Amarogentin (BioDeep_00000000253)

   

natural product PANOMIX_OTCML-2023


代谢物信息卡片


(2S,3R,4S,5S,6R)-4,5-Dihydroxy-6-(hydroxymethyl)-2-(((3S,4R,4aS)-8-oxo-4-vinyl-3,4,4a,5,6,8-hexahydropyrano[3,4-c]pyran-3-yl)oxy)tetrahydro-2H-pyran-3-yl 3,3,5-trihydroxy-[1,1-biphenyl]-2-carboxylate

化学式: C29H30O13 (586.1686)
中文名称: 苦龙胆酯苷, 苦龙胆脂甙, 苦杏苷
谱图信息: 最多检出来源 Chinese Herbal Medicine(otcml) 95.28%

Reviewed

Last reviewed on 2024-08-26.

Cite this Page

Amarogentin. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/amarogentin (retrieved 2025-01-03) (BioDeep RN: BioDeep_00000000253). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C=CC1C(OC2OC(CO)C(O)C(O)C2OC(=O)c2c(O)cc(O)cc2-c2cccc(O)c2)OC=C2C(=O)OCCC21
InChI: InChI=1S/C29H30O13/c1-2-16-17-6-7-38-26(36)19(17)12-39-28(16)42-29-25(24(35)23(34)21(11-30)40-29)41-27(37)22-18(9-15(32)10-20(22)33)13-4-3-5-14(31)8-13/h2-5,8-10,12,16-17,21,23-25,28-35H,1,6-7,11H2/t16-,17+,21-,23-,24+,25-,28+,29+/m1/s1

描述信息

Amarogentin is a secoiridoid glycoside that consists of (4aS,5R,6R)-5-ethenyl-6-hydroxy-4,4a,5,6-tetrahydro-1H,3H-pyrano[3,4-c]pyran-1-one having a 2-O-[(3,3,5-trihydroxybiphenyl-2-yl)carbonyl]-beta-D-glucopyranosyl group attached at position 6 via a glycosidic linkage. It has a role as an EC 5.99.1.2 (DNA topoisomerase) inhibitor and a metabolite. It is a secoiridoid glycoside and a monosaccharide derivative.
Amarogentin is a natural product found in Swertia japonica, Gentianella nitida, and other organisms with data available.
A secoiridoid glycoside that consists of (4aS,5R,6R)-5-ethenyl-6-hydroxy-4,4a,5,6-tetrahydro-1H,3H-pyrano[3,4-c]pyran-1-one having a 2-O-[(3,3,5-trihydroxybiphenyl-2-yl)carbonyl]-beta-D-glucopyranosyl group attached at position 6 via a glycosidic linkage.
Amarogentin is a secoiridoid glycoside that is mainly extracted from Swertia and Gentiana roots. Amarogentin exhibits many biological effects, including anti-oxidative, anti-tumour, and anti-diabetic activities. Amarogentin exerts hepatoprotective and immunomodulatory effects. Amarogentin promotes apoptosis, arrests G2/M cell cycle and downregulates of PI3K/Akt/mTOR signalling pathways. Amarogentin exerts beneficial vasculo-metabolic effect by activating AMPK[1][2][3].
Amarogentin is a secoiridoid glycoside that is mainly extracted from Swertia and Gentiana roots. Amarogentin exhibits many biological effects, including anti-oxidative, anti-tumour, and anti-diabetic activities. Amarogentin exerts hepatoprotective and immunomodulatory effects. Amarogentin promotes apoptosis, arrests G2/M cell cycle and downregulates of PI3K/Akt/mTOR signalling pathways. Amarogentin exerts beneficial vasculo-metabolic effect by activating AMPK[1][2][3].
Amarogentin is a secoiridoid glycoside that is mainly extracted from Swertia and Gentiana roots. Amarogentin exhibits many biological effects, including anti-oxidative, anti-tumour, and anti-diabetic activities. Amarogentin exerts hepatoprotective and immunomodulatory effects. Amarogentin promotes apoptosis, arrests G2/M cell cycle and downregulates of PI3K/Akt/mTOR signalling pathways. Amarogentin exerts beneficial vasculo-metabolic effect by activating AMPK[1][2][3].

