Naringin (BioDeep_00000000104)

 

Secondary id: BioDeep_00000302743

human metabolite PANOMIX_OTCML-2023 Chemicals and Drugs BioNovoGene_Lab2019 natural product


代谢物信息卡片


(2S)-7-[(2S,4S,5S,3R,6R)-3-((2S,6S,3R,4R,5R)-3,4,5-trihydroxy-6-methyl(2H-3,4, 5,6-tetrahydropyran-2-yloxy))-4,5-dihydroxy-6-(hydroxymethyl)(2H-3,4,5,6-tetra hydropyran-2-yloxy)]-5-hydroxy-2-(4-hydroxyphenyl)chroman-4-one

化学式: C27H32O14 (580.1792)
中文名称: 柚皮苷
谱图信息: 最多检出来源 Viridiplantae(plant) 23.36%

分子结构信息

SMILES: C1(O[C@H]2[C@H](O[C@H]3[C@H](O)[C@H](O)[C@@H](O)[C@H](C)O3)[C@@H](O)[C@H](O)[C@@H](CO)O2)C=C2O[C@]([H])(C3C=CC(O)=CC=3)CC(=O)C2=C(O)C=1
InChI: InChI=1S/C27H32O14/c1-10-20(32)22(34)24(36)26(37-10)41-25-23(35)21(33)18(9-28)40-27(25)38-13-6-14(30)19-15(31)8-16(39-17(19)7-13)11-2-4-12(29)5-3-11/h2-7,10,16,18,20-30,32-36H,8-9H2,1H3/t10-,16-,18+,20-,21+,22+,23-,24+,25+,26-,27+/m0/s1

描述信息

Naringin, also known as naringoside or naringin hydrate, is a flavanone-7-O-glycoside between the flavanone naringenin and the disaccharide neohesperidose. Naringin belongs to the flavonoid family. Flavonoids consist of 15 carbon atoms in 3 rings, 2 of which must be benzene rings connected by a 3 carbon chain. Naringin contains the basic flavonoid structure along with one rhamnose and one glucose unit attached to its aglycone portion, called naringenin, at the 7-carbon position. The steric hindrance provided by the two sugar units makes naringin less potent than its aglycone counterpart, naringenin. Naringin is a bitter tasting compound. Naringin is found, on average, in the highest concentration within a few different foods, such as rosemaries, grapefruit/pummelo hybrids, and grapefruits and in a lower concentration in grape wines, pummelo, and beers. Naringin has also been detected, but not quantified in several different foods, such as citrus, limes, herbs and spices, common oregano, and mandarin orange (clementine, tangerine). Both naringin and hesperetin, which are the aglycones of naringin and hesperidin, occur naturally in citrus fruits. Naringin is the major flavonoid glycoside in grapefruit and gives grapefruit juice its bitter taste. Narinigin exerts a variety of pharmacological effects such as antioxidant activity, blood lipid-lowering, anticarcinogenic activity, and inhibition of selected cytochrome P450 enzymes including CYP3A4 and CYP1A2, which may result in several drug interactions in-vitro.
Naringin is a disaccharide derivative that is (S)-naringenin substituted by a 2-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as a metabolite, an antineoplastic agent and an anti-inflammatory agent. It is a disaccharide derivative, a dihydroxyflavanone, a member of 4-hydroxyflavanones, a (2S)-flavan-4-one and a neohesperidoside. It is functionally related to a (S)-naringenin.
Naringin is a natural product found in Podocarpus fasciculus, Citrus latipes, and other organisms with data available.
See also: Naringenin (related); Drynaria fortunei root (part of).
A disaccharide derivative that is (S)-naringenin substituted by a 2-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage.
obtained from citrus fruits, Clymenia polyandra (clymenia) and Origanum vulgare (oregano)
IPB_RECORD: 401; CONFIDENCE confident structure
Naringin is a major flavanone glycoside obtained from tomatoes, grapefruits, and many other citrus fruits. Naringin exhibits biological properties such as antioxidant, anti-inflammatory, and antiapoptotic activities.
Naringin is a major flavanone glycoside obtained from tomatoes, grapefruits, and many other citrus fruits. Naringin exhibits biological properties such as antioxidant, anti-inflammatory, and antiapoptotic activities.

同义名列表

73 个代谢物同义名

(2S)-7-[(2S,4S,5S,3R,6R)-3-((2S,6S,3R,4R,5R)-3,4,5-trihydroxy-6-methyl(2H-3,4, 5,6-tetrahydropyran-2-yloxy))-4,5-dihydroxy-6-(hydroxymethyl)(2H-3,4,5,6-tetra hydropyran-2-yloxy)]-5-hydroxy-2-(4-hydroxyphenyl)chroman-4-one; (S)-7-(((2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)tetrahydro-2H-pyran-2-yl)oxy)-5-hydroxy-2-(4-hydroxyphenyl)chroman-4-one; (S)-7-((2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydro-2H-pyran-2-yloxy)-tetrahydro-2H-pyran-2-yloxy)-5-hydroxy-2-(4-hydroxyphenyl)chroman-4-one; (S)-7-((2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yloxy)tetrahydro-2H-pyran-2-yloxy)-5-hydroxy-2-(4-hydroxyphenyl)chroman-4-one; (2S)-7-{[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-5-hydroxy-2-(4-hydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-4-one; (2S)-7-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxy-tetrahydropyran-2-yl]oxy-5-hydroxy-2-(4-hydroxyphenyl)chroman-4-one; (2S)-7-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-2-yl]oxy-5-hydroxy-2-(4-hydroxyphenyl)-2,3-dihydrochromen-4-one; 7-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-2-yl]oxy-5-hydroxy-2-(4-hydroxyphenyl)-2,3-dihydrochromen-4-one; (2S)-7-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-2-yl]oxy-5-hydroxy-2-(4-hydroxyphenyl)chroman-4-one; 4H-1-Benzopyran-4-one,7-[[2-O-(6-deoxy-.alpha.-L-mannopyranosyl)-.beta.-D-glucopyranosyl]oxy]-2,3-dihydro-5-hydroxy-2-(4-hydroxyphenyl)-,(S)-; 4H-1-Benzopyran-4-one, 7-((2-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl)oxy)-2,3-dihydro-5-hydroxy-2-(4-hydroxyphenyl)-, (2S)-; 4H-1-Benzopyran-4-one, 7-((2-O-(6-deoxy-alpha-L-mannapyranosyl)-beta-D-glucopyranosyl)oxy)-2,3-dihydro-5-hydroxy-2-(4-hydroxyphenyl), (S)-; 7-((2-O-(6-DEOXY-.ALPHA.-L-MANNOPYRANOSYL)-.BETA.-D-GLUCOPYRANOSYL)OXY)-2,3-DIHYDRO-5-HYDROXY-2-(4-HYDROXYPHENYL)-4H-1-BENZOPYRAN-4-ONE; (2S)-5-hydroxy-2-(4-hydroxyphenyl)-4-oxo-3,4-dihydro-2H-1-benzopyran-7-yl 2-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranoside; (2S)-5-hydroxy-2-(4-hydroxyphenyl)-4-oxo-3,4-dihydro-2H-chromen-7-yl 2-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranoside; (2S)-5-hydroxy-2-(4-hydroxyphenyl)-4-oxo-3,4-dihydro-2H-chromen-7-yl 2-O-(6-deoxy-alpha-L-mannopyranosyl)-betaD-glucopyranoside; 7-[[2-O-(6-Deoxy-.alpha.-L-mannopyranosyl)-.beta.-D-glucopyranosyl]oxy]-5-hydroxy-2(S)-(4-hydroxyphenyl)-4H-1-benzopyran-4-one; 7-(2-O-(6-Deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyloxy)-2,3-dihydro-4,5,7-trihydroxyflavone; 5-Hydroxy-2-(4-hydroxyphenyl)-7-(2-O-alpha-L-rhamnopyranosyl-beta-D-glucopyranosyloxy)-4-chromanon; Naringenin 7-O-(alpha-L-rhamnosyl-(1->2)-beta-D-glucoside); Naringenin 7-O-[alpha-L-rhamnosyl-(1->2)-beta-D-glucoside]; naringenin 7-O-(alpha-L-rhamnosyl-(1,2)-beta-D-glucoside); Naringenin 7-O-alpha-L-rhamnosyl-(1->2)-beta-D-glucoside; Naringenin 7-O-[a-L-rhamnosyl-(1->2)-b-D-glucoside]; Naringenin 7-O-[α-L-rhamnosyl-(1->2)-β-D-glucoside]; Naringenin 7-O-a-L-rhamnosyl-(1->2)-b-D-glucoside; Naringenin 7-O-α-L-rhamnosyl-(1->2)-β-D-glucoside; 4,5,7-Trihydroxyflavanone-7-rhamnoglucoside; 4,5,7-trihydroxyflavanone 7-rhamnoglucoside; Naringenin-7-beta-neohesperidoside; Naringenine-7-rhamnosidoglucoside; Naringenin 7-O-neohesperidoside; NARINGENIN-7-RHAMNOGLUCOSIDE; Naringenin 7-Rhamnoglucoside; DFPMSGMNTNDNHN-ZPHOTFPESA-N; naringenin-7-hesperidoside; CITRUS NARINGININE [VANDF]; 45-diOH-Flavone-7-rhgluc; Naringin dihydrochalcone; Naringin (Naringoside); Naringenin Glycoside; AURANTIIN [WHO-DD]; Prestwick2_000467; Prestwick1_000467; NARINGIN (USP-RS); NARINGIN [USP-RS]; Prestwick0_000467; Prestwick3_000467; Naringin Hydrate; Naringin extract; NARINGIN [INCI]; UNII-N7TD9J649B; naringin sodium; Naringenin,(S); NARINGIN [MI]; DivK1c_000247; MEGxp0_001877; BPBio1_000632; (2S)-Naringin; KBio1_000247; ACon1_000139; IDI1_000247; Naringoside; N7TD9J649B; Nobiletin; AI3-19008; aurantiin; Cyclorel; Naringin; ZWN; (2S)-7-[(2S,3R,4S,5R,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3R,4R,5S,6S)-3,4,5-trihydroxy-6-methyl-oxan-2-yl]oxy-oxan-2-yl]oxy-5-hydroxy-2-(4-hydroxyphenyl)chroman-4-one; Naringin; Naringin



