Pachymic_acid (BioDeep_00000000333)

 

Secondary id: BioDeep_00000264960

PANOMIX_OTCML-2023


代谢物信息卡片


LANOST-8-EN-21-OIC ACID, 3-(ACETYLOXY)-16-HYDROXY-24-METHYLENE-, (3.BETA.,16.ALPHA.)-

化学式: C33H52O5 (528.3814542)
中文名称: 茯苓酸, 茯灵酸, 茯苓酸
谱图信息: 最多检出来源 Chinese Herbal Medicine(otcml) 2.48%

分子结构信息

SMILES: C=C(CCC(C(=O)O)C1C(O)CC2(C)C3=C(CCC12C)C1(C)CCC(OC(C)=O)C(C)(C)C1CC3)C(C)C
InChI: InChI=1S/C33H52O5/c1-19(2)20(3)10-11-22(29(36)37)28-25(35)18-33(9)24-12-13-26-30(5,6)27(38-21(4)34)15-16-31(26,7)23(24)14-17-32(28,33)8/h19,22,25-28,35H,3,10-18H2,1-2,4-9H3,(H,36,37)/t22-,25-,26+,27+,28+,31-,32-,33+/m1/s1

描述信息

Pachymic acid is a triterpenoid.
Pachymic acid is a natural product found in Rhodofomitopsis feei, Rhodofomitopsis lilacinogilva, and other organisms with data available.
See also: Smilax china root (part of).
D004791 - Enzyme Inhibitors > D064801 - Phospholipase A2 Inhibitors
Pachymic acid is a lanostrane-type triterpenoid from P. cocos. Pachymic acid inhibits Akt and ERK signaling pathways.
Pachymic acid is a lanostrane-type triterpenoid from P. cocos. Pachymic acid inhibits Akt and ERK signaling pathways.
Pachymic acid is a lanostrane-type triterpenoid from P. cocos. Pachymic acid inhibits Akt and ERK signaling pathways.

同义名列表

12 个代谢物同义名

LANOST-8-EN-21-OIC ACID, 3-(ACETYLOXY)-16-HYDROXY-24-METHYLENE-, (3.BETA.,16.ALPHA.)-; Lanost-8-en-21-oic acid, 3-(acetyloxy)-16-hydroxy-24-methylene-, (3beta,16alpha)-; LANOST-8-EN-21-OIC ACID, 3.BETA.,16.ALPHA.-DIHYDROXY-24-METHYLENE-, 3-ACETATE; EBURICA-8,24(28)-DIEN-21-OIC ACID, 3.BETA.,16.ALPHA.-DIHYDROXY-, 3-ACETATE; (3b,16a)-3-(Acetyloxy)-16-hydroxy-24-methylenelanost-8-en-21-oic acid; 3-O-Acetyltumulosic acid; UNII-X2FCK16QAH; Pachymic acid; Pachymic-acid; X2FCK16QAH; Pachymic; DTXSID10951675



