Exact Mass: 138.0317
Exact Mass Matches: 138.0317
Found 500 metabolites which its exact mass value is equals to given mass value 138.0317
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Salicylic acid
Salicylic acid is a monohydroxybenzoic acid that is benzoic acid with a hydroxy group at the ortho position. It is obtained from the bark of the white willow and wintergreen leaves. It has a role as an antiinfective agent, an antifungal agent, a keratolytic drug, an EC 1.11.1.11 (L-ascorbate peroxidase) inhibitor, a plant metabolite, an algal metabolite and a plant hormone. It is a conjugate acid of a salicylate. It is a colorless solid, it is a precursor to and a metabolite of aspirin (acetylsalicylic acid). It is a plant hormone. The name is from Latin salix for willow tree. It is an ingredient in some anti-acne products. Salts and esters of salicylic acid are known as salicylates. Salicylic acid modulates COX1 enzymatic activity to decrease the formation of pro-inflammatory prostaglandins. Salicylate may competitively inhibit prostaglandin formation. Salicylates antirheumatic (nonsteroidal anti-inflammatory) actions are a result of its analgesic and anti-inflammatory mechanisms. Salicylic acid works by causing the cells of the epidermis to slough off more readily, preventing pores from clogging up, and allowing room for new cell growth. Salicylic acid inhibits the oxidation of uridine-5-diphosphoglucose (UDPG) competitively with nicotinamide adenosine dinucleotide and noncompetitively with UDPG. It also competitively inhibits the transferring of glucuronyl group of uridine-5-phosphoglucuronic acid to the phenolic acceptor. The wound-healing retardation action of salicylates is probably due mainly to its inhibitory action on mucopolysaccharide synthesis. Salicylic acid is biosynthesized from the amino acid phenylalanine. In Arabidopsis thaliana, it can be synthesized via a phenylalanine-independent pathway. Salicylic acid is an odorless white to light tan solid. Sinks and mixes slowly with water. (USCG, 1999) Salicylic acid is a monohydroxybenzoic acid that is benzoic acid with a hydroxy group at the ortho position. It is obtained from the bark of the white willow and wintergreen leaves. It has a role as an antiinfective agent, an antifungal agent, a keratolytic drug, an EC 1.11.1.11 (L-ascorbate peroxidase) inhibitor, a plant metabolite, an algal metabolite and a plant hormone. It is a conjugate acid of a salicylate. A compound obtained from the bark of the white willow and wintergreen leaves, and also prepared synthetically. It has bacteriostatic, fungicidal, and keratolytic actions. Its salts, the salicylates, are used as analgesics. Salicylic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Salicylic Acid is a beta hydroxy acid that occurs as a natural compound in plants. It has direct activity as an anti-inflammatory agent and acts as a topical antibacterial agent due to its ability to promote exfoliation. A compound obtained from the bark of the white willow and wintergreen leaves, and also prepared synthetically. It has bacteriostatic, fungicidal, and keratolytic actions. Its salts, the salicylates, are used as analgesics. A compound obtained from the bark of the white willow and wintergreen leaves. It has bacteriostatic, fungicidal, and keratolytic actions. See also: Benzoic Acid (has active moiety); Methyl Salicylate (active moiety of); Benzyl salicylate (is active moiety of) ... View More ... A monohydroxybenzoic acid that is benzoic acid with a hydroxy group at the ortho position. It is obtained from the bark of the white willow and wintergreen leaves. Salicylic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=69-72-7 (retrieved 2024-06-29) (CAS RN: 69-72-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Salicylic acid (2-Hydroxybenzoic acid) inhibits cyclo-oxygenase-2 (COX-2) activity independently of transcription factor (NF-κB) activation[1]. Salicylic acid (2-Hydroxybenzoic acid) inhibits cyclo-oxygenase-2 (COX-2) activity independently of transcription factor (NF-κB) activation[1].
4-Hydroxybenzoic acid
4-Hydroxybenzoic acid, also known as p-hydroxybenzoate or 4-carboxyphenol, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. 4-Hydroxybenzoic acid is a white crystalline solid that is slightly soluble in water and chloroform but more soluble in polar organic solvents such as alcohols and acetone. It is a nutty and phenolic tasting compound. 4-Hydroxybenzoic acid exists in all living species, ranging from bacteria to plants to humans. 4-Hydroxybenzoic acid can be found naturally in coconut. It is one of the main catechins metabolites found in humans after consumption of green tea infusions. It is also found in wine, in vanilla, in Açaí oil, obtained from the fruit of the açaí palm (Euterpe oleracea), at relatively high concetrations (892±52 mg/kg). It is also found in cloudy olive oil and in the edible mushroom Russula virescens. It has been detected in red huckleberries, rabbiteye blueberries, and corianders and in a lower concentration in olives, red raspberries, and almonds. In humans, 4-hydroxybenzoic acid is involved in ubiquinone biosynthesis. In particular, the enzyme 4-hydroxybenzoate polyprenyltransferase uses a polyprenyl diphosphate and 4-hydroxybenzoate to produce diphosphate and 4-hydroxy-3-polyprenylbenzoate. This enzyme participates in ubiquinone biosynthesis. 4-Hydroxybenzoic acid can be biosynthesized by the enzyme Chorismate lyase. Chorismate lyase is an enzyme that transforms chorismate into 4-hydroxybenzoate and pyruvate. This enzyme catalyses the first step in ubiquinone biosynthesis in Escherichia coli and other Gram-negative bacteria. 4-Hydroxybenzoate is an intermediate in many enzyme-mediated reactions in microbes. For instance, the enzyme 4-hydroxybenzaldehyde dehydrogenase uses 4-hydroxybenzaldehyde, NAD+ and H2O to produce 4-hydroxybenzoate, NADH and H+. This enzyme participates in toluene and xylene degradation in bacteria such as Pseudomonas mendocina. 4-hydroxybenzaldehyde dehydrogenase is also found in carrots. The enzyme 4-hydroxybenzoate 1-hydroxylase transforms 4-hydroxybenzoate, NAD(P)H, 2 H+ and O2 into hydroquinone, NAD(P)+, H2O and CO2. This enzyme participates in 2,4-dichlorobenzoate degradation and is found in Candida parapsilosis. The enzyme 4-hydroxybenzoate 3-monooxygenase transforms 4-hydroxybenzoate, NADPH, H+ and O2 into protocatechuate, NADP+ and H2O. This enzyme participates in benzoate degradation via hydroxylation and 2,4-dichlorobenzoate degradation and is found in Pseudomonas putida and Pseudomonas fluorescens. 4-Hydroxybenzoic acid is a popular antioxidant in part because of its low toxicity. 4-Hydroxybenzoic acid has estrogenic activity both in vitro and in vivo (PMID 9417843).
