trans-3,3',4',5,5',7-Hexahydroxyflavanone (BioDeep_00000000307)

 

Secondary id: BioDeep_00000270124, BioDeep_00000270295, BioDeep_00000378621, BioDeep_00000841770, BioDeep_00001867487

human metabolite PANOMIX_OTCML-2023


代谢物信息卡片


4H-1-Benzopyran-4-one, 2,3-dihydro-3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-, (2R-trans)-

化学式: C15H12O8 (320.0532152)
中文名称: 二氢杨梅素, 白蔹素, 二氢杨梅素
谱图信息: 最多检出来源 Viridiplantae(plant) 0.31%

分子结构信息

SMILES: c1(cc(c2c(c1)O[C@@H]([C@H](C2=O)O)c1cc(c(c(c1)O)O)O)O)O
InChI: InChI=1S/C15H12O8/c16-6-3-7(17)11-10(4-6)23-15(14(22)13(11)21)5-1-8(18)12(20)9(19)2-5/h1-4,14-20,22H

描述信息

(+)-dihydromyricetin is an optically active form of dihydromyricetin having (2R,3R)-configuration. It has a role as a metabolite, an antioxidant and an antineoplastic agent. It is a secondary alpha-hydroxy ketone and a dihydromyricetin. It is an enantiomer of a (-)-dihydromyricetin.
Dihydromyricetin is under investigation in clinical trial NCT03606694 (Effect of Dihydromirycetin on Glycemic Control, Insulin Sensitivity and Insulin Secretion in Type 2 Diabetes Mellitus).
Dihydromyricetin is a naturally occurring flavonoid found in the many plant species and is thought to be the active ingredient of several traditional Japanese, Chinese, and Korean medicines that are used to treat fever, parasite infections, liver diseases, and hangovers. Dihydromyricetin preparations have not been linked to instances of serum enzyme elevations or clinically apparent liver injury with jaundice.
Dihydromyricetin is a natural product found in Vitis rotundifolia, Catha edulis, and other organisms with data available.
(±)-trans-3,3,4,5,5,7-Hexahydroxyflavanone is found in tea. (±)-trans-3,3,4,5,5,7-Hexahydroxyflavanone is a constituent of Camellia sinensis (Chinese green tea).
Constituent of Camellia sinensis (Chinese green tea). (±)-Dihydromyricetin is found in tea.
Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM.
Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM.
Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM.
Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM.

同义名列表

38 个代谢物同义名

4H-1-Benzopyran-4-one, 2,3-dihydro-3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-, (2R-trans)-; 4H-1-Benzopyran-4-one, 2,3-dihydro-3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-, (2R,3R)-; (2R-trans)-2,3-Dihydro-3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-4H-1-benzopyran-4-one; (2R,3R)-2,3-dihydro-3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-4H-1-benzopyran-4-one; (2R,3R)-3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-4-one; (2R,3R)-3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-2,3-dihydro-4H-chromen-4-one; 3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-4-one; (2R,3R)-3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-2,3-dihydrochromen-4-one; 3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-2,3-dihydro-1-benzopyran-4-one; (2r,3r)-3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)chroman-4-one; (2R,3R)-3,3,4,5,5,7-hexahydroxy-2,3-dihydroflavanonol; 3,3,4,5,5,7-Hexahydroxy-2,3-dihydroflavanonol; Rel-(2R,3R)-3,5,7,3,4,5-hexahydroxyflavanone; (2R,3R)-3,5,7,3,4,5-hexahydroxyflavanone; trans-3,3,4,5,5,7-Hexahydroxyflavanone; Dihydromyricetin, analytical standard; 2B89FBAC-4DD1-44C9-BE2A-9D0C173BDFD8; Flavanone, 3,3,4,5,5,7-hexahydroxy-; Dihydromyricetin, >=98\\% (HPLC); Dihydromyricetin (Ampeloptin); Dihydromyricetin (diH-Myr); (2r,3r)-dihydromyricetin; DIHYDROMYRICETIN [INCI]; Ampelopsin (flavanol); Ampelopsin;Ampeloptin; (±)-Dihydromyricetin; (+)-Dihydromyricetin; dihydro-myricetin; Dihydromyricetin; AMPELOPSIN [MI]; UNII-KD8QND6427; (+)-Ampelopsin; Myriceline spe; ampelopsin; Ampeloptin; KD8QND6427; Telocapil; C15H12O8