数据库引用编号

35 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(1)

PlantCyc(0)

代谢反应

10 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(1)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(9)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

222 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 12 ABCB1, BDNF, CDKN1A, CTNNB1, CYP3A4, MTOR, NOS2, PIK3C3, PPARG, PTGS2, TNFSF11, TP53
Peripheral membrane protein 4 ACHE, CYP1B1, MTOR, PTGS2
Endoplasmic reticulum membrane 5 CYP1B1, CYP3A4, HMGCR, MTOR, PTGS2
Cytoplasmic vesicle, autophagosome 1 PIK3C3
Nucleus 7 ACHE, CDKN1A, CTNNB1, MTOR, NOS2, PPARG, TP53
autophagosome 1 PIK3C3
cytosol 7 CDKN1A, CTNNB1, MTOR, NOS2, PIK3C3, PPARG, TP53
dendrite 2 BDNF, MTOR
nuclear body 1 CDKN1A
phagocytic vesicle 1 MTOR
phosphatidylinositol 3-kinase complex, class III 1 PIK3C3
centrosome 2 CTNNB1, TP53
nucleoplasm 7 ATP2B1, CDKN1A, CTNNB1, MTOR, NOS2, PPARG, TP53
RNA polymerase II transcription regulator complex 1 PPARG
Cell membrane 5 ABCB1, ACHE, ATP2B1, CTNNB1, TNFSF11
Cytoplasmic side 1 MTOR
lamellipodium 1 CTNNB1
Multi-pass membrane protein 3 ABCB1, ATP2B1, HMGCR
Golgi apparatus membrane 1 MTOR
Synapse 3 ACHE, ATP2B1, CTNNB1
cell cortex 1 CTNNB1
cell junction 1 CTNNB1
cell surface 3 ABCB1, ACHE, ADIPOQ
glutamatergic synapse 3 ATP2B1, CTNNB1, PIK3C3
Golgi apparatus 1 ACHE
Golgi membrane 2 INS, MTOR
lysosomal membrane 1 MTOR
neuromuscular junction 1 ACHE
presynaptic membrane 2 ATP2B1, CTNNB1
synaptic vesicle 1 BDNF
Cytoplasm, cytosol 1 NOS2
Lysosome 1 MTOR
endosome 1 PIK3C3
plasma membrane 6 ABCB1, ACHE, ATP2B1, CTNNB1, NOS2, TNFSF11
synaptic vesicle membrane 1 ATP2B1
Membrane 12 ABCB1, ACHE, ATP2B1, BDNF, CTNNB1, CYP1B1, CYP3A4, HMGCR, MTOR, PIK3C3, TNFSF11, TP53
apical plasma membrane 1 ABCB1
axon 1 BDNF
basolateral plasma membrane 2 ATP2B1, CTNNB1
caveola 1 PTGS2
extracellular exosome 3 ABCB1, ATP2B1, CTNNB1
Lysosome membrane 1 MTOR
endoplasmic reticulum 4 ADIPOQ, HMGCR, PTGS2, TP53
extracellular space 7 ACHE, ADIPOQ, BDNF, CCL2, CXCL8, INS, TNFSF11
perinuclear region of cytoplasm 6 ACHE, BDNF, CDKN1A, CTNNB1, NOS2, PPARG
Schaffer collateral - CA1 synapse 1 CTNNB1
adherens junction 1 CTNNB1
apicolateral plasma membrane 1 CTNNB1
bicellular tight junction 1 CTNNB1
mitochondrion 2 CYP1B1, TP53
protein-containing complex 4 CDKN1A, CTNNB1, PTGS2, TP53
intracellular membrane-bounded organelle 4 ATP2B1, CYP1B1, CYP3A4, PPARG
Microsome membrane 4 CYP1B1, CYP3A4, MTOR, PTGS2
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Secreted 7 ACHE, ADIPOQ, BDNF, CCL2, CXCL8, INS, TNFSF11
extracellular region 7 ACHE, ADIPOQ, BDNF, CCL2, CXCL8, INS, TNFSF11
Mitochondrion outer membrane 1 MTOR
mitochondrial outer membrane 1 MTOR
Mitochondrion matrix 1 TP53
mitochondrial matrix 1 TP53
Extracellular side 1 ACHE
transcription regulator complex 2 CTNNB1, TP53
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 TP53
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 ATP2B1
Z disc 1 CTNNB1
beta-catenin destruction complex 1 CTNNB1
nucleolus 2 CDKN1A, TP53
Wnt signalosome 1 CTNNB1
midbody 1 PIK3C3
Cytoplasm, P-body 1 NOS2
P-body 1 NOS2
apical part of cell 1 CTNNB1
cell-cell junction 1 CTNNB1
Single-pass type II membrane protein 1 TNFSF11
postsynaptic membrane 1 CTNNB1
Apical cell membrane 1 ABCB1
Cytoplasm, perinuclear region 1 NOS2
Cytoplasm, cytoskeleton 2 CTNNB1, TP53
focal adhesion 1 CTNNB1
GABA-ergic synapse 1 PIK3C3
Cell junction, adherens junction 1 CTNNB1
flotillin complex 1 CTNNB1
Peroxisome 2 NOS2, PIK3C3
basement membrane 1 ACHE
collagen trimer 1 ADIPOQ
peroxisomal matrix 1 NOS2
peroxisomal membrane 1 HMGCR
Nucleus, PML body 2 MTOR, TP53
PML body 2 MTOR, TP53
collagen-containing extracellular matrix 1 ADIPOQ
fascia adherens 1 CTNNB1
lateral plasma membrane 2 ATP2B1, CTNNB1
axoneme 1 PIK3C3
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
Late endosome 1 PIK3C3
receptor complex 1 PPARG
neuron projection 1 PTGS2
chromatin 2 PPARG, TP53
cell projection 1 ATP2B1
phagocytic vesicle membrane 1 PIK3C3
cell periphery 1 CTNNB1
Cytoplasm, cytoskeleton, cilium basal body 1 CTNNB1
spindle pole 1 CTNNB1
postsynaptic density, intracellular component 1 CTNNB1
Basolateral cell membrane 1 ATP2B1
Lipid-anchor, GPI-anchor 1 ACHE
microvillus membrane 1 CTNNB1
site of double-strand break 1 TP53
nuclear envelope 1 MTOR
Endomembrane system 2 CTNNB1, MTOR
endosome lumen 1 INS
phagophore assembly site 1 PIK3C3
phosphatidylinositol 3-kinase complex, class III, type I 1 PIK3C3
phosphatidylinositol 3-kinase complex, class III, type II 1 PIK3C3
euchromatin 1 CTNNB1
Presynaptic cell membrane 1 ATP2B1
side of membrane 1 ACHE
germ cell nucleus 1 TP53
replication fork 1 TP53
Peroxisome membrane 1 HMGCR
secretory granule lumen 1 INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 3 BDNF, INS, PTGS2
nuclear matrix 1 TP53
transcription repressor complex 1 TP53
transport vesicle 1 INS
beta-catenin-TCF complex 1 CTNNB1
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
immunological synapse 1 ATP2B1
presynaptic endosome 1 PIK3C3
[Isoform 2]: Cytoplasm 1 TNFSF11
[Tumor necrosis factor ligand superfamily member 11, soluble form]: Secreted 1 TNFSF11
presynaptic active zone cytoplasmic component 1 CTNNB1
[Isoform 1]: Nucleus 1 TP53
synaptic cleft 1 ACHE
protein-DNA complex 1 CTNNB1
external side of apical plasma membrane 1 ABCB1
Cytoplasmic vesicle, phagosome 1 MTOR
catenin complex 1 CTNNB1
cyclin-dependent protein kinase holoenzyme complex 1 CDKN1A
postsynaptic endosome 1 PIK3C3
cortical cytoskeleton 1 NOS2
Autolysosome 1 PIK3C3
photoreceptor ribbon synapse 1 ATP2B1
PCNA-p21 complex 1 CDKN1A
beta-catenin-TCF7L2 complex 1 CTNNB1
[Isoform H]: Cell membrane 1 ACHE
[Neurotrophic factor BDNF precursor form]: Secreted 1 BDNF
beta-catenin-ICAT complex 1 CTNNB1
Scrib-APC-beta-catenin complex 1 CTNNB1


