N1-Acetylspermidine (BioDeep_00000004455)
Secondary id: BioDeep_00001868646
human metabolite Endogenous blood metabolite
代谢物信息卡片
化学式: C9H21N3O (187.1685)
中文名称:
谱图信息:
最多检出来源 Homo sapiens(blood) 22.45%
分子结构信息
SMILES: CC(=O)NCCCNCCCCN
InChI: InChI=1S/C9H21N3O/c1-9(13)12-8-4-7-11-6-3-2-5-10/h11H,2-8,10H2,1H3,(H,12,13)
描述信息
N1-Acetylspermidine is a polyamine. In many organisms, polyamines originate from L-ornithine and methionine. Ornithine decarboxylase (EC 4.1.1.17), a key enzyme in polyamine metabolism, decarboxylates L-ornithine to yield putrescine which is then converted to higher polyamines spermidine and spermine by successive addition of aminopropyl groups derived from decarboxylated S-adenosylmethionine. Aliphatic polyamines occur ubiquitously in organisms and have important functions in the stabilization of cell membranes, biosynthesis of informing molecules, cell growth and differentiation, as well as adaptation to osmotic, ionic, pH and thermal stress. These cationic substances are implicated in multiple functions, therefore it is not surprising that intracellular levels of polyamines are regulated by different mechanisms. The inhibition of polyamine metabolism has important pharmacological and therapeutic implications for the control of physiological processes, reproduction, cancer and parasitic diseases. Recent reports have suggested the idea that parasites with an high turnover of Ornithine Decarboxilase (ODC) are resistant to Difluoromethyl ornithine (DFMO, the irreversible inhibitor of ornithine decarboxylase) because they always contain a fraction of newly synthesized and active enzyme, therefore not DFMO inhibited, sufficient to produce small amounts of putrescine rapidly converted into spermidine, which can support protozoan proliferation. DFMO has proved to be curative in trypanosomiasis, coccidiosis, and certain other protozoan infections. (PMID: 15490259).
N1-Acetylspermidine is a polyamine. In many organisms, polyamines originate from L-ornithine and methionine. Ornithine decarboxylase (EC 4.1.1.17), a key enzyme in polyamine metabolism, decarboxylates L-ornithine to yield putrescine which is then converted to higher polyamines spermidine and spermine by successive addition of aminopropyl groups derived from decarboxylated S-adenosylmethionine.
同义名列表
数据库引用编号
15 个数据库交叉引用编号
- ChEBI: CHEBI:17927
- KEGG: C00612
- PubChem: 496
- HMDB: HMDB0001276
- Metlin: METLIN3323
- ChEMBL: CHEMBL176800
- MetaCyc: CPD-568
- foodb: FDB022530
- chemspider: 482
- CAS: 14278-49-0
- PMhub: MS000016916
- PubChem: 3886
- PDB-CCD: HLG
- NIKKAJI: J354.012J
- RefMet: N1-Acetylspermidine
分类词条
相关代谢途径
Reactome(8)
BioCyc(0)
PlantCyc(0)
代谢反应
126 个相关的代谢反应过程信息。
Reactome(126)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of polyamines:
GAA + SAM ⟶ CRET + H+ + SAH
- Interconversion of polyamines:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of polyamines:
GAA + SAM ⟶ CRET + H+ + SAH
- Interconversion of polyamines:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of polyamines:
GAA + SAM ⟶ CRET + H+ + SAH
- Interconversion of polyamines:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- Interconversion of polyamines:
Ac-CoA + SPN ⟶ CoA-SH + NASPN
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Amine Oxidase reactions:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- PAOs oxidise polyamines to amines:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- PAOs oxidise polyamines to amines:
H2O + NASPN + Oxygen ⟶ 3AAPNAL + H2O2 + SPM
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Amine Oxidase reactions:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- PAOs oxidise polyamines to amines:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Amine Oxidase reactions:
5HT + H2O + Oxygen ⟶ 5HIALD + H2O2 + ammonia
- PAOs oxidise polyamines to amines:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- Amine Oxidase reactions:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- PAOs oxidise polyamines to amines:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- Amine Oxidase reactions:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- PAOs oxidise polyamines to amines:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of polyamines:
AGM + H2O ⟶ Putrescine + Urea
- Interconversion of polyamines:
Ac-CoA + SPN ⟶ CoA-SH + NASPN
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Amine Oxidase reactions:
5HT + H2O + Oxygen ⟶ 5HIALD + H2O2 + ammonia
- PAOs oxidise polyamines to amines:
H2O + Oxygen + SPN ⟶ 3APAL + H2O2 + SPM
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of polyamines:
