Betulinic acid (BioDeep_00000000553)

 

Secondary id: BioDeep_00000173898, BioDeep_00000329505, BioDeep_00000395799, BioDeep_00000859466

human metabolite PANOMIX_OTCML-2023 Endogenous


代谢物信息卡片


(1R,3aS,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-9-hydroxy-5a,5b,8,8,11a-pentamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid

化学式: C30H48O3 (456.36032579999994)
中文名称: 香柠檬烯, 白桦酯酸, 白桦酸, 桦木酸, 表白桦脂酸, 白桦脂酸, 表白桦脂酸, 白桦脂酸
谱图信息: 最多检出来源 Viridiplantae(plant) 0.27%

分子结构信息

SMILES: C1[C@@H](C([C@H]2[C@](C1)([C@@H]1[C@@](CC2)([C@]2([C@H](CC1)[C@@H]1[C@@](CC2)(CC[C@H]1C(=C)C)C(=O)O)C)C)C)(C)C)O
InChI: InChI=1S/C30H48O3/c1-18(2)19-10-15-30(25(32)33)17-16-28(6)20(24(19)30)8-9-22-27(5)13-12-23(31)26(3,4)21(27)11-14-29(22,28)7/h19-24,31H,1,8-17H2,2-7H3,(H,32,33)/t19-,20+,21-,22+,23+,24-,27-,28+,29+,30-/m0/s1

描述信息

Betulinic acid is a pentacyclic triterpenoid that is lupane having a double bond at position 20(29) as well as 3beta-hydroxy and 28-carboxy substituents. It is found in the bark and other plant parts of several species of plants including Syzygium claviflorum. It exhibits anti-HIV, antimalarial, antineoplastic and anti-inflammatory properties. It has a role as an EC 5.99.1.3 [DNA topoisomerase (ATP-hydrolysing)] inhibitor, an anti-HIV agent, an antimalarial, an anti-inflammatory agent, an antineoplastic agent and a plant metabolite. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It derives from a hydride of a lupane.
Betulinic Acid has been used in trials studying the treatment of Dysplastic Nevus Syndrome.
Betulinic acid is a natural product found in Ficus auriculata, Gladiolus italicus, and other organisms with data available.
Betulinic Acid is a pentacyclic lupane-type triterpene derivative of betulin (isolated from the bark of Betula alba, the common white birch) with antiinflammatory, anti-HIV and antineoplastic activities. Betulinic acid induces apoptosis through induction of changes in mitochondrial membrane potential, production of reactive oxygen species, and opening of mitochondrial permeability transition pores, resulting in the release of mitochondrial apogenic factors, activation of caspases, and DNA fragmentation. Although originally thought to exhibit specific cytotoxicity against melanoma cells, this agent has been found to be cytotoxic against non-melanoma tumor cell types including neuroectodermal and brain tumor cells.
A lupane-type triterpene derivative of betulin which was originally isolated from BETULA or birch tree. It has anti-inflammatory, anti-HIV and antineoplastic activities.
See also: Jujube fruit (part of); Paeonia lactiflora root (part of).
Betulinic acid is found in abiyuch. Betulinic acid is a naturally occurring pentacyclic triterpenoid which has anti-retroviral, anti-malarial, and anti-inflammatory properties, as well as a more recently discovered potential as an anticancer agent, by inhibition of topoisomerase. It is found in the bark of several species of plants, principally the white birch (Betula pubescens) from which it gets its name, but also the Ber tree (Ziziphus mauritiana), the tropical carnivorous plants Triphyophyllum peltatum and Ancistrocladus heyneanus, Diospyros leucomelas a member of the persimmon family, Tetracera boiviniana, the jambul (Syzygium formosanum), flowering quince (Chaenomeles sinensis), Rosemary, and Pulsatilla chinensis. Controversial is a role of p53 in betulinic acid-induced apoptosis. Fulda suggested p53-independent mechanism of the apoptosis, basing on fact of no accumulation of wild-type p53 detected upon treatment with the betulinic acid, whereas wild-type p53 protein strongly increased after treatment with doxorubicin. The suggestion is supported by study of Raisova. On the other hand Rieber suggested that betulinic acid exerts its inhibitory effect on human metastatic melanoma partly by increasing p53
A pentacyclic triterpenoid that is lupane having a double bond at position 20(29) as well as 3beta-hydroxy and 28-carboxy substituents. It is found in the bark and other plant parts of several species of plants including Syzygium claviflorum. It exhibits anti-HIV, antimalarial, antineoplastic and anti-inflammatory properties.
C308 - Immunotherapeutic Agent > C2139 - Immunostimulant
Betulinic acid is a natural pentacyclic triterpenoid, acts as a eukaryotic topoisomerase I inhibitor, with an IC50 of 5 μM, and possesses anti-HIV, anti-malarial, anti-inflammatory and anti-tumor properties[1][2][3][4].
Betulinic acid is a natural pentacyclic triterpenoid, acts as a eukaryotic topoisomerase I inhibitor, with an IC50 of 5 μM, and possesses anti-HIV, anti-malarial, anti-inflammatory and anti-tumor properties[1][2][3][4].
Epibetulinic acid exhibits potent inhibitory effects on NO and prostaglandin E2 (PGE2) production in mouse macrophages (RAW 264.7) stimulated with bacterial endotoxin with IC50s of 0.7 and 0.6 μM, respectively. Anti-inflammatory activity[1].

