Acetylshikonin (BioDeep_00000000498)

 

Secondary id: BioDeep_00001867513

human metabolite PANOMIX_OTCML-2023 blood metabolite natural product


代谢物信息卡片


InChI=1/C18H18O6/c1-9(2)4-7-15(24-10(3)19)11-8-14(22)16-12(20)5-6-13(21)17(16)18(11)23/h4-6,8,15,20-21H,7H2,1-3H3

化学式: C18H18O6 (330.1103)
中文名称: 乙酰紫草素
谱图信息: 最多检出来源 Mentha canadensis(plant) 47.17%

分子结构信息

SMILES: CC(=CCC(C1=CC(=O)C2=C(C=CC(=C2C1=O)O)O)OC(=O)C)C
InChI: InChI=1S/C18H18O6/c1-9(2)4-7-15(24-10(3)19)11-8-14(22)16-12(20)5-6-13(21)17(16)18(11)23/h4-6,8,15,20-21H,7H2,1-3H3

描述信息

Acetylshikonin is an acetate ester and a hydroxy-1,4-naphthoquinone.
Acetylshikonin is a natural product found in Echium plantagineum, Lithospermum erythrorhizon, and other organisms with data available.
Acetylshikonin, derived from the root of Lithospermum erythrorhizon, has anti-cancer and antiinflammation activity. Acetylshikonin is a non-selective cytochrome P450 inhibitor against all P450s (IC50 values range from 1.4-4.0 μM). Acetylshikonin is an AChE inhibitor and exhibits potent antiapoptosis activity[1][2][3].
Acetylshikonin, derived from the root of Lithospermum erythrorhizon, has anti-cancer and antiinflammation activity. Acetylshikonin is a non-selective cytochrome P450 inhibitor against all P450s (IC50 values range from 1.4-4.0 μM). Acetylshikonin is an AChE inhibitor and exhibits potent antiapoptosis activity[1][2][3].

同义名列表

26 个代谢物同义名

InChI=1/C18H18O6/c1-9(2)4-7-15(24-10(3)19)11-8-14(22)16-12(20)5-6-13(21)17(16)18(11)23/h4-6,8,15,20-21H,7H2,1-3H3; (1R)-1-(5,8-Dihydroxy-1,4-dioxo-1,4-dihydro-2-naphthalenyl)-4-methyl-3-penten-1-yl acetate; 1-(5,8-Dihydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)-4-methylpent-3-en-1-yl acetic acid; (R)-1-(5,8-Dihydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)-4-methylpent-3-en-1-yl acetate; 1-(5,8-dihydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)-4-methylpent-3-en-1-yl acetate; 1,4-Naphthalenedione, 2-(1-(acetyloxy)-4-methyl-3-pentenyl)-5,8-dihydroxy-; [1-(5,8-dihydroxy-1,4-dioxonaphthalen-2-yl)-4-methylpent-3-enyl] acetate; 1, 5,8-dihydroxy-2-(1-hydroxy-4-methyl-3-pentenyl)-, 2-acetate, (+)-; 2-(1-acetyloxy-4-methyl-3-pentenyl)-5,8-dihydroxy-1,4-naphthoquinone; 1, 2-[1-(acetyloxy)-4-methyl-3-pentenyl]-5,8-dihydroxy-, (R)-; 1, 2-[1-(acetyloxy)-4-methyl-3-pentenyl]-5,8-dihydroxy-; acetylshikonin, (+-)-isomer; WNFXUXZJJKTDOZ-UHFFFAOYSA-N; acetylshikonin, (R)-isomer; WNFXUXZJJKTDOZ-UHFFFAOYSA-; acetylshikonin, (S)-isomer; Alkannin, monoacetate; ALKANNIN MONOACETATE; DL-Acetylshikonin; Shikonin, acetyl; acetyl shikonin; Acetylshikonin; B671806K005; ARNEBIN-3; ARNEBIN 3; Acetylshikonin



