Crocetin (BioDeep_00000409379)

Main id: BioDeep_00000000047

 

PANOMIX_OTCML-2023 natural product


代谢物信息卡片


(2E,4E,6E,8E,10E,12E,14E)-2,6,11,15-tetramethylhexadeca-2,4,6,8,10,12,14-heptaenedioic acid8,8-diapocarotene-8,8-dioic acid

化学式: C20H24O4 (328.1675)
中文名称: 番红花酸, 西红花酸, 藏红花油, 藏红花酸
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C(O)(=O)/C(/C)=C/C=C/C(/C)=C/C=C/C=C(\C)/C=C/C=C(\C)/C(O)=O
InChI: InChI=1S/C20H24O4/c1-15(11-7-13-17(3)19(21)22)9-5-6-10-16(2)12-8-14-18(4)20(23)24/h5-14H,1-4H3,(H,21,22)(H,23,24)/b6-5+,11-7+,12-8+,15-9+,16-10+,17-13+,18-14+

描述信息

Crocetin is a 20-carbon dicarboxylic acid which is a diterpenoid and natural carotenoid. Found in the crocus flower, it has been administered as an anti-fatigue dietary supplement. It has a role as a nutraceutical, a metabolite and an antioxidant. It is a carotenoic acid, a diterpenoid and a polyunsaturated dicarboxylic acid. It is a conjugate acid of a crocetin(2-).
Vitamin A-analog that increases diffusivity of oxygen in aqueous solutions, including plasma.
Crocetin is a natural product found in Verbascum lychnitis, Gardenia jasminoides, and other organisms with data available.
A 20-carbon dicarboxylic acid which is a diterpenoid and natural carotenoid. Found in the crocus flower, it has been administered as an anti-fatigue dietary supplement.
COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
D020011 - Protective Agents > D016588 - Anticarcinogenic Agents
D000970 - Antineoplastic Agents
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
Crocetin is a natural carotenoid dicarboxylic acid that is found in the crocus flower and Gardenia jasminoides (fruits).

同义名列表

63 个代谢物同义名

(2E,4E,6E,8E,10E,12E,14E)-2,6,11,15-tetramethylhexadeca-2,4,6,8,10,12,14-heptaenedioic acid8,8-diapocarotene-8,8-dioic acid; (2Z,4E,6Z,8E,10E,12E,14Z)-2,6,11,15-tetramethylhexadeca-2,4,6,8,10,12,14-heptaenedioic acid;Crocetin; 2,4,6,8,10,12,14-HEXADECAHEPTAENEDIOIC ACID, 2,6,11,15-TETRAMETHYL-, (2E,4E,6E,8E,10E,12E,14E)-; (2E,4E,6E,8E,10E,12E,14E)-2,6,11,15-tetramethyl-2,4,6,8,10,12,14-hexadecaheptaenedioic acid; (2E,4E,6E,8E,10E,12E,14E)-2,6,11,15-tetramethylhexadeca-2,4,6,8,10,12,14-heptaenedioic acid; (2Z,4E,6Z,8E,10Z,12E,14Z)-2,6,11,15-tetramethylhexadeca-2,4,6,8,10,12,14-heptaenedioic acid; 2,4,6,8,10,12,14-Hexadecaheptaenedioic acid, 2,6,11,15-tetramethyl-, (all-E)-; 2,4,6,8,10,12,14-Hexadecaheptaenedioic acid, 2,6,11,15-tetramethyl-,(all-E)-; (ALL-E)-2,6,11,15-TETRAMETHYLHEXADECA-2,4,6,8,10,12,14-HEPTAENEDIOIC ACID; 2,4,6,8,10,12,14-Hexadecaheptaenedioic acid, 2,6,11,15-tetramethyl-; TRANSCROCETINATE LIPOSOMAL COMPONENT OF LEAF-4L6715; 8,8-Diapo-.psi.,.psi.-carotenedioic acid; LEAF-4L6715 COMPONENT TRANSCROCETINATE; 8,8-diapo-psi,psi-carotenedioic acid; 8,8-Diapo-psi,psi-carotenedioic acid; 8,8-Diapocarotene-8,8-dioic acid; 8,8-diapo-8,8-carotenedioic acid; 8,8-Diapocarotenedioic acid; 8,8-diapocarotenedioic acid; Croceic Acid; Transcrocetin; trans sodium crocetinate; Transcrocetin [USAN:INN]; trans-sodium crocetinate; transcrocetinate sodium; TRANSCROCETIN [WHO-DD]; trans-Crocetin - 98\\%; Transcrocetin [USAN]; crocetin sodium salt; Transcrocetinic acid; Transcrocetin [INN]; .alpha.-Crocetin; saffron resinoid; Transcrocetinate; UNII-20TC155L9C; CROCETIN [INCI]; alpha Crocetin; alpha-Crocetin; trans-Crocetin; CROCETIN [MI]; transcrocetin; LEAF-4L6715; LEAF-4L7520; 20TC155L9C; Crocetin; TSC cpd; TSC; (all-E)-Crocetin; 2,4,6,8,10,12,14-Hexadecaheptaenedioic acid, 2,6,11,15-tetramethyl-;.alpha.-Crocetin; 2,4,6,8,10,12,14-Hexadecaheptaenedioic acid, 2,6,11,15-tetramethyl-, (all-E)- (8CI); 2,6,11,15-tetramethylhexadeca-2,4,6,8,10,12,14-heptaenedioic acid; Natural yellow 6; EINECS 248-708-0; LMPR01070223; NCI60_003871; AIDS-073359; CCRIS 7484; 27876-94-4; NSC 407300; AIDS073359; CI 75100; C08588; (2Z,4E,6E,8E,10Z,12E,14E)-2,6,11,15-tetramethylhexadeca-2,4,6,8,10,12,14-heptaenedioic acid; Crocetin



数据库引用编号

26 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

95 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 11 AKT1, ANG, BCL2, CASP3, CAT, MAPK1, MAPK14, NFE2L2, PIK3CA, PTGS2, VEGFA
Peripheral membrane protein 2 GORASP1, PTGS2
Endoplasmic reticulum membrane 3 BCL2, HMOX1, PTGS2
Nucleus 11 AKT1, ANG, BCL2, CASP3, HMOX1, JUN, MAPK1, MAPK14, MPO, NFE2L2, VEGFA
cytosol 10 AKT1, ANG, BCL2, CASP3, CAT, HMOX1, MAPK1, MAPK14, NFE2L2, PIK3CA
centrosome 2 MAPK1, NFE2L2
nucleoplasm 8 AKT1, CASP3, HMOX1, JUN, MAPK1, MAPK14, MPO, NFE2L2
RNA polymerase II transcription regulator complex 2 JUN, NFE2L2
Cell membrane 2 AKT1, TNF
Cytoplasmic side 2 GORASP1, HMOX1
lamellipodium 2 AKT1, PIK3CA
Golgi apparatus membrane 1 GORASP1
Synapse 1 MAPK1
cell cortex 1 AKT1
cell surface 2 TNF, VEGFA
glutamatergic synapse 3 AKT1, CASP3, MAPK14
Golgi apparatus 4 GORASP1, MAPK1, NFE2L2, VEGFA
Golgi membrane 2 GORASP1, INS
growth cone 1 ANG
neuronal cell body 3 ANG, CASP3, TNF
postsynapse 1 AKT1
Cytoplasm, cytosol 1 NFE2L2
Lysosome 1 MPO
plasma membrane 5 AKT1, MAPK1, NFE2L2, PIK3CA, TNF
Membrane 5 AKT1, BCL2, CAT, HMOX1, VEGFA
axon 1 CCK
caveola 2 MAPK1, PTGS2
extracellular exosome 2 CAT, MPO
endoplasmic reticulum 4 BCL2, HMOX1, PTGS2, VEGFA
extracellular space 9 ANG, CCK, HMOX1, IL10, IL6, INS, MPO, TNF, VEGFA