同义名列表

62 个代谢物同义名

(1R,3aS,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-9-hydroxy-5a,5b,8,8,11a-pentamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid; (1R,3aS,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-9-hydroxy-5a,5b,8,8,11a-pentamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysene-3a-carboxylicacid; (1R,3aS,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-9-hydroxy-1-isopropenyl-5a,5b,8,8,11a-pentamethyl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid; (1R,2R,5S,8R,9R,10R,13R,14R,17S,19R)-17-hydroxy-1,2,14,18,18-pentamethyl-8-(prop-1-en-2-yl)pentacyclo[11.8.0.0^{2,10}.0^{5,9}.0^{14,19}]henicosane-5-carboxylic acid; (1R,3 aS,5aR,5bR,7aR,9S,11aR,11bR,13 aR,13bR)-9-hydroxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)icosahydro-1H-cyclopenta[a]chrysene-3a-carboxylic acid; (1R,3aS,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-9-hydroxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)icosahydro-1H-cyclopenta[a]chrysene-3a-carboxylic acid; (1R,3aS,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-9-hydroxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)icosahydro-1H-cyclopenta[a]chrysene-3a-carboxylicacid; (1R,3aS,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-9-Hydroxy-1-isopropenyl-5a,5b,8,8,11a-pentamethyl-eicosahydro-cyclopenta[a]chrysene-3a-carboxylic acid; Lup-20(29)-en-28-oic acid, 3-hydroxy-, (3.beta.)-; Lup-20(29)-en-28-oic acid, 3-hydroxy-, (3beta)-; (3.BETA.)-3-HYDROXYLUP-20(29)-EN-28-OIC ACID; (3beta)-3-Hydroxy-lup-20(29)-en-28-oic Acid; (+)-(3?)-3-Hydroxylup-20(29)-en-28-oic acid; 3-Hydroxy-(3beta)-Lup-20(29)-en-28-oic acid; Lup-20(29)-en-28-oic acid, 3beta -hydroxy-; (3beta)-3-hydroxylup-20(29)-en-28-oic acid; Lup-20(29)-en-28-oic acid, 3beta-hydroxy-; 3beta-Hydroxy-20(29)-lupaene-28-oic acid; (3β)-3-Hydroxylup-20(29)-en-28-oic acid; 3beta-Hydroxy-lup-20(29)-en-28-oic acid; 3beta-hydroxylup-20(29)-en-28-oic acid; Betulinic acid, technical grade, 90\\%; 3β-Hydroxylup-20(29)-en-28-oic acid; Betulinic acid, analytical standard; 3-Hydroxy-lup-20(29)-en-28-oic Acid; 3-hydroxylup-20(29)-en-28-oic acid; Betulinic acid, >=98\\% (HPLC); QGJZLNKBHJESQX-FZFNOLFKSA-N; Lupatic acid;Betulic acid; BETULINIC ACID [INCI]; .beta.-betulinic acid; 3-epi-betulinic acid; 3 Epi betulinic Acid; beta-betulinic acid; BETULINIC ACID [MI]; (+)-Betulinic acid; Betulinic Acid, 24; Prestwick3_000417; Prestwick2_000417; Prestwick1_000417; Prestwick0_000417; β-Betulinic acid; Platanolic acid; UNII-4G6A18707N; betulinic-acid; betulinic acid; Betulinicacid; BPBio1_000412; betulic acid; Lupatic Acid; Prestwick_95; SMP2_000205; Gratiolone; 4G6A18707N; Betulinate; Melaleucin; C30H48O3; Platanol; RL9-080; Mairin; 06L; Epibetulinic acid



数据库引用编号

27 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

65 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(65)

  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + betulinic aldehyde ⟶ H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + betulinate
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + betulin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulinic aldehyde
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + betulinic aldehyde ⟶ H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + betulinate