Isolated from many plants, free and combined. Alkyl esters of 4-hydroxybenzoic acid (see below) are used as food and cosmetic preservatives, mainly in their Na salt form, which makes them more water soluble. They are active at low concentrations and more pH-independent than the commonly used Benzoic acid
Tyrosol
Tyrosol is a phenolic compound present in two of the traditional components of the Mediterranean diet: wine and virgin olive oil. The presence of tyrosol has been described in red and white wines. Tyrosol is also present in vermouth and beer. Tyrosol has been shown to be able to exert antioxidant activity in vitro studies. Oxidation of low-density lipoprotein (LDL) appears to occur predominantly in arterial intimae in microdomains sequestered from antioxidants of plasma. The antioxidant content of the LDL particle is critical for its protection. The ability of tyrosol to bind human LDL has been reported. The bioavailability of tyrosol in humans from virgin olive oil in its natural form has been demonstrated. Urinary tyrosol increases, reaching a peak at 0-4 h after virgin olive oil administration. Men and women show a different pattern of urinary excretion of tyrosol. Moreover, tyrosol is absorbed in a dose-dependent manner after sustained and moderate doses of virgin olive oil. Tyrosol from wine or virgin olive oil could exert beneficial effects on human health in vivo if its biological properties are confirmed (PMID 15134375). Tyrosol is a microbial metabolite found in Bifidobacterium, Escherichia and Lactobacillus (PMID:28393285). 2-(4-hydroxyphenyl)ethanol is a phenol substituted at position 4 by a 2-hydroxyethyl group. It has a role as an anti-arrhythmia drug, an antioxidant, a cardiovascular drug, a protective agent, a fungal metabolite, a geroprotector and a plant metabolite. It is functionally related to a 2-phenylethanol. 2-(4-Hydroxyphenyl)ethanol is a natural product found in Thalictrum petaloideum, Casearia sylvestris, and other organisms with data available. Tyrosol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Sedum roseum root (part of); Rhodiola crenulata root (part of). D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents A phenol substituted at position 4 by a 2-hydroxyethyl group. D020011 - Protective Agents > D000975 - Antioxidants Tyrosol is a derivative of phenethyl alcohol. Tyrosol attenuates pro-inflammatory cytokines from cultured astrocytes and NF-κB activation. Anti-oxidative and anti-inflammatory effects[1]. Tyrosol is a derivative of phenethyl alcohol. Tyrosol attenuates pro-inflammatory cytokines from cultured astrocytes and NF-κB activation. Anti-oxidative and anti-inflammatory effects[1].
Gentisate aldehyde
Gentisate aldehyde is a substrate of the enzyme aldehyde oxidase 1 [EC:1.2.3.1] in Valine, leucine and isoleucine degradation, Tyrosine metabolism, Tryptophan metabolism, Vitamin B6 metabolism and Nicotinate and nicotinamide metabolism. (KEGG) [HMDB] Gentisate aldehyde is a substrate of the enzyme aldehyde oxidase 1 [EC:1.2.3.1] in Valine, leucine and isoleucine degradation, Tyrosine metabolism, Tryptophan metabolism, Vitamin B6 metabolism and Nicotinate and nicotinamide metabolism. (KEGG). 2,5-Dihydroxybenzaldehyde (Gentisaldehyde) is a naturally occurring antimicrobial that inhibits the growth of Mycobacterium avium subsp. paratuberculosis. 2,5-Dihydroxybenzaldehyde is active against S. aureus strains with a MIC50 of 500 mg/L[1][2].
3-Hydroxybenzoic acid
3-Hydroxybenzoic acid, also known as 3-hydroxybenzoate or 3-carboxyphenol, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. 3-Hydroxybenzoic acid exists in all living organisms, ranging from bacteria to humans. Outside of the human body, 3-hydroxybenzoic acid is found, on average, in the highest concentration in american cranberries and beers. 3-hydroxybenzoic acid has also been detected, but not quantified in a few different foods, such as bilberries, citrus, and corns. As well, 3-Hydroxybenzoic Acid can be found in the pineapple fruit. It can also be formed by a Pseudomonas species from 3-Chlorobenzoic acid. 3-Hydroxybenzoic acid is a monohydroxybenzoic acid. 3-Hydroxybenzoic acid can be obtained by the alkali fusion of 3-sulfobenzoic acid between 210-220 °C. 3-Hydroxybenzoic acid is a component of castoreum, the exudate from the castor sacs of the mature North American beaver (Castor canadensis) and the European beaver (Castor fiber), used in perfumery. Present in fruits. Isolated from Citrus paradisi (grapefruit) CONFIDENCE standard compound; ML_ID 13 KEIO_ID H019 3-Hydroxybenzoic acid is an endogenous metabolite. 3-Hydroxybenzoic acid is an endogenous metabolite.