perinuclear region of cytoplasm 2 HMOX1, PIK3CA
adherens junction 1 VEGFA
intercalated disc 1 PIK3CA
mitochondrion 4 BCL2, CAT, MAPK1, MAPK14
protein-containing complex 4 AKT1, BCL2, CAT, PTGS2
intracellular membrane-bounded organelle 2 CAT, MPO
Microsome membrane 1 PTGS2
postsynaptic density 1 CASP3
Secreted 6 ANG, CCK, IL10, IL6, INS, VEGFA
extracellular region 11 ANG, CAT, CCK, IL10, IL6, INS, MAPK1, MAPK14, MPO, TNF, VEGFA
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 2 BCL2, HMOX1
mitochondrial matrix 1 CAT
transcription regulator complex 1 JUN
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 MAPK1
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 1 TNF
Secreted, extracellular space, extracellular matrix 1 VEGFA
actin cytoskeleton 1 ANG
microtubule cytoskeleton 1 AKT1
nucleolus 1 ANG
Early endosome 1 MAPK1
cell-cell junction 1 AKT1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
vesicle 1 AKT1
Membrane raft 1 TNF
pore complex 1 BCL2
Cell junction, focal adhesion 1 MAPK1
Cytoplasm, cytoskeleton, spindle 1 MAPK1
focal adhesion 2 CAT, MAPK1
spindle 2 AKT1, MAPK1
cis-Golgi network 1 GORASP1
extracellular matrix 1 VEGFA
Peroxisome 1 CAT
basement membrane 1 ANG
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
secretory granule 2 MPO, VEGFA
nuclear speck 1 MAPK14
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
Late endosome 1 MAPK1
neuron projection 1 PTGS2
ciliary basal body 1 AKT1
chromatin 2 JUN, NFE2L2
mediator complex 1 NFE2L2
phagocytic cup 1 TNF
mitotic spindle 1 MAPK1
Chromosome 1 ANG
cytoskeleton 1 MAPK1
Nucleus, nucleolus 1 ANG
spindle pole 1 MAPK14
nuclear chromosome 1 JUN
endosome lumen 1 INS
Membrane, caveola 1 MAPK1
Cytoplasm, Stress granule 1 ANG
cytoplasmic stress granule 1 ANG
euchromatin 1 JUN
myelin sheath 1 BCL2
pseudopodium 1 MAPK1
azurophil granule 1 MPO
ficolin-1-rich granule lumen 3 CAT, MAPK1, MAPK14
secretory granule lumen 3 CAT, INS, MAPK14
Golgi lumen 1 INS
endoplasmic reticulum lumen 4 IL6, INS, MAPK1, PTGS2
platelet alpha granule lumen 1 VEGFA
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
endocytic vesicle 1 ANG
transport vesicle 1 INS
azurophil granule lumen 2 MAPK1, MPO
Endoplasmic reticulum-Golgi intermediate compartment membrane 2 GORASP1, INS
Golgi apparatus, cis-Golgi network membrane 1 GORASP1
Single-pass type IV membrane protein 1 HMOX1
phagocytic vesicle lumen 1 MPO
protein-DNA complex 1 NFE2L2
death-inducing signaling complex 1 CASP3
transcription factor AP-1 complex 1 JUN
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
angiogenin-PRI complex 1 ANG
catalase complex 1 CAT
interleukin-6 receptor complex 1 IL6
BAD-BCL-2 complex 1 BCL2
[N-VEGF]: Cytoplasm 1 VEGFA
[VEGFA]: Secreted 1 VEGFA
[Isoform L-VEGF189]: Endoplasmic reticulum 1 VEGFA
[Isoform VEGF121]: Secreted 1 VEGFA
[Isoform VEGF165]: Secreted 1 VEGFA
VEGF-A complex 1 VEGFA
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Jun Ho Lee, Seong-Rae Lee, Sang Yup Lee, Pyung Cheon Lee. Complete microbial synthesis of crocetin and crocins from glycerol in Escherichia coli. Microbial cell factories. 2024 Jan; 23(1):10. doi: 10.1186/s12934-023-02287-9. [PMID: 38178149]
  • Mohammad Mazani, Sina Mahdavifard, Alireza Koohi. Crocetin ameliorative effect on diabetic nephropathy in rats through a decrease in transforming growth factor-β and an increase in glyoxalase-I activity. Clinical nutrition ESPEN. 2023 Dec; 58(?):61-66. doi: 10.1016/j.clnesp.2023.08.033. [PMID: 38057037]
  • Jie Chen, Yu-Fei Li, Yun-Shu Zhang, Tian-Hui Du, Yang Lu, Xin-Yi Li, Shu-Wen Guo. Protection of H9c2 Myocardial Cells from Oxidative Stress by Crocetin via PINK1/Parkin Pathway-Mediated Mitophagy. Journal of visualized experiments : JoVE. 2023 05; ?(195):. doi: 10.3791/65105. [PMID: 37306415]
  • Zhongqing Liu, Zhaojun Wang, Zhanchi Zhu, Jing Hong, Leisha Cui, Ying Hao, Guosheng Cheng, Rui Tan. Crocetin Regulates Functions of Neural Stem Cells to Generate New Neurons for Cerebral Ischemia Recovery. Advanced healthcare materials. 2023 Mar; ?(?):e2203132. doi: 10.1002/adhm.202203132. [PMID: 37001492]
  • Wenxian Yin, Fulan Zhao, Yingmeng He, Hui Lai, Mengqi Sun. The mechanism of Croci stigma in the treatment of melasma based on network pharmacology and molecular docking. Journal of cosmetic dermatology. 2023 Feb; ?(?):. doi: 10.1111/jocd.15682. [PMID: 36852722]
  • Qing Qiao, Dandan Yao, Yongjie Wang, Shuxia Zhang, Gang Chen. Transcrocetin Meglumine Salt Inhibits Spinal Glial Cell-Mediated Proinflammatory Cytokines and Attenuates Complete Freund's Adjuvant-Induced Inflammatory Pain. Neuroimmunomodulation. 2023; 30(1):315-324. doi: 10.1159/000534607. [PMID: 37899033]
  • Zhaoming Geng, Ming Guo, Qingteng Zhou, Lanying Pan. The Mechanism of Crocetin Targeting Cardiovascular Disease Based on Network Pharmacology Constrained by Spectral Experiments. Chemistry & biodiversity. 2022 Nov; 19(11):e202200685. doi: 10.1002/cbdv.202200685. [PMID: 36251941]
  • Xiongjie Zheng, Jianing Mi, Aparna Balakrishna, Kit Xi Liew, Abdugaffor Ablazov, Rachid Sougrat, Salim Al-Babili. Gardenia carotenoid cleavage dioxygenase 4a is an efficient tool for biotechnological production of crocins in green and non-green plant tissues. Plant biotechnology journal. 2022 11; 20(11):2202-2216. doi: 10.1111/pbi.13901. [PMID: 35997958]