数据库引用编号

24 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(4)

代谢反应

118 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(3)

INOH(0)

PlantCyc(115)

  • flavonol biosynthesis: (+)-dihydromyricetin + 2-oxoglutarate + O2 ⟶ CO2 + H2O + myricetin + succinate
  • flavonol biosynthesis: (+)-dihydromyricetin + 2-oxoglutarate + O2 ⟶ CO2 + H2O + myricetin + succinate
  • flavonol biosynthesis: (+)-dihydrokaempferol + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + kaempferol + succinate
  • flavonol biosynthesis: (+)-dihydrokaempferol + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + kaempferol + succinate
  • syringetin biosynthesis: (+)-dihydromyricetin + 2-oxoglutarate + O2 ⟶ CO2 + H2O + myricetin + succinate
  • superpathway of flavones and derivatives biosynthesis: SAM + quercetin ⟶ H+ + SAH + isorhamnetin
  • leucodelphinidin biosynthesis: (2S)-eriodictyol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (2S)-dihydrotricetin + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydromyricetin + 2-oxoglutarate + O2 ⟶ CO2 + H2O + myricetin + succinate
  • flavonol biosynthesis: (+)-dihydromyricetin + 2-oxoglutarate + O2 ⟶ CO2 + H2O + myricetin + succinate
  • flavonol biosynthesis: (+)-dihydrokaempferol + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + kaempferol + succinate
  • flavonol biosynthesis: (+)-taxifolin + 2-oxoglutarate + O2 ⟶ CO2 + H2O + quercetin + succinate
  • flavonol biosynthesis: (+)-dihydrokaempferol + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + kaempferol + succinate
  • flavonol biosynthesis: (+)-taxifolin + 2-oxoglutarate + O2 ⟶ CO2 + H2O + quercetin + succinate
  • flavonol biosynthesis: (+)-dihydromyricetin + 2-oxoglutarate + O2 ⟶ CO2 + H2O + myricetin + succinate
  • flavonol biosynthesis: (+)-dihydrokaempferol + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + kaempferol + succinate
  • syringetin biosynthesis: (+)-dihydromyricetin + 2-oxoglutarate + O2 ⟶ CO2 + H2O + myricetin + succinate
  • flavonol biosynthesis: (+)-dihydromyricetin + 2-oxoglutarate + O2 ⟶ CO2 + H2O + myricetin + succinate
  • flavonol biosynthesis: (+)-dihydromyricetin + 2-oxoglutarate + O2 ⟶ CO2 + H2O + myricetin + succinate
  • flavonol biosynthesis: (+)-dihydromyricetin + 2-oxoglutarate + O2 ⟶ CO2 + H2O + myricetin + succinate
  • flavonol biosynthesis: (+)-dihydromyricetin + 2-oxoglutarate + O2 ⟶ CO2 + H2O + myricetin + succinate
  • flavonol biosynthesis: (+)-dihydromyricetin + 2-oxoglutarate + O2 ⟶ CO2 + H2O + myricetin + succinate
  • flavonol biosynthesis: (+)-dihydrokaempferol + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + kaempferol + succinate
  • flavonol biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-taxifolin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-dihydromyricetin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-taxifolin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-dihydromyricetin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + kaempferol + succinate
  • flavonol biosynthesis: (+)-dihydrokaempferol + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + kaempferol + succinate
  • flavonol biosynthesis: (+)-dihydrokaempferol + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + kaempferol + succinate
  • leucodelphinidin biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-taxifolin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • syringetin biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-taxifolin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-dihydromyricetin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-taxifolin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-dihydromyricetin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • syringetin biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-taxifolin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + kaempferol + succinate
  • syringetin biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-taxifolin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-taxifolin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + kaempferol + succinate
  • flavonol biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-dihydromyricetin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-dihydromyricetin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-dihydromyricetin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + kaempferol + succinate
  • flavonol biosynthesis: (+)-dihydrokaempferol + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + kaempferol + succinate
  • flavonol biosynthesis: (+)-dihydrokaempferol + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + kaempferol + succinate
  • flavonol biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-dihydromyricetin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + kaempferol + succinate
  • flavonol biosynthesis: (+)-dihydrokaempferol + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + kaempferol + succinate
  • syringetin biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-taxifolin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-dihydromyricetin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + kaempferol + succinate
  • flavonol biosynthesis: (+)-dihydrokaempferol + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + kaempferol + succinate
  • flavonol biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-dihydromyricetin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + kaempferol + succinate
