Chlorogenic acid (BioDeep_00000000242)

natural product human metabolite PANOMIX_OTCML-2023 blood metabolite


代谢物信息卡片


Chlorogenic acid (constituent of echinacea angustifolia root, echinacea pallida root, echinacea purpurea root and echinacea purpurea aerial parts)

化学式: C16H18O9 (354.0951)
中文名称: 3-咖啡酰奎尼酸, 咖啡酰奎尼酸, 咖啡单宁酸, 氯吉酸, 绿源酸, 绿原酸
谱图信息: 最多检出来源 Viridiplantae(plant) 33.87%

Reviewed

Last reviewed on 2024-07-17.

Cite this Page

Chlorogenic acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/chlorogenic_acid (retrieved 2025-01-28) (BioDeep RN: BioDeep_00000000242). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C1C(C(C(CC1(C(=O)O)O)OC(=O)C=CC2=CC(=C(C=C2)O)O)O)O
InChI: InChI=1S/C16H18O9/c17-9-3-1-8(5-10(9)18)2-4-13(20)25-12-7-16(24,15(22)23)6-11(19)14(12)21/h1-5,11-12,14,17-19,21,24H,6-7H2,(H,22,23)/b4-2+/t11-,12-,14-,16+/m1/s1

描述信息

Chlorogenic acid is a cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 3-hydroxy group of quinic acid. It is an intermediate metabolite in the biosynthesis of lignin. It has a role as a plant metabolite and a food component. It is a cinnamate ester and a tannin. It is functionally related to a (-)-quinic acid and a trans-caffeic acid. It is a conjugate acid of a chlorogenate.
Chlorogenic Acid has been used in trials studying the treatment of Advanced Cancer and Impaired Glucose Tolerance.
Chlorogenic Acid is a natural product found in Pavetta indica, Fragaria nipponica, and other organisms with data available.
Chlorogenic Acid is a polyphenol and the ester of caffeic acid and quinic acid that is found in coffee and black tea, with potential antioxidant and chemopreventive activities. Chlorogenic acid scavenges free radicals, which inhibits DNA damage and may protect against the induction of carcinogenesis. In addition, this agent may upregulate the expression of genes involved in the activation of the immune system and enhances activation and proliferation of cytotoxic T-lymphocytes, macrophages, and natural killer cells. Chlorogenic acid also inhibits the activity of matrix metalloproteinases.
A naturally occurring phenolic acid which is a carcinogenic inhibitor. It has also been shown to prevent paraquat-induced oxidative stress in rats. (From J Chromatogr A 1996;741(2):223-31; Biosci Biotechnol Biochem 1996;60(5):765-68).
See also: Arctium lappa Root (part of); Cynara scolymus leaf (part of); Lonicera japonica flower (part of) ... View More ...
Chlorogenic acid is an ester of caffeic acid and quinic acid. Chlorogenic acid is the major polyphenolic compound in coffee, isolated from the leaves and fruits of dicotyledonous plants. This compound, long known as an antioxidant, also slows the release of glucose into the bloodstream after a meal. Coffee is a complex mixture of chemicals that provides significant amounts of chlorogenic acid. The chlorogenic acid content of a 200 ml (7-oz) cup of coffee has been reported to range from 70-350 mg, which would provide about 35-175 mg of caffeic acid. The results of epidemiological research suggest that coffee consumption may help prevent several chronic diseases, including type 2 diabetes mellitus, Parkinsons disease and liver disease (cirrhosis and hepatocellular carcinoma). Most prospective cohort studies have not found coffee consumption to be associated with significantly increased cardiovascular disease risk. However, coffee consumption is associated with increases in several cardiovascular disease risk factors, including blood pressure and plasma homocysteine. At present, there is little evidence that coffee consumption increases the risk of cancer. (PMID:16507475, 17368041).
A cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 3-hydroxy group of quinic acid. It is an intermediate metabolite in the biosynthesis of lignin.

[Raw Data] CBA08_Chlorogenic-aci_pos_10eV_1-1_01_209.txt
[Raw Data] CBA08_Chlorogenic-aci_neg_30eV_1-1_01_218.txt
[Raw Data] CBA08_Chlorogenic-aci_neg_20eV_1-1_01_217.txt
[Raw Data] CBA08_Chlorogenic-aci_pos_30eV_1-1_01_211.txt
[Raw Data] CBA08_Chlorogenic-aci_neg_40eV_1-1_01_219.txt
[Raw Data] CBA08_Chlorogenic-aci_pos_20eV_1-1_01_210.txt
[Raw Data] CBA08_Chlorogenic-aci_pos_50eV_1-1_01_213.txt
[Raw Data] CBA08_Chlorogenic-aci_neg_50eV_1-1_01_220.txt
[Raw Data] CBA08_Chlorogenic-aci_neg_10eV_1-1_01_216.txt
[Raw Data] CBA08_Chlorogenic-aci_pos_40eV_1-1_01_212.txt
Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension.
Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb. It is an orally active antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension compound[1][2][3].
Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension.