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

857 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Prativa Biswasroy, Deepak Pradhan, Dilip Kumar Pradhan, Goutam Ghosh, Goutam Rath. Development of Betulin-Loaded Nanostructured Lipid Carriers for the Management of Imiquimod-Induced Psoriasis. AAPS PharmSciTech. 2024 Mar; 25(3):57. doi: 10.1208/s12249-024-02774-1. [PMID: 38472545]
  • Yu-Hao Shi, Yi Nan, Wei Zheng, Lan Yao, Hai-Zhen Liang, Xiao-Juan Chen, Juan Song, Jie Zhang, De-Xian Jia, Qian Wang, Bai-Ping Ma. [Qualitative and semiquantitative analyses of the chemical components of the seed coat and kernel of Ziziphi Spinosae Semen]. Se pu = Chinese journal of chromatography. 2024 Mar; 42(3):234-244. doi: 10.3724/sp.j.1123.2023.09015. [PMID: 38503700]
  • Huanyu Zhang, Xiance Che, Hongyan Jing, Yaowu Su, Wenqi Yang, Rubing Wang, Guoqi Zhang, Jie Meng, Wei Yuan, Juan Wang, Wenyuan Gao. A New Potent Inhibitor against α-Glucosidase Based on an In Vitro Enzymatic Synthesis Approach. Molecules (Basel, Switzerland). 2024 Feb; 29(4):. doi: 10.3390/molecules29040878. [PMID: 38398628]
  • Feyisayo O Adepoju, Ksenia V Sokolova, Irina F Gette, Irina G Danilova, Mikhail V Tsurkan, Alicia C Mondragon, Elena G Kovaleva, Jose Manuel Miranda. Protective Effect of Betulin on Streptozotocin-Nicotinamide-Induced Diabetes in Female Rats. International journal of molecular sciences. 2024 Feb; 25(4):. doi: 10.3390/ijms25042166. [PMID: 38396842]
  • Sílvia Fernandes, Mariana Vieira, Cristina Prudêncio, Ricardo Ferraz. Betulinic Acid for Glioblastoma Treatment: Reality, Challenges and Perspectives. International journal of molecular sciences. 2024 Feb; 25(4):. doi: 10.3390/ijms25042108. [PMID: 38396785]
  • Hye-Yeon Lee, Kyung-Jin Min. Betulinic Acid Increases the Lifespan of Drosophila melanogaster via Sir2 and FoxO Activation. Nutrients. 2024 Feb; 16(3):. doi: 10.3390/nu16030441. [PMID: 38337725]
  • Yaowen Liu, Tianqing Nie, Jinjun Hou, Huali Long, Zijia Zhang, Min Lei, Yechun Xu, Wanying Wu. Design, synthesis and biological evaluation of betulinic acid derivatives as potential inhibitors of 3CL-protease of SARS-CoV-2. Steroids. 2024 Feb; 202(?):109351. doi: 10.1016/j.steroids.2023.109351. [PMID: 38101718]
  • Olexander M Semenenko, Victoria V Lipson, Alina O Sadchenko, Olga V Vashchenko, Natalia A Kasian, Liliia V Sviechnikova, Longin M Lisetski, Mykola L Babak, Volodymyr M Vakula, Oleksandr V Borysov, Yuliia V Holota, Sergey O Zozulya, Petro O Borysko, Olexander V Mazepa. Synthesis of methotrexate-betulonic acid hybrids and evaluation of their effect on artificial and Caco-2 cell membranes. Steroids. 2024 Jan; 201(?):109332. doi: 10.1016/j.steroids.2023.109332. [PMID: 37939980]
  • Martina Wimmerová, Uladzimir Bildziukevich, Zdeněk Wimmer. Selected Plant Triterpenoids and Their Derivatives as Antiviral Agents. Molecules (Basel, Switzerland). 2023 Nov; 28(23):. doi: 10.3390/molecules28237718. [PMID: 38067449]
  • Q Zhang, M Zhang, Y Liu, Y Wang, F Lv, Y Wang. [Exploring the therapeutic mechanism of Liuwei Suanzao decoction for perimenopausal insomnia based on network pharmacology and animal experiments]. Nan fang yi ke da xue xue bao = Journal of Southern Medical University. 2023 Sep; 43(9):1536-1547. doi: 10.12122/j.issn.1673-4254.2023.09.11. [PMID: 37814868]
  • Neeraj Kumari, Manoj Kumar, Nisha Chaudhary, Baohong Zhang, Radha, Deepak Chandran, Shourabh Joshi, Daljeet Singh, Abhijit Dey, Sureshkumar Rajalingam, Krishnaprabu Natarajan, Muthamilselvan Muthukumar, Pran Mohankumar, Vijay Sheri, Sangram Dhumal, Jose M Lorenzo. Exploring the Chemical and Biological Potential of Jamun (Syzygium cumini (L.) Skeels) Leaves: A Comprehensive Review. Chemistry & biodiversity. 2023 Sep; ?(?):e202300479. doi: 10.1002/cbdv.202300479. [PMID: 37667613]
  • Huijuan Mu, Yuli Sun, Bo Yuan, Ying Wang. Betulinic acid in the treatment of breast cancer: Application and mechanism progress. Fitoterapia. 2023 Jul; 169(?):105617. doi: 10.1016/j.fitote.2023.105617. [PMID: 37479118]
  • Adam Yasgar, Danielle Bougie, Richard T Eastman, Ruili Huang, Misha Itkin, Jennifer Kouznetsova, Caitlin Lynch, Crystal McKnight, Mitch Miller, Deborah K Ngan, Tyler Peryea, Pranav Shah, Paul Shinn, Menghang Xia, Xin Xu, Alexey V Zakharov, Anton Simeonov. Quantitative Bioactivity Signatures of Dietary Supplements and Natural Products. ACS pharmacology & translational science. 2023 May; 6(5):683-701. doi: 10.1021/acsptsci.2c00194. [PMID: 37200814]
  • Reem S Alruhaimi. Betulinic acid protects against cardiotoxicity of the organophosphorus pesticide chlorpyrifos by suppressing oxidative stress, inflammation, and apoptosis in rats. Environmental science and pollution research international. 2023 Feb; ?(?):. doi: 10.1007/s11356-023-25917-6. [PMID: 36808036]
  • Li Tao, Kehui Zhou, Yang Zhao, Xiangyu Xia, Yajie Guo, Yang Gao, Guoping Peng, Yanqing Liu. Betulinic acid, a major therapeutic triterpene of Celastrus orbiculatus Thunb., acts as a chemosensitizer of gemcitabine by promoting Chk1 degradation. Journal of ethnopharmacology. 2023 Feb; ?(?):116295. doi: 10.1016/j.jep.2023.116295. [PMID: 36813244]
  • Chenglin Yang, Yunqin Chen, Mengran Yang, Jiayan Li, You Wu, Hui Fan, Xiangyi Kong, Can Ning, Siqi Wang, Wenguang Xiao, Zhihang Yuan, Jine Yi, Jing Wu. Betulinic acid alleviates zearalenone-induced uterine injury in mice. Environmental pollution (Barking, Essex : 1987). 2023 Jan; 316(Pt 1):120435. doi: 10.1016/j.envpol.2022.120435. [PMID: 36257561]
  • Martina S Savova, Monika N Todorova, Apostol G Apostolov, Galina T Yahubyan, Milen I Georgiev. Betulinic acid counteracts the lipid accumulation in Caenorhabditis elegans by modulation of nhr-49 expression. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2022 Dec; 156(?):113862. doi: 10.1016/j.biopha.2022.113862. [PMID: 36242845]