文献列表

  • Qi-Lin Huang, Li-Na Huang, Guan-Yu Zhao, Chen Liu, Xiang-Yi Pan, Zhao-Rong Li, Xiao-Han Jing, Zheng-Ying Qiu, Rui-Hua Xin. Naringin attenuates Actinobacillus pleuropneumoniae-induced acute lung injury via MAPK/NF-κB and Keap1/Nrf2/HO-1 pathway. BMC veterinary research. 2024 May; 20(1):204. doi: 10.1186/s12917-024-04055-2. [PMID: 38755662]
  • Yan Liu, Xiaohan Tang, Hailong Yuan, Rong Gao. Naringin Inhibits Macrophage Foam Cell Formation by Regulating Lipid Homeostasis and Metabolic Phenotype. Nutrients. 2024 Apr; 16(9):. doi: 10.3390/nu16091321. [PMID: 38732567]
  • Andreia Marinho, Catarina Leal Seabra, Sofia A C Lima, Alexandre Lobo-da-Cunha, Salette Reis, Cláudia Nunes. Empowering Naringin's Anti-Inflammatory Effects through Nanoencapsulation. International journal of molecular sciences. 2024 Apr; 25(8):. doi: 10.3390/ijms25084152. [PMID: 38673736]
  • Deepika Soni, Deepa Gandhi. Toxicity evaluation of silver nanoparticles synthesized from naringin flavonoid on human promyelocytic leukemic cells and human blood cells. Toxicology and industrial health. 2024 Mar; 40(3):125-133. doi: 10.1177/07482337241227244. [PMID: 38243157]
  • Qilin Huang, Wei Li, Xiaohan Jing, Chen Liu, Saad Ahmad, Lina Huang, Guanyu Zhao, Zhaorong Li, Zhengying Qiu, Ruihua Xin. Naringin's Alleviation of the Inflammatory Response Caused by Actinobacillus pleuropneumoniae by Downregulating the NF-κB/NLRP3 Signalling Pathway. International journal of molecular sciences. 2024 Jan; 25(2):. doi: 10.3390/ijms25021027. [PMID: 38256101]
  • Xiao-Han Jing, Guan-Yu Zhao, Gui-Bo Wang, Qi-Lin Huang, Wen-Shu Zou, Li-Na Huang, Wei Li, Zheng-Ying Qiu, Rui-Hua Xin. Naringin alleviates pneumonia caused by Klebsiella pneumoniae infection by suppressing NLRP3 inflammasome. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2024 Jan; 170(?):116028. doi: 10.1016/j.biopha.2023.116028. [PMID: 38113627]
  • Ziwei Yin, Xuefeng Hua, Minqiang Lu. Integrated Network Pharmacology and Metabolomics to Dissect the Mechanisms of Naringin for Treating Cervical Cancer. Combinatorial chemistry & high throughput screening. 2024; 27(5):754-764. doi: 10.2174/1386207326666230504124030. [PMID: 37143280]
  • Mustafa Ileriturk, Duygu Ileriturk, Ozge Kandemir, Nurhan Akaras, Hasan Simsek, Ender Erdogan, Fatih M Kandemir. Naringin attenuates oxaliplatin-induced nephrotoxicity and hepatotoxicity: A molecular, biochemical, and histopathological approach in a rat model. Journal of biochemical and molecular toxicology. 2024 Jan; 38(1):e23604. doi: 10.1002/jbt.23604. [PMID: 38037725]
  • Oluwaseun Esan, T O Ajibade, Chinomso Gift Ebirim, Moses Olusola Adetona, Ademola Adetokunbo Oyagbemi, Temidayo Olutayo Omobowale, Omolade Abodunrin Oladele, Adeolu Alex Adedapo, Oluwafemi Oguntibeju, Momoh Audu Yakubu, Evaristus Nwulia. Immunohistochemical and morphological changes associated with hepatic damage in lead acetate-induced toxicity and mitigatory properties of naringin in cockerel chicks. Nigerian journal of physiological sciences : official publication of the Physiological Society of Nigeria. 2023 Dec; 38(2):239-246. doi: 10.54548/njps.v38i2.13. [PMID: 38696693]
  • Wei Xiong, Lingmei Yuan, Liangxia Wang, Guowen Qian, Chaoyi Liang, Bin Pan, Ling Guo, Wenqiang Wei, Xunxiang Qiu, Wenfang Deng, Zhikui Zeng. [Preparation of berberine-naringin dual drug-loaded composite microspheres and evaluation of their antibacterial-osteogenic properties]. Zhongguo xiu fu chong jian wai ke za zhi = Zhongguo xiufu chongjian waike zazhi = Chinese journal of reparative and reconstructive surgery. 2023 Dec; 37(12):1505-1513. doi: 10.7507/1002-1892.202308054. [PMID: 38130195]
  • Lingling Guan, Lan Guo, Heng Zhang, Hao Liu, Wenling Zhou, Yuanyuan Zhai, Xu Yan, Xiuli Men, Liang Peng. Naringin Protects against Non-Alcoholic Fatty Liver Disease by Promoting Autophagic Flux and Lipophagy. Molecular nutrition & food research. 2023 Dec; ?(?):e2200812. doi: 10.1002/mnfr.202200812. [PMID: 38054638]
  • Pradeepti Ganesh, Vanishree Suresh, Manoj Kumar Narasimhan, Sarvesh Sabarathinam. A narrative review on Naringin and Naringenin as a possible bioenhancer in various drug-delivery formulations. Therapeutic delivery. 2023 Dec; 14(12):763-774. doi: 10.4155/tde-2023-0086. [PMID: 38088094]
  • Meng-Chen Qin, Jun-Jie Li, Yan-Tao Zheng, Yun-Jia Li, Yu-Xue Zhang, Rou-Xuan Ou, Wei-Yi He, Jia-Min Zhao, Su-Tong Liu, Ming-Hao Liu, Hai-Yan Lin, Lei Gao. Naringin ameliorates liver fibrosis in zebrafish by modulating IDO1-mediated lipid metabolism and inflammatory infiltration. Food & function. 2023 Nov; ?(?):. doi: 10.1039/d3fo03858k. [PMID: 37930368]
  • Wei Xiong, Lingmei Yuan, Jinyang Huang, Bin Pan, Ling Guo, Guowen Qian, Cijun Shuai, Zhikui Zeng. Direct osteogenesis and immunomodulation dual function via sustained release of naringin from the polymer scaffold. Journal of materials chemistry. B. 2023 Nov; ?(?):. doi: 10.1039/d3tb01555f. [PMID: 37929928]
  • Guanyu Zhao, Qilin Huang, Xiaohan Jing, Lina Huang, Chen Liu, Xiangyi Pan, Zhaorong Li, Sifan Li, Zhengying Qiu, Ruihua Xin. Therapeutic Effect and Safety Evaluation of Naringin on Klebsiella pneumoniae in Mice. International journal of molecular sciences. 2023 Nov; 24(21):. doi: 10.3390/ijms242115940. [PMID: 37958922]
  • Yong Cheng, Xi Chen, Tian Yang, Zhaojun Wang, Qiuming Chen, Maomao Zeng, Fang Qin, Jie Chen, Zhiyong He. Effects of whey protein isolate and ferulic acid/phloridzin/naringin/cysteine on the thermal stability of mulberry anthocyanin extract at neutral pH. Food chemistry. 2023 Nov; 425(?):136494. doi: 10.1016/j.foodchem.2023.136494. [PMID: 37270886]