数据库引用编号

20 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

37 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 15 ANXA5, BCL2, BCL2L1, CASP3, CASP7, CTNNB1, CYP2J2, FOXO3, MAPK8, MTOR, NR4A1, PIK3CA, PRKX, STAT3, TUBB4B
Peripheral membrane protein 3 ANXA5, FOXO3, MTOR
Endoplasmic reticulum membrane 3 BCL2, CYP2J2, MTOR
Mitochondrion membrane 1 BCL2L1
Nucleus 13 BCL2, CASP3, CASP7, CTNNB1, FOXO3, MAPK8, MTOR, NR4A1, PARP1, PBK, PRKX, STAT3, TUBB4B
cytosol 14 ANXA5, BCL2, BCL2L1, CASP3, CASP7, CTNNB1, FOXO3, MAPK8, MTOR, NR4A1, PARP1, PIK3CA, STAT3, TUBB4B
dendrite 1 MTOR
nuclear body 1 PARP1
phagocytic vesicle 1 MTOR
centrosome 2 BCL2L1, CTNNB1
nucleoplasm 10 CASP3, CASP7, CTNNB1, FOXO3, MAPK8, MTOR, NR4A1, PARP1, PRKX, STAT3
RNA polymerase II transcription regulator complex 1 STAT3
Cell membrane 2 CTNNB1, TNF
Cytoplasmic side 3 BCL2L1, FOXO3, MTOR
lamellipodium 2 CTNNB1, PIK3CA
Golgi apparatus membrane 1 MTOR
Synapse 2 CTNNB1, MAPK8
cell cortex 1 CTNNB1
cell junction 1 CTNNB1
cell surface 1 TNF
glutamatergic synapse 2 CASP3, CTNNB1
Golgi membrane 1 MTOR
lysosomal membrane 1 MTOR
mitochondrial inner membrane 1 BCL2L1
neuronal cell body 2 CASP3, TNF
presynaptic membrane 1 CTNNB1
sarcolemma 1 ANXA5
Cytoplasm, cytosol 5 BCL2L1, CASP7, FOXO3, NR4A1, PARP1
Lysosome 1 MTOR
Presynapse 1 NR4A1
plasma membrane 4 CTNNB1, PIK3CA, STAT3, TNF
synaptic vesicle membrane 1 BCL2L1
Membrane 6 ANXA5, BCL2, CTNNB1, CYP2J2, MTOR, PARP1
axon 1 MAPK8
basolateral plasma membrane 1 CTNNB1
extracellular exosome 4 ANXA5, CTNNB1, CYP2J2, TUBB4B
Lysosome membrane 1 MTOR
endoplasmic reticulum 2 BCL2, BCL2L1
extracellular space 3 CASP7, IL6, TNF
perinuclear region of cytoplasm 2 CTNNB1, PIK3CA
Schaffer collateral - CA1 synapse 1 CTNNB1
adherens junction 1 CTNNB1
apicolateral plasma membrane 1 CTNNB1
bicellular tight junction 1 CTNNB1
intercalated disc 1 PIK3CA
mitochondrion 4 BCL2, BCL2L1, NR4A1, PARP1
protein-containing complex 4 BCL2, CTNNB1, FOXO3, PARP1
intracellular membrane-bounded organelle 1 CYP2J2
Microsome membrane 2 CYP2J2, MTOR
postsynaptic density 1 CASP3
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Secreted 1 IL6
extracellular region 4 ANXA5, IL6, TNF, TUBB4B
Mitochondrion outer membrane 4 BCL2, BCL2L1, FOXO3, MTOR
Single-pass membrane protein 2 BCL2, BCL2L1
mitochondrial outer membrane 4 BCL2, BCL2L1, FOXO3, MTOR
Mitochondrion matrix 2 BCL2L1, FOXO3
mitochondrial matrix 2 BCL2L1, FOXO3
transcription regulator complex 4 CTNNB1, NR4A1, PARP1, STAT3
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 BCL2L1
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 BCL2L1
Nucleus membrane 2 BCL2, BCL2L1
Bcl-2 family protein complex 2 BCL2, BCL2L1
nuclear membrane 3 BCL2, BCL2L1, NR4A1
external side of plasma membrane 2 ANXA5, TNF
Extracellular vesicle 1 TUBB4B
Z disc 1 CTNNB1
beta-catenin destruction complex 1 CTNNB1
microtubule cytoskeleton 1 TUBB4B
nucleolus 1 PARP1
Wnt signalosome 1 CTNNB1
apical part of cell 1 CTNNB1