同义名列表

109 个代谢物同义名

Chlorogenic acid (constituent of echinacea angustifolia root, echinacea pallida root, echinacea purpurea root and echinacea purpurea aerial parts); CYCLOHEXANECARBOXYLIC ACID, 3-((3-(3,4-DIHYDROXYPHENYL)-1-OXO-2-PROPENYL)OXY)-1,4,5-TRIHYDROXY-, (1S-(1-.ALPHA.,3-.BETA.,4-.ALPHA.,5-.ALPHA.))-; Cyclohexanecarboxylic acid, 3-((3-(3,4-dihydroxyphenyl)-1-oxo-2-propenyl)oxy)-1,4,5-trihydroxy-, (1S-(1-alpha,3-beta,4-alpha,5-alpha))-; Cyclohexanecarboxylic acid, 3-[[3-(3,4-dihydroxyphenyl)-1-oxo-2-propenyl]oxy]-1,4,5-trihydroxy-, [1S-(1alpha,3beta,4alpha,5alpha)]-; Cyclohexanecarboxylic acid, 3-((3-(3,4-dihydroxyphenyl)-1-oxo-2-propenyl)oxy)-1,4,5-trihydroxy-, (1S-(1alpha,3beta,4alpha,5alpha))-; [1S-(1alpha,3beta,4alpha,5alpha)]-3-[[3-(3,4-Dihydroxyphenyl)-1-oxo-2-propenyl]oxy]-1,4,5-trihydroxycyclohexanecarboxylic acid; [1S-(1alpha,3beta,4alpha,5alpha)]3-[[3-(3,4-dihydroxyphenyl)-1-oxo-2-propenyl]oxy]-1,4,5-trihydroxycyclohexanecarboxylic acid; (1S-(1alpha,3beta,4alpha,5alpha))3-((3-(3,4-dihydroxyphenyl)-1-oxo-2-propenyl)oxy)-1,4,5-trihydroxycyclohexanecarboxylic acid; [1S-(1alpha,3beta,4alpha,5alpha)]3-[[3-(3,4-Dihydroxyphenyl)-1-oxo-2-propenyl]oxy]-1,4,5-trihydroxycyclohexanecarboxylate; Cyclohexanecarboxylic acid, 3-(((2E)-3-(3,4-dihydroxyphenyl)-1-oxo-2-propen-1-yl)oxy)-1,4,5-trihydroxy-, (1S,3R,4R,5R)-; cyclohexanecarboxylic acid, 3-[[(2E)-3-(3,4-dihydroxyphenyl)-1-oxo-2-propenyl]oxy]-1,4,5-trihydroxy-, (1S,3R,4R,5R)-; edit(1S,3R,4R,5R)-3-(((2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl)oxy)-1,4,5-trihydroxycyclohexane-1-carboxylic acid; edit(1S,3R,4R,5R)-3-{[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-1,4,5-trihydroxycyclohexane-1-carboxylic acid; Cyclohexanecarboxylic acid, 3-[[3-(3,4-dihydroxyphenyl)-1-oxo-2-propenyl]oxy]-1,4,5-trihydroxy-, (1S,3R,4R,5R)-; Cyclohexanecarboxylic acid, 3-((3-(3,4-dihydroxyphenyl)-1-oxo-2-propenyl)oxy)-1,4,5-trihydroxy-, (1S,3R,4R,5R)-; [1S-(1a,3b,4a,5a)]3-[[3-(3,4-Dihydroxyphenyl)-1-oxo-2-propenyl]oxy]-1,4,5-trihydroxycyclohexanecarboxylic acid; [1S-(1Α,3β,4α,5α)]3-[[3-(3,4-dihydroxyphenyl)-1-oxo-2-propenyl]oxy]-1,4,5-trihydroxycyclohexanecarboxylic acid; Cyclohexanecarboxylic acid,3-[[3-(3,4-dihydroxyphenyl)-1-oxo-2-propenyl]oxy]-1,4,5-trihydroxy-,(1S,3R,4R,5R)-; (1S,3R,4R,5R)-3-{[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-1,4,5-trihydroxycyclohexane-1-carboxylic acid; (1S,3R,4R,5R)-3-[(E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy-1,4,5-trihydroxycyclohexane-1-carboxylic acid; [1S-(1Α,3β,4α,5α)]3-[[3-(3,4-dihydroxyphenyl)-1-oxo-2-propenyl]oxy]-1,4,5-trihydroxycyclohexanecarboxylate; [1S-(1a,3b,4a,5a)]3-[[3-(3,4-Dihydroxyphenyl)-1-oxo-2-propenyl]oxy]-1,4,5-trihydroxycyclohexanecarboxylate; (1S,3R,4R,5R)-3-[(E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy-1,4,5-trihydroxycyclohexane-1-carboxylicacid; (1S,3R,4R,5R)-3-[(E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy-1,4,5-trihydroxy-cyclohexanecarboxylic acid; (1S,3R,4R,5R)-3-(((E)-3-(3,4-dihydroxyphenyl)acryloyl)oxy)-1,4,5-trihydroxycyclohexane-1-carboxylic acid; (1R,3S,4S,5S)-3-[(E)-3-(3,4-Dihydroxy-phenyl)-acryloyloxy]-1,4,5-trihydroxy-cyclohexanecarboxylic acid; (1S,3R,4R,5R)-3-[(E)-3-(3,4-DIHYDROXY-PHENYL)-ACRYLOYLOXY]-1,4,5-TRIHYDROXY-CYCLOHEXANECARBOXYLIC ACID; (1S,3R,4R,5R)-3-((E)-3-(3,4-dihydroxyphenyl)acryloyloxy)-1,4,5-trihydroxycyclohexanecarboxylic acid; (1S,3R,4R,5R)-3-[3-(3,4-dihydroxyphenyl)prop-2-enoyloxy]-1,4,5-trihydroxycyclohexanecarboxylic acid; (1S,3R,4R,5R)-3-(((3-(3,4-dihydroxyphenyl)acryloyl)oxy)-1,4,5-trihydroxycyclohexanecarboxylic acid; (1S,3R,4R,5R)-3-(((3-(3,4-dihydroxyphenyl)acryloyl)oxy)-1,4,5-trihydroxycyclohexanecarboxylicacid; (1S,3R,4R,5R,E)-3-(3-(3,4-dihydroxyphenyl)acryloyloxy)-1,4,5-trihydroxycyclohexanecarboxylic acid; 3-[[3-(3,4-Dihydroxyphenyl)-1-oxo-2-propenyl]oxy] 1,4,5-trihydroxycyclohexanecarboxylic acid; 3-[(E)-3-(3,4-Dihydroxy-phenyl)-acryloyloxy]-1,4,5-trihydroxy-cyclohexanecarboxylic acid; 3-[3-(3,4-Dihydroxy-phenyl)-acryloyloxy]-1,4,5-trihydroxy-cyclohexanecarboxylic acid; 1,3,4,5-tetrahydroxycyclohexanecarboxylic acid 3-(3,4-dihydroxycinnamate); 1,3,4,5-Tetrahydroxycyclohexanecarboxylic acid 3-(3,4-dihydroxycinnamate; Chlorogenic acid, United States Pharmacopeia (USP) Reference Standard; Chlorogenic acid, European Pharmacopoeia (EP) Reference Standard; Chlorogenic acid, primary pharmaceutical reference standard; Chlorogenic acid (constituent of st. johns wort) [DSC]; Chlorogenic acid (constituent of st. johns wort); Chlorogenic acid 10 microg/mL in Acetonitrile; 5-O-(3,4-Dihydroxycinnamoyl)-L-quinic acid; 3-O-(3,4-Dihydroxycinnamoyl)-D-quinic acid; 5-O-(3,4-Dihydroxycinnamoyl)-L-quinate; 3-(3,4-Dihydroxycinnamoyl)quinic acid; D54CAE3D-CDDA-455D-A28E-77FC9EFE4A43; Chlorogenic acid, >=95\\% (titration); 32CF6D13-8F08-485F-B79E-F8A6AC318E07; 3-(3,4-Dihydroxycinnamoyl)quinate; trans-Caffeic acid 5-o-D-quinate; trans-5-O-caffeoyl-D-quinic acid; trans-5-O-Caffeoylquinic acid; 5-trans-O-Caffeoylquinic acid; trans-3-O-Caffeoylquinic acid; Quinic acid, 3-caffeoyl-, E-; trans-5-O-caffeoyl-D-quinate; 5-O-(E)-Caffeoylquinic acid; 3-trans-Caffeoylquinic acid; CWVRJTMFETXNAD-JUHZACGLSA-N; 3-O-caffeoyl-D-quinic acid; (-)-5-Caffeoyl quinic acid; CHLOROGENIC ACID (USP-RS); CHLOROGENIC ACID [USP-RS]; Chlorogenic acid [WHO-DD]; Quinic acid, 5-caffeoyl-; 3-O-Caffeoylquinic acid; 5-caffeoyl quinic acid; Acid, 3-Caffeoylquinic; trans-Chlorogenic acid; Chlorogenic acid (8CI); 3 Caffeoylquinic Acid; 3-Caffeoylquinic acid; Chlorogenic acid [MI]; Caffeoyl quinic acid; (E)-chlorogenic acid; (+)-Chlorogenic acid; caffeoylquinic acid; 3-O-Caffeoylquinate; CP chlorogenic acid; Caffeylquinic acid; 5-Chlorogenic acid; 3-Caffeoylquinate; Prestwick2_000427; Prestwick3_000427; Acid, Chlorogenic; Chlorogenic acid,; Spectrum5_000733; Chlorogenic-acid; Chlorogenic Acid; Caffeoyl quinate; Caffetannic acid; Hlorogenic acid; Chlorogenicacid; Helianthic acid; BPBio1_000456; Igasuric acid; Tox21_202495; Chlorogenate; ACon1_000581; Chlorogenic; Hlorogenate; Heriguard; 5-CQA; Chlorogenic acid hemihydrate; Chlorogenic acid; NSC-407296; Chlorogenate



