Ginsenoside F2 (BioDeep_00000000271)

   

human metabolite PANOMIX_OTCML-2023 Endogenous natural product


代谢物信息卡片


(2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-[[(3S,5R,8R,9R,10R,12R,13R,14R, 17S)-12-hydroxy-4,4,8,10,14-pentamethyl-17-[(2S)-6-methyl-2-[(2S,3R,4S, 5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhept-5-en-2-yl]-2, 3,5,6,7,9,11,12,13,15,16, 17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]oxane-3,4,5-triol

化学式: C42H72O13 (784.4973)
中文名称: 人参皂苷 F2, 人参皂甙F2, 人参皂苷F2
谱图信息: 最多检出来源 Viridiplantae(plant) 37.69%

分子结构信息

SMILES: CC(=CCCC(C)(C1CCC2(C1C(CC3C2(CCC4C3(CCC(C4(C)C)OC5C(C(C(C(O5)CO)O)O)O)C)C)O)C)OC6C(C(C(C(O6)CO)O)O)O)C
InChI: InChI=1S/C42H72O13/c1-21(2)10-9-14-42(8,55-37-35(51)33(49)31(47)25(20-44)53-37)22-11-16-41(7)29(22)23(45)18-27-39(5)15-13-28(38(3,4)26(39)12-17-40(27,41)6)54-36-34(50)32(48)30(46)24(19-43)52-36/h10,22-37,43-51H,9,11-20H2,1-8H3

描述信息

Ginsenoside F2 is a ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 3 and 20 have been converted to the corresponding beta-D-glucopyranosides, and in which a double bond has been introduced at the 24-25 position. It has a role as an apoptosis inducer, an antineoplastic agent and a plant metabolite. It is a ginsenoside, a tetracyclic triterpenoid, a 12beta-hydroxy steroid and a beta-D-glucoside. It derives from a hydride of a dammarane.
ginsenoside F2 is a natural product found in Panax ginseng, Panax notoginseng, and Aralia elata with data available.
Ginsenoside F2 is found in tea. Ginsenoside F2 is isolated from Panax species.
Isolated from Panax subspecies Ginsenoside F2 is found in tea.
Ginsenoside F2, a metabolite from Ginsenoside Rb1, induces apoptosis accompanied by protective autophagy in breast cancer stem cells[1].
Ginsenoside F2, a metabolite from Ginsenoside Rb1, induces apoptosis accompanied by protective autophagy in breast cancer stem cells[1].

同义名列表

11 个代谢物同义名

(2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-[[(3S,5R,8R,9R,10R,12R,13R,14R, 17S)-12-hydroxy-4,4,8,10,14-pentamethyl-17-[(2S)-6-methyl-2-[(2S,3R,4S, 5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhept-5-en-2-yl]-2, 3,5,6,7,9,11,12,13,15,16, 17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]oxane-3,4,5-triol; (2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-[[(3S,5R,8R,9R,10R,12R,13R,14R,17S)-12-hydroxy-4,4,8,10,14-pentamethyl-17-[(2S)-6-methyl-2-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhept-5-en-2-yl]-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]oxane-3,4,5-triol; 2-{[2-(16-hydroxy-2,6,6,10,11-pentamethyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl)-6-methylhept-5-en-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol; (3beta,12beta)-20-(beta-D-glucopyranosyloxy)-12-hydroxydammar-24-en-3-yl beta-D-glucopyranoside; 3beta,20-bis(beta-D-glucopyranosyloxy)dammar-24-en-12beta-ol; SWIROVJVGRGSPO-JBVRGBGGSA-N; 20(S)-Ginsenoside-F2; (20S)-ginsenoside F2; ginsenoside F2; ginsenoside-F2; Ginsenoside



数据库引用编号

16 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(2)

PlantCyc(1)

代谢反应

3 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(2)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(1)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