  • Benjamin Moras, Camille Pouchieu, David Gaudout, Stéphane Rey, Anthony Anchisi, Xavier Saupin, Patrick Jame. Authentication of Iranian Saffron (Crocus sativus) Using Stable Isotopes δ13C and δ2H and Metabolites Quantification. Molecules (Basel, Switzerland). 2022 Oct; 27(20):. doi: 10.3390/molecules27206801. [PMID: 36296396]
  • Fatemeh Jafari, Seyed Ahmad Emami, Behjat Javadi, Zahra Salmasi, Mona Tayarani-Najjaran, Zahra Tayarani-Najaran. Inhibitory effect of saffron, crocin, crocetin, and safranal against adipocyte differentiation in human adipose-derived stem cells. Journal of ethnopharmacology. 2022 Aug; 294(?):115340. doi: 10.1016/j.jep.2022.115340. [PMID: 35551973]
  • Hussain Ahmed, Sarwat Jahan, Muhammad Umar Ijaz, Mehreen Riaz, Farhad Ullah, Najm Us Saqib. The ameliorating effects of crocetin on frozen-thawed quality, and fertility via attenuating oxidative status of bubaline spermatozoa. Cryobiology. 2022 May; ?(?):. doi: 10.1016/j.cryobiol.2022.05.004. [PMID: 35643152]
  • Hui-Zhi Zhang, Qiu-Yuan Xia, Shu-Yan Wang, Meng-Jie Shi, Su-Ying Wang. Low-grade oncocytic tumor of kidney harboring TSC/MTOR mutation: clinicopathologic, immunohistochemical and molecular characteristics support a distinct entity. Virchows Archiv : an international journal of pathology. 2022 May; 480(5):999-1008. doi: 10.1007/s00428-022-03283-x. [PMID: 35099634]
  • Yan Ding, Lei Ma, Limin He, Quanxiao Xu, Zhuang Zhang, Zhen Zhang, Xinping Zhang, Rui Fan, Wenjun Ma, Ya'nan Sun, Baile Zhang, Wentai Li, Yao Zhai, Jiandong Zhang. A strategy for attenuation of acute radiation-induced lung injury using crocetin from gardenia fruit. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2022 May; 149(?):112899. doi: 10.1016/j.biopha.2022.112899. [PMID: 35366531]
  • Peishi Feng, Qiaoqiao Li, Ling Liu, Siyu Wang, Zhipeng Wu, Yi Tao, Pan Huang, Ping Wang. Crocetin Prolongs Recovery Period of DSS-Induced Colitis via Altering Intestinal Microbiome and Increasing Intestinal Permeability. International journal of molecular sciences. 2022 Mar; 23(7):. doi: 10.3390/ijms23073832. [PMID: 35409192]
  • Zijin Xu, Susu Lin, Zheren Tong, Suhong Chen, Yifeng Cao, Qiaoqiao Li, Yuli Jiang, Weijie Cai, Yingpeng Tong, Bathaie S Zahra, Ping Wang. Crocetin ameliorates non-alcoholic fatty liver disease by modulating mitochondrial dysfunction in L02 cells and zebrafish model. Journal of ethnopharmacology. 2022 Mar; 285(?):114873. doi: 10.1016/j.jep.2021.114873. [PMID: 34848360]
  • Mihaela Farcaş, Zoran Gatalica, Kiril Trpkov, Jeffrey Swensen, Ming Zhou, Reza Alaghehbandan, Sean R Williamson, Cristina Magi-Galluzzi, Anthony J Gill, Maria Tretiakova, Jose I Lopez, Delia Perez Montiel, Maris Sperga, Eva Comperat, Fadi Brimo, Asli Yilmaz, Farshid Siadat, Ankur Sangoi, Yuan Gao, Nikola Ptákova, Levente Kuthi, Kristyna Pivovarcikova, Joanna Rogala, Abbas Agaimy, Arndt Hartmann, Cristoph Fraune, Boris Rychly, Pavel Hurnik, Dušan Durcansky, Michael Bonert, Georgios Gakis, Michal Michal, Milan Hora, Ondrej Hes. Eosinophilic vacuolated tumor (EVT) of kidney demonstrates sporadic TSC/MTOR mutations: next-generation sequencing multi-institutional study of 19 cases. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc. 2022 03; 35(3):344-351. doi: 10.1038/s41379-021-00923-6. [PMID: 34521993]
  • Enrico Munari, Giulio Settanni, Anna Caliò, Diego Segala, Sara Lonardi, Silvia Sandrini, Paola Vacca, Nicola Tumino, Marcella Marconi, Matteo Brunelli, Stefano Gobbo, George J Netto, Lorenzo Moretta, Giuseppe Zamboni, Guido Martignoni. TSC loss is a clonal event in eosinophilic solid and cystic renal cell carcinoma: a multiregional tumor sampling study. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc. 2022 03; 35(3):376-385. doi: 10.1038/s41379-021-00816-8. [PMID: 33990704]
  • Shiva Gupta, Hyunseon C Kang, Silvana C Faria, Peter L Choyke, Vikas Kundra. Tuberous Sclerosis Complex (TSC): Renal and Extrarenal Imaging. Academic radiology. 2022 03; 29(3):439-449. doi: 10.1016/j.acra.2020.12.019. [PMID: 33487538]
  • Pedram Argani, Rohit Mehra. Renal cell carcinoma associated with tuberous sclerosis complex (TSC)/mammalian target of rapamycin (MTOR) genetic alterations. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc. 2022 03; 35(3):296-297. doi: 10.1038/s41379-021-00971-y. [PMID: 35046523]
  • Aisha Siddiq A, Asha Martin. Crocetin exerts hypocholesterolemic effect by inducing LDLR and inhibiting PCSK9 and Sortilin in HepG2 cells. Nutrition research (New York, N.Y.). 2022 02; 98(?):41-49. doi: 10.1016/j.nutres.2021.08.005. [PMID: 35093763]
  • Débora Cerdá-Bernad, Estefanía Valero-Cases, Joaquín-Julián Pastor, María José Frutos. Saffron bioactives crocin, crocetin and safranal: effect on oxidative stress and mechanisms of action. Critical reviews in food science and nutrition. 2022; 62(12):3232-3249. doi: 10.1080/10408398.2020.1864279. [PMID: 33356506]
  • Xiaoling Liu, Ziqi Wang, Xintong Song, Xinyu Chang, Er Zu, Xiaowei Ma, Momoe Sukegawa, Dongchun Liu, Dan Ohtan Wang. Crocetin Alleviates Ovariectomy-Induced Metabolic Dysfunction through Regulating Estrogen Receptor β. Journal of agricultural and food chemistry. 2021 Dec; 69(49):14824-14839. doi: 10.1021/acs.jafc.1c04570. [PMID: 34851635]