数据库引用编号

59 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

393 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(391)

COVID-19 Disease Map(0)

PathBank(2)

PharmGKB(0)

2063 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 10 ELANE, FASN, HPGDS, NOS2, NOS3, NQO1, STAT3, TYR, VEGFA, XDH
Peripheral membrane protein 1 ACHE
Endoplasmic reticulum membrane 1 HMGCR
Nucleus 6 ACHE, NOS2, NOS3, NQO1, STAT3, VEGFA
cytosol 10 ELANE, FASN, HPGDS, LEP, LIPE, NOS2, NOS3, NQO1, STAT3, XDH
dendrite 1 NQO1
phagocytic vesicle 1 ELANE
nucleoplasm 4 HPGDS, NOS2, NOS3, STAT3
RNA polymerase II transcription regulator complex 1 STAT3
Cell membrane 3 ACHE, LIPE, MGAM
Multi-pass membrane protein 1 HMGCR
Synapse 2 ACHE, NQO1
cell surface 4 ACHE, ADIPOQ, ELANE, VEGFA
Golgi apparatus 4 ACHE, FASN, NOS3, VEGFA
Golgi membrane 1 NOS3
neuromuscular junction 1 ACHE
neuronal cell body 1 NQO1
Cytoplasm, cytosol 3 LIPE, NOS2, NQO1
Lysosome 1 TYR
plasma membrane 8 ACHE, BCHE, FASN, IGHE, MGAM, NOS2, NOS3, STAT3
Membrane 7 ACHE, FASN, HMGCR, LIPE, MGAM, NQO1, VEGFA
apical plasma membrane 1 MGAM
caveola 2 LIPE, NOS3
extracellular exosome 3 ELANE, FASN, MGAM
endoplasmic reticulum 3 ADIPOQ, HMGCR, VEGFA
extracellular space 10 ACHE, ADIPOQ, BCHE, CCL2, ELANE, IGHE, IL4, LEP, VEGFA, XDH
perinuclear region of cytoplasm 4 ACHE, NOS2, NOS3, TYR
adherens junction 1 VEGFA
intracellular membrane-bounded organelle 2 HPGDS, TYR
Single-pass type I membrane protein 2 IGHE, TYR
Secreted 8 ACHE, ADIPOQ, BCHE, CCL2, IL4, LEP, MGAM, VEGFA
extracellular region 10 ACHE, ADIPOQ, BCHE, CCL2, ELANE, IGHE, IL4, LEP, MGAM, VEGFA
Single-pass membrane protein 1 MGAM
Extracellular side 1 ACHE
transcription regulator complex 1 STAT3
Secreted, extracellular space, extracellular matrix 1 VEGFA
Melanosome membrane 1 TYR
Cytoplasm, P-body 2 NOS2, NOS3
P-body 2 NOS2, NOS3
Golgi-associated vesicle 1 TYR
Cytoplasm, perinuclear region 1 NOS2
extracellular matrix 1 VEGFA
Peroxisome 2 NOS2, XDH
basement membrane 1 ACHE
collagen trimer 1 ADIPOQ
sarcoplasmic reticulum 1 XDH
peroxisomal matrix 1 NOS2
peroxisomal membrane 1 HMGCR
collagen-containing extracellular matrix 2 ADIPOQ, ELANE
secretory granule 2 ELANE, VEGFA
chromatin 1 STAT3
IgE immunoglobulin complex 1 IGHE
cytoskeleton 1 NOS3
blood microparticle 1 BCHE
Lipid-anchor, GPI-anchor 1 ACHE
[Isoform 2]: Cell membrane 1 IGHE
Lipid droplet 1 LIPE
Membrane, caveola 1 LIPE
tertiary granule membrane 1 MGAM
Melanosome 2 FASN, TYR
Cytoplasm, Stress granule 1 NOS3
cytoplasmic stress granule 1 NOS3
side of membrane 1 ACHE
Peroxisome membrane 1 HMGCR
endoplasmic reticulum lumen 1 BCHE
transcription repressor complex 1 ELANE
platelet alpha granule lumen 1 VEGFA
specific granule lumen 1 ELANE
endocytic vesicle membrane 1 NOS3
azurophil granule lumen 1 ELANE
nuclear envelope lumen 1 BCHE
synaptic cleft 1 ACHE
ficolin-1-rich granule membrane 1 MGAM
Cytoplasmic vesicle, phagosome 1 ELANE
[Isoform 3]: Cell membrane 1 IGHE
[Isoform 1]: Secreted 1 IGHE
IgE B cell receptor complex 1 IGHE
immunoglobulin complex, circulating 1 IGHE
cortical cytoskeleton 1 NOS2
[N-VEGF]: Cytoplasm 1 VEGFA
[VEGFA]: Secreted 1 VEGFA
[Isoform L-VEGF189]: Endoplasmic reticulum 1 VEGFA
[Isoform VEGF121]: Secreted 1 VEGFA
[Isoform VEGF165]: Secreted 1 VEGFA
VEGF-A complex 1 VEGFA
[Isoform H]: Cell membrane 1 ACHE
glycogen granule 1 FASN