21 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 14 CAT, FASN, FOXP3, KEAP1, MAPK14, MAPK3, NFE2L2, PIK3CA, PPARG, PRKAA2, RB1, SLC2A2, STAT3, STMN4
Nucleus 11 FOXP3, GLRX, KEAP1, MAPK14, MAPK3, NFE2L2, PPARG, PRKAA2, RB1, RBL2, STAT3
cytosol 14 CAT, FASN, FOXP3, GLRX, KEAP1, MAPK14, MAPK3, NFE2L2, PIK3CA, PPARG, PRKAA2, RB1, RBL2, STAT3
dendrite 1 PRKAA2
centrosome 1 NFE2L2
nucleoplasm 10 FOXP3, KEAP1, MAPK14, MAPK3, NFE2L2, PPARG, PRKAA2, RB1, RBL2, STAT3
RNA polymerase II transcription regulator complex 3 NFE2L2, PPARG, STAT3
Cell membrane 1 SLC2A2
lamellipodium 1 PIK3CA
Cell projection, axon 1 STMN4
Cell projection, growth cone 1 STMN4
Multi-pass membrane protein 1 SLC2A2
cell surface 1 ADIPOQ
glutamatergic synapse 2 MAPK14, MAPK3
Golgi apparatus 5 FASN, MAPK3, NFE2L2, PRKAA2, STMN4
Golgi membrane 1 INS
growth cone 1 STMN4
neuronal cell body 1 PRKAA2
Cytoplasm, cytosol 1 NFE2L2
plasma membrane 6 FASN, MAPK3, NFE2L2, PIK3CA, SLC2A2, STAT3
Membrane 4 CAT, FASN, PRKAA2, SLC2A2
apical plasma membrane 1 SLC2A2
axon 1 PRKAA2
brush border 1 SLC2A2
caveola 1 MAPK3
extracellular exosome 4 CAT, FASN, GLRX, RBL2
endoplasmic reticulum 2 ADIPOQ, KEAP1
extracellular space 4 ADIPOQ, IL10, IL17A, INS
perinuclear region of cytoplasm 2 PIK3CA, PPARG
intercalated disc 1 PIK3CA
mitochondrion 3 CAT, MAPK14, MAPK3
protein-containing complex 2 CAT, FOXP3
intracellular membrane-bounded organelle 2 CAT, PPARG
Secreted 4 ADIPOQ, IL10, IL17A, INS
extracellular region 6 ADIPOQ, CAT, IL10, IL17A, INS, MAPK14
mitochondrial matrix 1 CAT
transcription regulator complex 2 RBL2, STAT3
centriolar satellite 1 KEAP1
external side of plasma membrane 1 IL17A
nucleolus 1 RBL2
midbody 1 KEAP1
Early endosome 1 MAPK3
cell-cell junction 1 SLC2A2
Cell junction, focal adhesion 1 MAPK3
focal adhesion 2 CAT, MAPK3
spindle 1 RB1
Peroxisome 1 CAT
collagen trimer 1 ADIPOQ
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
PML body 1 RB1
collagen-containing extracellular matrix 1 ADIPOQ
nuclear speck 2 MAPK14, PRKAA2
Late endosome 1 MAPK3
receptor complex 1 PPARG
neuron projection 1 STMN4
chromatin 6 FOXP3, NFE2L2, PPARG, RB1, RBL2, STAT3
mediator complex 1 NFE2L2
Chromosome 1 RBL2
cytoskeleton 1 MAPK3
spindle pole 1 MAPK14
actin filament 1 KEAP1
Cul3-RING ubiquitin ligase complex 1 KEAP1
nuclear envelope 1 MAPK3
endosome lumen 1 INS
Membrane, caveola 1 MAPK3
Melanosome 1 FASN
cytoplasmic stress granule 1 PRKAA2
pseudopodium 1 MAPK3
ficolin-1-rich granule lumen 2 CAT, MAPK14
secretory granule lumen 3 CAT, INS, MAPK14
Golgi lumen 1 INS
endoplasmic reticulum lumen 2 INS, MAPK3
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
SWI/SNF complex 1 RB1
protein-DNA complex 1 NFE2L2
nucleotide-activated protein kinase complex 1 PRKAA2
catalase complex 1 CAT
inclusion body 1 KEAP1
chromatin lock complex 1 RB1
Rb-E2F complex 1 RB1
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
glycogen granule 1 FASN