Urocanic acid
Urocanic acid (CAS: 104-98-3) is a breakdown (deamination) product of histidine. In the liver, urocanic acid is an intermediate in the conversion of histidine to glutamic acid, whereas, in the epidermis, it accumulates and may be both a UV protectant and an immunoregulator. Urocanic acid (UA) exists as a trans isomer (t-UA, approximately 30 mg/cm2) in the uppermost layer of the skin (stratum corneum). t-UA is formed as the cells of the second layer of the skin become metabolically inactive. During this process, proteins and membranes degrade, histidine is released, and histidase (histidine ammonia lyase) catalyzes the deamination of histidine to form t-UA. t-UA accumulates in the epidermis until removal by either the monthly skin renewal cycle or sweat. Upon absorption of UV light, the naturally occurring t-UA isomerizes to its cis form, c-UA. Because DNA lesions (e.g., pyrimidine dimers) in the lower epidermis can result from UV-B absorption, initial research proposed that t-UA acted as a natural sunscreen absorbing UV-B in the stratum corneum before the damaging rays could penetrate into lower epidermal zones. Researchers have found that c-UA also suppresses contact hypersensitivity and delayed hypersensitivity, reduces the Langerhans cell count in the epidermis, prolongs skin-graft survival time, and affects natural killer cell activity. (E)-Urocanic acid is found in mushrooms. It has been isolated from Coprinus atramentarius (common ink cap) and Phallus impudicus (common stinkhorn). Trans-urocanic acid, also known as 4-imidazoleacrylic acid or urocanate, belongs to imidazolyl carboxylic acids and derivatives class of compounds. Those are organic compounds containing a carboxylic acid chain (of at least 2 carbon atoms) linked to an imidazole ring. Trans-urocanic acid is soluble (in water) and a weakly acidic compound (based on its pKa). Trans-urocanic acid can be found in mung bean, which makes trans-urocanic acid a potential biomarker for the consumption of this food product. Trans-urocanic acid can be found primarily in most biofluids, including sweat, feces, blood, and urine, as well as in human liver and skin tissues. Trans-urocanic acid exists in all living organisms, ranging from bacteria to humans. In humans, trans-urocanic acid is involved in the histidine metabolism. Trans-urocanic acid is also involved in a couple of metabolic disorders, which include ammonia recycling and histidinemia. Urocanic acid, produced in the upper layers of mammalian skin, is a major absorber of ultraviolet radiation (UVR). Urocanic acid, produced in the upper layers of mammalian skin, is a major absorber of ultraviolet radiation (UVR).
4-Nitroaniline
CONFIDENCE standard compound; INTERNAL_ID 1340; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2935; ORIGINAL_PRECURSOR_SCAN_NO 2934 CONFIDENCE standard compound; INTERNAL_ID 1340; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2902; ORIGINAL_PRECURSOR_SCAN_NO 2900 CONFIDENCE standard compound; INTERNAL_ID 1340; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2938; ORIGINAL_PRECURSOR_SCAN_NO 2937 CONFIDENCE standard compound; INTERNAL_ID 1340; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2922; ORIGINAL_PRECURSOR_SCAN_NO 2921 CONFIDENCE standard compound; INTERNAL_ID 1340; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2945; ORIGINAL_PRECURSOR_SCAN_NO 2944 CONFIDENCE standard compound; INTERNAL_ID 1340; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2892; ORIGINAL_PRECURSOR_SCAN_NO 2890 KEIO_ID N012
3,4-Dihydroxybenzaldehyde
Protocatechualdehyde, also known as rancinamycin iv or 1,2-dihydroxy-4-formylbenzene, is a member of the class of compounds known as hydroxybenzaldehydes. Hydroxybenzaldehydes are organic aromatic compounds containing a benzene ring carrying an aldehyde group and a hydroxyl group. Protocatechualdehyde is soluble (in water) and a very weakly acidic compound (based on its pKa). Protocatechualdehyde is an almond, bitter, and dry tasting compound and can be found in a number of food items such as plains prickly pear, mugwort, silver linden, and cardamom, which makes protocatechualdehyde a potential biomarker for the consumption of these food products. Protocatechualdehyde can be found primarily in urine. This molecule can be used as a precursor in the vanillin synthesis by biotransformation by cell cultures of Capsicum frutescens, a type of Chili pepper. It is also found in the mushroom Phellinus linteus . 3,4-Dihydroxybenzaldehyde, also known as protocatechuic aldehyde, is a phenolic aldehyde, a compound released from cork stoppers into wine. This molecule can be used as a precursor in vanillin synthesis via biotransformation by cell cultures of Capsicum frutescens, a type of chili pepper. It is also found in the mushroom Phellinus linteus (Wikipedia). D006401 - Hematologic Agents > D000925 - Anticoagulants Protocatechualdehyde (Catechaldehyde), a natural polyphenol compound isolated from the roots of radix Salviae Miltiorrhizae, is associated with a wide variety of biological activities and has been widely used in medicine as an antioxidant, anti-aging, an antibacterial and anti-inflammatory agent[1]. Protocatechualdehyde (Catechaldehyde), a natural polyphenol compound isolated from the roots of radix Salviae Miltiorrhizae, is associated with a wide variety of biological activities and has been widely used in medicine as an antioxidant, anti-aging, an antibacterial and anti-inflammatory agent[1].
4-hydroxyphenylethanol
A member of the class of phenols that is phenol substituted by a 1-hydroxyethyl group at position 4.
Fosfomycin
Fosfomycin is only found in individuals that have used or taken this drug. It is an antibiotic produced by Streptomyces fradiae. [PubChem]Fosfomycin is a phosphoenolpyruvate analogue produced by Streptomyces that irreversibly inhibits enolpyruvate transferase (MurA), which prevents the formation of N-acetylmuramic acid, an essential element of the peptidoglycan cell wall. S - Sensory organs > S02 - Otologicals > S02A - Antiinfectives > S02AA - Antiinfectives J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use C254 - Anti-Infective Agent > C255 - Urinary Anti-Infective Agent D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents
3-Ethyl-1,2-benzenediol
Pyrolysis production of coffee. 3-Ethyl-1,2-benzenediol is found in coffee and coffee products. 3-Ethyl-1,2-benzenediol is found in coffee and coffee products. Pyrolysis produced of coffee.