L-Arg ⟶ AGM + carbon dioxide
- Interconversion of polyamines:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Amine Oxidase reactions:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- PAOs oxidise polyamines to amines:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of polyamines:
L-Arg ⟶ AGM + carbon dioxide
- Interconversion of polyamines:
H2O + Oxygen + SPN ⟶ 3APAL + H2O2 + SPM
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Amine Oxidase reactions:
5HT + H2O + Oxygen ⟶ 5HIALD + H2O2 + ammonia
- PAOs oxidise polyamines to amines:
H2O + Oxygen + SPN ⟶ 3APAL + H2O2 + SPM
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of polyamines:
L-Arg ⟶ AGM + carbon dioxide
- Interconversion of polyamines:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Amine Oxidase reactions:
H2O + Oxygen + TYR ⟶ H2O2 + HPHAC + ammonia
- PAOs oxidise polyamines to amines:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of polyamines:
L-Arg ⟶ AGM + carbon dioxide
- Interconversion of polyamines:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- Biological oxidations:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Amine Oxidase reactions:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- PAOs oxidise polyamines to amines:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of polyamines:
L-Arg ⟶ AGM + carbon dioxide
- Interconversion of polyamines:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- Biological oxidations:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Amine Oxidase reactions:
H2O + Oxygen + TYR ⟶ H2O2 + HPHAC + ammonia
- PAOs oxidise polyamines to amines:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of polyamines:
L-Arg ⟶ AGM + carbon dioxide
- Interconversion of polyamines:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Amine Oxidase reactions:
H2O + Oxygen + TYR ⟶ H2O2 + HPHAC + ammonia
- PAOs oxidise polyamines to amines:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of polyamines:
L-Arg ⟶ AGM + carbon dioxide
- Interconversion of polyamines:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Amine Oxidase reactions:
5HT + H2O + Oxygen ⟶ 5HIALD + H2O2 + ammonia
- PAOs oxidise polyamines to amines:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of polyamines:
L-Arg ⟶ AGM + carbon dioxide
- Interconversion of polyamines:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Amine Oxidase reactions:
H2O + Oxygen + TYR ⟶ H2O2 + HPHAC + ammonia
- PAOs oxidise polyamines to amines:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of polyamines:
L-Arg ⟶ AGM + carbon dioxide
- Interconversion of polyamines:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Amine Oxidase reactions:
H2O + Oxygen + TYR ⟶ H2O2 + HPHAC + ammonia
- PAOs oxidise polyamines to amines:
H2O + NASPM + Oxygen ⟶ 3AAPNAL + H2O2 + PTCN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of polyamines:
L-Arg ⟶ AGM + carbon dioxide
- Interconversion of polyamines:
Ac-CoA + SPN ⟶ CoA-SH + NASPN
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Amino acid and derivative metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Metabolism of polyamines:
L-Arg ⟶ AGM + carbon dioxide
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Amino acid and derivative metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Metabolism of polyamines:
L-Arg ⟶ AGM + carbon dioxide
- Interconversion of polyamines:
Ac-CoA + SPN ⟶ CoA-SH + NASPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of polyamines:
L-Arg ⟶ AGM + carbon dioxide
- Interconversion of polyamines:
H2O + Oxygen + SPN ⟶ 3APAL + H2O2 + SPM
- Interconversion of polyamines:
Ac-CoA + SPN ⟶ CoA-SH + NASPN
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
5 个相关的物种来源信息
- 7461 - Apis cerana: 10.1371/JOURNAL.PONE.0175573
- 3039 - Euglena gracilis: 10.3389/FBIOE.2021.662655
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 5691 - Trypanosoma brucei: 10.1371/JOURNAL.PNTD.0001618
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Sok Ho Kim, Yi Wang, Maxim Khomutov, Alexey Khomutov, Clay Fuqua, Anthony J Michael. The Essential Role of Spermidine in Growth of Agrobacterium tumefaciens Is Determined by the 1,3-Diaminopropane Moiety.
ACS chemical biology.
2016 Feb; 11(2):491-9. doi:
10.1021/acschembio.5b00893
. [PMID: 26682642] - Keijiro Samejima, Kyoko Hiramatsu, Keiichi Takahashi, Masao Kawakita, Masaki Kobayashi, Hiroki Tsumoto, Kohfuku Kohda. Identification and determination of urinary acetylpolyamines in cancer patients by electrospray ionization and time-of-flight mass spectrometry.
Analytical biochemistry.