文献列表

  • Dongxu Li, Zhao-Bo Luo, Jun Zhu, Jun-Xia Wang, Zheng-Yun Jin, Shaobo Qi, Meiling Jin, Lin-Hu Quan. Ginsenoside F2-Mediated Intestinal Microbiota and Its Metabolite Propionic Acid Positively Impact the Gut-Skin Axis in Atopic Dermatitis Mice. Journal of agricultural and food chemistry. 2024 Jan; 72(1):339-350. doi: 10.1021/acs.jafc.3c06015. [PMID: 38150707]
  • Xue Tan, Xiaofang Ma, Yifei Dai, Jun An, Xiankuo Yu, Shengrong Li, Yile Liao, Tianli Pei, Yuqin Tang, Yu Gui, Shiyi Zhou, Dale Guo, Yun Deng, Kaifeng Hu, Dong Wang. A large-scale transcriptional analysis reveals herb-derived ginsenoside F2 suppressing hepatocellular carcinoma via inhibiting STAT3. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2023 Aug; 120(?):155031. doi: 10.1016/j.phymed.2023.155031. [PMID: 37666060]
  • Wenyi Liang, Yue Liu, Kun Zhou, Ping Jian, Qiunan Zhang, Zihao Chang, Lingfang Wu, Hongsheng Chang, Lanzhen Zhang. Ginsenoside Rb1 prevents lipopolysaccharide-induced depressive-like behavior by inhibiting inflammation and neural dysfunction and F2 elicits a novel antidepressant-like effect: A metabolite-based network pharmacology study. Journal of ethnopharmacology. 2022 Jan; 282(?):114655. doi: 10.1016/j.jep.2021.114655. [PMID: 34537284]
  • Jing Zhou, Ji Zhang, Jiayi Li, Yiqiu Guan, Ting Shen, Fu Li, Xueqin Li, Xiaojun Yang, Weicheng Hu. Ginsenoside F2 Suppresses Adipogenesis in 3T3-L1 Cells and Obesity in Mice via the AMPK Pathway. Journal of agricultural and food chemistry. 2021 Aug; 69(32):9299-9312. doi: 10.1021/acs.jafc.1c03420. [PMID: 34342980]
  • Da Eun Kim, Bo Yoon Chang, Byeong Min Jeon, Jong In Baek, Sun Chang Kim, Sung Yeon Kim. SGL 121 Attenuates Nonalcoholic Fatty Liver Disease through Adjusting Lipid Metabolism Through AMPK Signaling Pathway. International journal of molecular sciences. 2020 Jun; 21(12):. doi: 10.3390/ijms21124534. [PMID: 32630596]
  • Di Liu, Cong Zhang, Hongyu Sun, Wenyan Shi, Fanli Kong, Xianmin Feng. [Protective effects of ginsenoside F2 on hydrogen peroxide induced cell injury]. Wei sheng yan jiu = Journal of hygiene research. 2019 May; 48(3):452-457. doi: . [PMID: 31133133]
  • Muhammad Zubair Siddiqi, Gyu-Min Choi, Wan-Taek Im. Ciceribacter azotifigens sp. nov., a nitrogen-fixing bacterium isolated from activated sludge. International journal of systematic and evolutionary microbiology. 2018 Feb; 68(2):482-486. doi: 10.1099/ijsem.0.002438. [PMID: 29297848]
  • Lu Wang, Fan Zhang, Zhengyu Cao, Ying Xiao, Suxia Li, Boyang Yu, Jin Qi. Ginsenoside F2 induces the release of mediators associated with Anaphylactoid reactions. Fitoterapia. 2017 Sep; 121(?):223-228. doi: 10.1016/j.fitote.2017.07.010. [PMID: 28734737]
  • Muhammad Zubair Siddiqi, Siddiqi Muhammad Shafi, Kang Duk Choi, Wan-Taek Im, Zubair Aslam. Sphingobacterium jejuense sp. nov., with ginsenoside-converting activity, isolated from compost. International journal of systematic and evolutionary microbiology. 2016 Nov; 66(11):4433-4439. doi: 10.1099/ijsem.0.001370. [PMID: 27498829]
  • Muhammad Zubair Siddiqi, Wan-Taek Im. Pseudobacter ginsenosidimutans gen. nov., sp. nov., isolated from ginseng cultivating soil. International journal of systematic and evolutionary microbiology. 2016 Sep; 66(9):3449-3455. doi: 10.1099/ijsem.0.001216. [PMID: 27265403]
  • Dimitre A Ivanov, Jorge R C Georgakopoulos, Mark A Bernards. The chemoattractant potential of ginsenosides in the ginseng - Pythium irregulare pathosystem. Phytochemistry. 2016 Feb; 122(?):56-64. doi: 10.1016/j.phytochem.2015.11.005. [PMID: 26608666]