  • flavonol biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-dihydromyricetin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-taxifolin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-taxifolin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-taxifolin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • syringetin biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-taxifolin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-dihydromyricetin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-dihydromyricetin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • leucodelphinidin biosynthesis: (2S)-eriodictyol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (2S)-dihydrotricetin + H2O + an oxidized [NADPH-hemoprotein reductase]
  • syringetin biosynthesis: (+)-dihydromyricetin + 2-oxoglutarate + O2 ⟶ CO2 + H2O + myricetin + succinate
  • superpathway of flavones and derivatives biosynthesis: PAPS + isorhamnetin ⟶ 3',5'-ADP + H+ + isorhamnetin 3-sulfate
  • flavonol biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-dihydromyricetin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + kaempferol + succinate
  • flavonol biosynthesis: (+)-dihydrokaempferol + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + kaempferol + succinate
  • flavonol biosynthesis: (+)-dihydrokaempferol + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + kaempferol + succinate
  • flavonol biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-taxifolin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-dihydromyricetin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-taxifolin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-dihydromyricetin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • syringetin biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-taxifolin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + kaempferol + succinate
  • flavonol biosynthesis: (+)-dihydrokaempferol + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + kaempferol + succinate
  • syringetin biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-taxifolin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-taxifolin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-dihydromyricetin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-dihydromyricetin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-dihydromyricetin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-dihydromyricetin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + kaempferol + succinate
  • flavonol biosynthesis: (+)-dihydrokaempferol + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + kaempferol + succinate
  • flavonol biosynthesis: (+)-dihydrokaempferol + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + kaempferol + succinate
  • flavonol biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-taxifolin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-taxifolin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-dihydromyricetin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + kaempferol + succinate
  • flavonol biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-dihydromyricetin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + kaempferol + succinate
  • flavonol biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-taxifolin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-dihydromyricetin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + kaempferol + succinate
  • flavonol biosynthesis: (+)-dihydrokaempferol + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + kaempferol + succinate
  • flavonol biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-dihydromyricetin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-taxifolin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-dihydromyricetin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • syringetin biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-taxifolin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + kaempferol + succinate
  • superpathway of flavones and derivatives biosynthesis: SAM + quercetin ⟶ H+ + SAH + isorhamnetin
  • syringetin biosynthesis: (+)-dihydromyricetin + 2-oxoglutarate + O2 ⟶ CO2 + H2O + myricetin + succinate
  • leucodelphinidin biosynthesis: (2S)-eriodictyol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (2S)-dihydrotricetin + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydromyricetin + 2-oxoglutarate + O2 ⟶ CO2 + H2O + myricetin + succinate
  • flavonol biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-taxifolin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-taxifolin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + kaempferol + succinate
  • flavonol biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-dihydromyricetin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-dihydromyricetin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + kaempferol + succinate
  • flavonol biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-dihydromyricetin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + kaempferol + succinate
  • flavonol biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-dihydromyricetin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • flavonol biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-taxifolin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • syringetin biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-taxifolin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]
  • syringetin biosynthesis: (+)-dihydrokaempferol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (+)-taxifolin + H+ + H2O + an oxidized [NADPH-hemoprotein reductase]