  • A I Savko, T V Ilyich, A G Veiko, T A Kovalenia, E A Lapshina, I B Zavodnik. The flavonoids fisetin, apigenin, kaempferol, naringenin, naringin regulate respiratory activity and membrane potential of rat liver mitochondria and inhibit oxidative processes in erythrocytes. Biomeditsinskaia khimiia. 2023 Nov; 69(5):281-289. doi: 10.18097/pbmc20236905281. [PMID: 37937430]
  • Gui-Xun Shi, Wei-Dong Sun, Zeng-Huan Chen, Chuan-Jun Yang, Wang-Lin Luo, Dan-Feng Wang, Ze-Zhu Zhou. Drynaria Naringin alleviated mechanical stress deficiency-caused bone loss deterioration via Rspo1/Lgr4-mediated Wnt/β-catenin signalling pathway. In vitro cellular & developmental biology. Animal. 2023 Oct; ?(?):. doi: 10.1007/s11626-023-00815-w. [PMID: 37831321]
  • David Jutrić, Domagoj Đikić, Almoš Boroš, Dyana Odeh, Romana Gračan, Anđelo Beletić, Irena Landeka Jurčević. Combined effects of valproate and naringin on kidney antioxidative markers and serum parameters of kidney function in C57BL6 mice. Arhiv za higijenu rada i toksikologiju. 2023 Sep; 74(3):218-223. doi: 10.2478/aiht-2023-74-3764. [PMID: 37791674]
  • Zsolt Ajtony, Beatrix Sik, Aron Csuti. Examining the Naringin Content and Sensory Characteristics of Functional Chocolate Fortified with Grapefruit Peel Extract. Plant foods for human nutrition (Dordrecht, Netherlands). 2023 Sep; 78(3):533-538. doi: 10.1007/s11130-023-01091-5. [PMID: 37594558]
  • Deepankar Rath, Biswakanth Kar, Gurudutta Pattnaik, Pallishree Bhukta. Synergistic Effect of Naringin and Glimepiride in Streptozotocin-induced Diabetic Rats. Current diabetes reviews. 2023 08; ?(?):. doi: 10.2174/1573399820666230817154835. [PMID: 37592777]
  • Shimaa S Khaled, Hanan A Soliman, Mohammed Abdel-Gabbar, Noha A Ahmed, El-Shaymaa El-Nahass, Osama M Ahmed. Naringin and naringenin counteract taxol-induced liver injury in Wistar rats via suppression of oxidative stress, apoptosis and inflammation. Environmental science and pollution research international. 2023 Jul; ?(?):. doi: 10.1007/s11356-023-28454-4. [PMID: 37466839]
  • Shashanka K Prasad, Smitha S Bhat, Olga Koskowska, Jiraporn Sangta, Sheikh F Ahmad, Ahmed Nadeem, Sarana Rose Sommano. Naringin from Coffee Inhibits Foodborne Aspergillus fumigatus via the NDK Pathway: Evidence from an In Silico Study. Molecules (Basel, Switzerland). 2023 Jul; 28(13):. doi: 10.3390/molecules28135189. [PMID: 37446851]
  • Xianghu Zhao, Jing Hu, Jie Liu, Yi Meng, Xiangzhong Liu, Haijia Xu, Yu Ning, Zhanghua Li. Direct or Indirect Action Mechanisms of Naringin in Maintaining Bone Homeostasis. Cellular and molecular biology (Noisy-le-Grand, France). 2023 Jun; 69(6):151-159. doi: 10.14715/cmb/2023.69.6.23. [PMID: 37605576]
  • Ravindra Shantakumar Swamy, Naveen Kumar, Smita Shenoy, Sri Pragnya Cheruku, Vanishree Rao, Nitesh Kumar, Sachindra Kumar, Velayutham Ravichandiran. Neuroprotective effect by naringin against fluorosis-induced neurodegeneration in adult Wistar rats. Neuroreport. 2023 06; 34(9):449-456. doi: 10.1097/wnr.0000000000001908. [PMID: 37161984]
  • Yi Wei, Lei Sun, Chao Liu, Lujia Li. Naringin regulates endoplasmic reticulum stress and mitophagy through the ATF3/PINK1 signaling axis to alleviate pulmonary fibrosis. Naunyn-Schmiedeberg's archives of pharmacology. 2023 06; 396(6):1155-1169. doi: 10.1007/s00210-023-02390-z. [PMID: 36688958]
  • Jian Zhuang, Jin Wang, Bingping Zhang, Dongpo Chai, Zhenbo Zuo. The prophylactic effects of naringin on steroid-induced early-stage osteonecrosis in rats: a preliminary study. Cellular and molecular biology (Noisy-le-Grand, France). 2023 May; 69(5):94-104. doi: 10.14715/cmb/2023.69.5.16. [PMID: 37571894]
  • V Krishnaraju, Y Alghazwani, S Durgaramani, Y I Asiri, K Prabahar, K Kalpana, V Rajalakshimi, A K Noohu, P Premalatha, S A Sirajudeen, V Kumar, V Vinoth Prabhu. Beneficial effects of Naringin against lopinavir/ ritonavir-induced hyperlipidemia and reproductive toxicity in male albino rats. European review for medical and pharmacological sciences. 2023 May; 27(9):4221-4231. doi: 10.26355/eurrev_202305_32332. [PMID: 37203848]
  • Lidan Gu, Fei Wang, Yilin Wang, Deen Sun, Yiming Sun, Tingting Tian, Qiang Meng, Lianhong Yin, Lina Xu, Xiaolong Lu, Jinyong Peng, Yuan Lin, Pengyuan Sun. Naringin protects against inflammation and apoptosis induced by intestinal ischemia-reperfusion injury through deactivation of cGAS-STING signaling pathway. Phytotherapy research : PTR. 2023 May; ?(?):. doi: 10.1002/ptr.7824. [PMID: 37125528]
  • Guangtao Pan, Ping Zhang, Aiying Chen, Yu Deng, Zhen Zhang, Han Lu, Aoxun Zhu, Cong Zhou, Yanran Wu, Sen Li. Aerobic glycolysis in colon cancer is repressed by naringin via the HIF1Α pathway. Journal of Zhejiang University. Science. B. 2023 Mar; 24(3):221-231. doi: 10.1631/jzus.b2200221. [PMID: 36915998]
  • Ho Seon Lee, Chan Uk Heo, Young-Ho Song, Kyeong Lee, Chang-Ik Choi. Naringin promotes fat browning mediated by UCP1 activation via the AMPK signaling pathway in 3T3-L1 adipocytes. Archives of pharmacal research. 2023 Feb; ?(?):. doi: 10.1007/s12272-023-01432-7. [PMID: 36840853]
  • Xiao-Lei Yu, Xin Meng, Yi-Di Yan, Jin-Cheng Han, Jia-Shan Li, Hui Wang, Lei Zhang. Optimisation of the Extraction Process of Naringin and Its Effect on Reducing Blood Lipid Levels In Vitro. Molecules (Basel, Switzerland). 2023 Feb; 28(4):. doi: 10.3390/molecules28041788. [PMID: 36838786]
  • Sandeep Jat, Manini Bhatt, Sanjana Roychowdhury, Vaibhav A Dixit, Sachin Dattram Pawar, Hitesh Kulhari, Amit Alexander, Pramod Kumar. Preparation and characterization of amoxapine- and naringin-loaded solid lipid nanoparticles: drug-release and molecular-docking studies. Nanomedicine (London, England). 2023 Feb; ?(?):. doi: 10.2217/nnm-2022-0167. [PMID: 36786368]