同义名列表

17 个代谢物同义名

(2S,3R,4S,5S,6R)-4,5-Dihydroxy-6-(hydroxymethyl)-2-(((3S,4R,4aS)-8-oxo-4-vinyl-3,4,4a,5,6,8-hexahydropyrano[3,4-c]pyran-3-yl)oxy)tetrahydro-2H-pyran-3-yl 3,3,5-trihydroxy-[1,1-biphenyl]-2-carboxylate; (1,1-Biphenyl)-2-carboxylic acid, 3,3,5-trihydroxy-, 2-ester with 5-ethenyl-6-(beta-D-glucopyranosyloxy)-4,4a,5,6-tetrahydro-1H,3H-pyrano(3,4-c)pyran-1-one, (4aS-(4aalpha,5beta,6alpha))-; [(2S,3R,4S,5S,6R)-2-[[(3S,4R,4aS)-4-ethenyl-8-oxo-4,4a,5,6-tetrahydro-3H-pyrano[3,4-c]pyran-3-yl]oxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl] 2,4-dihydroxy-6-(3-hydroxyphenyl)benzoate; 1H,3H-Pyrano(3,4-c)pyran-1-one, 5-ethenyl-4,4a,5,6-tetrahydro-6-((2-O-((3,3,5-trihydroxy(1,1-biphenyl)-2-yl)carbonyl)-beta-D-glucopyranosyl)oxy)-, (4aS,5R,6S)-; (4aS,5R,6S)-5-ethenyl-1-oxo-4,4a,5,6-tetrahydro-1H,3H-pyrano[3,4-c]pyran-6-yl- 2-O-[(3,3,5-trihydroxybiphenyl-2-yl)carbonyl]-beta-D-glucopyranoside; (4aR)-5t-ethenyl-6c-[O(2)-(3,5,3-trihydroxybiphenyl-2-ylcarbonyl)-beta-D-glucopyranosyloxy]-4,4ar,5,6-tetrahydro-3H-pyrano[3,4-c]pyran-1-one; 2-(4aS-(4aalpha,5beta,6alpha))-3,3,5-Trihydroxy-(1,1-biphenyl)-2-carboxylate; sweroside-2-(3,5,3-trihydroxydiphenyl)-2-carboxylic acid ester; DBOVHQOUSDWAPQ-WTONXPSSSA-N; AMAROGENTIN [MI]; UNII-5L82GT5I0W; Amarogentin; 5L82GT5I0W; [(2S,3R,4S,5S,6R)-2-[[(3S,4R,4aS)-4-ethenyl-8-oxo-4,4a,5,6-tetrahydro-3H-pyrano[3,4-c]pyran-3-yl]oxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]2,4-dihydroxy-6-(3-hydroxyphenyl)benzoate; [2-[(4-ethenyl-8-oxo-4,4a,5,6-tetrahydro-3H-pyrano[3,4-c]pyran-3-yl)oxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl] 2,4-dihydroxy-6-(3-hydroxyphenyl)benzoate; LS-15258; Amarogentin