Sesamol
Sesamol is a member of benzodioxoles. Sesamol is a natural product found in Sesamum indicum with data available. See also: Sesame Oil (part of). Isolated from sesame oil. Sesamol is found in fats and oils and sesame. Sesamol is found in fats and oils. Sesamol is isolated from sesame oi D020011 - Protective Agents > D000975 - Antioxidants COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Sesamol is a constituent of sesame oil. Sesamol shows a free radical scavenging activity. Sesamol shows an IC50=5.95±0.56 μg/mL in the DPPH assay. Anti-oxidant activities[1]. Anticancer activities[2]. Sesamol is a constituent of sesame oil. Sesamol shows a free radical scavenging activity. Sesamol shows an IC50=5.95±0.56 μg/mL in the DPPH assay. Anti-oxidant activities[1]. Anticancer activities[2].
1,2-Dimethoxybenzene
1,2-Dimethoxybenzene, commonly known as veratrole, is a chemical compound with the formula C6H4(OCH3)2. It is the dimethyl ether derived from pyrocatechol. Veratrole is slightly soluble in water, but miscible in all organic solvents. It is a building block for the organic synthesis of other aromatic compounds. Veratrole is relatively electron-rich and thus readily undergoes electrophilic substitution. 1,2-Dimethoxybenzene is found in corn. 1,2-Dimethoxybenzene is a food additive listed in the EAFUS food Additive Database (Jan 2001). 1,2-Dimethoxybenzene is found in raw and cooked foods, e.g. cheeses, grapes and asparagus. Veratrole is a dimethoxybenzene with the methoxy groups at ortho-positions. It has a role as a plant metabolite. 1,2-Dimethoxybenzene is a natural product found in Ophrys sphegodes, Phallus impudicus, and other organisms with data available. Food additive listed in the EAFUS Food Additive Database (Jan 2001). Found in raw and cooked foods, e.g. cheeses, grapes and asparagus A dimethoxybenzene with the methoxy groups at ortho-positions. 1,2-Dimethoxybenzene is an naturally occurring insect attractant[1]. 1,2-Dimethoxybenzene is an naturally occurring insect attractant[1].
2-Aminonicotinic acid
2-Aminonicotinic acid belongs to the class of organic compounds known as pyridinecarboxylic acids. These are compounds containing a pyridine ring bearing a carboxylic acid group.
3-Acetyl-2,5-dimethylfuran
3-Acetyl-2,5-dimethylfuran is a flavouring ingredien Flavouring ingredient
2-Methoxy-1,4-benzoquinone
2-Methoxy-1,4-benzoquinone is found in fruits. 2-Methoxy-1,4-benzoquinone is isolated from fruits of Diospyros kaki (Japanese persimmon
4-Ethyl-1,2-benzenediol
Constituent of roasted coffeeand is) also isolated from eggplant leaves (Solanum melongena). 4-Ethyl-1,2-benzenediol is found in many foods, some of which are coffee and coffee products, eggplant, coffee, and cocoa powder. 4-Ethyl-1,2-benzenediol is found in arabica coffee. 4-Ethyl-1,2-benzenediol is a constituent of roasted coffee. Also isolated from eggplant leaves (Solanum melongena).
4-Methoxybenzyl alcohol
4-Methoxybenzyl alcohol is found in anise. 4-Methoxybenzyl alcohol is isolated from vanilla, aniseed oil, sweet osmanthus (Osmanthus fragrans) flowers and tarragon (Artemisia dracunculus). 4-Methoxybenzyl alcohol is used in flower perfumes and flavouring Isolated from vanilla, aniseed oil, sweet osmanthus (Osmanthus fragrans) flowers and tarragon (Artemisia dracunculus). It is used in flower perfumes and flavourings. 4-Methoxybenzyl alcohol is found in herbs and spices and anise.
keratan sulfate II (core 2-linked), degradation product 1
keratan sulfate II (core 2-linked), degradation product 1, also known as 2,4-Dihydroxybenzaldehyd or beta-Resorcylaldehyde, is classified as a member of the Hydroxybenzaldehydes. Hydroxybenzaldehydes are organic aromatic compounds containing a benzene ring carrying an aldehyde group and a hydroxyl group. keratan sulfate II (core 2-linked), degradation product 1 is considered to be soluble (in water) and acidic 2,4-Dihydroxybenzaldehyde is an endogenous metabolite. 2,4-Dihydroxybenzaldehyde is an endogenous metabolite.
5-Oxo-2(5H)-isoxazolepropanenitrile
5-Oxo-2(5H)-isoxazolepropanenitrile is found in pulses. 5-Oxo-2(5H)-isoxazolepropanenitrile is a constituent of Pisum sativum (peas) Constituent of Pisum sativum (peas). 5-Oxo-2(5H)-isoxazolepropanenitrile is found in pulses and common pea.
1,4-Dimethoxybenzene
1,4-Dimethoxybenzene is found in peppermint. 1,4-Dimethoxybenzene is a flavouring ingredien Flavouring ingredient. 1,4-Dimethoxybenzene is found in peppermint. 1,4-Dimethoxybenzene is an endogenous metabolite.
1,3-Dimethoxybenzene
1,3-Dimethoxybenzene is found in mushrooms. 1,3-Dimethoxybenzene is present in fungi. Mushroom odorant substanc
alpha-Furyl methyl diketone
alpha-Furyl methyl diketone is found in coffee and coffee products. alpha-Furyl methyl diketone is a constituent of coffee aroma. Constituent of coffee aroma. alpha-Furyl methyl diketone is found in coffee and coffee products.
Benzyl methyl sulfide
Benzyl methyl sulfide is found in animal foods. Benzyl methyl sulfide is a flavouring agent. Benzyl methyl sulfide is present in cooked por Benzyl methyl sulfide is a flavouring agent. It is found in animal foods, specifically cooked pork.