  • Peisen Guo, Panpan Wang, Limin Liu, Peixi Wang, Guimiao Lin, Zhi Qu, Zengli Yu, Nan Liu. Naringin Alleviates Glucose-Induced Aging by Reducing Fat Accumulation and Promoting Autophagy in Caenorhabditis elegans. Nutrients. 2023 Feb; 15(4):. doi: 10.3390/nu15040907. [PMID: 36839265]
  • Yixing Pi, Zitian Liang, Qianzhou Jiang, Ding Chen, Zhikang Su, Yuanting Ouyang, Zhiyi Zhang, Jiaohong Liu, Siyi Wen, Li Yang, Tao Luo, Lvhua Guo. The role of PIWI-interacting RNA in naringin pro-angiogenesis by targeting HUVECs. Chemico-biological interactions. 2023 Feb; 371(?):110344. doi: 10.1016/j.cbi.2023.110344. [PMID: 36623717]
  • Lin Zhu, Jing Shi, Mingchao Mu, Zilu Chen, Chenye Zhao, Xiaopeng Li, Chao Qu, Changchun Ye, Wei Zhao, Xuejun Sun, Xingjie Wang. Naringin Inhibits the Proliferation, Migration, Invasion and Epithelial-to-Mesenchymal Transition of Gastric Cancer Cells via the PI3K/AKT Signaling Pathway. Alternative therapies in health and medicine. 2023 Jan; 29(1):191-197. doi: ". [PMID: 36112793]
  • Jing Wang, Qi Wang, Siyuan Zhu, Jinxiu Huang, Zuohua Liu, Renli Qi. Naringin reduces fat deposition by promoting the expression of lipolysis and β-oxidation related genes. Obesity research & clinical practice. 2023 Jan; 17(1):74-81. doi: 10.1016/j.orcp.2022.11.004. [PMID: 36494293]
  • Qi Qiu, Xia Lei, Yueying Wang, Hui Xiong, Yanming Xu, Huifeng Sun, Hongdan Xu, Ning Zhang. Naringin Protects against Tau Hyperphosphorylation in Aβ 25-35-Injured PC12 Cells through Modulation of ER, PI3K/AKT, and GSK-3β Signaling Pathways. Behavioural neurology. 2023; 2023(?):1857330. doi: 10.1155/2023/1857330. [PMID: 36844418]
  • Xiaolei Yu, Xin Meng, Yidi Yan, Hui Wang, Lei Zhang. Extraction of Naringin from Pomelo and Its Therapeutic Potentials against Hyperlipidemia. Molecules (Basel, Switzerland). 2022 Dec; 27(24):. doi: 10.3390/molecules27249033. [PMID: 36558166]
  • Chutimon Termkwancharoen, Wachirawadee Malakul, Amnat Phetrungnapha, Sakara Tunsophon. Naringin Ameliorates Skeletal Muscle Atrophy and Improves Insulin Resistance in High-Fat-Diet-Induced Insulin Resistance in Obese Rats. Nutrients. 2022 Oct; 14(19):. doi: 10.3390/nu14194120. [PMID: 36235772]
  • Xuan Zeng, Yuying Zheng, Yan He, Jiashuo Zhang, Wei Peng, Weiwei Su. Microbial Metabolism of Naringin and the Impact on Antioxidant Capacity. Nutrients. 2022 Sep; 14(18):. doi: 10.3390/nu14183765. [PMID: 36145140]
  • Wenting Liu, Liping Cheng, Xuefei Li, Lili Zhao, Xiaorong Hu, Zhaocheng Ma. Short-term pretreatment of naringin isolated from Citrus wilsonii Tanaka attenuates rat myocardial ischemia/reperfusion injury. Naunyn-Schmiedeberg's archives of pharmacology. 2022 09; 395(9):1047-1059. doi: 10.1007/s00210-022-02255-x. [PMID: 35666279]
  • Luca Massaro, Anna Raguzzini, Paola Aiello, Débora Villaño Valencia. The Potential Role of Naringin and Naringenin as Nutraceuticals against Metabolic Syndrome. Endocrine, metabolic & immune disorders drug targets. 2022 Aug; ?(?):. doi: 10.2174/1871530322666220827141203. [PMID: 36043734]
  • Jessica Lucia Barajas-Vega, Abdel Kerim Raffoul-Orozco, Diego Hernandez-Molina, Ana Elisa Ávila-González, Teresa Arcelia García-Cobian, Edy David Rubio-Arellano, Ernesto Javier Ramirez-Lizardo. Naringin reduces body weight, plasma lipids and increases adiponectin levels in patients with dyslipidemia. International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition. 2022 Jul; 92(3-4):292-298. doi: 10.1024/0300-9831/a000658. [PMID: 32513069]
  • Sharat Sarmah, Archita Goswami, Vinay Kumar Belwal, Atanu Singha Roy. Mitigation of ribose and glyoxal induced glycation, AGEs formation and aggregation of human serum albumin by citrus fruit phytochemicals naringin and naringenin: An insight into their mechanism of action. Food research international (Ottawa, Ont.). 2022 Jul; 157(?):111358. doi: 10.1016/j.foodres.2022.111358. [PMID: 35761621]
  • Yang Yang, Myah Trevethan, Shu Wang, Ling Zhao. Beneficial effects of citrus flavanones naringin and naringenin and their food sources on lipid metabolism: An update on bioavailability, pharmacokinetics, and mechanisms. The Journal of nutritional biochemistry. 2022 06; 104(?):108967. doi: 10.1016/j.jnutbio.2022.108967. [PMID: 35189328]
  • Xianxin Meng, Guanjun Nan, Yunzhe Li, Yan Du, Hongwen Zhao, Hongxia Zheng, Wanlu Li, Henglin Liu, Yiping Li, Guangde Yang. Study on the interaction between nimodipine and five proteinases and the effects of naringin and vitamin C on these interactions by spectroscopic and molecular docking methods. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2022 May; 272(?):120982. doi: 10.1016/j.saa.2022.120982. [PMID: 35139470]
  • David Jutrić, Domagoj Đikić, Almoš Boroš, Dyna Odeh, Sandra Domjanić Drozdek, Romana Gračan, Petar Dragičević, Irena Crnić, Irena Landeka Jurčević. Effects of naringin and valproate interaction on liver steatosis and dyslipidaemia parameters in male C57BL6 mice. Arhiv za higijenu rada i toksikologiju. 2022 Apr; 73(1):71-82. doi: 10.2478/aiht-2022-73-3608. [PMID: 35390239]
  • Sankar Muthumanickam, Thangamariyappan Indhumathi, Pandi Boomi, Ramachandran Balajee, Jeyaraman Jeyakanthan, Krishnan Anand, Sundaram Ravikumar, Ponnuchamy Kumar, Arumugam Sudha, Zhihui Jiang. In silico approach of naringin as potent phosphatase and tensin homolog (PTEN) protein agonist against prostate cancer. Journal of biomolecular structure & dynamics. 2022 03; 40(4):1629-1638. doi: 10.1080/07391102.2020.1830855. [PMID: 33034258]