数据库引用编号

20 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

41 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 11 AKR1B1, AKT1, BCL2, CASP3, CAT, CCND1, LIMD1, MAPK14, NFE2L2, PIK3CA, RELA
Endoplasmic reticulum membrane 1 BCL2
Nucleus 10 AKT1, BCL2, CASP3, CCND1, CTDSPL, DNMT1, LIMD1, MAPK14, NFE2L2, RELA
cytosol 11 AKR1B1, AKT1, BCL2, CASP3, CAT, CCND1, LIMD1, MAPK14, NFE2L2, PIK3CA, RELA
centrosome 2 CCND1, NFE2L2
nucleoplasm 9 AKR1B1, AKT1, CASP3, CCND1, DNMT1, LIMD1, MAPK14, NFE2L2, RELA
RNA polymerase II transcription regulator complex 1 NFE2L2
Cell membrane 2 AKT1, TNF
lamellipodium 2 AKT1, PIK3CA
Multi-pass membrane protein 2 TAS2R1, TAS2R38
cell cortex 1 AKT1
cell surface 1 TNF
glutamatergic synapse 4 AKT1, CASP3, MAPK14, RELA
Golgi apparatus 1 NFE2L2
Golgi membrane 1 INS
neuronal cell body 2 CASP3, TNF
postsynapse 1 AKT1
Cytoplasm, cytosol 1 NFE2L2
plasma membrane 7 AKT1, LIMD1, NFE2L2, PIK3CA, TAS2R1, TAS2R38, TNF
Membrane 5 AKT1, BCL2, CAT, TAS2R1, TAS2R38
extracellular exosome 3 AKR1B1, CAT, CTDSPL
endoplasmic reticulum 1 BCL2
extracellular space 4 AKR1B1, IL6, INS, TNF
perinuclear region of cytoplasm 1 PIK3CA
adherens junction 1 LIMD1
bicellular tight junction 1 CCND1
intercalated disc 1 PIK3CA
mitochondrion 5 AKR1B1, BCL2, CAT, DNMT1, MAPK14
protein-containing complex 3 AKT1, BCL2, CAT
intracellular membrane-bounded organelle 1 CAT
postsynaptic density 1 CASP3
pericentric heterochromatin 1 DNMT1
Secreted 2 IL6, INS
extracellular region 5 CAT, IL6, INS, MAPK14, TNF
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 1 BCL2
mitochondrial matrix 1 CAT
transcription regulator complex 2 LIMD1, RELA
Nucleus membrane 2 BCL2, CCND1
Bcl-2 family protein complex 1 BCL2
nuclear membrane 2 BCL2, CCND1
external side of plasma membrane 1 TNF
microtubule cytoskeleton 1 AKT1
P-body 1 LIMD1
cell-cell junction 1 AKT1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
vesicle 1 AKT1
Membrane raft 1 TNF
pore complex 1 BCL2
focal adhesion 2 CAT, LIMD1
spindle 1 AKT1
Peroxisome 1 CAT
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
nuclear speck 1 MAPK14
ciliary basal body 1 AKT1
chromatin 2 NFE2L2, RELA
mediator complex 1 NFE2L2
phagocytic cup 1 TNF
spindle pole 1 MAPK14
endosome lumen 1 INS
female germ cell nucleus 1 DNMT1
replication fork 1 DNMT1
myelin sheath 1 BCL2
ficolin-1-rich granule lumen 2 CAT, MAPK14
secretory granule lumen 3 CAT, INS, MAPK14
Golgi lumen 1 INS
endoplasmic reticulum lumen 2 IL6, INS
transcription repressor complex 1 CCND1
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
protein-DNA complex 1 NFE2L2
death-inducing signaling complex 1 CASP3
RISC complex 1 LIMD1
cyclin-dependent protein kinase holoenzyme complex 1 CCND1
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
catalase complex 1 CAT
interleukin-6 receptor complex 1 IL6
BAD-BCL-2 complex 1 BCL2
cyclin D1-CDK4 complex 1 CCND1
NF-kappaB p50/p65 complex 1 RELA
NF-kappaB complex 1 RELA
cyclin D1-CDK6 complex 1 CCND1
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Yash Pal Sharma, Chitralekha Bhardwaj, Reena Sharma, Pancy Thakur, Rohit Sharma. A New RP-HPLC Method for Simultaneous Determination of Amaroswerin, Amarogentin and Andrographolide in a Herbal Drug "Chirayata". Journal of chromatographic science. 2023 Feb; 61(2):172-176. doi: 10.1093/chromsci/bmac018. [PMID: 35253055]
  • Pallab Kar, Vijay Kumar, Balachandar Vellingiri, Arnab Sen, Nishika Jaishee, Akash Anandraj, Himani Malhotra, Subires Bhattacharyya, Subhasish Mukhopadhyay, Masako Kinoshita, Vivekanandhan Govindasamy, Ayan Roy, Devashan Naidoo, Mohana Devi Subramaniam. Anisotine and amarogentin as promising inhibitory candidates against SARS-CoV-2 proteins: a computational investigation. Journal of biomolecular structure & dynamics. 2022 07; 40(10):4532-4542. doi: 10.1080/07391102.2020.1860133. [PMID: 33305988]