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

78 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Jianbo Wu, Kenchi Miyasaka, Wakana Yamada, Shogo Takeda, Norihito Shimizu, Hiroshi Shimoda. The Anti-Adiposity Mechanisms of Ampelopsin and Vine Tea Extract in High Fat Diet and Alcohol-Induced Fatty Liver Mouse Models. Molecules (Basel, Switzerland). 2022 Jan; 27(3):. doi: 10.3390/molecules27030607. [PMID: 35163881]
  • Yue Li, Yong Zhou, Miaoran Wang, Xiaojing Lin, Yunqi Zhang, Irakoze Laurent, Ying Zhong, Jibin Li. Ampelopsin Inhibits Breast Cancer Cell Growth through Mitochondrial Apoptosis Pathway. Biological & pharmaceutical bulletin. 2021 Nov; 44(11):1738-1745. doi: 10.1248/bpb.b21-00470. [PMID: 34470980]
  • Elham Ahmed Kazerooni, Abdullah Mohammed Al-Sadi, Il-Doo Kim, Muhammad Imran, In-Jung Lee. Ampelopsin Confers Endurance and Rehabilitation Mechanisms in Glycine max cv. Sowonkong under Multiple Abiotic Stresses. International journal of molecular sciences. 2021 Oct; 22(20):. doi: 10.3390/ijms222010943. [PMID: 34681604]
  • Jang Mi Han, Hong Lae Kim, Hye Jin Jung. Ampelopsin Inhibits Cell Proliferation and Induces Apoptosis in HL60 and K562 Leukemia Cells by Downregulating AKT and NF-κB Signaling Pathways. International journal of molecular sciences. 2021 Apr; 22(8):. doi: 10.3390/ijms22084265. [PMID: 33924032]
  • Kristýna Káňová, Lucie Petrásková, Helena Pelantová, Zuzana Rybková, Kateřina Malachová, Josef Cvačka, Vladimír Křen, Kateřina Valentová. Sulfated Metabolites of Luteolin, Myricetin, and Ampelopsin: Chemoenzymatic Preparation and Biophysical Properties. Journal of agricultural and food chemistry. 2020 Oct; 68(40):11197-11206. doi: 10.1021/acs.jafc.0c03997. [PMID: 32910657]
  • Ching-Yi Cheng, Yin-Ku Lin, Shih-Chun Yang, Ahmed Alalaiwe, Chia-Jung Lin, Jia-You Fang, Chwan-Fwu Lin. Percutaneous absorption of resveratrol and its oligomers to relieve psoriasiform lesions: In silico, in vitro and in vivo evaluations. International journal of pharmaceutics. 2020 Jul; 585(?):119507. doi: 10.1016/j.ijpharm.2020.119507. [PMID: 32512223]
  • Charlotta Sundin, Caroline E Zetterström, Duc Duy Vo, Robert Brkljača, Sylvia Urban, Mikael Elofsson. Exploring resveratrol dimers as virulence blocking agents - Attenuation of type III secretion in Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Scientific reports. 2020 02; 10(1):2103. doi: 10.1038/s41598-020-58872-0. [PMID: 32034212]
  • Sundas Fayyaz, Muhammad Zahid Qureshi, Saleh S Alhewairini, Seda Avnioglu, Rukset Attar, Uteuliyev Yerzhan Sabitaliyevich, Aleksandra Buha, Hina Salahuddin, Aima Adylova, Fatima Tahir, Edyta Pawlak-Adamska. Regulation of signaling pathways by Ampelopsin (Dihydromyricetin) in different cancers: exploring the highways and byways less travelled. Cellular and molecular biology (Noisy-le-Grand, France). 2019 Sep; 65(7):15-20. doi: 10.14715/cmb/2019.65.7.4. [PMID: 31880533]
  • Zhigang Guo, Hu Guozhang, Hang Wang, Zhaohui Li, Naijie Liu. Ampelopsin inhibits human glioma through inducing apoptosis and autophagy dependent on ROS generation and JNK pathway. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2019 Aug; 116(?):108524. doi: 10.1016/j.biopha.2018.12.136. [PMID: 31108349]
  • Jang Mi Han, Haet Nim Lim, Hye Jin Jung. Hovenia dulcis Thunb. and its active compound ampelopsin inhibit angiogenesis through suppression of VEGFR2 signaling and HIF-1α expression. Oncology reports. 2017 Dec; 38(6):3430-3438. doi: 10.3892/or.2017.6021. [PMID: 29039561]