  • S J Sudharshan, Ananth Krishna Narayanan, Jemima Princilly, Madhu Dyavaiah, Dinesh A Nagegowda. Betulinic acid mitigates oxidative stress-mediated apoptosis and enhances longevity in the yeast Saccharomyces cerevisiae model. Free radical research. 2022 Nov; 56(11-12):699-712. doi: 10.1080/10715762.2023.2166505. [PMID: 36624963]
  • Chenlu Zhang, Yameng Liu, Ying Wang, Xiu Ge, Tingying Jiao, Jianpeng Yin, Kanglong Wang, Cuina Li, Shimeng Guo, Xin Xie, Cen Xie, Fajun Nan. Discovery of Betulinic Acid Derivatives as Potent Intestinal Farnesoid X Receptor Antagonists to Ameliorate Nonalcoholic Steatohepatitis. Journal of medicinal chemistry. 2022 10; 65(19):13452-13472. doi: 10.1021/acs.jmedchem.2c01394. [PMID: 36107013]
  • Huizi Zhao, Lin Wu, Yuan Zhang, Shiqi Feng, Yuhao Ding, Xin Deng, Rui Feng, Jun Li, Taotao Ma, Cheng Huang. Betulinic acid prevents liver fibrosis by binding Lck and suppressing Lck in HSC activation and proliferation. Journal of ethnopharmacology. 2022 Oct; 296(?):115459. doi: 10.1016/j.jep.2022.115459. [PMID: 35714879]
  • Gang Wang, Yu Yang, Du Yi, Lu Yuan, Pei-Hao Yin, Xu Ke, Wang Jun-Jie, Min-Fang Tao. Eudragit S100 prepared pH-responsive liposomes-loaded betulinic acid against colorectal cancer in vitro and in vivo. Journal of liposome research. 2022 Sep; 32(3):250-264. doi: 10.1080/08982104.2021.1999974. [PMID: 34895013]
  • You Huang, Zihan Zhu, Chenxi Luo, Chaoyang Ma, Lijuan Zhu, Li Kong, Rongfang Li, Jing Wu, Zhihang Yuan, Jine Yi. Betulinic acid attenuates cognitive dysfunction, oxidative stress, and inflammation in a model of T-2 toxin-induced brain damage. Environmental science and pollution research international. 2022 Jul; 29(34):52098-52110. doi: 10.1007/s11356-022-19498-z. [PMID: 35254615]
  • Sameh S Elhady, Elsayed A Ibrahim, Marwa S Goda, Mohamed S Nafie, Hanan Samir, Reem M Diri, Abdulrahman M Alahdal, Ama Kyeraa Thomford, Alaa El Gindy, Ghada M Hadad, Jihan M Badr, Reda F A Abdelhameed. GC-MS/MS Quantification of EGFR Inhibitors, β-Sitosterol, Betulinic Acid, (+) Eriodictyol, (+) Epipinoresinol, and Secoisolariciresinol, in Crude Extract and Ethyl Acetate Fraction of Thonningia sanguinea. Molecules (Basel, Switzerland). 2022 Jun; 27(13):. doi: 10.3390/molecules27134109. [PMID: 35807354]
  • Yingying Chen, Xinchen Wang, Xinyuan Ma, Shuobin Liang, Qianqian Gao, Elena V Tretyakova, Yongmin Zhang, Demin Zhou, Sulong Xiao. Facial Synthesis and Bioevaluation of Well-Defined OEGylated Betulinic Acid-Cyclodextrin Conjugates for Inhibition of Influenza Infection. Molecules (Basel, Switzerland). 2022 Feb; 27(4):. doi: 10.3390/molecules27041163. [PMID: 35208962]
  • Zhengqi Cheng, Yue Li, Ke Wang, Xue Zhu, Priyanka Tharkar, Wenying Shu, Ting Zhang, Shaoxue Zeng, Ling Zhu, Michael Murray, Wojciech Chrzanowski, Fanfan Zhou. Compritol solid lipid nanoparticle formulations enhance the protective effect of betulinic acid derivatives in human Müller cells against oxidative injury. Experimental eye research. 2022 02; 215(?):108906. doi: 10.1016/j.exer.2021.108906. [PMID: 34953864]
  • Rassameepen Phonarknguen, Saksit Nobsathian, Kanjana Assawasuparerk. Effect of Betulinic acid Extraction from Guava (Psidium guajava Linn.) Leaves Against Human Cholangiocarcinoma Cells. Asian Pacific journal of cancer prevention : APJCP. 2022 Feb; 23(2):583-590. doi: 10.31557/apjcp.2022.23.2.583. [PMID: 35225471]
  • Li-Yun Zheng, Xi Zou, Yan-Li Wang, Min Zou, Fang Ma, Ning Wang, Jia-Wen Li, Ming-Sheng Wang, Hsin-Yi Hung, Qiang Wang. Betulinic acid-nucleoside hybrid prevents acute alcohol -induced liver damage by promoting anti-oxidative stress and autophagy. European journal of pharmacology. 2022 Jan; 914(?):174686. doi: 10.1016/j.ejphar.2021.174686. [PMID: 34883073]
  • Hao Sun, Dan Wang, Mengjin Xu, Yi Gao, Fan Li. Methodological Verification-based Screening of the Representative Ingredients for Traditional Chinese Medicine: Taking Astragalus as an Example for Interfering with Cervical Cancer. Current computer-aided drug design. 2022; 18(5):347-362. doi: 10.2174/1573409918666220823120304. [PMID: 36017857]
  • Aboli Girme, Prajkta Bhoj, Ganesh Saste, Sandeep Pawar, Amit Mirgal, Dipak Raut, Machindra Chavan, Lal Hingorani. Development and Validation of RP-HPLC Method for Vicenin-2, Orientin, Cynaroside, Betulinic Acid, Genistein, and Major Eight Bioactive Constituents with LC-ESI-MS/MS Profiling in Ocimum Genus. Journal of AOAC International. 2021 Dec; 104(6):1634-1651. doi: 10.1093/jaoacint/qsab067. [PMID: 33930142]
  • Hongjuan Wang, Hongxia Wang, Ling Ge, Yanying Zhao, Kongxi Zhu, Zhaosheng Chen, Qiong Wu, Yu Xin, Jianqiang Guo. Betulinic acid targets drug-resistant human gastric cancer cells by inducing autophagic cell death, suppresses cell migration and invasion, and modulates the ERK/MEK signaling pathway. Acta biochimica Polonica. 2021 Dec; 69(1):25-30. doi: 10.18388/abp.2020_5530. [PMID: 34860480]
  • Lin Huang, Lijuan Zhu, Zhaoping Ou, Chaoyang Ma, Li Kong, You Huang, Yazhi Chen, Haoqiang Zhao, Lixin Wen, Jing Wu, Zhihang Yuan, Jine Yi. Betulinic acid protects against renal damage by attenuation of oxidative stress and inflammation via Nrf2 signaling pathway in T-2 toxin-induced mice. International immunopharmacology. 2021 Dec; 101(Pt B):108210. doi: 10.1016/j.intimp.2021.108210. [PMID: 34628148]
  • Gbadebo E Adeleke, Oluwatosin A Adaramoye. Betulinic acid abates N-nitrosodimethylamine-induced changes in lipid metabolism, oxidative stress, and inflammation in the liver and kidney of Wistar rats. Journal of biochemical and molecular toxicology. 2021 Nov; 35(11):e22901. doi: 10.1002/jbt.22901. [PMID: 34472159]