  • Jian Yang, Xin Qiu, Meilan Zhou, Di Wang. Crocetin attenuating Urinary tract Infection and adherence of uropathogenic E. coli in NRK-52E cells via an inflammatory pathway. Journal of food biochemistry. 2021 12; 45(12):e13998. doi: 10.1111/jfbc.13998. [PMID: 34792197]
  • Marlène Suchareau, Alexandra Bordes, Laurent Lemée. Improved quantification method of crocins in saffron extract using HPLC-DAD after qualification by HPLC-DAD-MS. Food chemistry. 2021 Nov; 362(?):130199. doi: 10.1016/j.foodchem.2021.130199. [PMID: 34091167]
  • Hriday M Shah, Ashvi S Jain, Shreerang V Joshi, Prashant S Kharkar. Crocetin and related oxygen diffusion-enhancing compounds: Review of chemical synthesis, pharmacology, clinical development, and novel therapeutic applications. Drug development research. 2021 11; 82(7):883-895. doi: 10.1002/ddr.21814. [PMID: 33817811]
  • Nan Liang, Ming-Dong Yao, Ying Wang, Jia Liu, Lu Feng, Zhi-Ming Wang, Xiang-Yu Li, Wen-Hai Xiao, Ying-Jin Yuan. CsCCD2 Access Tunnel Design for a Broader Substrate Profile in Crocetin Production. Journal of agricultural and food chemistry. 2021 Oct; 69(39):11626-11636. doi: 10.1021/acs.jafc.1c04588. [PMID: 34554747]
  • Yadi Zheng, Na Zhu, Jing Wang, Na Zhao, Chun Yuan. Crocetin suppresses gestational diabetes in streptozotocin-induced diabetes mellitus rats via suppression of inflammatory reaction. Journal of food biochemistry. 2021 09; 45(9):e13857. doi: 10.1111/jfbc.13857. [PMID: 34309046]
  • Paul-Michel Mertes, Olivier Collange, Pierre Coliat, Mainak Banerjee, Marie-Charlotte Diringer, Anne Roche, Xavier Delabranche, Vitaliy Chaban, Manon Voegelin, Alexandre Bernard, Valérie Sartori, Nina Laurent, Michel Velten, Navreet Dhindsa, Jason Defuria, Gwangseong Kim, Zhenghong Hannah Xu, Marina Theodorou, Zhaohua Richard Huang, Kaniz Khalifa, Bolin Geng, Clet Niyikiza, Victor Moyo, Patrick Gizzi, Pascal Villa, Alexandre Detappe, Xavier Pivot. Liposomal encapsulation of trans-crocetin enhances oxygenation in patients with COVID-19-related ARDS receiving mechanical ventilation. Journal of controlled release : official journal of the Controlled Release Society. 2021 08; 336(?):252-261. doi: 10.1016/j.jconrel.2021.06.033. [PMID: 34175365]
  • Susu Lin, Qiaoqiao Li, Shanshan Jiang, Zijin Xu, Yu Jiang, Ling Liu, Jinyan Jiang, Yingpeng Tong, Ping Wang. Crocetin ameliorates chronic restraint stress-induced depression-like behaviors in mice by regulating MEK/ERK pathways and gut microbiota. Journal of ethnopharmacology. 2021 Mar; 268(?):113608. doi: 10.1016/j.jep.2020.113608. [PMID: 33242618]
  • Laizeng Yu, Ruihua Gao, Xuewen Song, Xuechao Li, Jiacheng Zhu. Cardio-protective and Anti-atherosclerosis Effect of Crocetin on Vitamin D3 and HFD-induced Atherosclerosis in Rats. Journal of oleo science. 2021; 70(10):1447-1459. doi: 10.5650/jos.ess21168. [PMID: 34615830]
  • Yi-Ling Wen, Ziyu He, De-Xing Hou, Si Qin. Crocetin Exerts Its Anti-inflammatory Property in LPS-Induced RAW264.7 Cells Potentially via Modulation on the Crosstalk between MEK1/JNK/NF-κB/iNOS Pathway and Nrf2/HO-1 Pathway. Oxidative medicine and cellular longevity. 2021; 2021(?):6631929. doi: 10.1155/2021/6631929. [PMID: 34545298]
  • Forouzan Yousefi, Fahimeh L Arab, Maryam Rastin, Nafiseh S Tabasi, Karim Nikkhah, Mahmoud Mahmoudi. Comparative assessment of immunomodulatory, proliferative, and antioxidant activities of crocin and crocetin on mesenchymal stem cells. Journal of cellular biochemistry. 2021 01; 122(1):29-42. doi: 10.1002/jcb.29826. [PMID: 32951264]
  • Yi-Ling Wen, Yong Li, Guangcheng Zhu, Zhibing Zheng, Meng Shi, Si Qin. Gene Expression Profiling and Biofunction Analysis of HepG2 Cells Targeted by Crocetin. Mediators of inflammation. 2021; 2021(?):5512166. doi: 10.1155/2021/5512166. [PMID: 33867857]
  • Li Qin, Hui Liu, Jinghua Wang, Wei Wang, Lei Zhang. Crocetin Exerts a Cardio-protective Effect on Mice with Coxsackievirus B3-induced Acute Viral Myocarditis. Journal of oleo science. 2021; 70(8):1115-1124. doi: 10.5650/jos.ess21100. [PMID: 34349088]
  • Zhifeng Zhao, Jinghan Li, Bin Zheng, Yingran Liang, Jing Shi, Jianping Zhang, Xue Han, Li Chu, Xi Chu, Yonggang Gao. Ameliorative effects and mechanism of crocetin in arsenic trioxide‑induced cardiotoxicity in rats. Molecular medicine reports. 2020 Dec; 22(6):5271-5281. doi: 10.3892/mmr.2020.11587. [PMID: 33173984]
  • Maria Anna Maggi, Silvia Bisti, Cristiana Picco. Saffron: Chemical Composition and Neuroprotective Activity. Molecules (Basel, Switzerland). 2020 Nov; 25(23):. doi: 10.3390/molecules25235618. [PMID: 33260389]
  • Panpan Liu, Yurun Xue, Bin Zheng, Yingran Liang, Jianping Zhang, Jing Shi, Xi Chu, Xue Han, Li Chu. Crocetin attenuates the oxidative stress, inflammation and apoptosisin arsenic trioxide-induced nephrotoxic rats: Implication of PI3K/AKT pathway. International immunopharmacology. 2020 Nov; 88(?):106959. doi: 10.1016/j.intimp.2020.106959. [PMID: 32919218]