  • Ping Qiu, Yu Dong, Bo Li, Xian-Jie Kang, Chao Gu, Tao Zhu, Yun-Yun Luo, Min-Xia Pang, Wei-Feng Du, Wei-Hong Ge. Dihydromyricetin modulates p62 and autophagy crosstalk with the Keap-1/Nrf2 pathway to alleviate ethanol-induced hepatic injury. Toxicology letters. 2017 May; 274(?):31-41. doi: 10.1016/j.toxlet.2017.04.009. [PMID: 28419832]
  • Li Lu, Li-Ning Yang, Xue-Xi Wang, Chun-Li Song, Hong Qin, Yong-Jie Wu. Synergistic cytotoxicity of ampelopsin sodium and carboplatin in human non-small cell lung cancer cell line SPC-A1 by G1 cell cycle arrested. Chinese journal of integrative medicine. 2017 Feb; 23(2):125-131. doi: 10.1007/s11655-016-2591-1. [PMID: 27299463]
  • Hang-qing Cui, Cai-ying Peng, Ying-zheng Huang, Ying Gao, Jian-qun Liu, Rui Zhang, Ji-cheng Shu. [Flavonoids from leaves of Psidum littorale]. Yao xue xue bao = Acta pharmaceutica Sinica. 2016 11; 51(11):1745-50. doi: . [PMID: 29908132]
  • Napsiah Abd Rahman, Latifah Saiful Yazan, Agustono Wibowo, Norizan Ahmat, Jhi Biau Foo, Yin Sim Tor, Swee Kong Yeap, Zainal Abidin Razali, Yong Sze Ong, Sharida Fakurazi. Induction of apoptosis and G2/M arrest by ampelopsin E from Dryobalanops towards triple negative breast cancer cells, MDA-MB-231. BMC complementary and alternative medicine. 2016 Sep; 16(?):354. doi: 10.1186/s12906-016-1328-1. [PMID: 27609190]
  • Hamza Temsamani, Stéphanie Krisa, Marion Decossas-Mendoza, Olivier Lambert, Jean-Michel Mérillon, Tristan Richard. Piceatannol and Other Wine Stilbenes: A Pool of Inhibitors against α-Synuclein Aggregation and Cytotoxicity. Nutrients. 2016 Jun; 8(6):. doi: 10.3390/nu8060367. [PMID: 27314384]
  • Huanhuan Lv, Wenna Zhou, Xiaoyan Wang, Zhenhua Wang, Yourui Suo, Honglun Wang. Extraction and Separation of Vitisin D, Ampelopsin B and cis-Vitisin A from Iris lactea Pall. var. chinensis (Fisch.) Koidz by Alkaline Extraction-Acid Precipitation and High-Speed Counter-Current Chromatography. Journal of chromatographic science. 2016 May; 54(5):744-51. doi: 10.1093/chromsci/bmv249. [PMID: 26847919]
  • Xin-Mei Chen, Xian-Biao Xie, Qing Zhao, Fang Wang, Yang Bai, Jun-Qiang Yin, Hong Jiang, Xiao-Lin Xie, Qiang Jia, Gang Huang. Ampelopsin induces apoptosis by regulating multiple c-Myc/S-phase kinase-associated protein 2/F-box and WD repeat-containing protein 7/histone deacetylase 2 pathways in human lung adenocarcinoma cells. Molecular medicine reports. 2015 Jan; 11(1):105-12. doi: 10.3892/mmr.2014.2733. [PMID: 25333250]
  • Juan Xia, Shiwei Guo, Tao Fang, Du Feng, Xingli Zhang, Qingyu Zhang, Jie Liu, Bin Liu, Mingyi Li, Runzhi Zhu. Dihydromyricetin induces autophagy in HepG2 cells involved in inhibition of mTOR and regulating its upstream pathways. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2014 Apr; 66(?):7-13. doi: 10.1016/j.fct.2014.01.014. [PMID: 24444546]
  • Xiang Hou, Jingfei Zhang, Hussain Ahmad, Hao Zhang, Ziwei Xu, Tian Wang. Evaluation of antioxidant activities of ampelopsin and its protective effect in lipopolysaccharide-induced oxidative stress piglets. PloS one. 2014; 9(9):e108314. doi: 10.1371/journal.pone.0108314. [PMID: 25268121]
  • Norizan Ahmat, Agustono Wibowo, Sharifah Aminah Syed Mohamad, Anis Lou Muhammad Low, Adila Sahida Sufian, Muhd Izwan Muhd Yusof, Jalifah Latip. A new symmetrical tetramer oligostilbenoid containing tetrahydrofuran ring from the stem bark of Dryobalanops lanceolata. Journal of Asian natural products research. 2014; 16(11):1099-107. doi: 10.1080/10286020.2014.938059. [PMID: 25034352]
  • Xiu-Xiu Bai, Guang-Ping Xia, Na-Xia Zhao, Hong-Ling Dong, Ze-Yan Shao, Ying-Mei Han. [Phenolic constituents of Ampelopsis grossedentata from zhangjiajie]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2013 Jan; 36(1):65-7. doi: . [PMID: 23750412]