  • Alessandra F Serain, Lavinia Morosi, Tommaso Ceruti, Cristina Matteo, Marina Meroni, Elaine Minatel, Massimo Zucchetti, Marcos J Salvador. Betulinic acid and its spray dried microparticle formulation: In vitro PDT effect against ovarian carcinoma cell line and in vivo plasma and tumor disposition. Journal of photochemistry and photobiology. B, Biology. 2021 Nov; 224(?):112328. doi: 10.1016/j.jphotobiol.2021.112328. [PMID: 34628206]
  • Xiaowen Li, Xianglin Wang, Sha Liu, Ji Wang, XiangYan Liu, Yuanyuan Zhu, Linyu Zhang, Rongfang Li. Betulinic acid attenuates T-2 toxin-induced cytotoxicity in porcine kidney cells by blocking oxidative stress and endoplasmic reticulum stress. Comparative biochemistry and physiology. Toxicology & pharmacology : CBP. 2021 Nov; 249(?):109124. doi: 10.1016/j.cbpc.2021.109124. [PMID: 34224893]
  • Hyun Kyung Kim, Yejee Park, Minhye Shin, Jun-Mo Kim, Gwang-Woong Go. Betulinic Acid Suppresses de novo Lipogenesis by Inhibiting Insulin and IGF1 Signaling as Upstream Effectors of the Nutrient-Sensing mTOR Pathway. Journal of agricultural and food chemistry. 2021 Oct; 69(42):12465-12473. doi: 10.1021/acs.jafc.1c04797. [PMID: 34645271]
  • Tomasz Kowalczyk, Przemysław Sitarek, Anna Merecz-Sadowska, Monika Szyposzyńska, Aleksandra Spławska, Leslaw Gorniak, Michał Bijak, Tomasz Śliwiński. Methyl Jasmonate Effect on Betulinic Acid Content and Biological Properties of Extract from Senna obtusifolia Transgenic Hairy Roots. Molecules (Basel, Switzerland). 2021 Oct; 26(20):. doi: 10.3390/molecules26206208. [PMID: 34684788]
  • Mi-Hyeon Hong, Se-Won Na, Youn-Jae Jang, Jung-Joo Yoon, Yun-Jung Lee, Ho-Sub Lee, Hye-Yoom Kim, Dae-Gill Kang. Betulinic Acid Improves Cardiac-Renal Dysfunction Caused by Hypertrophy through Calcineurin-NFATc3 Signaling. Nutrients. 2021 Sep; 13(10):. doi: 10.3390/nu13103484. [PMID: 34684485]
  • Ye Zhong, Nan Liang, Yang Liu, Mao-Sheng Cheng. Recent progress on betulinic acid and its derivatives as antitumor agents: a mini review. Chinese journal of natural medicines. 2021 Sep; 19(9):641-647. doi: 10.1016/s1875-5364(21)60097-3. [PMID: 34561074]
  • Tomasz Kowalczyk, Przemysław Sitarek, Monika Toma, Patricia Rijo, Eva Domínguez-Martín, Irene Falcó, Gloria Sánchez, Tomasz Śliwiński. Enhanced Accumulation of Betulinic Acid in Transgenic Hairy Roots of Senna obtusifolia Growing in the Sprinkle Bioreactor and Evaluation of Their Biological Properties in Various Biological Models. Chemistry & biodiversity. 2021 Aug; 18(8):e2100455. doi: 10.1002/cbdv.202100455. [PMID: 34185351]
  • Dan-Hua He, Yu-Fei Chen, Yi-Le Zhou, Shi-Bing Zhang, Ming Hong, Xianjun Yu, Su-Fen Wei, Xiang-Zhen Fan, Si-Yi Li, Qi Wang, Yongzhi Lu, Yong-Qiang Liu. Phytochemical library screening reveals betulinic acid as a novel Skp2-SCF E3 ligase inhibitor in non-small cell lung cancer. Cancer science. 2021 Aug; 112(8):3218-3232. doi: 10.1111/cas.15005. [PMID: 34080260]
  • Haider N Sultani, Ibrahim Morgan, Hidayat Hussain, Andreas H Roos, Haleh H Haeri, Goran N Kaluđerović, Dariush Hinderberger, Bernhard Westermann. Access to New Cytotoxic Triterpene and Steroidal Acid-TEMPO Conjugates by Ugi Multicomponent-Reactions. International journal of molecular sciences. 2021 Jul; 22(13):. doi: 10.3390/ijms22137125. [PMID: 34281176]
  • Ahmed Wahab Obeng, Yaw Duah Boakye, Theresa Appiah Agana, Georgina Isabella Djameh, Daniel Boamah, Francis Adu. Anti-trypanosomal and anthelminthic properties of ethanol and aqueous extracts of Tetrapleura tetraptera Taub. Veterinary parasitology. 2021 Jun; 294(?):109449. doi: 10.1016/j.vetpar.2021.109449. [PMID: 33991727]
  • Veena S Patel, Usmangani K Chhalotiya, Sandip B Patel, Jivani Nuruddin. Simultaneous Quantification of Betulinic Acid, Lupeol, and β-Sitosterol in Madhuca longifolia Methanolic Extract of Bark by Liquid Chromatography-Tandem Mass Spectrometric Method. Journal of AOAC International. 2021 May; 104(2):498-505. doi: 10.1093/jaoacint/qsaa128. [PMID: 33615381]
  • Hani A Alhadrami, Ahmed M Sayed, Ahmed M Sharif, Esam I Azhar, Mostafa E Rateb. Olive-Derived Triterpenes Suppress SARS COV-2 Main Protease: A Promising Scaffold for Future Therapeutics. Molecules (Basel, Switzerland). 2021 May; 26(9):. doi: 10.3390/molecules26092654. [PMID: 34062737]
  • Ching-Feng Chiu, Hsin-Yi Chang, Chun-Yine Huang, Chen-Zou Mau, Tzu-Ting Kuo, Hsiu-Chuan Lee, Shih-Yi Huang. Betulinic Acid Affects the Energy-Related Proteomic Profiling in Pancreatic Ductal Adenocarcinoma Cells. Molecules (Basel, Switzerland). 2021 Apr; 26(9):. doi: 10.3390/molecules26092482. [PMID: 33923185]
  • Luis Fernando Méndez-López, Pierluigi Caboni, Eder Arredondo-Espinoza, Juan J J Carrizales-Castillo, Isaías Balderas-Rentería, María Del Rayo Camacho-Corona. Bioassay-Guided Identification of the Antiproliferative Compounds of Cissus trifoliata and the Transcriptomic Effect of Resveratrol in Prostate Cancer Pc3 Cells. Molecules (Basel, Switzerland). 2021 Apr; 26(8):. doi: 10.3390/molecules26082200. [PMID: 33920405]
  • Paul Thomas, Emmanuel Essien, Anwanabasi Udoh, Bright Archibong, Ofonasaha Akpan, Emediong Etukudo, Marinella De Leo, Olorunfemi Eseyin, Guido Flamini, Kola' Ajibesin. Isolation and characterization of anti-inflammatory and analgesic compounds from Uapaca staudtii Pax (Phyllanthaceae) stem bark. Journal of ethnopharmacology. 2021 Apr; 269(?):113737. doi: 10.1016/j.jep.2020.113737. [PMID: 33359855]
  • Kelly Oriakhi, Patrick O Uadia, Farzana Shaheen, Humera Jahan, Collins U Ibeji, Choudhary M Iqbal. Isolation, characterization, and hepatoprotective properties of betulinic acid and ricinine from Tetracarpidium conophorum seeds (Euphorbiaceae). Journal of food biochemistry. 2021 03; 45(3):e13288. doi: 10.1111/jfbc.13288. [PMID: 32529649]
  • André Barreto Cunha, Ronan Batista, María Ángeles Castro, Jorge Mauricio David. Chemical Strategies towards the Synthesis of Betulinic Acid and Its More Potent Antiprotozoal Analogues. Molecules (Basel, Switzerland). 2021 Feb; 26(4):. doi: 10.3390/molecules26041081. [PMID: 33670791]