cell-cell junction 1 CTNNB1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
postsynaptic membrane 1 CTNNB1
Membrane raft 1 TNF
pore complex 1 BCL2
Cytoplasm, cytoskeleton 2 CTNNB1, TUBB4B
focal adhesion 2 ANXA5, CTNNB1
microtubule 1 TUBB4B
Cell junction, adherens junction 1 CTNNB1
flotillin complex 1 CTNNB1
Nucleus, PML body 1 MTOR
PML body 1 MTOR
collagen-containing extracellular matrix 1 ANXA5
fascia adherens 1 CTNNB1
lateral plasma membrane 1 CTNNB1
Zymogen granule membrane 1 ANXA5
chromatin 4 FOXO3, NR4A1, PARP1, STAT3
phagocytic cup 1 TNF
cell periphery 1 CTNNB1
mitotic spindle 1 TUBB4B
Chromosome 1 PARP1
cytoskeleton 1 TUBB4B
Cytoplasm, cytoskeleton, cilium basal body 1 CTNNB1
Secreted, extracellular space 1 CASP7
Nucleus, nucleolus 1 PARP1
spindle pole 1 CTNNB1
nuclear replication fork 1 PARP1
chromosome, telomeric region 1 PARP1
postsynaptic density, intracellular component 1 CTNNB1
microvillus membrane 1 CTNNB1
site of double-strand break 1 PARP1
intercellular bridge 1 TUBB4B
Cytoplasm, cytoskeleton, flagellum axoneme 1 TUBB4B
sperm flagellum 1 TUBB4B
nuclear envelope 2 MTOR, PARP1
Endomembrane system 2 CTNNB1, MTOR
axonemal microtubule 1 TUBB4B
euchromatin 1 CTNNB1
myelin sheath 1 BCL2
endoplasmic reticulum lumen 1 IL6
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
RNA polymerase II transcription repressor complex 1 FOXO3
beta-catenin-TCF complex 1 CTNNB1
azurophil granule lumen 1 TUBB4B
presynaptic active zone cytoplasmic component 1 CTNNB1
vesicle membrane 1 ANXA5
protein-DNA complex 2 CTNNB1, PARP1
basal dendrite 1 MAPK8
death-inducing signaling complex 1 CASP3
Cytoplasmic vesicle, phagosome 1 MTOR
catenin complex 1 CTNNB1
site of DNA damage 1 PARP1
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
interleukin-6 receptor complex 1 IL6
endothelial microparticle 1 ANXA5
[Poly [ADP-ribose] polymerase 1, processed N-terminus]: Chromosome 1 PARP1
[Poly [ADP-ribose] polymerase 1, processed C-terminus]: Cytoplasm 1 PARP1
BAD-BCL-2 complex 1 BCL2
beta-catenin-TCF7L2 complex 1 CTNNB1
beta-catenin-ICAT complex 1 CTNNB1
Scrib-APC-beta-catenin complex 1 CTNNB1
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
[Isoform Bcl-X(L)]: Mitochondrion inner membrane 1 BCL2L1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Shih-Sen Lin, Tsung-Ming Chang, Augusta I-Chin Wei, Chiang-Wen Lee, Zih-Chan Lin, Yao-Chang Chiang, Miao-Ching Chi, Ju-Fang Liu. Acetylshikonin induces necroptosis via the RIPK1/RIPK3-dependent pathway in lung cancer. Aging. 2023 Dec; 15(24):14900-14914. doi: 10.18632/aging.205316. [PMID: 38126996]
  • Meng-Di Wu, Yuan-Ying Zhang, Shu-Ying Yi, Bei-Bei Sun, Jing Lan, Han-Ming Jiang, Gang-Ping Hao. Acetylshikonin induces autophagy-dependent apoptosis through the key LKB1-AMPK and PI3K/Akt-regulated mTOR signalling pathways in HL-60 cells. Journal of cellular and molecular medicine. 2022 03; 26(5):1606-1620. doi: 10.1111/jcmm.17202. [PMID: 35106915]