  • Serena Fiorito, Francesco Epifano, Lorenzo Marchetti, Lucia Palumbo, Fabrizio Mascioli, Maria Bastianini, Fabio Cardellini, Roberto Spogli, Salvatore Genovese. An improved method for the isolation of amarogentin, the bitter principle of yellow gentian roots. Food chemistry. 2021 Dec; 364(?):130383. doi: 10.1016/j.foodchem.2021.130383. [PMID: 34153596]
  • Poomraphie Nuntawong, Kotchaporn Lohseethong, Thaweesak Juengwatanatrakul, Gorawit Yusakul, Waraporn Putalun, Hiroyuki Tanaka, Seiichi Sakamoto, Satoshi Morimoto. Competitive immunochromatographic test strips for the rapid semi-quantitative analysis of the biologically active bitter glycoside, amarogentin. Journal of immunoassay & immunochemistry. 2021 Jan; 42(1):48-61. doi: 10.1080/15321819.2020.1819308. [PMID: 32896225]
  • Prabhjot Kaur, R C Gupta, Abhijit Dey, Tabarak Malik, Devendra Kumar Pandey. Optimization of salicylic acid and chitosan treatment for bitter secoiridoid and xanthone glycosides production in shoot cultures of Swertia paniculata using response surface methodology and artificial neural network. BMC plant biology. 2020 May; 20(1):225. doi: 10.1186/s12870-020-02410-7. [PMID: 32429895]
  • Dejene Disasa, Lihong Cheng, Majid Manzoor, Qian Liu, Ying Wang, Lan Xiang, Jianhua Qi. Amarogentin from Gentiana rigescens Franch Exhibits Antiaging and Neuroprotective Effects through Antioxidative Stress. Oxidative medicine and cellular longevity. 2020; 2020(?):3184019. doi: 10.1155/2020/3184019. [PMID: 32831994]
  • Uma Rani Potunuru, K Vishnu Priya, M K N Sai Varsha, Nikunj Mehta, Shivam Chandel, Narayanan Manoj, Thiagarajan Raman, Manikandan Ramar, M Michael Gromiha, Madhulika Dixit. Amarogentin, a secoiridoid glycoside, activates AMP- activated protein kinase (AMPK) to exert beneficial vasculo-metabolic effects. Biochimica et biophysica acta. General subjects. 2019 08; 1863(8):1270-1282. doi: 10.1016/j.bbagen.2019.05.008. [PMID: 31125678]
  • Seiichi Sakamoto, Shinji Wada, Yui Morita, Tomoko Yamaguchi, Hiroyuki Tanaka, Satoshi Morimoto. Magnetic particles-based enzyme immunoassay for rapid determination of secoiridoid glycoside, amarogentin. Talanta. 2019 Mar; 194(?):731-736. doi: 10.1016/j.talanta.2018.11.001. [PMID: 30609599]
  • Kanika Patel, Vikas Kumar, Amita Verma, Mahfoozur Rahman, Dinesh K Patel. Amarogentin as Topical Anticancer and Anti-Infective Potential: Scope of Lipid Based Vesicular in its Effective Delivery. Recent patents on anti-infective drug discovery. 2019; 14(1):7-15. doi: 10.2174/1574891x13666180913154355. [PMID: 30210007]
  • Ya Zhang, Meng Zhang, Hua Li, Hang Zhao, Fang Wang, Qiaoyan He, Tian Zhang, Siwang Wang. Serum metabonomics study of the hepatoprotective effect of amarogentin on CCl4-induced liver fibrosis in mice by GC-TOF-MS analysis. Journal of pharmaceutical and biomedical analysis. 2018 Feb; 149(?):120-127. doi: 10.1016/j.jpba.2017.10.029. [PMID: 29112900]
  • Debolina Pal, Subhayan Sur, Rituparna Roy, Suvra Mandal, Chinmay Kumar Panda. Epigallocatechin gallate in combination with eugenol or amarogentin shows synergistic chemotherapeutic potential in cervical cancer cell line. Journal of cellular physiology. 2018 01; 234(1):825-836. doi: 10.1002/jcp.26900. [PMID: 30078217]
  • Ya Zhang, Hang Zhao, Hua Li, Wei Cao, Fang Wang, Tian Zhang, Si-Wang Wang. Protective Effects of Amarogentin against Carbon Tetrachloride-Induced Liver Fibrosis in Mice. Molecules (Basel, Switzerland). 2017 May; 22(5):. doi: 10.3390/molecules22050754. [PMID: 28481234]