  • Chen Chen, Kainan Song, Yongzhen Zhang, Chengjiao Chu, Boyi Fan, Yan Song, Huilian Huang, Guangtong Chen. Biotransformation of betulinic acid by Circinella muscae and Cunninghamella echinulata to discover anti-inflammatory derivatives. Phytochemistry. 2021 Feb; 182(?):112608. doi: 10.1016/j.phytochem.2020.112608. [PMID: 33310627]
  • Zahra Sadeghi, Milena Masullo, Antonietta Cerulli, Filomena Nazzaro, Mahdi Moridi Farimani, Sonia Piacente. Terpenoid Constituents of Perovskia artemisioides Aerial Parts with Inhibitory Effects on Bacterial Biofilm Growth. Journal of natural products. 2021 01; 84(1):26-36. doi: 10.1021/acs.jnatprod.0c00832. [PMID: 33378620]
  • Samuel K Kwofie, Emmanuel Broni, Seth O Asiedu, Gabriel B Kwarko, Bismark Dankwa, Kweku S Enninful, Elvis K Tiburu, Michael D Wilson. Cheminformatics-Based Identification of Potential Novel Anti-SARS-CoV-2 Natural Compounds of African Origin. Molecules (Basel, Switzerland). 2021 Jan; 26(2):. doi: 10.3390/molecules26020406. [PMID: 33466743]
  • Liu Liu, Haobin Li, Kaiwen Hu, Qinglong Xu, Xiaoan Wen, Keguang Cheng, Caiping Chen, Haoliang Yuan, Liang Dai, Hongbin Sun. Synthesis and anti-inflammatory activity of saponin derivatives of δ-oleanolic acid. European journal of medicinal chemistry. 2021 Jan; 209(?):112932. doi: 10.1016/j.ejmech.2020.112932. [PMID: 33131725]
  • Chenxi Luo, Chenglong Huang, Lijuan Zhu, Li Kong, Zhihang Yuan, Lixin Wen, Rongfang Li, Jing Wu, Jine Yi. Betulinic Acid Ameliorates the T-2 Toxin-Triggered Intestinal Impairment in Mice by Inhibiting Inflammation and Mucosal Barrier Dysfunction through the NF-κB Signaling Pathway. Toxins. 2020 12; 12(12):. doi: 10.3390/toxins12120794. [PMID: 33322178]
  • Gang Wang, Yang Yu, Yu-Zhu Wang, Zhi-Min Zhu, Pei-Hao Yin, Ke Xu. Effects and mechanisms of fatty acid metabolism‑mediated glycolysis regulated by betulinic acid‑loaded nanoliposomes in colorectal cancer. Oncology reports. 2020 12; 44(6):2595-2609. doi: 10.3892/or.2020.7787. [PMID: 33125108]
  • Jiaming Wang, Mei Jin, Chunshi Jin, Chao Ye, Yi Zhou, Rongshen Wang, Huanhuan Cui, Wei Zhou, Gao Li. A new pentacyclic triterpenoid from the leaves of Rhododendron dauricum L. with inhibition of NO production in LPS-induced RAW 264.7 cells. Natural product research. 2020 Dec; 34(23):3313-3319. doi: 10.1080/14786419.2019.1566822. [PMID: 30810367]
  • Marcus Wing Choy Loe, Erwei Hao, Meiling Chen, Cong Li, Regina Ching Hua Lee, Isabelle Xin Yu Zhu, Zi Yun Teo, Wei-Xin Chin, Xiaotao Hou, JiaGang Deng, Justin Jang Hann Chu. Betulinic acid exhibits antiviral effects against dengue virus infection. Antiviral research. 2020 12; 184(?):104954. doi: 10.1016/j.antiviral.2020.104954. [PMID: 33080251]
  • Feng Zhang, Jian Huang, Rong-Jing He, Lu Wang, Peng-Chao Huo, Xiao-Qing Guan, Sheng-Quan Fang, Yan-Wei Xiang, Shou-Ning Jia, Guang-Bo Ge. Herb-drug interaction between Styrax and warfarin: Molecular basis and mechanism. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2020 Oct; 77(?):153287. doi: 10.1016/j.phymed.2020.153287. [PMID: 32739573]
  • Ebrahim Azadniya, Luca Goldoni, Tiziano Bandiera, Gertrud E Morlock. Same analytical method for both (bio)assay and zone isolation to identify/quantify bioactive compounds by quantitative nuclear magnetic resonance spectroscopy. Journal of chromatography. A. 2020 Sep; 1628(?):461434. doi: 10.1016/j.chroma.2020.461434. [PMID: 32822974]
  • Shao-Hua Xu, Hai-Lan Chen, Ze-Lin Yang, Li-Wei Lyu, Yong Fan, Mei Sha, Jian Zhang, Wei Xu, Yu Lin. New 30-norlupane derivatives through chemical-microbial semi-synthesis of betulinic acid and their neuroprotective effect. Bioorganic & medicinal chemistry letters. 2020 09; 30(17):127407. doi: 10.1016/j.bmcl.2020.127407. [PMID: 32738992]
  • Qian Mu, Hui Wang, Lei Tong, Qianhua Fang, Minqi Xiang, Luyu Han, Lina Jin, Jian Yang, Zhen Qian, Guang Ning, Yifei Zhang, Zhiguo Zhang. Betulinic acid improves nonalcoholic fatty liver disease through YY1/FAS signaling pathway. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2020 09; 34(9):13033-13048. doi: 10.1096/fj.202000546r. [PMID: 32777136]
  • Lijuan Zhu, Xianglian Yi, Chaoyang Ma, Chenxi Luo, Li Kong, Xing Lin, Xinyu Gao, Zhihang Yuan, Lixin Wen, Rongfang Li, Jing Wu, Jine Yi. Betulinic Acid Attenuates Oxidative Stress in the Thymus Induced by Acute Exposure to T-2 Toxin via Regulation of the MAPK/Nrf2 Signaling Pathway. Toxins. 2020 08; 12(9):. doi: 10.3390/toxins12090540. [PMID: 32842569]
  • Jing Yin, Lu Sun, Ying Li, Jialei Xiao, Siyao Wang, Jie Yang, Ziyue Qu, Yaguang Zhan. Functional identification of BpMYB21 and BpMYB61 transcription factors responding to MeJA and SA in birch triterpenoid synthesis. BMC plant biology. 2020 Aug; 20(1):374. doi: 10.1186/s12870-020-02521-1. [PMID: 32787836]
  • Ângela R Guerra, Ana F Paulino, Maria M Castro, Helena Oliveira, Maria F Duarte, Iola F Duarte. Triple Negative Breast Cancer and Breast Epithelial Cells Differentially Reprogram Glucose and Lipid Metabolism upon Treatment with Triterpenic Acids. Biomolecules. 2020 08; 10(8):. doi: 10.3390/biom10081163. [PMID: 32784479]
  • Anh-Tien Ton, Francesco Gentile, Michael Hsing, Fuqiang Ban, Artem Cherkasov. Rapid Identification of Potential Inhibitors of SARS-CoV-2 Main Protease by Deep Docking of 1.3 Billion Compounds. Molecular informatics. 2020 08; 39(8):e2000028. doi: 10.1002/minf.202000028. [PMID: 32162456]
  • Yun Chen, Xiongjian Wu, Chi Liu, Yun Zhou. Betulinic acid triggers apoptosis and inhibits migration and invasion of gastric cancer cells by impairing EMT progress. Cell biochemistry and function. 2020 Aug; 38(6):702-709. doi: 10.1002/cbf.3537. [PMID: 32283563]
  • Michał Sulik, Ewa Maj, Joanna Wietrzyk, Adam Huczyński, Michał Antoszczak. Synthesis and Anticancer Activity of Dimeric Polyether Ionophores. Biomolecules. 2020 07; 10(7):. doi: 10.3390/biom10071039. [PMID: 32664671]