文献列表

  • Yujuan Yu, Fumao Zeng, Peiheng Han, Li Zhang, Ling Yang, Feng Zhou, Qing Liu, Zheng Ruan. Dietary chlorogenic acid alleviates high-fat diet-induced steatotic liver disease by regulating metabolites and gut microbiota. International journal of food sciences and nutrition. 2024 Jun; 75(4):369-384. doi: 10.1080/09637486.2024.2318590. [PMID: 38389248]
  • Ngoc Phuc Nguyen, Quoc Giang Le, Vinh Nghi Truong, Thi Ngoc Dung Nguyen, Nguyen Truong Thang Phan, Manh Hung Tran. In vitro inhibition of 5-α reductase and in vivo suppression of benign prostatic hyperplasia by Physalis angulata ethyl acetate extract. Fitoterapia. 2024 Jun; 175(?):105950. doi: 10.1016/j.fitote.2024.105950. [PMID: 38599338]
  • Yongwang Yan, Qing Li, Fengluan Yang, Ling Shen, Kangxiao Guo, Xu Zhou. Chlorogenic acid ameliorates intestinal inflammation via miRNA-microbe axis in db/db mice. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2024 May; 38(10):e23665. doi: 10.1096/fj.202400382r. [PMID: 38780085]
  • Ze Yun, Jiahao Li, Wenyue Zhu, Xin Yuan, Jiajia Zhao, Minjie Liao, Lingjun Ma, Fang Chen, Xiaosong Hu, Junfu Ji. Effects of Chlorogenic Acid on Lowering IgE-Binding Capacity of Soybean 7S: Comparison between Covalent and Noncovalent Interaction. Journal of agricultural and food chemistry. 2024 May; 72(21):12270-12280. doi: 10.1021/acs.jafc.4c01982. [PMID: 38743450]
  • Xixi Zeng, Ling Chen, Bo Zheng. Extrusion and chlorogenic acid treatment increase the ordered structure and resistant starch levels in rice starch with amelioration of gut lipid metabolism in obese rats. Food & function. 2024 May; 15(10):5224-5237. doi: 10.1039/d3fo05416k. [PMID: 38623646]
  • Ahmad Fauzi, Nurolaini Kifli, Mohd Hezmee Mohd Noor, Hazilawati Hamzah, Azrina Azlan. Bioactivity, phytochemistry studies and subacute in vivo toxicity of ethanolic leaf extract of white mulberry (Morus alba linn.) in female mice. Journal of ethnopharmacology. 2024 May; 325(?):117914. doi: 10.1016/j.jep.2024.117914. [PMID: 38360381]
  • Xin Wang, Xianyun Gong, Binbin Lin. Optimization of ultrasonic pretreatment and analysis of chlorogenic acid in potato leaves. Scientific reports. 2024 05; 14(1):10613. doi: 10.1038/s41598-024-61139-7. [PMID: 38719831]
  • Junru Wang, Min Wang, Chengfeng Zhang, Wenhui Li, Tianyu Zhang, Yanv Zhou, Matthew Flavel, Yu Xi, He Li, Xinqi Liu. Protective effects of sugarcane polyphenol against UV-B-induced photoaging in Balb/c mouse skin: Antioxidant, anti-inflammatory, and anti-glycosylation Effects. Journal of food science. 2024 May; 89(5):3048-3063. doi: 10.1111/1750-3841.17045. [PMID: 38563092]
  • Xiaoling Huang, Yi Li, Chun Cui, Dongxiao Sun-Waterhouse. Structural, functional properties, and in vitro digestibility of sunflower protein concentrate as affected by extraction method: Isoelectric precipitation vs ultrafiltration. Food chemistry. 2024 May; 439(?):138090. doi: 10.1016/j.foodchem.2023.138090. [PMID: 38043280]
  • Qingqing Luo, Peitao Chen, Jikai Zong, Jilong Gao, Ruihua Qin, Chunli Wu, Qina Lv, Yuanjiang Xu, Tengfei Zhao, Yufan Fu. Integrated transcriptomic and CGAs analysis revealed IbGLK1 is a key transcription factor for chlorogenic acid accumulation in sweetpotato (Ipomoea batatas [L.] Lam.) blades. International journal of biological macromolecules. 2024 May; 266(Pt 1):131045. doi: 10.1016/j.ijbiomac.2024.131045. [PMID: 38547942]
  • Vincenzo Piccolo, Maria Maisto, Elisabetta Schiano, Fortuna Iannuzzo, Niloufar Keivani, Maria Manuela Rigano, Antonello Santini, Ettore Novellino, Gian Carlo Tenore, Vincenzo Summa. Phytochemical investigation and antioxidant properties of unripe tomato cultivars (Solanum lycopersicum L.). Food chemistry. 2024 Apr; 438(?):137863. doi: 10.1016/j.foodchem.2023.137863. [PMID: 37980871]
  • Menglin Han, Chaonan Sun, Ying Bu, Wenhui Zhu, Xuepeng Li, Yi Zhang, Jianrong Li. Exploring the interaction mechanism of chlorogenic acid and myoglobin: Insights from structure and molecular dynamics simulation. Food chemistry. 2024 Apr; 438(?):138053. doi: 10.1016/j.foodchem.2023.138053. [PMID: 38007953]
  • Agnieszka Zielińska, Dorota Bryk, Katarzyna Paradowska, Paweł Siudem, Iwona Wawer, Małgorzata Wrzosek. Anti-Atherosclerotic Properties of Aronia melanocarpa Extracts Influenced by Their Chemical Composition Associated with the Ripening Stage of the Berries. International journal of molecular sciences. 2024 Apr; 25(8):. doi: 10.3390/ijms25084145. [PMID: 38673738]
  • Wenjuan Ma, Jianglan Long, Linjie Dong, Jian Zhang, Aiting Wang, Yu Zhang, Dan Yan. Uncovering the key pharmacodynamic material basis and possible molecular mechanism of Xiaoke formulation improve insulin resistant through a comprehensive investigation. Journal of ethnopharmacology. 2024 Apr; 323(?):117752. doi: 10.1016/j.jep.2024.117752. [PMID: 38216099]
  • Jiaheng Li, Wenjun Wang, Weidong Xu, Yong Deng, Ruiling Lv, Jianwei Zhou, Donghong Liu. Evaluation of multiscale mechanisms of ultrasound-assisted extraction from porous plant materials: Experiment and modeling on this intensified process. Food research international (Ottawa, Ont.). 2024 Apr; 182(?):114034. doi: 10.1016/j.foodres.2024.114034. [PMID: 38519197]
  • Ming-Chang Tsai, Chi-Chih Wang, I-Ning Tsai, Meng-Hsun Yu, Mon-Yuan Yang, Yi-Ju Lee, Kuei-Chuan Chan, Chau-Jong Wang. Improving the Effects of Mulberry Leaves and Neochlorogenic Acid on Glucotoxicity-Induced Hepatic Steatosis in High Fat Diet Treated db/db Mice. Journal of agricultural and food chemistry. 2024 Mar; 72(12):6339-6346. doi: 10.1021/acs.jafc.3c09033. [PMID: 38488910]
  • Hanjiao He, Qing Wei, Jiao Chang, Xu Yi, Xiang Yu, Guoyong Luo, Xinfeng Li, Wude Yang, Yi Long. Exploring the hypoglycemic mechanism of chlorogenic acids from Pyrrosia petiolosa (Christ) Ching on type 2 diabetes mellitus based on network pharmacology and transcriptomics strategy. Journal of ethnopharmacology. 2024 Mar; 322(?):117580. doi: 10.1016/j.jep.2023.117580. [PMID: 38104881]