2,6-Dimethyl-1,4-benzenediol
2,6-Dimethyl-1,4-benzenediol, also known as 2, 6-dimethyl-p-benzohydroquinone or 2, 6-xylohydroquinone, belongs to the class of organic compounds known as hydroquinones. Hydroquinones are compounds containing a hydroquinone moiety, which consists of a benzene ring with a hydroxyl groups at positions 1 and 4. 2,6-Dimethyl-1,4-benzenediol has been detected, but not quantified, in a few different foods, such as broccoli, common pea, and pulses. This could make 2,6-dimethyl-1,4-benzenediol a potential biomarker for the consumption of these foods. Claimed isoln. from Pisum sativum (pea). 2,6-Dimethyl-1,4-benzenediol is found in pulses and common pea. 2,6-Dimethylhydroquinone is an endogenous metabolite.
2-Methoxy-4-methylphenol
2-Methoxy-4-methylphenol, also known as 4-methylguaiacol or creosol, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Creosol reacts with hydrogen halides to give a catechol. Compared with phenol, creosol is a less toxic disinfectant. It is one of the components of creosote. 2-Methoxy-4-methylphenol is a bacon, bitter, and carnation tasting compound. 2-Methoxy-4-methylphenol has been detected, but not quantified, in several different foods, such as red bell peppers, green bell peppers, orange bell peppers, corns, and pepper (c. annuum). Sources of creosol include: Coal tar, creosote Wood, creosoteReduction product of vanillin using zinc powder in strong hydrochloric acidFound as glycosides in green vanilla beans. It is also found in tequila. Flavouring ingredient. Constituent of ylang-ylang oil. 2-Methoxy-4-methylphenol is found in many foods, some of which are corn, red bell pepper, orange bell pepper, and green bell pepper. C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent Creosol is an endogenous metabolite. Creosol is an endogenous metabolite.
Nicotinamide N-oxide
Nicotinamide N-oxide is recognized as an in vivo metabolite of nicotinamide which is a precurser of nicotinamide-adenine dinucleotide (NAD+) in animals. The enzyme that catalyses the reduction of nicotinamide N-oxide to nicotinamide in liver is xanthine oxidase. [HMDB] Nicotinamide N-oxide is recognized as an in vivo metabolite of nicotinamide which is a precurser of nicotinamide-adenine dinucleotide (NAD+) in animals. The enzyme that catalyses the reduction of nicotinamide N-oxide to nicotinamide in liver is xanthine oxidase. Nicotinamide N-oxide, an in vivo nicotinamide metabolite, is a potent, and selective antagonist of the CXCR2 receptor. Nicotinamide N-oxide, an in vivo nicotinamide metabolite, is a potent, and selective antagonist of the CXCR2 receptor.
4-Ethoxyphenol
4-Ethoxyphenol is found in herbs and spices. 4-Ethoxyphenol is isolated from Chinese star anise oil (Illicium verum). 4-Ethoxyphenol is a food flavouran
8-Hydroxypurine
8-Hydroxypurine, the C(8)-oxidized purine bases, has been detected in neoplastic liver of fish, as well as in urine samples of humans.(PMID: 2519715). 8-Hydroxypurine derivatives have been reported to have a wide range of biological activities, such as corticotropin-releasing hormone receptor antagonism,anti-rhinovirus activity,xanthine oxidase inhibiting activity and excellent binding affinity to a benzodiazepine receptor. 8-Hydroxypurine, the C(8)-oxidized purine bases, has been detected in neoplastic liver of fish, as well as in urine samples of humans.(PMID: 2519715)
2,6-Dimethylbenzenethiol
2,6-Dimethylbenzenethiol is found in animal foods. 2,6-Dimethylbenzenethiol is present in boiled beef. 2,6-Dimethylbenzenethiol is a flavouring ingredien Present in boiled beef. Flavouring ingredient. 2,6-Dimethylbenzenethiol is found in animal foods.
2-Acetyl-3,5-dimethylfuran
2-Acetyl-3,5-dimethylfuran is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]")
1-(2-Furyl)butan-3-one
1-(2-Furyl)butan-3-one is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]")
(+/-)-1-Phenylethylmercaptan
(+/-)-1-Phenylethylmercaptan is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]")
1-(2-Furanyl)-1-butanone
Constituent of coffee aroma and cocoa butter. 1-(2-Furanyl)-1-butanone is found in cocoa and cocoa products and coffee and coffee products. 1-(2-Furanyl)-1-butanone is found in cocoa and cocoa products. 1-(2-Furanyl)-1-butanone is a constituent of coffee aroma and cocoa butter.