  • Yingying Chen, Xinchen Wang, Yinbiao Zhu, Longlong Si, Bo Zhang, Yongmin Zhang, Lihe Zhang, Demin Zhou, Sulong Xiao. Synthesis of a Hexavalent Betulinic Acid Derivative as a Hemagglutinin-Targeted Influenza Virus Entry Inhibitor. Molecular pharmaceutics. 2020 07; 17(7):2546-2554. doi: 10.1021/acs.molpharmaceut.0c00244. [PMID: 32426985]
  • Jing Yin, Jie Yang, Hongsi Ma, Tian Liang, Ying Li, Jialei Xiao, Hongmei Tian, Zhiqiang Xu, Yaguang Zhan. Expression characteristics and function of CAS and a new beta-amyrin synthase in triterpenoid synthesis in birch (Betula platyphylla Suk.). Plant science : an international journal of experimental plant biology. 2020 May; 294(?):110433. doi: 10.1016/j.plantsci.2020.110433. [PMID: 32234222]
  • R A Ajala-Lawal, N O Aliyu, T O Ajiboye. Betulinic acid improves insulin sensitivity, hyperglycemia, inflammation and oxidative stress in metabolic syndrome rats via PI3K/Akt pathways. Archives of physiology and biochemistry. 2020 May; 126(2):107-115. doi: 10.1080/13813455.2018.1498901. [PMID: 30288995]
  • Da Hye Jeong, Sung Chul Kwak, Myeung Su Lee, Kwon-Ha Yoon, Ju-Young Kim, Chang Hoon Lee. Betulinic Acid Inhibits RANKL-Induced Osteoclastogenesis via Attenuating Akt, NF-κB, and PLCγ2-Ca2+ Signaling and Prevents Inflammatory Bone Loss. Journal of natural products. 2020 04; 83(4):1174-1182. doi: 10.1021/acs.jnatprod.9b01212. [PMID: 32237724]
  • Victor Constante Oliveira, Maria Paula Carvalho Naves, Cássio Resende de Morais, Sarah Alves Rodrigues Constante, Priscila Capelari Orsolin, Bianca Silva Alves, Francisco Rinaldi Neto, Lucas Henrique Domingos da Silva, Lucas Teixeira Souza de Oliveira, Natália Helen Ferreira, Tábata Rodrigues Esperandim, Wilson Roberto Cunha, Denise Crispim Tavares, Mário Antônio Spanó. Betulinic acid modulates urethane-induced genotoxicity and mutagenicity in mice and Drosophila melanogaster. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2020 Apr; 138(?):111228. doi: 10.1016/j.fct.2020.111228. [PMID: 32112866]
  • Tomasz Kowalczyk, Przemysław Sitarek, Monika Toma, Laurent Picot, Marzena Wielanek, Ewa Skała, Tomasz Śliwiński. An Extract of Transgenic Senna obtusifolia L. Hairy Roots with Overexpression of PgSS1 Gene in Combination with Chemotherapeutic Agent Induces Apoptosis in the Leukemia Cell Line. Biomolecules. 2020 03; 10(4):. doi: 10.3390/biom10040510. [PMID: 32230928]
  • Julie A Lawrence, Zhongping Huang, Sivaprakash Rathinavelu, Jin-Feng Hu, Eliane Garo, Michael Ellis, Vanessa L Norman, Ronald Buckle, Russell B Williams, Courtney M Starks, Gary R Eldridge. Optimized plant compound with potent anti-biofilm activity across gram-negative species. Bioorganic & medicinal chemistry. 2020 03; 28(5):115229. doi: 10.1016/j.bmc.2019.115229. [PMID: 32033878]
  • Yao-Yao Bai, Dong Yan, Hui-Ying Zhou, Wei-Xin Li, Yang-Yun Lou, Xin-Ru Zhou, Ling-Bo Qian, Chi Xiao. Betulinic acid attenuates lipopolysaccharide-induced vascular hyporeactivity in the rat aorta by modulating Nrf2 antioxidative function. Inflammopharmacology. 2020 Feb; 28(1):165-174. doi: 10.1007/s10787-019-00622-4. [PMID: 31352642]
  • Anna Yu Spivak, Rezeda R Khalitova, Darya A Nedopekina, Rinat R Gubaidullin. Antimicrobial properties of amine- and guanidine-functionalized derivatives of betulinic, ursolic and oleanolic acids: Synthesis and structure/activity evaluation. Steroids. 2020 02; 154(?):108530. doi: 10.1016/j.steroids.2019.108530. [PMID: 31678136]
  • C Emade Kwene, Anastasie E Tih, Bintou Abderamane, Rapheal T Ghogomu. Two new phenolic glycosides from the leaves of Garcinia epunctata Stapf. Zeitschrift fur Naturforschung. C, Journal of biosciences. 2020 Jan; 75(1-2):51-56. doi: 10.1515/znc-2018-0217. [PMID: 32053496]
  • Kun-Liu, Jian-Ying Wang, Lei Zhang, Ying-Yi Pan, Xiao-Yun Chen, Ying Yuan. Effects of betulinic acid on synovial inflammation in rats with collagen-induced arthritis. International journal of immunopathology and pharmacology. 2020 Jan; 34(?):2058738420945078. doi: 10.1177/2058738420945078. [PMID: 32718263]
  • Gang Wang, Yu-Zhu Wang, Yang Yu, Jun-Jie Wang, Pei-Hao Yin, Ke Xu. Triterpenoids Extracted from Rhus chinensis Mill Act Against Colorectal Cancer by Inhibiting Enzymes in Glycolysis and Glutaminolysis: Network Analysis and Experimental Validation. Nutrition and cancer. 2020; 72(2):293-319. doi: 10.1080/01635581.2019.1631858. [PMID: 31267795]
  • Xin Jin, Qing Yang, Ning Cai, Zhenhai Zhang. A cocktail of betulinic acid, parthenolide, honokiol and ginsenoside Rh2 in liposome systems for lung cancer treatment. Nanomedicine (London, England). 2020 01; 15(1):41-54. doi: 10.2217/nnm-2018-0479. [PMID: 31868113]
  • Tatyana S Khlebnicova, Yuri A Piven, Fedor A Lakhvich, Iryna V Sorokina, Tatiana S Frolova, Dmitry S Baev, Tatyana G Tolstikova. Betulinic Acid-Azaprostanoid Hybrids: Synthesis and Pharmacological Evaluation as Anti-inflammatory Agents. Anti-inflammatory & anti-allergy agents in medicinal chemistry. 2020; 19(3):254-267. doi: 10.2174/1871523018666190426152049. [PMID: 33001006]
  • Dongfang Xiang, Min Zhao, Xiaofan Cai, Yongxia Wang, Lei Zhang, Helen Yao, Min Liu, Huan Yang, Mingtao Xu, Huilin Li, Huijuan Peng, Min Wang, Xuefang Liang, Ling Li, Paul Yao. Betulinic Acid Inhibits Endometriosis Through Suppression of Estrogen Receptor β Signaling Pathway. Frontiers in endocrinology. 2020; 11(?):604648. doi: 10.3389/fendo.2020.604648. [PMID: 33362719]
  • Ran Tao, Chengzhang Wang, Yin Lu, Changwei Zhang, Hao Zhou, Hongxia Chen, WenJun Li. Characterization and Cytotoxicity of Polyprenol Lipid and Vitamin E-TPGS Hybrid Nanoparticles for Betulinic Acid and Low-Substituted Hydroxyl Fullerenol in MHCC97H and L02 Cells. International journal of nanomedicine. 2020; 15(?):2733-2749. doi: 10.2147/ijn.s249773. [PMID: 32368052]