2010 Jun; 401(1):22-9. doi:
10.1016/j.ab.2010.02.022
. [PMID: 20178772] - Jeong Ah Byun, Man Ho Choi, Myeong Hee Moon, Gu Kong, Bong Chul Chung. Serum polyamines in pre- and post-operative patients with breast cancer corrected by menopausal status.
Cancer letters.
2009 Jan; 273(2):300-4. doi:
10.1016/j.canlet.2008.08.024
. [PMID: 18805631] - Jeong Ah Byun, Sang Hee Lee, Byung Hwa Jung, Man Ho Choi, Myeong Hee Moon, Bong Chul Chung. Analysis of polyamines as carbamoyl derivatives in urine and serum by liquid chromatography-tandem mass spectrometry.
Biomedical chromatography : BMC.
2008 Jan; 22(1):73-80. doi:
10.1002/bmc.898
. [PMID: 17668437] - Stamatiki Roussi, Francine Gossé, Dalal Aoudé-Werner, Xin Zhang, Philippe Geoffroy, Michel Miesch, Eric Marchioni, Francis Raul. Perturbation of polyamine metabolism and its relation to cell death in human colon cancer cells treated by 7beta-hydroxycholesterol and 7beta-hydroxysitosterol.
International journal of oncology.
2006 Dec; 29(6):1549-54. doi:
. [PMID: 17088995]
- Tianyun Wu, Victoria Yankovskaya, William S McIntire. Cloning, sequencing, and heterologous expression of the murine peroxisomal flavoprotein, N1-acetylated polyamine oxidase.
The Journal of biological chemistry.
2003 Jun; 278(23):20514-25. doi:
10.1074/jbc.m302149200
. [PMID: 12660232] - M E Ferioli, A Sessa, P Tunici, O Pinotti, A Perin. Aging and polyamine acetylation in rat kidney.
Biochimica et biophysica acta.
1996 Oct; 1317(1):15-8. doi:
10.1016/0925-4439(96)00029-4
. [PMID: 8876622] - B L O'Brien, M Hankewych, D McCormick, R Jacoby, T A Brasitus, A G Halline. Urinary N1-acetylspermidine and N8-acetylspermidine excretion in normal humans and in patients with colorectal cancer.
Digestive diseases and sciences.
1995 Jun; 40(6):1269-74. doi:
10.1007/bf02065536
. [PMID: 7781445] - P Thai, M Carrier, L C Pelletier. [Urinary excretion of acetylated polyamines after heart transplantation in dogs].
Annales de chirurgie.
1994; 48(8):742-8. doi:
NULL
. [PMID: 7872624] - J Hessels, A W Kingma, M C Sturkenboom, H Elzinga, G A van den Berg, F A Muskiet. Gas chromatographic determination of N-acetylisoputreanine-gamma-lactam, a unique catabolite of N1-acetylspermidine.
Journal of chromatography.
1991 Jan; 563(1):1-9. doi:
10.1016/0378-4347(91)80272-e
. [PMID: 2061374] - L C Govaerts, G A van den Berg, A Theeuwes, F A Muskiet, L A Monnens. Urinary polyamine and metabolite excretion by children with Zellweger's syndrome.
Clinica chimica acta; international journal of clinical chemistry.
1990 Nov; 192(1):61-7. doi:
10.1016/0009-8981(90)90272-t
. [PMID: 2261698] - A G Halline, P K Dudeja, B A Lashner, T A Brasitus. Urinary excretion of N1-acetylspermidine and other acetylated and free polyamines in the 1,2-dimethylhydrazine model of experimental rat colon cancer.
Cancer research.
1989 Sep; 49(17):4721-3. doi:
. [PMID: 2758407]
- L Persson, E Rosengren. Increased formation of N1-acetylspermidine in human breast cancer.
Cancer letters.
1989 May; 45(2):83-6. doi:
10.1016/0304-3835(89)90140-7
. [PMID: 2731159] - A G Halline, P K Dudeja, T A Brasitus. Premalignant alterations in rat colonic N1-acetylspermidine levels induced by 1,2-dimethylhydrazine: effects of a high corn oil dietary regimen.
Biochimica et biophysica acta.
1989 Mar; 990(3):280-7. doi:
10.1016/s0304-4165(89)80046-7
. [PMID: 2923907] - M J Pine, R P Huben, A E Pegg. Production of N1-acetyl spermidine by renal cell tumors.
The Journal of urology.
1989 Mar; 141(3):651-5. doi:
10.1016/s0022-5347(17)40925-6
. [PMID: 2493102] - C Stefanelli, F Flamigni, D Carati, C Rossoni, C M Caldarera. Effects of dexamethasone on spermidine N1-acetyltransferase and ornithine activities in rat spleen.