  • Ju-Bin Kang, Hyun-Kyoung Son, Dong-Ju Park, Yeung-Bae Jin, Fawad-Ali Shah, Phil-Ok Koh. Modulation of thioredoxin by chlorogenic acid in an ischemic stroke model and glutamate-exposed neurons. Neuroscience letters. 2024 Mar; 825(?):137701. doi: 10.1016/j.neulet.2024.137701. [PMID: 38395190]
  • Chien-Yi Ho, Chih-Hsin Tang, Trung-Loc Ho, Wen-Ling Wang, Chun-Hsu Yao. Chlorogenic acid prevents ovariectomized-induced bone loss by facilitating osteoblast functions and suppressing osteoclast formation. Aging. 2024 Mar; 16(5):4832-4840. doi: 10.18632/aging.205635. [PMID: 38461437]
  • Kai Zhang, Hongling Meng, Mengmeng Du, Yifan Du, Xuemin Li, Yang Wang, Huawei Liu. Quantitative Phosphoproteomics Analysis Reveals the Protective Mechanism of Chlorogenic Acid on Immunologically Stressed Broiler Meat Quality. Journal of agricultural and food chemistry. 2024 Mar; 72(9):5062-5072. doi: 10.1021/acs.jafc.3c07304. [PMID: 38377574]
  • Fevzi Elbasan, Busra Arikan, Ceyda Ozfidan-Konakci, Aysenur Tofan, Evren Yildiztugay. Hesperidin and chlorogenic acid mitigate arsenic-induced oxidative stress via redox regulation, photosystems-related gene expression, and antioxidant efficiency in the chloroplasts of Zea mays. Plant physiology and biochemistry : PPB. 2024 Mar; 208(?):108445. doi: 10.1016/j.plaphy.2024.108445. [PMID: 38402801]
  • Chaohui Dai, Hui Li, Weimin Zhao, Yanfeng Fu, Jinhua Cheng. Bioactive functions of chlorogenic acid and its research progress in pig industry. Journal of animal physiology and animal nutrition. 2024 Mar; 108(2):439-450. doi: 10.1111/jpn.13905. [PMID: 37975278]
  • Gloria Yareli Gutierrez-Silerio, Pablo Garcia-Solis, Elhadi M Yahia, José David Núñez-Ríos, Francisco Vázquez-Cuevas, Pablo Alan Rodriguez-Salinas, Rolando Mendoza-Zuñiga, Aaron Kuri-García. Cytotoxic and Antitumoral Effects of Methanolic Extracts of Avocado Fruit Mesocarp in Colorectal Cancer Cell Line HT29. Journal of medicinal food. 2024 Mar; 27(3):211-221. doi: 10.1089/jmf.2023.0112. [PMID: 38407926]
  • Jimena Del P Cejas, Antonio S Rosa, Agustín N González Paz, Edgardo A Disalvo, María de Los A Frías. Impact of chlorogenic acid on surface and phase properties of cholesterol-enriched phosphatidylcholine membranes. Archives of biochemistry and biophysics. 2024 Mar; 753(?):109913. doi: 10.1016/j.abb.2024.109913. [PMID: 38286353]
  • Zebo Liu, Xiaofeng Zhu, Ali Mohsin, Huijie Sun, Linxiao Du, Zhongping Yin, Yingping Zhuang, Meijin Guo. Uncovering the Role of Hydroxycinnamoyl Transferase in Boosting Chlorogenic Acid Accumulation in Carthamus tinctorius Cells under Methyl Jasmonate Elicitation. International journal of molecular sciences. 2024 Feb; 25(5):. doi: 10.3390/ijms25052710. [PMID: 38473957]
  • Érica Mendes Dos Santos, Lucas Malvezzi de Macedo, Janaína Artem Ataide, Jeany Delafiori, João Paulo de Oliveira Guarnieri, Paulo César Pires Rosa, Ana Lucia Tasca Gois Ruiz, Marcelo Lancellotti, Angela Faustino Jozala, Rodrigo Ramos Catharino, Gisele Anne Camargo, Ana Cláudia Paiva-Santos, Priscila Gava Mazzola. Antioxidant, antimicrobial and healing properties of an extract from coffee pulp for the development of a phytocosmetic. Scientific reports. 2024 02; 14(1):4453. doi: 10.1038/s41598-024-54797-0. [PMID: 38396007]
  • Vivek Kumar Awon, Debabrata Dutta, Saptadipa Banerjee, Soumili Pal, Gaurab Gangopadhyay. Integrated metabolomics and transcriptomics analysis highlight key pathways involved in the somatic embryogenesis of Darjeeling tea. BMC genomics. 2024 Feb; 25(1):207. doi: 10.1186/s12864-024-10119-2. [PMID: 38395740]
  • Taian Yi, Jiesi Luo, Ruixue Liao, Long Wang, Anguo Wu, Yueyue Li, Ling Zhou, Chengyang Ni, Kai Wang, Xiaoqin Tang, Wenjun Zou, Jianming Wu. An Innovative Inducer of Platelet Production, Isochlorogenic Acid A, Is Uncovered through the Application of Deep Neural Networks. Biomolecules. 2024 Feb; 14(3):. doi: 10.3390/biom14030267. [PMID: 38540688]
  • Rei Uranishi, Raju Aedla, Doaa H M Alsaadi, Dongxing Wang, Ken Kusakari, Hirotaka Osaki, Koji Sugimura, Takashi Watanabe. Evaluation of Environmental Factor Effects on the Polyphenol and Flavonoid Content in the Leaves of Chrysanthemum indicum L. and Its Habitat Suitability Prediction Mapping. Molecules (Basel, Switzerland). 2024 Feb; 29(5):. doi: 10.3390/molecules29050927. [PMID: 38474439]
  • Wen Zhang, Qian-Yu Zhang, Ji Li, Xue-Ning Ren, Yue Zhang, Qiao Niu. Study on the Digestive Behavior of Chlorogenic Acid in Biomimetic Dietary Fiber and the Antioxidative Synergistic Effect of Polysaccharides and Chlorogenic Acid. Journal of agricultural and food chemistry. 2024 Feb; 72(5):2634-2647. doi: 10.1021/acs.jafc.3c08886. [PMID: 38267223]
  • Kai He, Xiaoying Wang, Tingting Li, Yanfei Li, Linlin Ma. Chlorogenic Acid Attenuates Isoproterenol Hydrochloride-Induced Cardiac Hypertrophy in AC16 Cells by Inhibiting the Wnt/β-Catenin Signaling Pathway. Molecules (Basel, Switzerland). 2024 Feb; 29(4):. doi: 10.3390/molecules29040760. [PMID: 38398512]
  • Yunhui Liao, Feng Chen, Haishan Tang, Wubliker Dessie, Zuodong Qin. Combination of a Deep Eutectic Solvent and Macroporous Resin for Green Recovery of Iridoids, Chlorogenic Acid, and Flavonoids from Eucommia ulmoides Leaves. Molecules (Basel, Switzerland). 2024 Feb; 29(3):. doi: 10.3390/molecules29030737. [PMID: 38338480]
  • Zidan Luo, Mengfei Tian, Naveed Ahmad, Yuxin Xie, Chunguo Xu, Jie Liu, Chunjian Zhao, Chunying Li. A surface multiple imprinting layers membrane with well-oriented recognition sites for selective separation of chlorogenic acid from Ficus carica L. Food chemistry. 2024 Feb; 433(?):137347. doi: 10.1016/j.foodchem.2023.137347. [PMID: 37683463]
  • Fábio Florença Cardoso, Guilherme Henrique Marchi Salvador, Walter Luís Garrido Cavalcante, Maeli Dal-Pai, Marcos Roberto de Mattos Fontes. BthTX-I, a phospholipase A2-like toxin, is inhibited by the plant cinnamic acid derivative: chlorogenic acid. Biochimica et biophysica acta. Proteins and proteomics. 2024 02; 1872(2):140988. doi: 10.1016/j.bbapap.2023.140988. [PMID: 38142025]