  • Yin-Shiou Lin, Yeh-Lin Lu, Guei-Jane Wang, Lih-Geeng Chen, Chi-Luan Wen, Wen-Chi Hou. Ethanolic extracts and isolated compounds from small-leaf grape (Vitis thunbergii var. taiwaniana) with antihypertensive activities. Journal of agricultural and food chemistry. 2012 Aug; 60(30):7435-41. doi: 10.1021/jf302445x. [PMID: 22762395]
  • Baolai Zhang, Shuhong Dong, Xiaobo Cen, Xiao Wang, Xia Liu, Hongxia Zhang, Xin Zhao, Yongjie Wu. Ampelopsin sodium exhibits antitumor effects against bladder carcinoma in orthotopic xenograft models. Anti-cancer drugs. 2012 Jul; 23(6):590-6. doi: 10.1097/cad.0b013e32835019f9. [PMID: 22241170]
  • Keng Gat Lim, Alexander I Gray, Susan Pyne, Nigel J Pyne. Resveratrol dimers are novel sphingosine kinase 1 inhibitors and affect sphingosine kinase 1 expression and cancer cell growth and survival. British journal of pharmacology. 2012 Jul; 166(5):1605-16. doi: 10.1111/j.1476-5381.2012.01862.x. [PMID: 22251058]
  • Yanjun Shi, Hongyan Liu, Min Xu, Zhenpeng Li, Guoqiang Xie, Liang Huang, Zhengzhi Zeng. Spectroscopic studies on the interaction between an anticancer drug ampelopsin and bovine serum albumin. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2012 Feb; 87(?):251-7. doi: 10.1016/j.saa.2011.11.048. [PMID: 22177222]
  • Shimei Qi, Yinqiang Xin, Yingtao Guo, Ying Diao, Xianjuan Kou, Lan Luo, Zhimin Yin. Ampelopsin reduces endotoxic inflammation via repressing ROS-mediated activation of PI3K/Akt/NF-κB signaling pathways. International immunopharmacology. 2012 Jan; 12(1):278-87. doi: 10.1016/j.intimp.2011.12.001. [PMID: 22193240]
  • Jun Zhou, Ping Zeng, Hong Hai Tu, Feng Qiao Wang. Development and application of high-performance liquid chromatography for the study of ampelopsin pharmacokinetics in rat plasma using cloud-point extraction. Journal of separation science. 2011 Jan; 34(2):160-8. doi: 10.1002/jssc.201000382. [PMID: 21246721]
  • De-Yu Liu, Jian-Tao Ye, Wen-Hui Yang, Jin Yan, Chang-Hong Zeng, Sa Zeng. Ampelopsin, a small molecule inhibitor of HIV-1 infection targeting HIV entry. Biomedical and environmental sciences : BES. 2004 Jun; 17(2):153-64. doi: ". [PMID: 15386941]
  • Yan Wang, Liling Zhou, Rui Li, Ying Wang. [Studies on the chemical constituents from Ampelopsis grossedentata]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2002 Apr; 25(4):254-6. doi: ". [PMID: 12583176]
  • Yan Wang, Liling Zhou, Rui Li, Ying Wang. [Determination of ampelopsin in the different parts of Ampelopsis grossedentata in different seasons by RP-HPLC]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2002 Jan; 25(1):23-4. doi: ". [PMID: 12583237]
  • D Liu, M Luo. [Study on inhibitory effect of ampelopsin on melanoma by serologic pharmacological method]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2001 May; 24(5):348-50. doi: NULL. [PMID: 12587211]
  • Y H Cao, Y Z Huang, L S Ding. [Flavonoids from Shuteria pampaninianna Hand.-Mazz]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2000 May; 25(5):290-1. doi: . [PMID: 12512452]
  • A Yuan, X Huang, J Chen. [Chemical constituents in aerial part of Ampelopsis grossedentata(Hand.-Mazz.) W.T. Wang]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 1998 Jun; 23(6):359-60, 383. doi: ". [PMID: 11601299]
  • K Hase, M Ohsugi, Q Xiong, P Basnet, S Kadota, T Namba. Hepatoprotective effect of Hovenia dulcis THUNB. on experimental liver injuries induced by carbon tetrachloride or D-galactosamine/lipopolysaccharide. Biological & pharmaceutical bulletin. 1997 Apr; 20(4):381-5. doi: 10.1248/bpb.20.381. [PMID: 9145214]