  • Javad Mottaghipisheh, Mohammad Mahmoodi Sourestani, Tivadar Kiss, Attila Horváth, Barbara Tóth, Mehdi Ayanmanesh, Amin Khamushi, Dezső Csupor. Comprehensive chemotaxonomic analysis of saffron crocus tepal and stamen samples, as raw materials with potential antidepressant activity. Journal of pharmaceutical and biomedical analysis. 2020 May; 184(?):113183. doi: 10.1016/j.jpba.2020.113183. [PMID: 32105944]
  • Xiangdong Pu, Chunnian He, Yan Yang, Wei Wang, Kaizhi Hu, Zhichao Xu, Jingyuan Song. In Vivo Production of Five Crocins in the Engineered Escherichia coli. ACS synthetic biology. 2020 05; 9(5):1160-1168. doi: 10.1021/acssynbio.0c00039. [PMID: 32216376]
  • Na Li, Mingcong Fan, Yan Li, Haifeng Qian, Hui Zhang, Xiguang Qi, Li Wang. Stability assessment of crocetin and crocetin derivatives in Gardenia yellow pigment and Gardenia fruit pomace in presence of different cooking methods. Food chemistry. 2020 May; 312(?):126031. doi: 10.1016/j.foodchem.2019.126031. [PMID: 31874411]
  • Ka Hong Wong, Yuning Xie, Xiao Huang, Kazunori Kadota, Xin-Sheng Yao, Yang Yu, Xiaoyu Chen, Aiping Lu, Zhijun Yang. Delivering Crocetin across the Blood-Brain Barrier by Using γ-Cyclodextrin to Treat Alzheimer's Disease. Scientific reports. 2020 02; 10(1):3654. doi: 10.1038/s41598-020-60293-y. [PMID: 32107408]
  • Mao-Ze Wang, Jin Gao, Yang Chu, Jie Niu, Ming Chen, Qiang Shang, Li-Hua Peng, Zhi-Hong Jiang. Synthesis of crocetin derivatives and their potent inhibition in multiple tumor cells proliferation and inflammatory property of macrophage. BMC complementary medicine and therapies. 2020 Feb; 20(1):29. doi: 10.1186/s12906-020-2831-y. [PMID: 32020873]
  • Kiwako Mori, Toshihide Kurihara, Xiaoyan Jiang, Shin-Ichi Ikeda, Erisa Yotsukura, Hidemasa Torii, Kazuo Tsubota. Estimation of the Minimum Effective Dose of Dietary Supplement Crocetin for Prevention of Myopia Progression in Mice. Nutrients. 2020 Jan; 12(1):. doi: 10.3390/nu12010180. [PMID: 31936441]
  • Yanshuang Liu, Yingran Liang, Bin Zheng, Li Chu, Donglai Ma, Hongfang Wang, Xi Chu, Jianping Zhang. Protective Effects of Crocetin on Arsenic Trioxide-Induced Hepatic Injury: Involvement of Suppression in Oxidative Stress and Inflammation Through Activation of Nrf2 Signaling Pathway in Rats. Drug design, development and therapy. 2020; 14(?):1921-1931. doi: 10.2147/dddt.s247947. [PMID: 32546959]
  • Suparmi Suparmi, Laura de Haan, Albertus Spenkelink, Jochem Louisse, Karsten Beekmann, Ivonne M C M Rietjens. Combining In Vitro Data and Physiologically Based Kinetic Modeling Facilitates Reverse Dosimetry to Define In Vivo Dose-Response Curves for Bixin- and Crocetin-Induced Activation of PPARγ in Humans. Molecular nutrition & food research. 2020 01; 64(2):e1900880. doi: 10.1002/mnfr.201900880. [PMID: 31846197]
  • Xiaodong Yang. Design and optimization of crocetin loaded PLGA nanoparticles against diabetic nephropathy via suppression of inflammatory biomarkers: a formulation approach to preclinical study. Drug delivery. 2019 Dec; 26(1):849-859. doi: 10.1080/10717544.2019.1642417. [PMID: 31524015]
  • Shirin Parizad, Akbar Dizadji, Mina Koohi Habibi, Stephan Winter, Siamak Kalantari, Shahrbanoo Movi, Candida Lorenzo Tendero, Gonzalo L Alonso, Natalia Moratalla-Lopez. The effects of geographical origin and virus infection on the saffron (Crocus sativus L.) quality. Food chemistry. 2019 Oct; 295(?):387-394. doi: 10.1016/j.foodchem.2019.05.116. [PMID: 31174773]
  • Hexin Tan, Xianghui Chen, Nan Liang, Ruibing Chen, Junfeng Chen, Chaoyang Hu, Qi Li, Qing Li, Weizhong Pei, Wenhai Xiao, Yingjin Yuan, Wansheng Chen, Lei Zhang. Transcriptome analysis reveals novel enzymes for apo-carotenoid biosynthesis in saffron and allows construction of a pathway for crocetin synthesis in yeast. Journal of experimental botany. 2019 09; 70(18):4819-4834. doi: 10.1093/jxb/erz211. [PMID: 31056664]
  • Wen Wang, Ping He, Dongdong Zhao, Lijun Ye, Longhai Dai, Xueli Zhang, Yuanxia Sun, Jing Zheng, Changhao Bi. Construction of Escherichia coli cell factories for crocin biosynthesis. Microbial cell factories. 2019 Jul; 18(1):120. doi: 10.1186/s12934-019-1166-1. [PMID: 31277660]
  • Guodong Chang, Yingwei Chen, Hongwei Zhang, Wen Zhou. Trans sodium crocetinate alleviates ischemia/reperfusion-induced myocardial oxidative stress and apoptosis via the SIRT3/FOXO3a/SOD2 signaling pathway. International immunopharmacology. 2019 Jun; 71(?):361-371. doi: 10.1016/j.intimp.2019.03.056. [PMID: 30952100]
  • Eirini Christodoulou, Maria-Eleni Grafakou, Eleni Skaltsa, Nikolaos Kadoglou, Nikolaos Kostomitsopoulos, Georgia Valsami. Preparation, chemical characterization and determination of crocetin's pharmacokinetics after oral and intravenous administration of saffron (Crocus sativus L.) aqueous extract to C57/BL6J mice. The Journal of pharmacy and pharmacology. 2019 May; 71(5):753-764. doi: 10.1111/jphp.13055. [PMID: 30575029]
  • Rebekka Heitmar, James Brown, Ioannis Kyrou. Saffron (Crocus sativus L.) in Ocular Diseases: A Narrative Review of the Existing Evidence from Clinical Studies. Nutrients. 2019 Mar; 11(3):. doi: 10.3390/nu11030649. [PMID: 30889784]
  • Yaya Hu, Xin Liu, Qiang Xia, Tianpeng Yin, Chuan Bai, Ze Wang, Lianfeng Du, Xiaobo Li, Wenjun Wang, Lin Sun, Yinhua Liu, Hao Zhang, Liang Deng, Yang Chen. Comparative anti-arthritic investigation of iridoid glycosides and crocetin derivatives from Gardenia jasminoides Ellis in Freund's complete adjuvant-induced arthritis in rats. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2019 Feb; 53(?):223-233. doi: 10.1016/j.phymed.2018.07.005. [PMID: 30668402]