  • Xin Liu, Xiao-Ying He, Bo-Long Liu, Ping-Shun Song. [Determination of 13 chemical components of Epimedii Folium in pharmacopoeia by UPLC method combined with quantitative analysis of multicomponents by single-marker]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2024 Feb; 49(4):981-988. doi: 10.19540/j.cnki.cjcmm.20231115.103. [PMID: 38621905]
  • Tuğba Günbatan, Melike Sucu, Alper Gokbulut, Elif Dilmaç, İlhan Gürbüz. Chymotrypsin and Trypsin Inhibitory Activity of Some Medicinal Plants Collected from Rize (Türkiye). Chemistry & biodiversity. 2024 Jan; ?(?):e202301879. doi: 10.1002/cbdv.202301879. [PMID: 38288857]
  • Antonio D'Errico, Rosarita Nasso, Antimo Di Maro, Nicola Landi, Angela Chambery, Rosita Russo, Stefania D'Angelo, Mariorosario Masullo, Rosaria Arcone. Identification and Characterization of Neuroprotective Properties of Thaumatin-like Protein 1a from Annurca Apple Flesh Polyphenol Extract. Nutrients. 2024 Jan; 16(2):. doi: 10.3390/nu16020307. [PMID: 38276545]
  • Chunxiu Lu, Liang Jin, Huifen Zhou, Jiehong Yang, Haitong Wan. Chlorogenic acid inhibits macrophage PANoptosis induced by cefotaxime-resistant Escherichia coli. Archives of microbiology. 2024 Jan; 206(2):67. doi: 10.1007/s00203-023-03777-5. [PMID: 38236396]
  • Narsingh Verma, Madhukar Mittal, Abbas Ali Mahdi, Vandana Awasthi, Pawan Kumar, Apurva Goel, Samudra P Banik, Sanjoy Chakraborty, Mehul Rungta, Manashi Bagchi, Debasis Bagchi. Clinical Evaluation of a Novel, Patented Green Coffee Bean Extract (GCB70®), Enriched in 70\% Chlorogenic Acid, in Overweight Individuals. Journal of the American Nutrition Association. 2024 Jan; ?(?):1-11. doi: 10.1080/27697061.2023.2284994. [PMID: 38227783]
  • Han Ding, Kunyi Ge, Changyu Fan, Dandan Liu, Chenyu Wu, Rongpeng Li, Feng-Juan Yan. Chlorogenic Acid Attenuates Hepatic Steatosis by Suppressing ZFP30. Journal of agricultural and food chemistry. 2024 Jan; 72(1):245-258. doi: 10.1021/acs.jafc.3c02988. [PMID: 38148374]
  • Xinhe Wang, Jiarui Zhao, Zhi Lin, Jun Li, Xiaowen Li, Xinyi Xu, Yuchen Wang, Guangfu Lv, He Lin, Zhe Lin. Analysis of Polyphenol Extract from Hazel Leaf and Ameliorative Efficacy and Mechanism against Hyperuricemia Zebrafish Model via Network Pharmacology and Molecular Docking. Molecules (Basel, Switzerland). 2024 Jan; 29(2):. doi: 10.3390/molecules29020317. [PMID: 38257230]
  • Muhammad Fakhar-E-Alam Kulyar, Quan Mo, Wangyuan Yao, Yan Li, Shah Nawaz, Kyein San Loon, Ahmed Ezzat Ahmed, Aiman A Alsaegh, Khalid M Al Syaad, Muhammad Akhtar, Zeeshan Ahmad Bhutta, Jiakui Li, Desheng Qi. Modulation of apoptosis and Inflammasome activation in chondrocytes: co-regulatory role of Chlorogenic acid. Cell communication and signaling : CCS. 2024 01; 22(1):2. doi: 10.1186/s12964-023-01377-w. [PMID: 38169388]
  • Chao Meng, Lingye Zhou, Lin Huang, Qi Gu, Xinyue Du, Cheng Wang, Fanglan Liu, Chunhua Xia. Chlorogenic acid regulates the expression of NPC1L1 and HMGCR through PXR and SREBP2 signaling pathways and their interactions with HSP90 to maintain cholesterol homeostasis. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2024 Jan; 123(?):155271. doi: 10.1016/j.phymed.2023.155271. [PMID: 38103317]
  • Rui Li, Yun Zhan, Xiao Ding, Jinjin Cui, Yanxing Han, Jinlan Zhang, Jie Zhang, Wenbin Li, Lulu Wang, Jiandong Jiang. Cancer Differentiation Inducer Chlorogenic Acid Suppresses PD-L1 Expression and Boosts Antitumor Immunity of PD-1 Antibody. International journal of biological sciences. 2024; 20(1):61-77. doi: 10.7150/ijbs.83599. [PMID: 38164171]
  • Nilofar, Tugce Duran, Abdullahi Ibrahim Uba, Aleksandra Cvetanović Kljakić, Jelena Božunović, Uroš Gašić, Abdelhakim Bouyahya, Evren Yıldiztugay, Claudio Ferrante, Gokhan Zengin. Extractions of aerial parts of Hippomarathrum scabrum with conventional and green methodologies: Chemical profiling, antioxidant, enzyme inhibition, and anti-cancer effects. Journal of separation science. 2024 Jan; 47(1):e2300678. doi: 10.1002/jssc.202300678. [PMID: 37994215]
  • Wei-Qi Yang, Qi Huang, Meng-Qi Wu, Quan-Xi Mei, Yuan-Sheng Zou, Zheng-Ming Qian, Dan Tang. Rapid screening and evaluation of natural antioxidants from leaf, stem, and root of Artemisia argyi by online liquid microextraction combined with HPLC-based antioxidant assay system coupled with calibration quantitative analysis. Journal of separation science. 2024 Jan; 47(1):e2300616. doi: 10.1002/jssc.202300616. [PMID: 38095533]
  • Yoshiaki Amakura, Takashi Uchikura, Morio Yoshimura, Naoko Masumoto, Yuzo Nishizaki, Naoki Sugimoto. Chromatographic Evaluation and Characterization of Constituents of Sunflower Seed Extract Used as Food Additives. Chemical & pharmaceutical bulletin. 2024; 72(1):93-97. doi: 10.1248/cpb.c23-00670. [PMID: 38233137]
  • Ali Rıza Tüfekçi, İbrahim Demirtaş, Hüseyin Akşit, Şevki Arslan, Kübra Kocabıyık, Sibel Zeybek, Tevfik Ozen, Ekrem Köksal. Two new compounds from endemic Centaurea paphlagonica (Bornm.) Wagenitz and their cytotoxic activities. Chemical biology & drug design. 2024 Jan; 103(1):e14409. doi: 10.1111/cbdd.14409. [PMID: 38030403]
  • Shun He, Xin Xu, Qian Gao, Changjun Huang, Zhaopeng Luo, Pingping Liu, Mingzhu Wu, Haitao Huang, Jun Yang, Jianmin Zeng, Zhong Wang. NtERF4 promotes the biosynthesis of chlorogenic acid and flavonoids by targeting PAL genes in Nicotiana tabacum. Planta. 2023 Dec; 259(2):31. doi: 10.1007/s00425-023-04301-1. [PMID: 38150094]
  • Selen İlgün, Gökçe Şeker Karatoprak, Derya Çiçek Polat, Esra Köngül Şafak, Çiğdem Yücel, Ufuk İnce, Hatice Özlem Uvat, Esra Küpeli Akkol. Assessment of Phenolic Composition, Antioxidant Potential, Antimicrobial Properties, and Antidiabetic Activity in Extracts Obtained from Schinus molle L. Leaves and Fruits. Frontiers in bioscience (Landmark edition). 2023 Dec; 28(12):353. doi: 10.31083/j.fbl2812353. [PMID: 38179764]