  • Amit Rai, Michimi Nakamura, Hiroki Takahashi, Hideyuki Suzuki, Kazuki Saito, Mami Yamazaki. High-throughput sequencing and de novo transcriptome assembly of Swertia japonica to identify genes involved in the biosynthesis of therapeutic metabolites. Plant cell reports. 2016 Oct; 35(10):2091-111. doi: 10.1007/s00299-016-2021-z. [PMID: 27378356]
  • Subhayan Sur, Debolina Pal, Kaustav Banerjee, Suvra Mandal, Ashes Das, Anup Roy, Chinmay Kumar Panda. Amarogentin regulates self renewal pathways to restrict liver carcinogenesis in experimental mouse model. Molecular carcinogenesis. 2016 07; 55(7):1138-49. doi: 10.1002/mc.22356. [PMID: 26154024]
  • Yoshiaki Amakura, Morio Yoshimura, Sara Morimoto, Takashi Yoshida, Atsuko Tada, Yusai Ito, Takeshi Yamazaki, Naoki Sugimoto, Hiroshi Akiyama. Chromatographic Evaluation and Characterization of Components of Gentian Root Extract Used as Food Additives. Chemical & pharmaceutical bulletin. 2016; 64(1):78-82. doi: 10.1248/cpb.c15-00776. [PMID: 26726749]
  • Supreet Khanal, Niroj Shakya, Krishna Thapa, Deepak Raj Pant. Phytochemical investigation of crude methanol extracts of different species of Swertia from Nepal. BMC research notes. 2015 Dec; 8(?):821. doi: 10.1186/s13104-015-1753-0. [PMID: 26708007]
  • Jibesh Kumar Padhan, Varun Kumar, Hemant Sood, Tiratha Raj Singh, Rajinder S Chauhan. Contents of therapeutic metabolites in Swertia chirayita correlate with the expression profiles of multiple genes in corresponding biosynthesis pathways. Phytochemistry. 2015 Aug; 116(?):38-47. doi: 10.1016/j.phytochem.2015.05.007. [PMID: 26028519]
  • Ahmed M Mustafa, Giovanni Caprioli, Massimo Ricciutelli, Filippo Maggi, Rosa Marín, Sauro Vittori, Gianni Sagratini. Comparative HPLC/ESI-MS and HPLC/DAD study of different populations of cultivated, wild and commercial Gentiana lutea L. Food chemistry. 2015 May; 174(?):426-33. doi: 10.1016/j.foodchem.2014.11.089. [PMID: 25529701]
  • Ute Wölfle, Floriana A Elsholz, Astrid Kersten, Birgit Haarhaus, Walter E Müller, Christoph M Schempp. Expression and functional activity of the bitter taste receptors TAS2R1 and TAS2R38 in human keratinocytes. Skin pharmacology and physiology. 2015; 28(3):137-46. doi: 10.1159/000367631. [PMID: 25573083]
  • Ting-Lin Yen, Wan-Jung Lu, Li-Ming Lien, Philip Aloysius Thomas, Tzu-Yin Lee, Hou-Chang Chiu, Joen-Rong Sheu, Kuan-Hung Lin. Amarogentin, a secoiridoid glycoside, abrogates platelet activation through PLC γ 2-PKC and MAPK pathways. BioMed research international. 2014; 2014(?):728019. doi: 10.1155/2014/728019. [PMID: 24868545]
  • Susanna Phoboo, Marcia Da Silva Pinto, Ana Cristina Lopes Barbosa, Dipayan Sarkar, Prasanta C Bhowmik, Pramod Kumar Jha, Kalidas Shetty. Phenolic-linked biochemical rationale for the anti-diabetic properties of Swertia chirayita (Roxb. ex Flem.) Karst. Phytotherapy research : PTR. 2013 Feb; 27(2):227-35. doi: 10.1002/ptr.4714. [PMID: 22523004]
  • Debolina Pal, Subhayan Sur, Suvra Mandal, Ashes Das, Anup Roy, Sukta Das, Chinmay Kumar Panda. Prevention of liver carcinogenesis by amarogentin through modulation of G1/S cell cycle check point and induction of apoptosis. Carcinogenesis. 2012 Dec; 33(12):2424-31. doi: 10.1093/carcin/bgs276. [PMID: 22948180]
  • Branislav Nastasijević, Tamara Lazarević-Pašti, Suzana Dimitrijević-Branković, Igor Pašti, Ana Vujačić, Gordana Joksić, Vesna Vasić. Inhibition of myeloperoxidase and antioxidative activity of Gentiana lutea extracts. Journal of pharmaceutical and biomedical analysis. 2012 Jul; 66(?):191-6. doi: 10.1016/j.jpba.2012.03.052. [PMID: 22521634]