2-Ethylbenzenethiol
2-Ethylbenzenethiol is a flavouring ingredient especially for instant coffee. Flavouring ingredient especies for instant coffee
2-Phenoxyethanol
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent 2-Phenoxyethanol is a flavouring ingredient [CCD]. D000890 - Anti-Infective Agents Flavouring ingredient [CCD]
Trans-urocanate
Trans-urocanate is also known as (e)-3-(Imidazol-4-yl)propenoate or trans-Urocanic acid. Trans-urocanate is considered to be soluble (in water) and acidic
styrene glycol (1-phenyl 1,2-ethanediol)
Flavouring compound [Flavornet]
3,4-Dihydroxybenzaldehyde
Protocatechualdehyde, also known as rancinamycin iv or 1,2-dihydroxy-4-formylbenzene, is a member of the class of compounds known as hydroxybenzaldehydes. Hydroxybenzaldehydes are organic aromatic compounds containing a benzene ring carrying an aldehyde group and a hydroxyl group. Protocatechualdehyde is soluble (in water) and a very weakly acidic compound (based on its pKa). Protocatechualdehyde is an almond, bitter, and dry tasting compound and can be found in a number of food items such as plains prickly pear, mugwort, silver linden, and cardamom, which makes protocatechualdehyde a potential biomarker for the consumption of these food products. Protocatechualdehyde can be found primarily in urine. This molecule can be used as a precursor in the vanillin synthesis by biotransformation by cell cultures of Capsicum frutescens, a type of Chili pepper. It is also found in the mushroom Phellinus linteus . 3,4-dihydroxybenzaldehyde is a dihydroxybenzaldehyde. Also known as protocatechuic aldehyde, protocatechualdehyde is a naturally-occuring phenolic aldehyde that is found in barley, green cavendish bananas, grapevine leaves and root of the herb S. miltiorrhiza. Protocatechualdehyde possesses antiproliferative and pro-apoptotic properties against human breast cancer cells and colorectal cancer cells by reducing the expression of pro-oncogenes β-catenin and cyclin D1. 3,4-Dihydroxybenzaldehyde is a natural product found in Visnea mocanera, Amomum subulatum, and other organisms with data available. See also: Black Cohosh (part of). 3,4-Dihydroxybenzaldehyde, also known as protocatechuic aldehyde, is a phenolic aldehyde, a compound released from cork stoppers into wine. This molecule can be used as a precursor in vanillin synthesis via biotransformation by cell cultures of Capsicum frutescens, a type of chili pepper. It is also found in the mushroom Phellinus linteus (Wikipedia). D006401 - Hematologic Agents > D000925 - Anticoagulants Protocatechualdehyde (Catechaldehyde), a natural polyphenol compound isolated from the roots of radix Salviae Miltiorrhizae, is associated with a wide variety of biological activities and has been widely used in medicine as an antioxidant, anti-aging, an antibacterial and anti-inflammatory agent[1]. Protocatechualdehyde (Catechaldehyde), a natural polyphenol compound isolated from the roots of radix Salviae Miltiorrhizae, is associated with a wide variety of biological activities and has been widely used in medicine as an antioxidant, anti-aging, an antibacterial and anti-inflammatory agent[1].
3-Hydroxybenzoicacid
A monohydroxybenzoic acid that is benzoic acid substituted by a hydroxy group at position 3. It has been isolated from Taxus baccata. It is used as an intermediate in the synthesis of plasticisers, resins, pharmaceuticals, etc. 3-Hydroxybenzoic acid is an endogenous metabolite. 3-Hydroxybenzoic acid is an endogenous metabolite.
Urocanic acid
An alpha,beta-unsaturated monocarboxylic acid that is prop-2-enoic acid substituted by a 1H-imidazol-4-yl group at position 3. It is a metabolite of hidtidine. Urocanic acid is an intermediate in the catabolism of L-histidine.; Urocanic is a breakdown (deamination) product of histidine. In the liver, urocanic acid is an intermediate in the conversion of histidine to glutamic acid, whereas in the epidermis, it accumulates and may be both a UV protectant and an immunoregulator. Urocanic acid (UA) exists as a trans isomer (t-UA, approximately 30 mg/cm2) in the uppermost layer of the skin (stratum corneum). t-UA is formed as the cells of the second layer of skin become metabolically inactive. During this process, proteins and membranes degrade, histidine is released, and histidase (histidine ammonia lyase) catalyzes the deamination of histidine to form t-UA. t-UA accumulates in the epidermis until removal by either the monthly skin renewal cycle or sweat. Upon absorption of UV light, the naturally occurring t-UA isomerizes to its cis form, c-UA. Because DNA lesions (e.g., pyrimidine dimers) in the lower epidermis can result from UV-B absorption, initial research proposed that t-UA acted as a natural sunscreen absorbing UV-B in the stratum corneum before the damaging rays could penetrate into lower epidermal zones. Researchers have found that c-UA also suppresses contact hypersensitivity and delayed hypersensitivity, reduces the Langerhans cell count in the epidermis, prolongs skin-graft survival time, and affects natural killer cell activity. Urocanic acid is found in mung bean. C308 - Immunotherapeutic Agent relative retention time with respect to 9-anthracene Carboxylic Acid is 0.055 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.054 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.052 Urocanic acid, produced in the upper layers of mammalian skin, is a major absorber of ultraviolet radiation (UVR). Urocanic acid, produced in the upper layers of mammalian skin, is a major absorber of ultraviolet radiation (UVR).
4-aminonicotinic acid
An aminonicotinic acid in which the amino group is situated at position 4 of the pyridine ring.
5-Ammonionicotinate
An aminonicotinic acid in which the amino group is situated at position 5 of the pyridine ring.
2-Methyl-5-propionylfuran
A member of the class of furans that is furan substituted by propionyl and methyl groups at positions 2 and 5, respectively. It is a flavouring agent found in sesame seed oil and coffee.
2-NITROANILINE
CONFIDENCE standard compound; INTERNAL_ID 806; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3817; ORIGINAL_PRECURSOR_SCAN_NO 3816 CONFIDENCE standard compound; INTERNAL_ID 806; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3818; ORIGINAL_PRECURSOR_SCAN_NO 3817 CONFIDENCE standard compound; INTERNAL_ID 806; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3826; ORIGINAL_PRECURSOR_SCAN_NO 3825 CONFIDENCE standard compound; INTERNAL_ID 806; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3823; ORIGINAL_PRECURSOR_SCAN_NO 3822 CONFIDENCE standard compound; INTERNAL_ID 806; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3891; ORIGINAL_PRECURSOR_SCAN_NO 3890 CONFIDENCE standard compound; INTERNAL_ID 806; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3829; ORIGINAL_PRECURSOR_SCAN_NO 3828
3,5-Octadiin-1,8-diol|3,5-octadiyn-1,8-diol|3,5-Octadiyne-1,8-diol|Octa-3,5-diin-1,8-diol|octa-3,5-diyn-1,8-diol|octa-3,5-diyne-1,8-diol|Octa-3.5-diin-1.8-diol
4-(Methoxymethyl)phenol
A member of the class of phenols that is p-cresol in which one of the methyl hydrogens has been replaced by a methoxy group.