  • Ming-Shang Pai, Kaw-Chen Wang, Kun-Chieh Yeh, Su-Jane Wang. Stabilization of mitochondrial function by chlorogenic acid protects against kainic acid-induced seizures and neuronal cell death in rats. European journal of pharmacology. 2023 Dec; 961(?):176197. doi: 10.1016/j.ejphar.2023.176197. [PMID: 38000721]
  • Daiane Santos, Bruna Krieger Vargas, Elionio Galvão Frota, Bárbara Biduski, Samuel Teixeira Lopes, Júlia Pedó Gutkoski, Lára Franco Dos Santos, Giseli Aparecida Ritterbusch, Rômulo Pillon Barcelos, Sabrina Somacal, Tatiana Emanuelli, Telma Elita Bertolin. Gut Microbiota Modulation by Bioactive Compounds from Ilex paraguariensis: an In Vivo Study. Plant foods for human nutrition (Dordrecht, Netherlands). 2023 Dec; 78(4):796-802. doi: 10.1007/s11130-023-01117-y. [PMID: 37919536]
  • Gabriel P Bacil, Guilherme R Romualdo, Josias Rodrigues, Luís F Barbisan. Indole-3-carbinol and chlorogenic acid combination modulates gut microbiome and attenuates nonalcoholic steatohepatitis in a murine model. Food research international (Ottawa, Ont.). 2023 Dec; 174(Pt 1):113513. doi: 10.1016/j.foodres.2023.113513. [PMID: 37986509]
  • Antonietta Maoloni, Teresa Pirker, Eva-Maria Pferschy-Wenzig, Lucia Aquilanti, Rudolf Bauer. Characterization of potentially health-promoting constituents in sea fennel (Crithmum maritimum) cultivated in the Conero Natural Park (Marche region, Central Italy). Pharmaceutical biology. 2023 Dec; 61(1):1030-1040. doi: 10.1080/13880209.2023.2224820. [PMID: 37409739]
  • Ambika Goswami, Adinpunya Mitra. Light spectra manipulation stimulates growth, specialized metabolites and nutritional quality in Anethum graveolens. Journal of photochemistry and photobiology. B, Biology. 2023 Dec; 249(?):112812. doi: 10.1016/j.jphotobiol.2023.112812. [PMID: 37972447]
  • Gulay Ozkan. Valorization of artichoke outer petals by using ultrasound-assisted extraction and natural deep eutectic solvents (NADES) for the recovery of phenolic compounds. Journal of the science of food and agriculture. 2023 Nov; ?(?):. doi: 10.1002/jsfa.13158. [PMID: 37989526]
  • Biljana Kukavica, Siniša Škondrić, Tanja Trifković, Danijela Mišić, Uroš Gašić, Ljiljana Topalić-Trivunović, Aleksandar Savić, Ana Velemir, Biljana Davidović-Plavšić, Milica Šešić, Nataša Lukić. Comparative polyphenolic profiling of five ethnomedicinal plants and their applicative potential in the treatment of type 2 diabetes. Journal of ethnopharmacology. 2023 Nov; 320(?):117377. doi: 10.1016/j.jep.2023.117377. [PMID: 37939910]
  • Xiuli Li, Lumin Yang, Meng Hao, Tingting Song, Yufeng He, Mingchuan Yang, Jinsong Zhang. Chlorogenic acid as an indispensible partner of caffeic acid in coffee via selective regulation of prooxidative actions of caffeic acid. Food research international (Ottawa, Ont.). 2023 Nov; 173(Pt 2):113482. doi: 10.1016/j.foodres.2023.113482. [PMID: 37803805]
  • Lingyu Qin, Junming Wang, Xiaohui Wu, Lingling Song, Yueyue Zhang, Mingzhu Gong, Yanmei Wang, Bingyin Li. Antidepressant effects of 70\% ethanolic extract of Lonicerae japonicae flos and it contained chlorogenic acid via upregulation of BDNF-TrkB pathway in the hippocampus of mice. Brain research bulletin. 2023 Nov; 204(?):110796. doi: 10.1016/j.brainresbull.2023.110796. [PMID: 37863440]
  • Ardemia Santarcangelo, Fabian Weber, Stefan Kehraus, Jeroen S Dickschat, Andreas Schieber. Generation and structure elucidation of a red colorant formed by oxidative coupling of chlorogenic acid and tryptophan. Food chemistry. 2023 Nov; 425(?):136473. doi: 10.1016/j.foodchem.2023.136473. [PMID: 37295212]
  • Guoping Lai, Mingchun Wen, Zongde Jiang, Feng Zhou, Hui-Xia Huo, Mengting Zhu, Zisheng Han, Zixin Zhao, Chi-Tang Ho, Liang Zhang. Novel Oxidation Oligomer of Chlorogenic Acid and (-)-Epigallocatechin and Its Quantitative Analysis during the Processing of Keemun Black Tea. Journal of agricultural and food chemistry. 2023 Oct; 71(42):15745-15753. doi: 10.1021/acs.jafc.3c04571. [PMID: 37816159]
  • Kaiyang Ma, Weixi Sheng, Xinxin Song, Jiangfeng Song, Ying Li, Wuyang Huang, Yuanfa Liu. Chlorogenic Acid from Burdock Roots Ameliorates Oleic Acid-Induced Steatosis in HepG2 Cells through AMPK/ACC/CPT-1 Pathway. Molecules (Basel, Switzerland). 2023 Oct; 28(21):. doi: 10.3390/molecules28217257. [PMID: 37959676]
  • Sanda Vladimir-Knežević, Maja Bival Štefan, Biljana Blažeković, Dubravko Jelić, Tea Petković, Marta Mandić, Ekaterina Šprajc, Sandy Lovković. Src Tyrosine Kinase Inhibitory and Antioxidant Activity of Black Chokeberry and Bilberry Fruit Extracts Rich in Chlorogenic Acid. International journal of molecular sciences. 2023 Oct; 24(21):. doi: 10.3390/ijms242115512. [PMID: 37958496]
  • Elena Neagu, Gabriela Paun, Camelia Albu, Oana Teodora Apreutesei, Gabriel Lucian Radu. In Vitro Assessment of the Antidiabetic and Anti-Inflammatory Potential of Artemisia absinthium, Artemisia vulgaris and Trigonella foenum-graecum Extracts Processed Using Membrane Technologies. Molecules (Basel, Switzerland). 2023 Oct; 28(20):. doi: 10.3390/molecules28207156. [PMID: 37894635]
  • Fantong Meng, Chengchuang Song, Jia Liu, Fang Chen, YuHua Zhu, Xingtang Fang, Qinghe Cao, Daifu Ma, Yanhong Wang, Chunlei Zhang. Chlorogenic Acid Modulates Autophagy by Inhibiting the Activity of ALKBH5 Demethylase, Thereby Ameliorating Hepatic Steatosis. Journal of agricultural and food chemistry. 2023 Oct; ?(?):. doi: 10.1021/acs.jafc.3c03710. [PMID: 37805933]
  • Lian Wang, Huijing Wang, Jianbin Chen, Minglong Hu, Xiaoyu Shan, Jingwen Zhou. Efficient Production of Chlorogenic Acid in Escherichia coli Via Modular Pathway and Cofactor Engineering. Journal of agricultural and food chemistry. 2023 Oct; ?(?):. doi: 10.1021/acs.jafc.3c04419. [PMID: 37788431]
  • Sefa Gözcü, Zeynep Akşit, Samed Şimşek, Ali Kandemir, Ali Aydın, Mustafa Abdullah Yılmaz, Hüseyin Akşit. Phytochemical analysis and biological evaluation of Ferulago setifolia K. Koch. Journal of the science of food and agriculture. 2023 Oct; ?(?):. doi: 10.1002/jsfa.13017. [PMID: 37782211]