  • Heui Min Lim, Jongsung Lee, Seon Hak Yu, Myeong Jin Nam, Hyo Sun Cha, Kyungmoon Park, Yung-Hun Yang, Kyu Yun Jang, See-Hyoung Park. Acetylshikonin, A Novel CYP2J2 Inhibitor, Induces Apoptosis in RCC Cells via FOXO3 Activation and ROS Elevation. Oxidative medicine and cellular longevity. 2022; 2022(?):9139338. doi: 10.1155/2022/9139338. [PMID: 35308176]
  • Ramona Figat, Anna Zgadzaj, Sylwia Geschke, Patrycja Sieczka, Agnieszka Pietrosiuk, Sylwester Sommer, Agata Skrzypczak. Cytotoxicity and antigenotoxicity evaluation of acetylshikonin and shikonin. Drug and chemical toxicology. 2021 Mar; 44(2):140-147. doi: 10.1080/01480545.2018.1536710. [PMID: 30574814]
  • Zhiqin Zhang, Jie Bai, Yawen Zeng, Mengru Cai, Yu Yao, Huimin Wu, Longtai You, Xiaoxv Dong, Jian Ni. Pharmacology, toxicity and pharmacokinetics of acetylshikonin: a review. Pharmaceutical biology. 2020 Dec; 58(1):950-958. doi: 10.1080/13880209.2020.1818793. [PMID: 32956595]
  • Junbiao Wang, Romilde Iannarelli, Stefania Pucciarelli, Emiliano Laudadio, Roberta Galeazzi, Mara Giangrossi, Maurizio Falconi, Lishan Cui, Aleix Marti Navia, Michela Buccioni, Gabriella Marucci, Daniele Tomassoni, Laura Serini, Stefania Sut, Filippo Maggi, Stefano Dall'Acqua, Cristina Marchini, Augusto Amici. Acetylshikonin isolated from Lithospermum erythrorhizon roots inhibits dihydrofolate reductase and hampers autochthonous mammary carcinogenesis in Δ16HER2 transgenic mice. Pharmacological research. 2020 11; 161(?):105123. doi: 10.1016/j.phrs.2020.105123. [PMID: 32822867]
  • Xi-Hui Fan, Lei Cheng, Ai-Hui Yan. Ameliorative effect of acetylshikonin on ovalbumin (OVA)-induced allergic rhinitis in mice through the inhibition of Th2 cytokine production and mast cell histamine release. APMIS : acta pathologica, microbiologica, et immunologica Scandinavica. 2019 Oct; 127(10):688-695. doi: 10.1111/apm.12984. [PMID: 31344274]
  • Milena D Vukic, Nenad L Vukovic, Ana D Obradovic, Suzana Lj Popovic, Milan M Zaric, Predrag M Djurdjevic, Snezana D Markovic, Dejan D Baskic. Naphthoquinone rich Onosma visianii Clem (Boraginaceae) root extracts induce apoptosis and cell cycle arrest in HCT-116 and MDA-MB-231 cancer cell lines. Natural product research. 2018 Nov; 32(22):2712-2716. doi: 10.1080/14786419.2017.1374271. [PMID: 28882053]
  • Jiacheng Zeng, Banghao Zhu, Meiling Su. Autophagy is involved in acetylshikonin ameliorating non-alcoholic steatohepatitis through AMPK/mTOR pathway. Biochemical and biophysical research communications. 2018 09; 503(3):1645-1650. doi: 10.1016/j.bbrc.2018.07.094. [PMID: 30055803]
  • Zequn Li, Zhiyuan Yan, Chunbo Xu, Yiqun Dong, Ye Xiong, Yongyue Dai. Acetylshikonin attenuates angiotensin II-induced proliferation and motility of human brain smooth muscle cells by inhibiting Wnt/β-catenin signaling. Human cell. 2018 Jul; 31(3):242-250. doi: 10.1007/s13577-018-0207-0. [PMID: 29687375]
  • Zezhao Li, Zhen Hong, Zhiqing Peng, Yongcai Zhao, Rusheng Shao. Acetylshikonin from Zicao ameliorates renal dysfunction and fibrosis in diabetic mice by inhibiting TGF-β1/Smad pathway. Human cell. 2018 Jul; 31(3):199-209. doi: 10.1007/s13577-017-0192-8. [PMID: 29549584]