  • Chandrasekhar Akileshwari, Puppala Muthenna, Branislav Nastasijević, Gordana Joksić, J Mark Petrash, Geereddy Bhanuprakash Reddy. Inhibition of aldose reductase by Gentiana lutea extracts. Experimental diabetes research. 2012; 2012(?):147965. doi: 10.1155/2012/147965. [PMID: 22844269]
  • Pradeep Pratap Singh, Ambika, Shive Murat Singh Chauhan. Activity-guided isolation of antioxidant xanthones from Swertia chirayita (Roxb.) H. Karsten (Gentianaceae). Natural product research. 2012; 26(18):1682-6. doi: 10.1080/14786419.2011.592836. [PMID: 21985644]
  • M Shekarchi, H Hajimehdipoor, M Khanavi, N Adib, M Bozorgi, B Akbari-Adergani. A validated method for analysis of Swerchirin in Swertia longifolia Boiss. by high performance liquid chromatography. Pharmacognosy magazine. 2010 Jan; 6(21):13-8. doi: 10.4103/0973-1296.59961. [PMID: 20548931]
  • Satyendra Suryawanshi, R K Asthana, R C Gupta. Assessment of systemic interaction between Swertia chirata extract and its Bioactive constituents in rabbits. Phytotherapy research : PTR. 2009 Jul; 23(7):1036-8. doi: 10.1002/ptr.2738. [PMID: 19140153]
  • Anita Aberham, Stefan Schwaiger, Hermann Stuppner, Markus Ganzera. Quantitative analysis of iridoids, secoiridoids, xanthones and xanthone glycosides in Gentiana lutea L. roots by RP-HPLC and LC-MS. Journal of pharmaceutical and biomedical analysis. 2007 Nov; 45(3):437-42. doi: 10.1016/j.jpba.2007.07.001. [PMID: 17697760]
  • Satyendra Suryawanshi, R K Asthana, R C Gupta. Simultaneous estimation of mangiferin and four secoiridoid glycosides in rat plasma using liquid chromatography tandem mass spectrometry and its application to pharmacokinetic study of herbal preparation. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2007 Oct; 858(1-2):211-9. doi: 10.1016/j.jchromb.2007.08.034. [PMID: 17869193]
  • Prosenjit Saha, Suvra Mandal, Ashes Das, Sukta Das. Amarogentin can reduce hyperproliferation by downregulation of Cox-II and upregulation of apoptosis in mouse skin carcinogenesis model. Cancer letters. 2006 Dec; 244(2):252-9. doi: 10.1016/j.canlet.2005.12.036. [PMID: 16517061]
  • Satyendra Suryawanshi, Nitin Mehrotra, R K Asthana, Ram C Gupta. Liquid chromatography/tandem mass spectrometric study and analysis of xanthone and secoiridoid glycoside composition of Swertia chirata, a potent antidiabetic. Rapid communications in mass spectrometry : RCM. 2006; 20(24):3761-8. doi: 10.1002/rcm.2795. [PMID: 17120271]
  • K Vipul, M Nitin, R C Gupta. A sensitive and selective LC-MS-MS method for simultaneous determination of picroside-I and kutkoside (active principles of herbal preparation picroliv) using solid phase extraction in rabbit plasma: application to pharmacokinetic study. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2005 Jun; 820(2):221-7. doi: 10.1016/j.jchromb.2005.03.032. [PMID: 15899375]
  • Prosenjit Saha, Suvra Mandal, Ashes Das, Prabhas C Das, Sukta Das. Evaluation of the anticarcinogenic activity of Swertia chirata Buch.Ham, an Indian medicinal plant, on DMBA-induced mouse skin carcinogenesis model. Phytotherapy research : PTR. 2004 May; 18(5):373-8. doi: 10.1002/ptr.1436. [PMID: 15173996]
  • M Keil, B Härtle, A Guillaume, M Psiorz. Production of amarogentin in root cultures of Swertia chirata. Planta medica. 2000 Jun; 66(5):452-7. doi: 10.1055/s-2000-8579. [PMID: 10909267]
  • S Medda, S Mukhopadhyay, M K Basu. Evaluation of the in-vivo activity and toxicity of amarogentin, an antileishmanial agent, in both liposomal and niosomal forms. The Journal of antimicrobial chemotherapy. 1999 Dec; 44(6):791-4. doi: 10.1093/jac/44.6.791. [PMID: 10590280]