  • Bushra Ansari, Michael Aschner, Yaseen Hussain, Thomas Efferth, Haroon Khan. Suppression of colorectal carcinogenesis by naringin. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2022 Feb; 96(?):153897. doi: 10.1016/j.phymed.2021.153897. [PMID: 35026507]
  • Mathipi Vabeiryureilai, Khawlhring Lalrinzuali, Ganesh Chandra Jagetia. NF-κB and COX-2 repression with topical application of hesperidin and naringin hydrogels augments repair and regeneration of deep dermal wounds. Burns : journal of the International Society for Burn Injuries. 2022 02; 48(1):132-145. doi: 10.1016/j.burns.2021.04.016. [PMID: 33972147]
  • Wei Wang, Qiyu Liu, Xianchun Liang, Qi Kang, Zinian Wang. Protective role of naringin loaded solid nanoparticles against aflatoxin B1 induced hepatocellular carcinoma. Chemico-biological interactions. 2022 Jan; 351(?):109711. doi: 10.1016/j.cbi.2021.109711. [PMID: 34717916]
  • Renchang Chen, Shang Gao, Huapeng Guan, Xin Zhang, Yuliang Gao, Youxiang Su, Yun Song, Yuehua Jiang, Nianhu Li. Naringin protects human nucleus pulposus cells against TNF-α-induced inflammation, oxidative stress, and loss of cellular homeostasis by enhancing autophagic flux via AMPK/SIRT1 activation. Oxidative medicine and cellular longevity. 2022; 2022(?):7655142. doi: 10.1155/2022/7655142. [PMID: 35265264]
  • Chun-Yan Zheng, Xiao-Yang Chu, Chun-Yan Gao, Hua-Ying Hu, Xin He, Xu Chen, Kai Yang, Dong-Liang Zhang. TAT&RGD Peptide-Modified Naringin-Loaded Lipid Nanoparticles Promote the Osteogenic Differentiation of Human Dental Pulp Stem Cells. International journal of nanomedicine. 2022; 17(?):3269-3286. doi: 10.2147/ijn.s371715. [PMID: 35924260]
  • Yue-Hui Zhang, Wen-Ji Shangguan, Zhi-Jun Zhao, Fu-Chao Zhou, Hai-Tao Liu, Zhi-Hui Liang, Jia Song, Jiang Shao. Naringin Inhibits Apoptosis Induced by Cyclic Stretch in Rat Annular Cells and Partially Attenuates Disc Degeneration by Inhibiting the ROS/NF-κB Pathway. Oxidative medicine and cellular longevity. 2022; 2022(?):6179444. doi: 10.1155/2022/6179444. [PMID: 35251479]
  • Pooja Yadav, Ravina Vats, Afsareen Bano, Amit Vashishtha, Rashmi Bhardwaj. A Phytochemicals Approach Towards the Treatment of Cervical Cancer Using Polyphenols and Flavonoids. Asian Pacific journal of cancer prevention : APJCP. 2022 Jan; 23(1):261-270. doi: 10.31557/apjcp.2022.23.1.261. [PMID: 35092396]
  • Mina Y George, Esther T Menze, Ahmed Esmat, Mariane G Tadros, Ebtehal El-Demerdash. Naringin treatment improved main clozapine-induced adverse effects in rats; emphasis on weight gain, metabolic abnormalities, and agranulocytosis. Drug development research. 2021 11; 82(7):980-989. doi: 10.1002/ddr.21800. [PMID: 33537987]
  • Mônica Maurer Sost, Sanne Ahles, Jessica Verhoeven, Sanne Verbruggen, Yala Stevens, Koen Venema. A Citrus Fruit Extract High in Polyphenols Beneficially Modulates the Gut Microbiota of Healthy Human Volunteers in a Validated In Vitro Model of the Colon. Nutrients. 2021 Nov; 13(11):. doi: 10.3390/nu13113915. [PMID: 34836169]
  • Ruige Cao, Xing Wu, Hui Guo, Xin Pan, Rong Huang, Gangqiang Wang, Jikai Liu. Naringin Exhibited Therapeutic Effects against DSS-Induced Mice Ulcerative Colitis in Intestinal Barrier-Dependent Manner. Molecules (Basel, Switzerland). 2021 Oct; 26(21):. doi: 10.3390/molecules26216604. [PMID: 34771012]
  • Peiyuan Li, Sha Zhang, Hui Song, Stanislav Seydou Traore, Jiangtao Li, David Raubenheimer, Zhenwei Cui, Guangning Kou. Naringin Promotes Skeletal Muscle Fiber Remodeling by the AdipoR1-APPL1-AMPK Signaling Pathway. Journal of agricultural and food chemistry. 2021 Oct; 69(40):11890-11899. doi: 10.1021/acs.jafc.1c04481. [PMID: 34586803]
  • Fedora Grande, Maria Antonietta Occhiuzzi, Maria Rosaria Perri, Giuseppina Ioele, Bruno Rizzuti, Giancarlo Statti, Antonio Garofalo. Polyphenols from Citrus Tacle® Extract Endowed with HMGCR Inhibitory Activity: An Antihypercholesterolemia Natural Remedy. Molecules (Basel, Switzerland). 2021 Sep; 26(18):. doi: 10.3390/molecules26185718. [PMID: 34577189]
  • Zahra Memariani, Syed Qamar Abbas, Syed Shams Ul Hassan, Amirhossein Ahmadi, Aroona Chabra. Naringin and naringenin as anticancer agents and adjuvants in cancer combination therapy: Efficacy and molecular mechanisms of action, a comprehensive narrative review. Pharmacological research. 2021 09; 171(?):105264. doi: 10.1016/j.phrs.2020.105264. [PMID: 33166734]
  • Negin Amini, Alireza Sarkaki, Mahin Dianat, Seyyed Ali Mard, Akram Ahangarpour, Mohammad Badavi. Naringin and Trimetazidine Improve Baroreflex Sensitivity and Nucleus Tractus Solitarius Electrical Activity in Renal Ischemia-Reperfusion Injury. Arquivos brasileiros de cardiologia. 2021 08; 117(2):290-297. doi: 10.36660/abc.20200121. [PMID: 34495221]
  • Takashi Tsujimoto, Ryoko Arai, Taichi Yoshitomi, Yutaka Yamamoto, Yoshihiro Ozeki, Takashi Hakamatsuka, Nahoko Uchiyama. UHPLC/MS and NMR-Based Metabolomic Analysis of Dried Water Extract of Citrus-Type Crude Drugs. Chemical & pharmaceutical bulletin. 2021 Aug; 69(8):741-746. doi: 10.1248/cpb.c21-00180. [PMID: 34024880]
  • Yonghong Xue, Zhiqing Huang, Xiaoling Chen, Gang Jia, Hua Zhao, Guangmang Liu. Naringin induces skeletal muscle fiber type transformation via AMPK/PGC-1α signaling pathway in mice and C2C12 myotubes. Nutrition research (New York, N.Y.). 2021 08; 92(?):99-108. doi: 10.1016/j.nutres.2021.06.003. [PMID: 34284270]
  • Xiaohui Zhang, Yizhi Zhang, Wen Gao, Zhihao Guo, Kun Wang, Shuang Liu, Zhongping Duan, Yu Chen. Naringin improves lipid metabolism in a tissue-engineered liver model of NAFLD and the underlying mechanisms. Life sciences. 2021 Jul; 277(?):119487. doi: 10.1016/j.lfs.2021.119487. [PMID: 33862107]
