Chrysosplenetin (BioDeep_00001867476)

Main id: BioDeep_00000000224

 

PANOMIX_OTCML-2023 natural product


代谢物信息卡片


4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3,6,7-trimethoxy-

化学式: C19H18O8 (374.1002)
中文名称: 猫眼草黄素, 金腰乙素
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C1(OC)=CC2OC(C3C=C(OC)C(O)=CC=3)=C(OC)C(=O)C=2C(O)=C1OC
InChI: InChI=1S/C19H18O8/c1-23-11-7-9(5-6-10(11)20)17-19(26-4)16(22)14-12(27-17)8-13(24-2)18(25-3)15(14)21/h5-8,20-21H,1-4H3

描述信息

Chrysosplenetin is a tetramethoxyflavone that is the 3,6,7,3-tetramethyl ether derivative of quercetagetin. It has a role as an antiviral agent and a plant metabolite. It is a tetramethoxyflavone and a dihydroxyflavone. It is functionally related to a quercetagetin.
Chrysosplenetin is a natural product found in Haplophyllum myrtifolium, Cleome amblyocarpa, and other organisms with data available.
A tetramethoxyflavone that is the 3,6,7,3-tetramethyl ether derivative of quercetagetin.
Chrysosplenetin is one of the polymethoxylated flavonoids in Artemisia annua L. (Compositae) and other several Chinese herbs. Chrysosplenetin inhibits P-gp activity and reverses the up-regulated P-gp and MDR1 levels induced by artemisinin (ART). Chrysosplenetin significantly augments the rat plasma level and anti-malarial efficacy of ART, partially due to the uncompetitive inhibition effect of Chrysosplenetin on rat CYP3A[1].
Chrysosplenetin is one of the polymethoxylated flavonoids in Artemisia annua L. (Compositae) and other several Chinese herbs. Chrysosplenetin inhibits P-gp activity and reverses the up-regulated P-gp and MDR1 levels induced by artemisinin (ART). Chrysosplenetin significantly augments the rat plasma level and anti-malarial efficacy of ART, partially due to the uncompetitive inhibition effect of Chrysosplenetin on rat CYP3A[1].

同义名列表

17 个代谢物同义名

4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3,6,7-trimethoxy-; 4H-1-Benzopyran-4-one,5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3,6,7-trimethoxy-; 4H-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3,6,7-trimethoxy-; 5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3,6,7-trimethoxy-4H-1-benzopyran-4-one; 5-Hydroxy-2-(4-hydroxy-3-methoxy-phenyl)-3,6,7-trimethoxy-chromen-4-one; 5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3,6,7-trimethoxychromen-4-one; 5,4-Dihydroxy-3,6,7,3-tetramethoxyflavone; Quercetagetin 3,6,7,3-tetramethyl ether; 3,6,7,3-tetra-methylquercetagetin; 3,6,7,3-tetramethylquercetagetin; Chrysosplenetin B; Chrysosptertin B; Chrysosplenetin; UNII-9AA5Z8PMYE; CHRYSOSPLENOL B; 9AA5Z8PMYE; Chrysosplenetin



数据库引用编号

19 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(2)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