1-Undecene-3,5,7,9-tetrayne|undec-1-ene-3,5,7,9-tetrayne|Undeca-1-en-3,5,7,9-tetrain
2,3-Dimethyl-2,3-epoxy-5-methylene-1-cyclopentanone
6-Ethylresorcinol
4-Ethylresorcinol, a derivative of resorcinol, can act as substrates of tyrosinase. 4-Ethylresorcinol possess hypopigmentary effects. 4-Ethylresorcinol attenuates mRNA and protein expression of tyrosinase-related protein (TRP)-2, and possessed antioxidative effect by inhibiting lipid peroxidation[1][2]. 4-Ethylresorcinol, a derivative of resorcinol, can act as substrates of tyrosinase. 4-Ethylresorcinol possess hypopigmentary effects. 4-Ethylresorcinol attenuates mRNA and protein expression of tyrosinase-related protein (TRP)-2, and possessed antioxidative effect by inhibiting lipid peroxidation[1][2].
4-hydroxybenzoate
4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL. 4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL.
3-Hydroxybenzoate
3-Hydroxybenzoic acid is an endogenous metabolite. 3-Hydroxybenzoic acid is an endogenous metabolite.
4-Hydroxybenzoic acid
4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL. 4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL.
Salicylic Acid
Salicylic acid (2-Hydroxybenzoic acid) inhibits cyclo-oxygenase-2 (COX-2) activity independently of transcription factor (NF-κB) activation[1]. Salicylic acid (2-Hydroxybenzoic acid) inhibits cyclo-oxygenase-2 (COX-2) activity independently of transcription factor (NF-κB) activation[1].
protocatechuic aldehyde
Protocatechualdehyde (Catechaldehyde), a natural polyphenol compound isolated from the roots of radix Salviae Miltiorrhizae, is associated with a wide variety of biological activities and has been widely used in medicine as an antioxidant, anti-aging, an antibacterial and anti-inflammatory agent[1]. Protocatechualdehyde (Catechaldehyde), a natural polyphenol compound isolated from the roots of radix Salviae Miltiorrhizae, is associated with a wide variety of biological activities and has been widely used in medicine as an antioxidant, anti-aging, an antibacterial and anti-inflammatory agent[1].
Methyl 2-pyrazinecarboxylate
CONFIDENCE standard compound; INTERNAL_ID 8364
p-Hydroxybenzoic acid
4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL. 4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL.
2,5-Dihydroxybenzaldehyde
A dihydroxybenzaldehyde carrying hydroxy groups at positions 2 and 5. 2,5-Dihydroxybenzaldehyde (Gentisaldehyde) is a naturally occurring antimicrobial that inhibits the growth of Mycobacterium avium subsp. paratuberculosis. 2,5-Dihydroxybenzaldehyde is active against S. aureus strains with a MIC50 of 500 mg/L[1][2].
trans-Urocanic acid
A urocanic acid in which the double bond of the carboxyethene moiety has E configuration. Isol from fungi, e.g. Coprinus atramentarius (common ink cap) and Phallus impudicus (common stinkhorn). (E)-Urocanic acid is found in mushrooms.
Nicotinamide 1-oxide
Nicotinamide N-oxide, an in vivo nicotinamide metabolite, is a potent, and selective antagonist of the CXCR2 receptor. Nicotinamide N-oxide, an in vivo nicotinamide metabolite, is a potent, and selective antagonist of the CXCR2 receptor.
dimethylhydroquinone
1,4-Dimethoxybenzene is an endogenous metabolite.
4-Chloro-2-(piperazin-1-yl)pyrimidine Hydrochloride
4-(4-METHYLPIPERAZINO)-3-NITROBENZENE-CARBOXYLIC ACID
6ALPHA,7ALPHA-EPOXY-2-OXABICYCLO[3.3.0]OCTAN-3-ONE
6-Aminonicotinic acid
An aminonicotinic acid in which the amino group is situated at position 6 of the pyridine ring. 6-Aminonicotinic acid is a GABAA receptor agonist with Ki value of 4.4 nM[1].
styrene glycol
1-Phenylethane-1,2-diol is a typical benzyl diol compound. 1-Phenylethane-1,2-diol can be oxidized to hydroxyl ketone (2-hydroxy-1-phenylethan-1-one) selectively with variety of catalysts, including organocatalysts, metal complexes, non-noble metal oxides, bimetallics[1]. 1-Phenylethane-1,2-diol is a typical benzyl diol compound. 1-Phenylethane-1,2-diol can be oxidized to hydroxyl ketone (2-hydroxy-1-phenylethan-1-one) selectively with variety of catalysts, including organocatalysts, metal complexes, non-noble metal oxides, bimetallics[1].
TeMozoloMide Related CoMpound A,4-diazo-4H-iMidazole-5-carboxaMide
Sodium hexanoate
An organic sodium salt resulting from the replacement of the proton from the carboxy group of hexanoic acid by a sodium ion.
Propanoic acid, 3-fluoro-2-(fluoromethyl)-2-methyl-
4-Nitrophenolate
A phenolate anion that is the conjugate base of 4-nitrophenol; major species at pH 7.3.
N-Methylnicotinic acid
A pyridinium ion consisting of nicotinic acid having a methyl substituent on the pyridine nitrogen.
139-85-5
D006401 - Hematologic Agents > D000925 - Anticoagulants Protocatechualdehyde (Catechaldehyde), a natural polyphenol compound isolated from the roots of radix Salviae Miltiorrhizae, is associated with a wide variety of biological activities and has been widely used in medicine as an antioxidant, anti-aging, an antibacterial and anti-inflammatory agent[1]. Protocatechualdehyde (Catechaldehyde), a natural polyphenol compound isolated from the roots of radix Salviae Miltiorrhizae, is associated with a wide variety of biological activities and has been widely used in medicine as an antioxidant, anti-aging, an antibacterial and anti-inflammatory agent[1].