  • Yu He, Qisen Li, Meiling Su, Wendong Huang, Banghao Zhu. Acetylshikonin from Zicao exerts antifertility effects at high dose in rats by suppressing the secretion of GTH. Biochemical and biophysical research communications. 2016 08; 476(4):560-565. doi: 10.1016/j.bbrc.2016.05.162. [PMID: 27264949]
  • Mei-Ling Su, Yu He, Qi-Sen Li, Bang-Hao Zhu. Efficacy of Acetylshikonin in Preventing Obesity and Hepatic Steatosis in db/db Mice. Molecules (Basel, Switzerland). 2016 Jul; 21(8):. doi: 10.3390/molecules21080976. [PMID: 27483220]
  • Meiling Su, Wendong Huang, Banghao Zhu. Acetylshikonin from Zicao Prevents Obesity in Rats on a High-Fat Diet by Inhibiting Lipid Accumulation and Inducing Lipolysis. PloS one. 2016; 11(1):e0146884. doi: 10.1371/journal.pone.0146884. [PMID: 26771185]
  • Agata Skrzypczak, Natalia Przystupa, Anna Zgadzaj, Andrzej Parzonko, Katarzyna Sykłowska-Baranek, Katarzyna Paradowska, Grzegorz Nałęcz-Jawecki. Antigenotoxic, anti-photogenotoxic and antioxidant activities of natural naphthoquinone shikonin and acetylshikonin and Arnebia euchroma callus extracts evaluated by the umu-test and EPR method. Toxicology in vitro : an international journal published in association with BIBRA. 2015 Dec; 30(1 Pt B):364-72. doi: 10.1016/j.tiv.2015.09.029. [PMID: 26434532]
  • Morteza Eskandani, Hossein Nazemiyeh. Self-reporter shikonin-Act-loaded solid lipid nanoparticle: formulation, physicochemical characterization and geno/cytotoxicity evaluation. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. 2014 Aug; 59(?):49-57. doi: 10.1016/j.ejps.2014.04.009. [PMID: 24768857]
  • Jeong Moon, Sang Seok Koh, Waraporn Malilas, Il-Rae Cho, Chutima Kaewpiboon, Sirichat Kaowinn, Keesook Lee, Byung Hak Jhun, Young Whan Choi, Young-Hwa Chung. Acetylshikonin induces apoptosis of hepatitis B virus X protein-expressing human hepatocellular carcinoma cells via endoplasmic reticulum stress. European journal of pharmacology. 2014 Jul; 735(?):132-40. doi: 10.1016/j.ejphar.2014.04.021. [PMID: 24769509]
  • So Young Gwon, Ji Yun Ahn, Chang Hwa Chung, BoKyung Moon, Tae Youl Ha. Lithospermum erythrorhizon suppresses high-fat diet-induced obesity, and acetylshikonin, a main compound of Lithospermum erythrorhizon, inhibits adipocyte differentiation. Journal of agricultural and food chemistry. 2012 Sep; 60(36):9089-96. doi: 10.1021/jf3017404. [PMID: 22900585]
  • Kh Zare, M Khosrowshahli, H Nazemiyeh, A Movafeghi, A Motallebi Azar, Y Omidi. Callus culture of Echium italicum L. towards production of a shikonin derivative. Natural product research. 2011 Sep; 25(16):1480-7. doi: 10.1080/14786410902804857. [PMID: 20635302]
  • Nandini Sharma, Upendra K Sharma, Ajai P Gupta, Arun K Sinha, Brij Lal, Paramvir S Ahuja. Simultaneous densitometric determination of shikonin, acetylshikonin, and beta-acetoxyisovaleryl-shikonin in ultrasonic-assisted extracts of four Arnebia species using reversed-phase thin layer chromatography. Journal of separation science. 2009 Sep; 32(18):3239-45. doi: 10.1002/jssc.200900129. [PMID: 19697311]