131 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 12 ABCB1, CTNNB1, CYP2C19, CYP2D6, CYP2E1, CYP3A4, MAPK1, MAPK14, MAPK3, MAPK8, NOS2, PTGS2
Peripheral membrane protein 3 ACHE, CYP2E1, PTGS2
Endoplasmic reticulum membrane 6 CYP1A2, CYP2C19, CYP2D6, CYP2E1, CYP3A4, PTGS2
Mitochondrion membrane 1 ABCG2
Nucleus 8 ACHE, CTNNB1, MAPK1, MAPK14, MAPK3, MAPK8, NOS2, NR1I2
cytosol 6 CTNNB1, MAPK1, MAPK14, MAPK3, MAPK8, NOS2
mitochondrial membrane 1 ABCG2
nuclear body 1 NR1I2
centrosome 2 CTNNB1, MAPK1
nucleoplasm 9 ABCG2, ATP2B1, CTNNB1, MAPK1, MAPK14, MAPK3, MAPK8, NOS2, NR1I2
Cell membrane 5 ABCB1, ABCG2, ACHE, ATP2B1, CTNNB1
lamellipodium 1 CTNNB1
Multi-pass membrane protein 3 ABCB1, ABCG2, ATP2B1
Synapse 5 ACHE, ATP2B1, CTNNB1, MAPK1, MAPK8
cell cortex 1 CTNNB1
cell junction 1 CTNNB1
cell surface 3 ABCB1, ACHE, BMP2
glutamatergic synapse 4 ATP2B1, CTNNB1, MAPK14, MAPK3
Golgi apparatus 3 ACHE, MAPK1, MAPK3
mitochondrial inner membrane 1 CYP2E1
neuromuscular junction 1 ACHE
presynaptic membrane 2 ATP2B1, CTNNB1
Cytoplasm, cytosol 1 NOS2
plasma membrane 11 ABCB1, ABCG2, ACHE, ATP2B1, BCHE, BMP2, CTNNB1, CYP2C19, MAPK1, MAPK3, NOS2
synaptic vesicle membrane 1 ATP2B1
Membrane 7 ABCB1, ABCG2, ACHE, ATP2B1, CTNNB1, CYP2D6, CYP3A4
apical plasma membrane 2 ABCB1, ABCG2
axon 1 MAPK8
basolateral plasma membrane 2 ATP2B1, CTNNB1
caveola 3 MAPK1, MAPK3, PTGS2
extracellular exosome 3 ABCB1, ATP2B1, CTNNB1
endoplasmic reticulum 2 CYP2D6, PTGS2
extracellular space 3 ACHE, BCHE, BMP2
perinuclear region of cytoplasm 3 ACHE, CTNNB1, NOS2
Schaffer collateral - CA1 synapse 1 CTNNB1
adherens junction 1 CTNNB1
apicolateral plasma membrane 1 CTNNB1
bicellular tight junction 1 CTNNB1
mitochondrion 4 CYP2D6, MAPK1, MAPK14, MAPK3
protein-containing complex 2 CTNNB1, PTGS2
intracellular membrane-bounded organelle 7 ATP2B1, BMP2, CYP1A2, CYP2C19, CYP2D6, CYP2E1, CYP3A4
Microsome membrane 5 CYP1A2, CYP2D6, CYP2E1, CYP3A4, PTGS2
Secreted 3 ACHE, BCHE, BMP2
extracellular region 5 ACHE, BCHE, BMP2, MAPK1, MAPK14
Single-pass membrane protein 1 CYP2D6
Extracellular side 1 ACHE
transcription regulator complex 2 CTNNB1, NR1I2
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 MAPK1
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 ATP2B1
Z disc 1 CTNNB1
beta-catenin destruction complex 1 CTNNB1
Wnt signalosome 1 CTNNB1
Cytoplasm, P-body 1 NOS2
P-body 1 NOS2
Early endosome 2 MAPK1, MAPK3
apical part of cell 1 CTNNB1
cell-cell junction 1 CTNNB1
postsynaptic membrane 1 CTNNB1
Apical cell membrane 2 ABCB1, ABCG2
Cytoplasm, perinuclear region 1 NOS2
Mitochondrion inner membrane 1 CYP2E1
Membrane raft 1 ABCG2
Cell junction, focal adhesion 2 MAPK1, MAPK3
Cytoplasm, cytoskeleton 1 CTNNB1
Cytoplasm, cytoskeleton, spindle 1 MAPK1
focal adhesion 3 CTNNB1, MAPK1, MAPK3
spindle 1 MAPK1
Cell junction, adherens junction 1 CTNNB1
flotillin complex 1 CTNNB1
Peroxisome 1 NOS2
basement membrane 1 ACHE
peroxisomal matrix 1 NOS2
fascia adherens 1 CTNNB1
lateral plasma membrane 2 ATP2B1, CTNNB1
nuclear speck 1 MAPK14
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
Late endosome 2 MAPK1, MAPK3
neuron projection 1 PTGS2
chromatin 1 NR1I2
cell projection 1 ATP2B1
cell periphery 1 CTNNB1
mitotic spindle 1 MAPK1
cytoskeleton 2 MAPK1, MAPK3
Cytoplasm, cytoskeleton, cilium basal body 1 CTNNB1
brush border membrane 1 ABCG2
spindle pole 2 CTNNB1, MAPK14
blood microparticle 1 BCHE
postsynaptic density, intracellular component 1 CTNNB1
Basolateral cell membrane 1 ATP2B1
Lipid-anchor, GPI-anchor 1 ACHE
microvillus membrane 1 CTNNB1
nuclear envelope 1 MAPK3
Endomembrane system 1 CTNNB1
Membrane, caveola 2 MAPK1, MAPK3
euchromatin 1 CTNNB1
Presynaptic cell membrane 1 ATP2B1
side of membrane 1 ACHE
pseudopodium 2 MAPK1, MAPK3
intermediate filament cytoskeleton 1 NR1I2
ficolin-1-rich granule lumen 2 MAPK1, MAPK14
secretory granule lumen 1 MAPK14
endoplasmic reticulum lumen 4 BCHE, MAPK1, MAPK3, PTGS2
beta-catenin-TCF complex 1 CTNNB1
azurophil granule lumen 1 MAPK1
immunological synapse 1 ATP2B1
nuclear envelope lumen 1 BCHE
presynaptic active zone cytoplasmic component 1 CTNNB1
synaptic cleft 1 ACHE
protein-DNA complex 1 CTNNB1
external side of apical plasma membrane 2 ABCB1, ABCG2
basal dendrite 1 MAPK8
catenin complex 1 CTNNB1
cortical cytoskeleton 1 NOS2
photoreceptor ribbon synapse 1 ATP2B1
BMP receptor complex 1 BMP2
beta-catenin-TCF7L2 complex 1 CTNNB1
[Isoform H]: Cell membrane 1 ACHE
beta-catenin-ICAT complex 1 CTNNB1
Scrib-APC-beta-catenin complex 1 CTNNB1