  • Toshiaki Suzuki, Ayano Yamamoto, Masahiro Ohsawa, Yoshiharu Motoo, Hajime Mizukami, Toshiaki Makino. Ninjin'yoeito and ginseng extract prevent oxaliplatin-induced neurodegeneration in PC12 cells. Journal of natural medicines. 2015 Oct; 69(4):531-7. doi: 10.1007/s11418-015-0921-9. [PMID: 26014046]
  • Fayeza Md Siraj, Natarajan SathishKumar, Yeon Ju Kim, Se Young Kim, Deok Chun Yang. Ginsenoside F2 possesses anti-obesity activity via binding with PPARγ and inhibiting adipocyte differentiation in the 3T3-L1 cell line. Journal of enzyme inhibition and medicinal chemistry. 2015 Feb; 30(1):9-14. doi: 10.3109/14756366.2013.871006. [PMID: 24666293]
  • Xuewei Ye, Siran Yu, Ying Liang, Haocai Huang, Xiao-Yuan Lian, Zhizhen Zhang. Bioactive triterpenoid saponins and phenolic compounds against glioma cells. Bioorganic & medicinal chemistry letters. 2014 Nov; 24(22):5157-63. doi: 10.1016/j.bmcl.2014.09.087. [PMID: 25442304]
  • Kyung-Chul Shin, Min-Ju Seo, Hye-Jin Oh, Deok-Kun Oh. Highly selective hydrolysis for the outer glucose at the C-20 position in ginsenosides by β-glucosidase from Thermus thermophilus and its application to the production of ginsenoside F2 from gypenoside XVII. Biotechnology letters. 2014 Jun; 36(6):1287-93. doi: 10.1007/s10529-014-1472-y. [PMID: 24563303]
  • Qian Mao, Ping-Hu Zhang, Qiang Wang, Song-Lin Li. Ginsenoside F(2) induces apoptosis in humor gastric carcinoma cells through reactive oxygen species-mitochondria pathway and modulation of ASK-1/JNK signaling cascade in vitro and in vivo. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2014 Mar; 21(4):515-22. doi: 10.1016/j.phymed.2013.10.013. [PMID: 24252332]
  • Xue Li, Jinping Hu, Baolian Wang, Li Sheng, Zhihao Liu, Shuang Yang, Yan Li. Inhibitory effects of herbal constituents on P-glycoprotein in vitro and in vivo: herb-drug interactions mediated via P-gp. Toxicology and applied pharmacology. 2014 Mar; 275(2):163-75. doi: 10.1016/j.taap.2013.12.015. [PMID: 24380838]
  • Eunson Hwang, Taek Hwan Lee, Sang-Yong Park, Tae Hoo Yi, Sun Yeou Kim. Enzyme-modified Panax ginseng inhibits UVB-induced skin aging through the regulation of procollagen type I and MMP-1 expression. Food & function. 2014 Feb; 5(2):265-74. doi: 10.1039/c3fo60418g. [PMID: 24281186]
  • Zhen Yang, Jing-Rong Wang, Tao Niu, Song Gao, Taijun Yin, Ming You, Zhi-Hong Jiang, Ming Hu. Inhibition of P-glycoprotein leads to improved oral bioavailability of compound K, an anticancer metabolite of red ginseng extract produced by gut microflora. Drug metabolism and disposition: the biological fate of chemicals. 2012 Aug; 40(8):1538-44. doi: 10.1124/dmd.111.044008. [PMID: 22584255]
  • Dimitre A Ivanov, Mark A Bernards. Ginsenosidases and the pathogenicity of Pythium irregulare. Phytochemistry. 2012 Jun; 78(?):44-53. doi: 10.1016/j.phytochem.2012.02.024. [PMID: 22521132]
  • Ping Wang, Stacy Ownby, Zhizhen Zhang, Wei Yuan, Shiyou Li. Cytotoxicity and inhibition of DNA topoisomerase I of polyhydroxylated triterpenoids and triterpenoid glycosides. Bioorganic & medicinal chemistry letters. 2010 May; 20(9):2790-6. doi: 10.1016/j.bmcl.2010.03.063. [PMID: 20371180]
  • Le-Qin Cheng, Ju-Ryun Na, Myung Kyum Kim, Myun-Ho Bang, Deok-Chun Yang. Microbial conversion of ginsenoside Rb1 to minor ginsenoside F2 and gypenoside XVII by Intrasporangium sp. GS603 isolated from soil. Journal of microbiology and biotechnology. 2007 Dec; 17(12):1937-43. doi: . [PMID: 18167439]
  • D Dou, Y Wen, M Weng, Y Pei, Y Chen. [Minor saponins from leaves of Panax ginseng C.A. Meyer]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 1997 Jan; 22(1):35-7, 62. doi: ". [PMID: 10683909]
  • . . . . doi: . [PMID: 19818460]