  • Birendra Nath Karan, Tapan Kumar Maity, Bikash Chandra Pal, Tanushree Singha, Snehasis Jana. Betulinic Acid, the first lupane-type triterpenoid isolated via bioactivity-guided fractionation, and identified by spectroscopic analysis from leaves of Nyctanthes arbor-tristis: its potential biological activities in vitro assays. Natural product research. 2019 Nov; 33(22):3287-3292. doi: 10.1080/14786419.2018.1470171. [PMID: 29724132]
  • Qin Shu, Jianan Wu, Qihe Chen. Synthesis, Characterization of Liposomes Modified with Biosurfactant MEL-A Loading Betulinic Acid and Its Anticancer Effect in HepG2 Cell. Molecules (Basel, Switzerland). 2019 Oct; 24(21):. doi: 10.3390/molecules24213939. [PMID: 31683639]
  • Xihong Wang, Zhihang Yuan, Lijuan Zhu, Xianglian Yi, Zhaoping Ou, Rongfang Li, Zhuliang Tan, Blazej Pozniak, Bozena Obminska-Mrukowicz, Jing Wu, Jine Yi. Protective effects of betulinic acid on intestinal mucosal injury induced by cyclophosphamide in mice. Pharmacological reports : PR. 2019 Oct; 71(5):929-939. doi: 10.1016/j.pharep.2019.05.004. [PMID: 31450028]
  • Navneet Kishore, Pradeep Kumar, Karuna Shanker, Akhilesh Kumar Verma. Human disorders associated with inflammation and the evolving role of natural products to overcome. European journal of medicinal chemistry. 2019 Oct; 179(?):272-309. doi: 10.1016/j.ejmech.2019.06.034. [PMID: 31255927]
  • Jiajian Huang, Wenlong Zha, Tianyue An, Hua Dong, Ying Huang, Dong Wang, Rongmin Yu, Lixin Duan, Xueli Zhang, Reuben J Peters, Zhubo Dai, Jiachen Zi. Identification of RoCYP01 (CYP716A155) enables construction of engineered yeast for high-yield production of betulinic acid. Applied microbiology and biotechnology. 2019 Sep; 103(17):7029-7039. doi: 10.1007/s00253-019-10004-z. [PMID: 31309269]
  • Al-Mutary Mohsen G, Gasem Mohammad Abu-Taweel, Rajakrishnan Rajagopal, Kim Sun-Ju, Hak-Jae Kim, Young Ock Kim, Ramzi A Mothana, Shine Kadaikunnan, Jamal M Khaled, Nasir A Siddiqui, Adnan J Al-Rehaily. Betulinic acid lowers lipid accumulation in adipocytes through enhanced NCoA1-PPARγ interaction. Journal of infection and public health. 2019 Sep; 12(5):726-732. doi: 10.1016/j.jiph.2019.05.011. [PMID: 31133421]
  • Herong Cui, Wenbo Guo, Beibei Zhang, Guoping Li, Tong Li, Yanyan Yuan, Na Zhang, Yuwei Yang, Wuwen Feng, Fuhao Chu, Shenglan Wang, Bing Xu, Penglong Wang, Haimin Lei. BA-12 Inhibits Angiogenesis via Glutathione Metabolism Activation. International journal of molecular sciences. 2019 Aug; 20(16):. doi: 10.3390/ijms20164062. [PMID: 31434286]
  • Debasmita Dutta, Brahamacharry Paul, Biswajit Mukherjee, Laboni Mondal, Suparna Sen, Chinmay Chowdhury, Mita Chatterjee Debnath. Nanoencapsulated betulinic acid analogue distinctively improves colorectal carcinoma in vitro and in vivo. Scientific reports. 2019 08; 9(1):11506. doi: 10.1038/s41598-019-47743-y. [PMID: 31395908]
  • Cuihua Liu, Yuchao Chen, Chuanjian Lu, Haiming Chen, Jingwen Deng, Yuhong Yan, Yong-Yue Xu, Huazhen Liu, Haiding Huang, Jianan Wei, Ling Han, Zhenhua Dai. Betulinic acid suppresses Th17 response and ameliorates psoriasis-like murine skin inflammation. International immunopharmacology. 2019 Aug; 73(?):343-352. doi: 10.1016/j.intimp.2019.05.030. [PMID: 31129421]
  • Dahae Lee, Seoung Rak Lee, Ki Sung Kang, Yuri Ko, Changhyun Pang, Noriko Yamabe, Ki Hyun Kim. Betulinic Acid Suppresses Ovarian Cancer Cell Proliferation through Induction of Apoptosis. Biomolecules. 2019 07; 9(7):. doi: 10.3390/biom9070257. [PMID: 31277238]
  • Anqi Zeng, Hua Hua, Li Liu, Junning Zhao. Betulinic acid induces apoptosis and inhibits metastasis of human colorectal cancer cells in vitro and in vivo. Bioorganic & medicinal chemistry. 2019 06; 27(12):2546-2552. doi: 10.1016/j.bmc.2019.03.033. [PMID: 30910472]
  • Alexsander Rodrigues Carvalho Junior, Arthur Lima de Berredo Martins, Brenda da Silva Cutrim, Deivid Martins Santos, Hermerson Sousa Maia, Mari Silma Maia da Silva, Adrielle Zagmignan, Maria Raimunda Chagas Silva, Cristina de Andrade Monteiro, Giselle Maria Skelding Pinheiro Guilhon, Antônio José Cantanhede Filho, Luís Cláudio Nascimento da Silva. Betulinic Acid Prevents the Acquisition of Ciprofloxacin-Mediated Mutagenesis in Staphylococcus aureus. Molecules (Basel, Switzerland). 2019 May; 24(9):. doi: 10.3390/molecules24091757. [PMID: 31067626]
  • Shicheng Zhao, Chang Ha Park, Jingli Yang, Hyeon Ji Yeo, Tae Jin Kim, Jae Kwang Kim, Sang Un Park. Molecular characterization of anthocyanin and betulinic acid biosynthesis in red and white mulberry fruits using high-throughput sequencing. Food chemistry. 2019 May; 279(?):364-372. doi: 10.1016/j.foodchem.2018.11.101. [PMID: 30611502]
  • K-D Kim, H-Y Jung, H G Ryu, B Kim, J Jeon, H Y Yoo, C H Park, B-H Choi, C-K Hyun, K-T Kim, S Fang, S H Yang, J-B Kim. Betulinic acid inhibits high-fat diet-induced obesity and improves energy balance by activating AMPK. Nutrition, metabolism, and cardiovascular diseases : NMCD. 2019 04; 29(4):409-420. doi: 10.1016/j.numecd.2018.12.001. [PMID: 30799179]
  • Ming Gu, Ping Zhao, Shiying Zhang, Shengjie Fan, Li Yang, Qingchun Tong, Guang Ji, Cheng Huang. Betulinic acid alleviates endoplasmic reticulum stress-mediated nonalcoholic fatty liver disease through activation of farnesoid X receptors in mice. British journal of pharmacology. 2019 04; 176(7):847-863. doi: 10.1111/bph.14570. [PMID: 30635917]
  • Nan Yao, Chenran Wang, Nan Hu, Yingjie Li, Mingqun Liu, Yuhe Lei, Minfeng Chen, Liping Chen, Chen Chen, Ping Lan, Weimin Chen, Zhesheng Chen, Dengrui Fu, Wencai Ye, Dongmei Zhang. Inhibition of PINK1/Parkin-dependent mitophagy sensitizes multidrug-resistant cancer cells to B5G1, a new betulinic acid analog. Cell death & disease. 2019 03; 10(3):232. doi: 10.1038/s41419-019-1470-z. [PMID: 30850585]