Sesamol
D020011 - Protective Agents > D000975 - Antioxidants COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Sesamol is a constituent of sesame oil. Sesamol shows a free radical scavenging activity. Sesamol shows an IC50=5.95±0.56 μg/mL in the DPPH assay. Anti-oxidant activities[1]. Anticancer activities[2]. Sesamol is a constituent of sesame oil. Sesamol shows a free radical scavenging activity. Sesamol shows an IC50=5.95±0.56 μg/mL in the DPPH assay. Anti-oxidant activities[1]. Anticancer activities[2].
Phenol-2-carboxylic acid
Salicylic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=69-72-7 (retrieved 2024-07-09) (CAS RN: 69-72-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Salicylic acid (2-Hydroxybenzoic acid) inhibits cyclo-oxygenase-2 (COX-2) activity independently of transcription factor (NF-κB) activation[1]. Salicylic acid (2-Hydroxybenzoic acid) inhibits cyclo-oxygenase-2 (COX-2) activity independently of transcription factor (NF-κB) activation[1].
b-Resorcylaldehyde
Isolated from Pinus sylvestris ( Scotch pine) needles. A polyphenol metabolite detected in biological fluids [PhenolExplorer] 2,4-Dihydroxybenzaldehyde is an endogenous metabolite. 2,4-Dihydroxybenzaldehyde is an endogenous metabolite.
Salicylate
Salicylic acid, also known as O-hydroxybenzoic acid or ionil-plus, is a member of the class of compounds known as salicylic acids. Salicylic acids are ortho-hydroxylated benzoic acids. Salicylic acid is soluble (in water) and a moderately acidic compound (based on its pKa). Salicylic acid is a faint, nutty, and phenolic tasting compound and can be found in a number of food items such as pistachio, oriental wheat, black cabbage, and bayberry, which makes salicylic acid a potential biomarker for the consumption of these food products. Salicylic acid can be found primarily in blood, feces, saliva, and urine, as well as in human liver and skin tissues. Salicylic acid exists in all living species, ranging from bacteria to humans. In humans, salicylic acid is involved in the salicylic acid action pathway. Salicylic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Salicylic acid (from Latin salix, willow tree) is a lipophilic monohydroxybenzoic acid, a type of phenolic acid, and a beta hydroxy acid (BHA). It has the formula C7H6O3. This colorless crystalline organic acid is widely used in organic synthesis and functions as a plant hormone. It is derived from the metabolism of salicin. In addition to serving as an important active metabolite of aspirin (acetylsalicylic acid), which acts in part as a prodrug to salicylic acid, it is probably best known for its use as a key ingredient in topical anti-acne products. The salts and esters of salicylic acid are known as salicylates . Oral rat LD50: 891 mg/kg. Inhalation rat LC50: > 900 mg/m3/1hr. Irritation: skin rabbit: 500 mg/24H mild. Eye rabbit: 100 mg severe. Investigated a mutagen and reproductive effector (DrugBank). Salicylic acid directly and irreversibly inhibits the activity of both types of cyclo-oxygenases (COX-1 and COX-2) to decrease the formation of precursors of prostaglandins and thromboxanes from arachidonic acid. Salicylate may competitively inhibit prostaglandin formation. Salicylates antirheumatic (nonsteroidal anti-inflammatory) actions are a result of its analgesic and anti-inflammatory mechanisms. Salicylic acid is a key ingredient in many skin-care products for the treatment of acne, psoriasis, calluses, corns, keratosis pilaris, and warts. It works by causing the cells of the epidermis to slough off more readily, preventing pores from clogging up, and allowing room for new cell growth. Because of its effect on skin cells, salicylic acid is used in several shampoos used to treat dandruff. Salicylic acid is also used as an active ingredient in gels which remove verrucas (plantar warts). Salicylic acid inhibits the oxidation of uridine-5-diphosphoglucose (UDPG) competitively with nicotinamide adenosine dinucleotide (NAD) and noncompetitively with UDPG. It also competitively inhibits the transferring of glucuronyl group of uridine-5-phosphoglucuronic acid (UDPGA) to the phenolic acceptor. The wound-healing retardation action of salicylates is probably due mainly to its inhibitory action on mucopolysaccharide synthesis (T3DB). Salicylic acid (2-Hydroxybenzoic acid) inhibits cyclo-oxygenase-2 (COX-2) activity independently of transcription factor (NF-κB) activation[1]. Salicylic acid (2-Hydroxybenzoic acid) inhibits cyclo-oxygenase-2 (COX-2) activity independently of transcription factor (NF-κB) activation[1].
6-Hydroxynicotinate(1-)
A monocarboxylic acid anion resulting from the deprotonation of 6-hydroxynicotinic acid; the major species at pH 7.3.
Fosfomycin
S - Sensory organs > S02 - Otologicals > S02A - Antiinfectives > S02AA - Antiinfectives A phosphonic acid having an (R,S)-1,2-epoxypropyl group attached to phosphorus. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use C254 - Anti-Infective Agent > C255 - Urinary Anti-Infective Agent D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents
2-Aminonicotinic acid
An aminonicotinic acid in which the amino group is situated at position 2 of the pyridine ring.
Nicotinamide N-oxide
Nicotinamide N-oxide, an in vivo nicotinamide metabolite, is a potent, and selective antagonist of the CXCR2 receptor. Nicotinamide N-oxide, an in vivo nicotinamide metabolite, is a potent, and selective antagonist of the CXCR2 receptor.
Cis-urocanic acid
A urocanic acid in which the double bond of the carboxyethene moiety has Z configuration. C308 - Immunotherapeutic Agent
3-oxopropane-1-sulfonic acid
An organosulfonic acid that is propanal substituted by a sulfo group at position 3.
4-carboxyanilinium
A primary ammonium ion that is the conjugate acid of 4-aminobenzoic acid resulting from the protonation of the amino group.
4-hydroxybenzoic
{"Ingredient_id": "HBIN010507","Ingredient_name": "4-hydroxybenzoic","Alias": "NA","Ingredient_formula": "C7H6O3","Ingredient_Smile": "C1=CC(=CC=C1C(=O)O)O","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "32621","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}