  • Carmelo Puglia, Debora Santonocito, Teresa Musumeci, Venera Cardile, Adriana Carol Eleonora Graziano, Loredana Salerno, Giuseppina Raciti, Lucia Crascì, Anna Maria Panico, Giovanni Puglisi. Nanotechnological Approach to Increase the Antioxidant and Cytotoxic Efficacy of Crocin and Crocetin. Planta medica. 2019 Feb; 85(3):258-265. doi: 10.1055/a-0732-5757. [PMID: 30206907]
  • Sheng Li, Yuhua Qu, Xiu-Yin Shen, Ting Ouyang, Wen-Bin Fu, Tao Luo, Hua-Qiao Wang. Multiple Signal Pathways Involved in Crocetin-Induced Apoptosis in KYSE-150 Cells. Pharmacology. 2019; 103(5-6):263-272. doi: 10.1159/000487956. [PMID: 30783055]
  • E C Dos Santos, R Varchetta, C B de Lima, J Ispada, H S Martinho, P K Fontes, M F G Nogueira, B Gasparrini, M P Milazzotto. The effects of crocetin supplementation on the blastocyst outcome, transcriptomic and metabolic profile of in vitro produced bovine embryos. Theriogenology. 2019 Jan; 123(?):30-36. doi: 10.1016/j.theriogenology.2018.08.010. [PMID: 30273738]
  • Jyotsnarani Pradhan, Chandana Mohanty, Sanjeeb K Sahoo. Protective efficacy of crocetin and its nanoformulation against cyclosporine A-mediated toxicity in human embryonic kidney cells. Life sciences. 2019 Jan; 216(?):39-48. doi: 10.1016/j.lfs.2018.11.027. [PMID: 30444987]
  • Alessandro Colapietro, Andrea Mancini, Anna Maria D'Alessandro, Claudio Festuccia. Crocetin and Crocin from Saffron in Cancer Chemotherapy and Chemoprevention. Anti-cancer agents in medicinal chemistry. 2019; 19(1):38-47. doi: 10.2174/1871520619666181231112453. [PMID: 30599111]
  • Sheila Leone, Lucia Recinella, Annalisa Chiavaroli, Giustino Orlando, Claudio Ferrante, Lidia Leporini, Luigi Brunetti, Luigi Menghini. Phytotherapic use of the Crocus sativus L. (Saffron) and its potential applications: A brief overview. Phytotherapy research : PTR. 2018 Dec; 32(12):2364-2375. doi: 10.1002/ptr.6181. [PMID: 30136324]
  • Naofumi Umigai, Ryuji Takeda, Atsuko Mori. Effect of crocetin on quality of sleep: A randomized, double-blind, placebo-controlled, crossover study. Complementary therapies in medicine. 2018 Dec; 41(?):47-51. doi: 10.1016/j.ctim.2018.09.003. [PMID: 30477864]
  • Fangyu Ding, Feng Liu, Wenming Shao, Jianlin Chu, Bin Wu, Bingfang He. Efficient Synthesis of Crocins from Crocetin by a Microbial Glycosyltransferase from Bacillus subtilis 168. Journal of agricultural and food chemistry. 2018 Nov; 66(44):11701-11708. doi: 10.1021/acs.jafc.8b04274. [PMID: 30350978]
  • Qiaoyun Hu, Jing Jin, Huifang Zhou, Dongsheng Yu, Weichun Qian, Ying Zhong, Jia Zhang, Chuanfeng Tang, Peiyu Liu, Yu Zhou, Xiaoli Wang, Liang Sheng. Crocetin attenuates DHT-induced polycystic ovary syndrome in mice via revising kisspeptin neurons. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2018 Nov; 107(?):1363-1369. doi: 10.1016/j.biopha.2018.08.135. [PMID: 30257351]
  • Fatemeh Kalalinia, Hengameh Ghasim, Sara Amel Farzad, Elham Pishavar, Mohammad Ramezani, Maryam Hashemi. Comparison of the effect of crocin and crocetin, two major compounds extracted from saffron, on osteogenic differentiation of mesenchymal stem cells. Life sciences. 2018 Sep; 208(?):262-267. doi: 10.1016/j.lfs.2018.07.043. [PMID: 30048694]
  • Evangelia Karkoula, Nikolaos Lemonakis, Nikolaos Kokras, Christina Dalla, Evagelos Gikas, Alexios-Leandros Skaltsounis, Anthony Tsarbopoulos. Trans-crocin 4 is not hydrolyzed to crocetin following i.p. administration in mice, while it shows penetration through the blood brain barrier. Fitoterapia. 2018 Sep; 129(?):62-72. doi: 10.1016/j.fitote.2018.06.012. [PMID: 29920295]
  • Benjamin Moras, Loïc Loffredo, Stéphane Rey. Quality assessment of saffron (Crocus sativus L.) extracts via UHPLC-DAD-MS analysis and detection of adulteration using gardenia fruit extract (Gardenia jasminoides Ellis). Food chemistry. 2018 Aug; 257(?):325-332. doi: 10.1016/j.foodchem.2018.03.025. [PMID: 29622218]
  • Azar Hosseini, Bibi Marjan Razavi, Hossein Hosseinzadeh. Pharmacokinetic Properties of Saffron and its Active Components. European journal of drug metabolism and pharmacokinetics. 2018 Aug; 43(4):383-390. doi: 10.1007/s13318-017-0449-3. [PMID: 29134501]
  • Laleh Arzi, Gholamhossein Riazi, Majid Sadeghizadeh, Reyhane Hoshyar, Nazli Jafarzadeh. A Comparative Study on Anti-Invasion, Antimigration, and Antiadhesion Effects of the Bioactive Carotenoids of Saffron on 4T1 Breast Cancer Cells Through Their Effects on Wnt/β-Catenin Pathway Genes. DNA and cell biology. 2018 Aug; 37(8):697-707. doi: 10.1089/dna.2018.4248. [PMID: 29969282]
  • Angelo Antonio D'Archivio, Francesca Di Donato, Martina Foschi, Maria Anna Maggi, Fabrizio Ruggieri. UHPLC Analysis of Saffron (Crocus sativus L.): Optimization of Separation Using Chemometrics and Detection of Minor Crocetin Esters. Molecules (Basel, Switzerland). 2018 Jul; 23(8):. doi: 10.3390/molecules23081851. [PMID: 30044436]