  • Adio J Akamo, Solomon O Rotimi, Dorcas I Akinloye, Regina N Ugbaja, Oluwagbemiga O Adeleye, Oluwatosin A Dosumu, Ofem E Eteng, Gogonte Amah, Augustine Obijeku, Oluwatosin E Cole. Naringin prevents cyclophosphamide-induced hepatotoxicity in rats by attenuating oxidative stress, fibrosis, and inflammation. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2021 Jul; 153(?):112266. doi: 10.1016/j.fct.2021.112266. [PMID: 33992719]
  • Lakshi A Dayarathne, Sachithra S Ranaweera, Premkumar Natraj, Priyanka Rajan, Young Jae Lee, Chang Hoon Han. Restoration of the adipogenic gene expression by naringenin and naringin in 3T3-L1 adipocytes. Journal of veterinary science. 2021 Jul; 22(4):e55. doi: 10.4142/jvs.2021.22.e55. [PMID: 34313040]
  • Ruijie Wang, Bin Bao, Shujun Wang, Jeevithan Elango, Wenhui Wu. Fabrication of Chinese Traditional Medicines incorporated collagen biomaterials for human bone marrow mesenchymal stem cells. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2021 Jul; 139(?):111659. doi: 10.1016/j.biopha.2021.111659. [PMID: 33962310]
  • Zhi-Hu Zhao, Xin-Long Ma, Bin Zhao, Peng Tian, Jian-Xiong Ma, Jia-Yu Kang, Yang Zhang, Yue Guo, Lei Sun. Naringin-inlaid silk fibroin/hydroxyapatite scaffold enhances human umbilical cord-derived mesenchymal stem cell-based bone regeneration. Cell proliferation. 2021 Jul; 54(7):e13043. doi: 10.1111/cpr.13043. [PMID: 34008897]
  • Yonggang Wang, Hao Wu, Pan Chen, Weiwei Su, Wei Peng, Peibo Li. Fertility and early embryonic development toxicity assessment of naringin in Sprague-Dawley rats. Regulatory toxicology and pharmacology : RTP. 2021 Jul; 123(?):104938. doi: 10.1016/j.yrtph.2021.104938. [PMID: 33933549]
  • Mao-Hsien Wang, Chih-Chuan Yang, Hsiang-Chien Tseng, Chih-Hsiang Fang, Yi-Wen Lin, Hung-Sheng Soung. Naringin Ameliorates Haloperidol-Induced Neurotoxicity and Orofacial Dyskinesia in a Rat Model of Human Tardive Dyskinesia. Neurotoxicity research. 2021 Jun; 39(3):774-786. doi: 10.1007/s12640-021-00333-1. [PMID: 33523404]
  • Yi-Kun Wang, Zi-Meng Zhou, Man-Yun Dai, Xiao-Fang Ma, Xue-Rong Xiao, Shou-Wen Zhang, Hong-Ning Liu, Fei Li. Discovery and validation of quality markers of Fructus Aurantii against acetylcholinesterase using metabolomics and bioactivity assays. Journal of separation science. 2021 Jun; 44(11):2189-2205. doi: 10.1002/jssc.202001190. [PMID: 33784419]
  • Reshmi Somanathan Karthiga, Shinde Vijay Sukhdeo, Sudha Madhugiri Lakshminarayan, Shashirekha Mysuru Nanjarajurs. Efficacy of Citrus maxima fruit segment supplemented paranthas in STZ induced diabetic rats. Journal of food science. 2021 May; 86(5):2091-2102. doi: 10.1111/1750-3841.15707. [PMID: 33864254]
  • Hui Zheng, Xiao-Ting Zhen, Yan Chen, Si-Chen Zhu, Li-Hong Ye, Si-Wei Yang, Qiu-Yan Wang, Jun Cao. In situ antioxidation-assisted matrix solid-phase dispersion microextraction and discrimination of chiral flavonoids from citrus fruit via ion mobility quadrupole time-of-flight high-resolution mass spectrometry. Food chemistry. 2021 May; 343(?):128422. doi: 10.1016/j.foodchem.2020.128422. [PMID: 33143965]
  • Kai Ni, Jia Guo, Bing Bu, Yan Pan, Jingjing Li, Lei Liu, Mingzhi Luo, Linhong Deng. Naringin as a plant-derived bitter tastant promotes proliferation of cultured human airway epithelial cells via activation of TAS2R signaling. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2021 Apr; 84(?):153491. doi: 10.1016/j.phymed.2021.153491. [PMID: 33601237]
  • Amira Mohammed Ali, Hiroshi Kunugi. Propolis, Bee Honey, and Their Components Protect against Coronavirus Disease 2019 (COVID-19): A Review of In Silico, In Vitro, and Clinical Studies. Molecules (Basel, Switzerland). 2021 Feb; 26(5):. doi: 10.3390/molecules26051232. [PMID: 33669054]
  • Ruonan Chen, Chenlin Shen, Qingqing Xu, Yaru Liu, Bo Li, Cheng Huang, Taotao Ma, Xiaoming Meng, Maomao Wu, Jun Li. The permeability characteristics and interaction of main components from Si-Ni-San in a MDCK epithelial cell monolayer model. Xenobiotica; the fate of foreign compounds in biological systems. 2021 Feb; 51(2):239-248. doi: 10.1080/00498254.2017.1359433. [PMID: 28745128]
  • Gisha Singla, Umesh Singh, Rajender S Sangwan, Parmjit S Panesar, Meena Krishania. Comparative study of various processes used for removal of bitterness from kinnow pomace and kinnow pulp residue. Food chemistry. 2021 Jan; 335(?):127643. doi: 10.1016/j.foodchem.2020.127643. [PMID: 32745841]
  • Rasha A Hassan, Walaa G Hozayen, Haidy T Abo Sree, Hessah M Al-Muzafar, Kamal A Amin, Osama M Ahmed. Naringin and Hesperidin Counteract Diclofenac-Induced Hepatotoxicity in Male Wistar Rats via Their Antioxidant, Anti-Inflammatory, and Antiapoptotic Activities. Oxidative medicine and cellular longevity. 2021; 2021(?):9990091. doi: 10.1155/2021/9990091. [PMID: 34422219]
  • Li-Juan Sun, Wei Qiao, Yang-Jie Xiao, Wei-Dong Ren. Layer-specific strain for assessing the effect of naringin on systolic myocardial dysfunction induced by sepsis and its underlying mechanisms. The Journal of international medical research. 2021 Jan; 49(1):300060520986369. doi: 10.1177/0300060520986369. [PMID: 33445988]
  • Rolffy Ortiz-Andrade, Jesús Alfredo Araujo-León, Amanda Sánchez-Recillas, Gabriel Navarrete-Vazquez, Avel Adolfo González-Sánchez, Sergio Hidalgo-Figueroa, Ángel Josabad Alonso-Castro, Irma Aranda-González, Emanuel Hernández-Núñez, Tania Isolina Coral-Martínez, Juan Carlos Sánchez-Salgado, Victor Yáñez-Pérez, M A Lucio-Garcia. Toxicological Screening of Four Bioactive Citroflavonoids: In Vitro, In Vivo, and In Silico Approaches. Molecules (Basel, Switzerland). 2020 Dec; 25(24):. doi: 10.3390/molecules25245959. [PMID: 33339310]