  • Mei-Feng Hsu, Ling-Chu Chang, Li-Jiau Huang, Sheng-Chu Kuo, Hsiao-Yun Lee, Min-Chi Lu, Jih-Pyang Wang. The influence of acetylshikonin, a natural naphthoquinone, on the production of leukotriene B4 and thromboxane A2 in rat neutrophils. European journal of pharmacology. 2009 Apr; 607(1-3):234-43. doi: 10.1016/j.ejphar.2009.02.005. [PMID: 19232341]
  • Hyo-Jung Lee, Hyo-Jeong Lee, Venkataraman Magesh, Dongwoo Nam, Eun-Ok Lee, Kwang Seok Ahn, Min-Hyung Jung, Kyoo-Seok Ahn, Dae-Keun Kim, Ji-Young Kim, Sung-Hoon Kim. Shikonin, acetylshikonin, and isobutyroylshikonin inhibit VEGF-induced angiogenesis and suppress tumor growth in lewis lung carcinoma-bearing mice. Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan. 2008 Nov; 128(11):1681-8. doi: 10.1248/yakushi.128.1681. [PMID: 18981704]
  • Jie Liu, Wen Zhou, Shao-Shun Li, Zhe Sun, Bingzhen Lin, Yuan-Yuan Lang, Jia-You He, Xihua Cao, Tingdong Yan, Li Wang, Jiongming Lu, Young-Hoon Han, Yu Cao, Xiao-kun Zhang, Jin-Zhang Zeng. Modulation of orphan nuclear receptor Nur77-mediated apoptotic pathway by acetylshikonin and analogues. Cancer research. 2008 Nov; 68(21):8871-80. doi: 10.1158/0008-5472.can-08-1972. [PMID: 18974131]
  • Nandini Sharma, Upendra Kumar Sharma, Sonia Malik, Shashi Bhushan, Vinod Kumar, Subash Chandra Verma, Naina Sharma, Madhu Sharma, Arun Kumar Sinha. Isolation and purification of acetylshikonin and beta-acetoxyisovalerylshikonin from cell suspension cultures of Arnebia euchroma (Royle) Johnston using rapid preparative HPLC. Journal of separation science. 2008 Mar; 31(4):629-35. doi: 10.1002/jssc.200700489. [PMID: 18264989]
  • T Kundakovic, N Fokialakis, S Dobric, H Pratsinis, D Kletsas, N Kovacevic, I Chinou. Evaluation of the anti-inflammatory and cytotoxic activities of naphthazarine derivatives from Onosma leptantha. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2006 Mar; 13(4):290-4. doi: 10.1016/j.phymed.2004.10.009. [PMID: 16492534]
  • Agnieszka Pietrosiuk, Mirosława Furmanowa, Ewa Skopińiska-Rózewska, Ewa Sommer, Henryk Skurzak, Janusz Bany. The effect of acetylshikonin isolated from Lithospermum canescens roots on tumor-induced cutaneous angiogenesis. Acta poloniae pharmaceutica. 2004 Sep; 61(5):379-82. doi: ". [PMID: 15747695]
  • H Yamamoto, K Yazaki, K Inoue. Simultaneous analysis of shikimate-derived secondary metabolites in Lithospermum erythrorhizon cell suspension cultures by high-performance liquid chromatography. Journal of chromatography. B, Biomedical sciences and applications. 2000 Jan; 738(1):3-15. doi: 10.1016/s0378-4347(99)00473-9. [PMID: 10778921]
  • J P Wang, S L Raung, L C Chang, S C Kuo. Inhibition of hind-paw edema and cutaneous vascular plasma extravasation in mice by acetylshikonin. European journal of pharmacology. 1995 Jan; 272(1):87-95. doi: 10.1016/0014-2999(94)00627-j. [PMID: 7536160]