  • Olivia Costantina Demurtas, Sarah Frusciante, Paola Ferrante, Gianfranco Diretto, Noraddin Hosseinpour Azad, Marco Pietrella, Giuseppe Aprea, Anna Rita Taddei, Elena Romano, Jianing Mi, Salim Al-Babili, Lorenzo Frigerio, Giovanni Giuliano. Candidate Enzymes for Saffron Crocin Biosynthesis Are Localized in Multiple Cellular Compartments. Plant physiology. 2018 07; 177(3):990-1006. doi: 10.1104/pp.17.01815. [PMID: 29844227]
  • Lourdes Gómez-Gómez, Luis F Pacios, Araceli Diaz-Perales, María Garrido-Arandia, Javier Argandoña, Ángela Rubio-Moraga, Oussama Ahrazem. Expression and Interaction Analysis among Saffron ALDHs and Crocetin Dialdehyde. International journal of molecular sciences. 2018 May; 19(5):. doi: 10.3390/ijms19051409. [PMID: 29747375]
  • Moslem Jafarisani, S Zahra Bathaie, Mir F Mousavi. Saffron carotenoids (crocin and crocetin) binding to human serum albumin as investigated by different spectroscopic methods and molecular docking. Journal of biomolecular structure & dynamics. 2018 May; 36(7):1681-1690. doi: 10.1080/07391102.2017.1331865. [PMID: 28537197]
  • Maryam Rameshrad, Bibi Marjan Razavi, Hossein Hosseinzadeh. Saffron and its derivatives, crocin, crocetin and safranal: a patent review. Expert opinion on therapeutic patents. 2018 02; 28(2):147-165. doi: 10.1080/13543776.2017.1355909. [PMID: 28705037]
  • Yang Chu, Jin Gao, Jie Niu, Yan-Fen Huang, Ming Chen, Mao-Ze Wang, Qiang Shang, Wen-Qi Lu, Li-Hua Peng, Zhi-Hong Jiang. Synthesis, characterization and inhibitory effects of crocetin derivative compounds in cancer and inflammation. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2018 Feb; 98(?):157-164. doi: 10.1016/j.biopha.2017.12.018. [PMID: 29253763]
  • Eiji Inoue, Yasuharu Shimizu, Ryo Masui, Tomomi Hayakawa, Tomoe Tsubonoya, Satoko Hori, Keiichi Sudoh. Effects of saffron and its constituents, crocin-1, crocin-2, and crocetin on α-synuclein fibrils. Journal of natural medicines. 2018 Jan; 72(1):274-279. doi: 10.1007/s11418-017-1150-1. [PMID: 29147836]
  • Seyed H Hashemi-Shahri, Alireza Golshan, Seyed A Mohajeri, Javad Baharara, Elaheh Amini, Farzaneh Salek, Amirhossein Sahebkar, Zahra Tayarani-Najaran. ROS-scavenging and Anti-tyrosinase Properties of Crocetin on B16F10 Murine Melanoma Cells. Anti-cancer agents in medicinal chemistry. 2018; 18(7):1064-1069. doi: 10.2174/1871520618666171213143455. [PMID: 29237384]
  • Tahereh Farkhondeh, Saeed Samarghandian, Fariborz Samini, Ali Rajabpour Sanati. Protective Effects of Crocetin on Depression-like Behavior Induced by Immobilization in Rat. CNS & neurological disorders drug targets. 2018; 17(5):361-369. doi: 10.2174/1871527317666180515120212. [PMID: 29766828]
  • María José Bagur, Gonzalo Luis Alonso Salinas, Antonia M Jiménez-Monreal, Soukaina Chaouqi, Silvia Llorens, Magdalena Martínez-Tomé, Gonzalo L Alonso. Saffron: An Old Medicinal Plant and a Potential Novel Functional Food. Molecules (Basel, Switzerland). 2017 Dec; 23(1):. doi: 10.3390/molecules23010030. [PMID: 29295497]
  • Xiqian Wang, Xiejia Jiao, Zhonghao Liu, Yixin Li. Crocetin Potentiates Neurite Growth in Hippocampal Neurons and Facilitates Functional Recovery in Rats with Spinal Cord Injury. Neuroscience bulletin. 2017 Dec; 33(6):695-702. doi: 10.1007/s12264-017-0157-7. [PMID: 28770439]
  • Jin Gao, Ming Chen, Xue-Cong Ren, Xiao-Bo Zhou, Qiang Shang, Wen-Qi Lu, Pei Luo, Zhi-Hong Jiang. Synthesis and cardiomyocyte protection activity of crocetin diamide derivatives. Fitoterapia. 2017 Sep; 121(?):106-111. doi: 10.1016/j.fitote.2017.06.014. [PMID: 28625734]
  • Oussama Ahrazem, Gianfranco Diretto, Javier Argandoña, Ángela Rubio-Moraga, José Manuel Julve, Diego Orzáez, Antonio Granell, Lourdes Gómez-Gómez. Evolutionarily distinct carotenoid cleavage dioxygenases are responsible for crocetin production in Buddleja davidii. Journal of experimental botany. 2017 07; 68(16):4663-4677. doi: 10.1093/jxb/erx277. [PMID: 28981773]
  • M Valle García-Rodríguez, Horacio López-Córcoles, Gonzalo L Alonso, Christos S Pappas, Moschos G Polissiou, Petros A Tarantilis. Comparative evaluation of an ISO 3632 method and an HPLC-DAD method for safranal quantity determination in saffron. Food chemistry. 2017 Apr; 221(?):838-843. doi: 10.1016/j.foodchem.2016.11.089. [PMID: 27979282]
  • Ailian Zhang, Jincheng Li. Crocetin shifts autophagic cell survival to death of breast cancer cells in chemotherapy. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine. 2017 Mar; 39(3):1010428317694536. doi: 10.1177/1010428317694536. [PMID: 28351329]
  • Yue Zhang, Fei Fei, Le Zhen, Xuanxuan Zhu, Jiankun Wang, Sijia Li, Jianliang Geng, Runbin Sun, Xiaoyi Yu, Tingting Chen, Siqi Feng, Pei Wang, Na Yang, Yejin Zhu, Jingqiu Huang, Yuqing Zhao, Jiye Aa, Guangji Wang. Sensitive analysis and simultaneous assessment of pharmacokinetic properties of crocin and crocetin after oral administration in rats. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2017 Feb; 1044-1045(?):1-7. doi: 10.1016/j.jchromb.2016.12.003. [PMID: 28056427]
  • Mitali Dawalbhakta, Manasi Telang. Patents on Therapeutic and Cosmetic Applications of Bioactives of Crocus Sativus L. and their Production through Synthetic Biology Methods: A Review. Recent patents on biotechnology. 2017; 11(1):3-19. doi: 10.2174/1872210510666161114123804. [PMID: 27842483]