文献列表

  • Tanja Hell, Adriano Rutz, Lara Dürr, Maciej Dobrzyński, Jakob K Reinhardt, Timo Lehner, Morris Keller, Anika John, Mahabir Gupta, Olivier Pertz, Matthias Hamburger, Jean-Luc Wolfender, Eliane Garo. Combining Activity Profiling with Advanced Annotation to Accelerate the Discovery of Natural Products Targeting Oncogenic Signaling in Melanoma. Journal of natural products. 2022 06; 85(6):1540-1554. doi: 10.1021/acs.jnatprod.2c00146. [PMID: 35640148]
  • Yulin Ren, Esperanza J Carcache de Blanco, James R Fuchs, Djaja D Soejarto, Joanna E Burdette, Steven M Swanson, A Douglas Kinghorn. Potential Anticancer Agents Characterized from Selected Tropical Plants. Journal of natural products. 2019 03; 82(3):657-679. doi: 10.1021/acs.jnatprod.9b00018. [PMID: 30830783]
  • Yannan Li, Jing Ning, Yan Wang, Chao Wang, Chengpeng Sun, Xiaokui Huo, Zhenlong Yu, Lei Feng, Baojing Zhang, Xiangge Tian, Xiaochi Ma. Drug interaction study of flavonoids toward CYP3A4 and their quantitative structure activity relationship (QSAR) analysis for predicting potential effects. Toxicology letters. 2018 Sep; 294(?):27-36. doi: 10.1016/j.toxlet.2018.05.008. [PMID: 29753067]
  • Thanika Promchai, Atchara Jaidee, Sarot Cheenpracha, Kongkiat Trisuwan, Roonglawan Rattanajak, Sumalee Kamchonwongpaisan, Surat Laphookhieo, Stephen G Pyne, Thunwadee Ritthiwigrom. Antimalarial Oxoprotoberberine Alkaloids from the Leaves of Miliusa cuneata. Journal of natural products. 2016 Apr; 79(4):978-83. doi: 10.1021/acs.jnatprod.5b01054. [PMID: 26928423]
  • Qin-Chang Zhu, Yi Wang, Ya-Ping Liu, Rui-Qi Zhang, Xiang Li, Wen-Han Su, Fei Long, Xiao-Dong Luo, Tao Peng. Inhibition of enterovirus 71 replication by chrysosplenetin and penduletin. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. 2011 Oct; 44(3):392-8. doi: 10.1016/j.ejps.2011.08.030. [PMID: 21914477]
  • Philippe Rasoanaivo, Colin W Wright, Merlin L Willcox, Ben Gilbert. Whole plant extracts versus single compounds for the treatment of malaria: synergy and positive interactions. Malaria journal. 2011 Mar; 10 Suppl 1(?):S4. doi: 10.1186/1475-2875-10-s1-s4. [PMID: 21411015]
  • Bailian Liu, Ting Zhang, Xiaoqi Zhang, Wencai Ye, Yaolan Li. [Chemical constituents of Laggera pterodonta]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2010 Mar; 35(5):602-6. doi: 10.4268/cjcmm20100513. [PMID: 20506820]
  • Manuela Saddi, Adriana Sanna, Filippo Cottiglia, Lorenza Chisu, Laura Casu, Leonardo Bonsignore, Alessandro De Logu. Antiherpevirus activity of Artemisia arborescens essential oil and inhibition of lateral diffusion in Vero cells. Annals of clinical microbiology and antimicrobials. 2007 Sep; 6(?):10. doi: 10.1186/1476-0711-6-10. [PMID: 17894898]
  • Guang-Zhong Yang, Yun-Fang Li, Xin Yu, Zhi-Nan Mei. Terpenoids and flavonoids from Laggera pterodonta. Yao xue xue bao = Acta pharmaceutica Sinica. 2007 May; 42(5):511-5. doi: . [PMID: 17703774]
  • Wei-Xia Song, Teng-Fei Ji, Yi-Kang Si, Ya-Lun Su. [Studies on chemical constituents in herb from Artemisia rupestris]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2006 Nov; 31(21):1790-2. doi: . [PMID: 17260794]
  • M E Wall, M C Wani, F Fullas, J B Oswald, D M Brown, T Santisuk, V Reutrakul, A T McPhail, N R Farnsworth, J M Pezzuto. Plant antitumor agents. 31. The calycopterones, a new class of biflavonoids with novel cytotoxicity in a diverse panel of human tumor cell lines. Journal of medicinal chemistry. 1994 May; 37(10):1465-70. doi: 10.1021/jm00036a012. [PMID: 8182705]