  • Zhen Chen, Pan Chen, Hao Wu, Rui Shi, Weiwei Su, Yonggang Wang, Peibo Li. Evaluation of Naringenin as a Promising Treatment Option for COPD Based on Literature Review and Network Pharmacology. Biomolecules. 2020 12; 10(12):. doi: 10.3390/biom10121644. [PMID: 33302350]
  • Feng Wang, Chengying Zhao, Guifang Tian, Xue Wei, Zihan Ma, Jiefen Cui, Rujun Wei, Yuming Bao, Wei Kong, Jinkai Zheng. Naringin Alleviates Atherosclerosis in ApoE-/- Mice by Regulating Cholesterol Metabolism Involved in Gut Microbiota Remodeling. Journal of agricultural and food chemistry. 2020 Nov; 68(45):12651-12660. doi: 10.1021/acs.jafc.0c05800. [PMID: 33107729]
  • Jing Zhang, Danni Wang, Xiaoyu Zhang, Jing Yang, Xin Chai, Yuefei Wang. Application of 'spider-web' mode in discovery and identification of Q-markers from Xuefu Zhuyu capsule. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2020 Oct; 77(?):153273. doi: 10.1016/j.phymed.2020.153273. [PMID: 32663710]
  • Hong Zhu, Xia Zou, ShiXin Lin, Xin Hu, Jun Gao. Effects of naringin on reversing cisplatin resistance and the Wnt/β-catenin pathway in human ovarian cancer SKOV3/CDDP cells. The Journal of international medical research. 2020 Oct; 48(10):300060519887869. doi: 10.1177/0300060519887869. [PMID: 33086930]
  • Sainan Li, Chunming Liu, Yuchi Zhang, Dongfang Shi, Rong Tsao. Application of accelerated solvent extraction coupled with online two-dimensional countercurrent chromatography for continuous extraction and separation of bioactive compounds from Citrus limon peel. Journal of separation science. 2020 Oct; 43(19):3793-3805. doi: 10.1002/jssc.202000588. [PMID: 32745365]
  • Praveen Kumar Tripathi, Jasdeep Singh, Nitika Gaurav, Dushyant K Garg, Ashok Kumar Patel. In-silico and biophysical investigation of biomolecular interaction between naringin and nsP2 of the chikungunya virus. International journal of biological macromolecules. 2020 Oct; 160(?):1061-1066. doi: 10.1016/j.ijbiomac.2020.05.165. [PMID: 32464207]
  • Gopalsamy Rajiv Gandhi, Alan Bruno Silva Vasconcelos, Ding-Tao Wu, Hua-Bin Li, Poovathumkal James Antony, Hang Li, Fang Geng, Ricardo Queiroz Gurgel, Narendra Narain, Ren-You Gan. Citrus Flavonoids as Promising Phytochemicals Targeting Diabetes and Related Complications: A Systematic Review of In Vitro and In Vivo Studies. Nutrients. 2020 Sep; 12(10):. doi: 10.3390/nu12102907. [PMID: 32977511]
  • Anees Ahmed Syed, Mohammad Irshad Reza, Mohammed Shafiq, Sanjana Kumariya, Pragati Singh, Athar Husain, Kashif Hanif, Jiaur R Gayen. Naringin ameliorates type 2 diabetes mellitus-induced steatohepatitis by inhibiting RAGE/NF-κB mediated mitochondrial apoptosis. Life sciences. 2020 Sep; 257(?):118118. doi: 10.1016/j.lfs.2020.118118. [PMID: 32702445]
  • Hemanth Gollavilli, Aswathi R Hegde, Renuka S Managuli, K Vijay Bhaskar, Swapnil J Dengale, Meka Sreenivasa Reddy, Guruprasad Kalthur, Srinivas Mutalik. Naringin nano-ethosomal novel sunscreen creams: Development and performance evaluation. Colloids and surfaces. B, Biointerfaces. 2020 Sep; 193(?):111122. doi: 10.1016/j.colsurfb.2020.111122. [PMID: 32498002]
  • Kobra Shirani, Bahare Sadat Yousefsani, Maryam Shirani, Gholamreza Karimi. Protective effects of naringin against drugs and chemical toxins induced hepatotoxicity: A review. Phytotherapy research : PTR. 2020 Aug; 34(8):1734-1744. doi: 10.1002/ptr.6641. [PMID: 32067280]
  • Hany Elsawy, Abdulmohsen I Algefare, Manal Alfwuaires, Mahmoud Khalil, Omar M Elmenshawy, Azza Sedky, Ashraf M Abdel-Moneim. Naringin alleviates methotrexate-induced liver injury in male albino rats and enhances its antitumor efficacy in HepG2 cells. Bioscience reports. 2020 06; 40(6):. doi: 10.1042/bsr20193686. [PMID: 32458964]
  • Sonia Aroui, Hamadi Fetoui, Abderraouf Kenani. Natural dietary compound naringin inhibits glioblastoma cancer neoangiogenesis. BMC pharmacology & toxicology. 2020 06; 21(1):46. doi: 10.1186/s40360-020-00426-1. [PMID: 32576255]
  • Balwinder Singh, Jatinder Pal Singh, Amritpal Kaur, Narpinder Singh. Phenolic composition, antioxidant potential and health benefits of citrus peel. Food research international (Ottawa, Ont.). 2020 06; 132(?):109114. doi: 10.1016/j.foodres.2020.109114. [PMID: 32331689]
  • Mina Y George, Esther T Menze, Ahmed Esmat, Mariane G Tadros, E El-Demerdash. Potential therapeutic antipsychotic effects of Naringin against ketamine-induced deficits in rats: Involvement of Akt/GSK-3β and Wnt/β-catenin signaling pathways. Life sciences. 2020 May; 249(?):117535. doi: 10.1016/j.lfs.2020.117535. [PMID: 32151688]
  • Maryam Salehcheh, Soheila Alboghobeish, Mohammad Amin Dehghani, Leila Zeidooni. Multi-walled carbon nanotubes induce oxidative stress, apoptosis, and dysfunction in isolated rat heart mitochondria: protective effect of naringin. Environmental science and pollution research international. 2020 Apr; 27(12):13447-13456. doi: 10.1007/s11356-020-07943-w. [PMID: 32026367]
  • Xiong Jiang, Aoyun Li, Yaping Wang, Mudassar Iqbal, Muhammad Waqas, Hao Yang, Zhixing Li, Khalid Mehmood, Hammad Qamar, Jiakui Li. Ameliorative effect of naringin against thiram-induced tibial dyschondroplasia in broiler chicken. Environmental science and pollution research international. 2020 Apr; 27(10):11337-11348. doi: 10.1007/s11356-020-07732-5. [PMID: 31960246]
  • Peibo Li, Hao Wu, Yonggang Wang, Wei Peng, Weiwei Su. Toxicological evaluation of naringin: Acute, subchronic, and chronic toxicity in Beagle dogs. Regulatory toxicology and pharmacology : RTP. 2020 Mar; 111(?):104580. doi: 10.1016/j.yrtph.2020.104580. [PMID: 31954754]