数据库引用编号

15 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Selvanathan Mj Vinola, Sekar Mahalaxmi. Characterisation and evaluation of physical properties of AH-Plus sealer with and without the incorporation of petasin, pachymic acid, curcumin and shilajit-an invitro study. BMC oral health. 2024 Mar; 24(1):352. doi: 10.1186/s12903-024-04108-w. [PMID: 38504287]
  • Zhenfeng Liu, Wuming Zhou, Qingyang Liu, Zhirong Huan, Qiubo Wang, Xin Ge. Pachymic Acid Prevents Hemorrhagic Shock-Induced Cardiac Injury by Suppressing M1 Macrophage Polarization and NF-[Formula: see text]B Signaling Pathway. The American journal of Chinese medicine. 2023 Oct; ?(?):1-17. doi: 10.1142/s0192415x23500921. [PMID: 37865871]
  • Dongmin Liu, Jiru Ding, Zhenzhen Li, Youquan Lu. Pachymic acid (PA) inhibits ferroptosis of cardiomyocytes via activation of the AMPK in mice with ischemia/reperfusion-induced myocardial injury. Cell biology international. 2023 Sep; ?(?):. doi: 10.1002/cbin.12090. [PMID: 37750505]
  • Li-Jing Du, Xin-Ning Zhang, Sha-Sha Li, Yuan-Fang Sun, Hui-Zi Jin, Shi-Kai Yan, Chuan-Gang Han. Network pharmacological investigation into the mechanism of Kaixinsan powder for the treatment of depression. Metabolic brain disease. 2022 12; 37(8):2903-2914. doi: 10.1007/s11011-022-01067-5. [PMID: 36070047]
  • Fu Li, Meng Chen, Jianmei Ji, Rui Tang, Jinxin Huang, Xiwen Zhang, Jinzhong Yu. Pachymic acid alleviates experimental pancreatic fibrosis through repressing NLRP3 inflammasome activation. Bioscience, biotechnology, and biochemistry. 2022 Oct; 86(11):1497-1505. doi: 10.1093/bbb/zbac114. [PMID: 36095138]
  • Nahla N Younis, Hoda E Mohamed, Mohamed A Shaheen, Asmaa M Abdelghafour, Sally K Hammad. Potential therapeutic efficacy of pachymic acid in chronic kidney disease induced in rats: role of Wnt/β-catenin/renin-angiotensin axis. The Journal of pharmacy and pharmacology. 2022 Jan; 74(1):112-123. doi: 10.1093/jpp/rgab129. [PMID: 34549301]
  • Wenjun Zhu, Ying Liu, Jing Tang, Heping Liu, Naliang Jing, Fengfeng Li, Ran Xu, Shaohua Shu. Functional Analysis of Sterol O-Acyltransferase Involved in the Biosynthetic Pathway of Pachymic Acid in Wolfiporia cocos. Molecules (Basel, Switzerland). 2021 Dec; 27(1):. doi: 10.3390/molecules27010143. [PMID: 35011377]
  • Hui Jiang, Jian Liu, Yanling Wang, Leijing Chen, Hui Liu, Zhen Wang, Bin Wang. Screening the Q-markers of TCMs from RA rat plasma using UHPLC-QTOF/MS technique for the comprehensive evaluation of Wu-Wei-Wen-Tong Capsule. Journal of mass spectrometry : JMS. 2021 May; 56(5):e4711. doi: 10.1002/jms.4711. [PMID: 33764633]
  • Gui-Ping Jiang, Yue-Juan Liao, Li-Li Huang, Xu-Jia Zeng, Xiao-Hui Liao. Effects and molecular mechanism of pachymic acid on ferroptosis in renal ischemia reperfusion injury. Molecular medicine reports. 2021 01; 23(1):. doi: 10.3892/mmr.2020.11704. [PMID: 33215224]
  • Yanjun Gui, Lijuan Sun, Rui Liu, Jinzhu Luo. Pachymic acid inhibits inflammation and cell apoptosis in lipopolysaccharide (LPS)-induced rat model with pneumonia by regulating NF-κB and MAPK pathways. Allergologia et immunopathologia. 2021; 49(5):87-93. doi: 10.15586/aei.v49i5.468. [PMID: 34476927]
  • Baodong Ding, Xiaofei Ji, Xueming Sun, Tongtong Zhang, Suping Mu. In vitro effect of pachymic acid on the activity of Cytochrome P450 enzymes. Xenobiotica; the fate of foreign compounds in biological systems. 2020 Aug; 50(8):913-918. doi: 10.1080/00498254.2020.1727062. [PMID: 32026737]
  • Yu Jiang, Liuping Fan. Evaluation of anticancer activities of Poria cocos ethanol extract in breast cancer: In vivo and in vitro, identification and mechanism. Journal of ethnopharmacology. 2020 Jul; 257(?):112851. doi: 10.1016/j.jep.2020.112851. [PMID: 32283190]