Biochimica et biophysica acta.
1987 Aug; 930(1):79-86. doi:
10.1016/0167-4889(87)90158-3
. [PMID: 3620511] - F N Bolkenius, P Bey, N Seiler. Specific inhibition of polyamine oxidase in vivo is a method for the elucidation of its physiological role.
Biochimica et biophysica acta.
1985 Jan; 838(1):69-76. doi:
10.1016/0304-4165(85)90251-x
. [PMID: 3967048] - J Blankenship, P E Marchant. Metabolism of N1-acetylspermidine and N8-acetylspermidine in rats.
Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.).
1984 Oct; 177(1):180-7. doi:
10.3181/00379727-177-41930
. [PMID: 6473353] - S Yamamoto, T Kobayashi, Y Suemoto, M Makita. An improved gas chromatographic method for the determination of urinary acetylpolyamines.
Chemical & pharmaceutical bulletin.
1984 May; 32(5):1878-84. doi:
10.1248/cpb.32.1878
. [PMID: 6467469] - W Kersten. [Tumor therapy: control of results by analysis of polyamines?].
Deutsche medizinische Wochenschrift (1946).
1983 Feb; 108(7):243-5. doi:
10.1055/s-2008-1069534
. [PMID: 6337807] - M Mach, U Schneider, W Kersten. Excretion of polyamines by children with leukemia during chemotherapy.
Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer.
1983; 84(?):413-20. doi:
10.1007/978-3-642-81947-6_31
. [PMID: 6573734] - C E Prussak, K Brendel. The formation of radiolabeled N1- and N8-acetylspermidine in various rat organs following [14C]spermidine administration.
The International journal of biochemistry.
1983; 15(7):899-905. doi:
10.1016/0020-711x(83)90165-9
. [PMID: 6884566] - S Yamamoto, M Yokogawa, K Wakamatsu, H Kataoka, M Makita. Gas chromatographic method for the determination of urinary acetylpolyamines.
Journal of chromatography.
1982 Dec; 233(?):29-38. doi:
10.1016/s0378-4347(00)81728-4
. [PMID: 7161341] - N Seiler, B Knödgen, K Haegele. N-(3-aminopropyl)pyrrolidin-2-one, a product of spermidine catabolism in vivo.
The Biochemical journal.
1982 Oct; 208(1):189-97. doi:
10.1042/bj2080189
. [PMID: 7159392] - M M Abdel-Monem, J L Merdink, A Theologides. Urinary excretion of monoacetyl polyamines in patients with non-Hodgkin's lymphoma.
Cancer research.
1982 May; 42(5):2097-8. doi:
. [PMID: 7066912]
- C E Prussak, D H Russell. Single-step high-performance liquid chromatographic method for the analysis of acetylated polyamines.
Journal of chromatography.
1982 Apr; 229(1):47-56. doi:
10.1016/s0378-4347(00)86035-1
. [PMID: 7085834] - N Seiler, A Graham, J Bartholeyns. Enhanced urinary excretion of N1-acetylspermidine and the presence of tumors.
Cancer research.
1981 Apr; 41(4):1572-3. doi:
. [PMID: 6897929]
- M M Abdel-Monem, J L Merdink. Determination of monoacetyldiamines and -polyamines in urine by high-performance liquid chromatography.
Journal of chromatography.
1981 Mar; 222(3):363-70. doi:
10.1016/s0378-4347(00)84136-5
. [PMID: 7228946] - N Seiler, F N Bolkenius, S Sarhan. Formation of acetylpolyamines in the liver of fasting animals.
The International journal of biochemistry.
1981; 13(12):1205-14. doi:
10.1016/0020-711x(81)90066-5
. [PMID: 6172297] - N Seiler, B Knödgen. High-performance liquid chromatographic procedure for the simultaneous determination of the natural polyamines and their monoacetyl derivatives.
Journal of chromatography.
1980 Dec; 221(2):227-35. doi:
10.1016/s0378-4347(00)84307-8
. [PMID: 7217292] - A Lettes, J Blankenship. Identification of N1-acetylspermidine in rat urine by high pressure liquid chromatography.
Proceedings of the Western Pharmacology Society.
1980; 23(?):311-3. doi:
NULL
. [PMID: 7403151] - R G Smith, D Bartos, F Bartos, D P Grettie, W Frick, R A Campbell, G D Daves. 1-N-Acetylspermidine: occurrence in normal human serum.
Biomedical mass spectrometry.
1978 Sep; 5(9):515-7. doi:
10.1002/bms.1200050902
. [PMID: 708851]