  • Lourdes Gómez-Gómez, Verónica Parra-Vega, Alba Rivas-Sendra, Jose M Seguí-Simarro, Rosa Victoria Molina, Claudia Pallotti, Ángela Rubio-Moraga, Gianfranco Diretto, Alicia Prieto, Oussama Ahrazem. Unraveling Massive Crocins Transport and Accumulation through Proteome and Microscopy Tools during the Development of Saffron Stigma. International journal of molecular sciences. 2017 Jan; 18(1):. doi: 10.3390/ijms18010076. [PMID: 28045431]
  • G K Broadhead, A Chang, J Grigg, P McCluskey. Efficacy and Safety of Saffron Supplementation: Current Clinical Findings. Critical reviews in food science and nutrition. 2016 Dec; 56(16):2767-76. doi: 10.1080/10408398.2013.879467. [PMID: 25875654]
  • V Sapanidou, I Taitzoglou, I Tsakmakidis, I Kourtzelis, D Fletouris, A Theodoridis, S Lavrentiadou, M Tsantarliotou. Protective effect of crocetin on bovine spermatozoa against oxidative stress during in vitro fertilization. Andrology. 2016 11; 4(6):1138-1149. doi: 10.1111/andr.12248. [PMID: 27575445]
  • Takuya Ohba, Mitsue Ishisaka, Saori Tsujii, Kazuhiro Tsuruma, Masamitsu Shimazawa, Koya Kubo, Naofumi Umigai, Takao Iwawaki, Hideaki Hara. Crocetin protects ultraviolet A-induced oxidative stress and cell death in skin in vitro and in vivo. European journal of pharmacology. 2016 Oct; 789(?):244-253. doi: 10.1016/j.ejphar.2016.07.036. [PMID: 27452919]
  • S Mahdavifard, S Z Bathaie, M Nakhjavani, M Taghikhani. The synergistic effect of antiglycating agents (MB-92) on inhibition of protein glycation, misfolding and diabetic complications in diabetic-atherosclerotic rat. European journal of medicinal chemistry. 2016 Oct; 121(?):892-902. doi: 10.1016/j.ejmech.2015.11.035. [PMID: 26733359]
  • Zhiheng Huang, Chen Nan, Hanqing Wang, Qiang Su, Wenda Xue, Yanyan Chen, Xin Shan, Jinao Duan, Gang Chen, Weiwei Tao. Crocetin ester improves myocardial ischemia via Rho/ROCK/NF-κB pathway. International immunopharmacology. 2016 Sep; 38(?):186-93. doi: 10.1016/j.intimp.2016.05.025. [PMID: 27285672]
  • Oussama Ahrazem, Angela Rubio-Moraga, Javier Argandoña-Picazo, Raquel Castillo, Lourdes Gómez-Gómez. Intron retention and rhythmic diel pattern regulation of carotenoid cleavage dioxygenase 2 during crocetin biosynthesis in saffron. Plant molecular biology. 2016 Jun; 91(3):355-74. doi: 10.1007/s11103-016-0473-8. [PMID: 27071403]
  • Wei-E Zhou, Yuan Zhang, Yang Li, Yun Ling, Hong-Na Li, Shao-Hui Li, Shou-Jun Jiang, Zhi-Qin Ren, Zhi-Qiang Huang, Feng Zhang. Determination of gardenia yellow colorants in soft drink, pastry, instant noodles with ultrasound-assisted extraction by high performance liquid chromatography-electrospray ionization tandem mass spectrum. Journal of chromatography. A. 2016 May; 1446(?):59-69. doi: 10.1016/j.chroma.2016.03.051. [PMID: 27086566]
  • Oussama Ahrazem, Angela Rubio-Moraga, Judit Berman, Teresa Capell, Paul Christou, Changfu Zhu, Lourdes Gómez-Gómez. The carotenoid cleavage dioxygenase CCD2 catalysing the synthesis of crocetin in spring crocuses and saffron is a plastidial enzyme. The New phytologist. 2016 Jan; 209(2):650-63. doi: 10.1111/nph.13609. [PMID: 26377696]
  • Parthasarathy Rangarajan, Dharmalingam Subramaniam, Santanu Paul, Deep Kwatra, Kanagaraj Palaniyandi, Shamima Islam, Sitaram Harihar, Satish Ramalingam, William Gutheil, Sandeep Putty, Rohan Pradhan, Subhash Padhye, Danny R Welch, Shrikant Anant, Animesh Dhar. Crocetinic acid inhibits hedgehog signaling to inhibit pancreatic cancer stem cells. Oncotarget. 2015 Sep; 6(29):27661-73. doi: 10.18632/oncotarget.4871. [PMID: 26317547]
  • Stella A Ordoudi, Anastasia Kyriakoudi, Maria Z Tsimidou. Enhanced Bioaccessibility of Crocetin Sugar Esters from Saffron in Infusions Rich in Natural Phenolic Antioxidants. Molecules (Basel, Switzerland). 2015 Sep; 20(10):17760-74. doi: 10.3390/molecules201017760. [PMID: 26404216]
  • Silvia Llorens, Andrea Mancini, Jessica Serrano-Díaz, Anna Maria D'Alessandro, Eduardo Nava, Gonzalo Luis Alonso, Manuel Carmona. Effects of Crocetin Esters and Crocetin from Crocus sativus L. on Aortic Contractility in Rat Genetic Hypertension. Molecules (Basel, Switzerland). 2015 Sep; 20(9):17570-84. doi: 10.3390/molecules200917570. [PMID: 26402666]
  • Chunxiang Zhou, Wei Bai, Qiaohua Chen, Zhigang Xu, Xiongxiang Zhu, Aidong Wen, Xuekang Yang. Protective effect of crocetin against burn-induced intestinal injury. The Journal of surgical research. 2015 Sep; 198(1):99-107. doi: 10.1016/j.jss.2015.05.052. [PMID: 26119275]
  • M Lautenschläger, J Sendker, S Hüwel, H J Galla, S Brandt, M Düfer, K Riehemann, A Hensel. Intestinal formation of trans-crocetin from saffron extract (Crocus sativus L.) and in vitro permeation through intestinal and blood brain barrier. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2015 Jan; 22(1):36-44. doi: 10.1016/j.phymed.2014.10.009. [PMID: 25636868]
  • John Richard Bend, Xue Yan Xia, Daofeng Chen, Abudi Awaysheh, Andrea Lo, Michael John Rieder, Rebecca Jane Rylett. Attenuation of Oxidative Stress in HEK 293 Cells by the TCM Constituents Schisanhenol, Baicalein, Resveratrol or Crocetin and Two Defined Mixtures. Journal of pharmacy & pharmaceutical sciences : a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques. 2015; 18(4):661-82. doi: 10.18433/j3mw3n. [PMID: 26626254]