  • Ming Fu, Li Wang, Xianyou Wang, Boxia Deng, Xing Hu, Juan Zou. Determination of the Five Main Terpenoids in Different Tissues of Wolfiporia cocos. Molecules (Basel, Switzerland). 2018 Jul; 23(8):. doi: 10.3390/molecules23081839. [PMID: 30042340]
  • Lin Chen, Dan-Qian Chen, Ming Wang, Dan Liu, Hua Chen, Fang Dou, Nosratola D Vaziri, Ying-Yong Zhao. Role of RAS/Wnt/β-catenin axis activation in the pathogenesis of podocyte injury and tubulo-interstitial nephropathy. Chemico-biological interactions. 2017 Aug; 273(?):56-72. doi: 10.1016/j.cbi.2017.05.025. [PMID: 28578904]
  • Z-Y Cai, Z-X Sheng, H Yao. Pachymic acid ameliorates sepsis-induced acute kidney injury by suppressing inflammation and activating the Nrf2/HO-1 pathway in rats. European review for medical and pharmacological sciences. 2017 04; 21(8):1924-1931. doi: . [PMID: 28485784]
  • Ye Gao, Pan Wang, Yaqin Wang, Lijie Wu, Xiaobing Wang, Kun Zhang, Quanhong Liu. In Vitro and In Vivo Activity of Fomitopsis Pinicola (Sw. Ex Fr.) Karst Chloroform (Fpkc) Extract Against S180 Tumor Cells. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology. 2017; 44(5):2042-2056. doi: 10.1159/000485944. [PMID: 29241162]
  • Yan Li, Ji Zhang, Hang Jin, Honggao Liu, Yuanzhong Wang. Ultraviolet spectroscopy combined with ultra-fast liquid chromatography and multivariate statistical analysis for quality assessment of wild Wolfiporia extensa from different geographical origins. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2016 08; 165(?):61-68. doi: 10.1016/j.saa.2016.04.012. [PMID: 27111154]
  • Yan Li, Ji Zhang, Tao Li, Honggao Liu, Yuanzhong Wang. A Comprehensive and Comparative Study of Wolfiporia extensa Cultivation Regions by Fourier Transform Infrared Spectroscopy and Ultra-Fast Liquid Chromatography. PloS one. 2016; 11(12):e0168998. doi: 10.1371/journal.pone.0168998. [PMID: 28036354]
  • Hiroyuki Kitagawa, Masaya Munekage, Takashi Matsumoto, Chiharu Sadakane, Miwako Fukutake, Katsuyuki Aoki, Junko Watanabe, Kazuya Maemura, Tomohisa Hattori, Yosio Kase, Yasuhito Uezono, Akio Inui, Kazuhiro Hanazaki. Pharmacokinetic Profiles of Active Ingredients and Its Metabolites Derived from Rikkunshito, a Ghrelin Enhancer, in Healthy Japanese Volunteers: A Cross-Over, Randomized Study. PloS one. 2015; 10(7):e0133159. doi: 10.1371/journal.pone.0133159. [PMID: 26186592]
  • Jun Ma, Jun Liu, Chun-Wei Lu, Ding-Fang Cai. Pachymic acid modified carbon nanoparticles reduced angiogenesis via inhibition of MMP-3. International journal of clinical and experimental pathology. 2015; 8(5):5464-70. doi: . [PMID: 26191251]
  • Feng-Yun Wang, Wei-Sheng Lv, Liang Han. Determination and Pharmacokinetic Study of Pachymic Acid by LC-MS/MS. Biological & pharmaceutical bulletin. 2015; 38(9):1337-44. doi: 10.1248/bpb.b15-00121. [PMID: 26328488]
  • Shaohua Shu, Bei Chen, Mengchun Zhou, Xinmei Zhao, Haiyang Xia, Mo Wang. De novo sequencing and transcriptome analysis of Wolfiporia cocos to reveal genes related to biosynthesis of triterpenoids. PloS one. 2013; 8(8):e71350. doi: 10.1371/journal.pone.0071350. [PMID: 23967197]
  • Yu-Chuan Huang, Wen-Liang Chang, Su-Fen Huang, Cheng-Yu Lin, Hang-Ching Lin, Tsu-Chung Chang. Pachymic acid stimulates glucose uptake through enhanced GLUT4 expression and translocation. European journal of pharmacology. 2010 Dec; 648(1-3):39-49. doi: 10.1016/j.ejphar.2010.08.021. [PMID: 20816811]
  • Nobuyasu Sekiya, Hirozo Goto, Yutaka Shimada, Yuichi Endo, Iwao Sakakibara, Katsutoshi Terasawa. Inhibitory effects of triterpenes isolated from Hoelen on free radical-induced lysis of red blood cells. Phytotherapy research : PTR. 2003 Feb; 17(2):160-2. doi: 10.1002/ptr.1097. [PMID: 12601680]