascorbic acid and glycerol on the stability and uric acid-lowering activity of epigallocatechin-3-gallate. Pharmaceutical biology. 2021 Dec; 59(1):157-166. doi: 10.1080/13880209.2021.1878235. [PMID: 33556300]