  • Helen Holvoet, Dani M Long, Liping Yang, Jaewoo Choi, Luke Marney, Burkhard Poeck, Claudia S Maier, Amala Soumyanath, Doris Kretzschmar, Roland Strauss. Chlorogenic Acids, Acting via Calcineurin, Are the Main Compounds in Centella asiatica Extracts That Mediate Resilience to Chronic Stress in Drosophila melanogaster. Nutrients. 2023 Sep; 15(18):. doi: 10.3390/nu15184016. [PMID: 37764799]
  • Anna Merecz-Sadowska, Przemysław Sitarek, Tomasz Kowalczyk, Marcin Palusiak, Marta Hoelm, Karolina Zajdel, Radosław Zajdel. In Vitro Evaluation and In Silico Calculations of the Antioxidant and Anti-Inflammatory Properties of Secondary Metabolites from Leonurus sibiricus L. Root Extracts. Molecules (Basel, Switzerland). 2023 Sep; 28(18):. doi: 10.3390/molecules28186550. [PMID: 37764326]
  • Samaneh Shirkhani, Sayyed Mohammad Marandi, Mohammad Hossein Nasr-Esfahani, Seung Kyum Kim. Effects of Exercise Training and Chlorogenic Acid Supplementation on Hepatic Lipid Metabolism in Pre-Diabetes Mice. Diabetes & metabolism journal. 2023 Sep; ?(?):. doi: 10.4093/dmj.2022.0265. [PMID: 37690781]
  • Andrea Carpi, Md Abdur Rahim, Angela Marin, Marco Armellin, Paola Brun, Giovanni Miotto, Renzo Dal Monte, Livio Trainotti. Optimization of Anthocyanin Production in Tobacco Cells. International journal of molecular sciences. 2023 Sep; 24(18):. doi: 10.3390/ijms241813711. [PMID: 37762013]
  • Dong-Jiang Lin, Ya-Xin Zhang, Yong Fang, San-Ji Gao, Ran Wang, Jin-da Wang. The effect of chlorogenic acid, a potential botanical insecticide, on gene transcription and protein expression of carboxylesterases in the armyworm (Mythimna separata). Pesticide biochemistry and physiology. 2023 Sep; 195(?):105575. doi: 10.1016/j.pestbp.2023.105575. [PMID: 37666601]
  • Juliane Viganó, Monique Martins Strieder, Rodrigo S Pizani, Letícia S Contieri, Leonardo M de Souza Mesquita, Mauricio A Rostagno. Application of an integrative system (2D PLE×HPLC-PDA) for bioactive compound extraction and online quantification: Advantages, validation, and considerations. Analytica chimica acta. 2023 Sep; 1272(?):341494. doi: 10.1016/j.aca.2023.341494. [PMID: 37355330]
  • Renwei Guan, Fengdan Guo, Ruiqi Guo, Shu Wang, Xinru Sun, Qiuchen Zhao, Cuicui Zhang, Shengbo Li, Huibin Lin, Jianqiang Lin. Integrated metabolic profiling and transcriptome analysis of Lonicera japonica flowers for chlorogenic acid, luteolin and endogenous hormone syntheses. Gene. 2023 Aug; ?(?):147739. doi: 10.1016/j.gene.2023.147739. [PMID: 37633535]
  • Zhifang Ran, Weina Ding, Hongxia Yu, Li Zhang, Lei Fang, Lanping Guo, Jie Zhou. Combinatorial transcriptomics and metabolomics analysis reveals the effects of the harvesting stages on the accumulation of phenylpropanoid metabolites in Lonicera japonica. Functional plant biology : FPB. 2023 Aug; ?(?):. doi: 10.1071/fp23033. [PMID: 37607828]
  • Shima Joneidi, Seyedeh Roya Alizadeh, Mohammad Ali Ebrahimzadeh. Chlorogenic Acid Derivatives: Structural Modifications, Drug Design, and Biological Activities: A Review. Mini reviews in medicinal chemistry. 2023 Aug; ?(?):. doi: 10.2174/1389557523666230822095959. [PMID: 37608658]
  • Burcu Uner, Melahat Sedanur Macit Celebi. Anti-obesity effects of chlorogenic acid and caffeine- lipid nanoparticles through PPAR-γ/C/EBP-ɑ pathways. International journal of obesity (2005). 2023 Aug; ?(?):. doi: 10.1038/s41366-023-01365-7. [PMID: 37596386]
  • Alaa Alnoor Alameen, Monerah R Alothman, Mona S Al Wahibi, Ejlal Mohamed Abdullah, Rehab Ali, Mohnad Abdalla, Sndos Z A Fattiny, Rasha Elsayim. Potential Effect of Baobab's Polyphenols as Antihyperlipidemic Agents: In Silico Study. Molecules (Basel, Switzerland). 2023 Aug; 28(16):. doi: 10.3390/molecules28166112. [PMID: 37630364]
  • Ting Yang, Xiang Li, Lili Lan, Dandan Gong, Fan Zhang, Xinrong Liu, Guixia Ling, Guoxiang Sun. Quality evaluation of Keteling capsules based on fingerprinting, multicomponent quantification, and quantitative prediction. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2023 Aug; 303(?):123274. doi: 10.1016/j.saa.2023.123274. [PMID: 37603975]
  • Yuqing Cui, Zisheng Han, Li Lian, Liang Zhang. The inhibition effects of chlorogenic acid on the formation of colored oxidation products of (-)-epigallocatechin gallate under enzymatic oxidation. Food chemistry. 2023 Aug; 417(?):135895. doi: 10.1016/j.foodchem.2023.135895. [PMID: 36931012]
  • Wanjun Jiang, Zhonghui Zhuo, Xiaohua Zhang, Hai Luo, Lu He, Yuling Yang, Yangping Wen, Zhong Huang, Peng Wang. Smartphone-based electrochemical sensor for cost-effective, rapid and on site detection of chlorogenic acid in herbs using biomass-derived hierarchically porous carbon synthesized by a soft-hard dual template method. Food chemistry. 2023 Aug; 431(?):137165. doi: 10.1016/j.foodchem.2023.137165. [PMID: 37598652]
  • Younes M Rashad, Hany H El-Sharkawy, Sara A Abdalla, Omar M Ibrahim, Nahla T Elazab. Mycorrhizal colonization and Streptomyces viridosporus HH1 synergistically up-regulate the polyphenol biosynthesis genes in wheat against stripe rust. BMC plant biology. 2023 Aug; 23(1):388. doi: 10.1186/s12870-023-04395-5. [PMID: 37563704]
  • Phuong Hong Le, Linh Thuy Thi Ho, Dao Hong Thi Le, Viet Nguyen. Purification of Coffee Polyphenols Extracted from Coffee Pulps (Coffee arabica L.) Using Aqueous Two-Phase System. Molecules (Basel, Switzerland). 2023 Aug; 28(15):. doi: 10.3390/molecules28155922. [PMID: 37570892]
  • Virendra Prasad Tiwari, Amit Dubey, Mohammed Al-Shehri, Indra Prasad Tripathi. Exploration of human pancreatic alpha-amylase inhibitors from Physalis peruviana for the treatment of type 2 diabetes. Journal of biomolecular structure & dynamics. 2023 Aug; ?(?):1-16. doi: 10.1080/07391102.2023.2243336. [PMID: 37545158]
  • Rima Šedbarė, Onutė Grigaitė, Valdimaras Janulis. Peculiarities of the Variation of Biologically Active Compounds in Fruit of Vaccinium oxycoccos L. Growing in the Čepkeliai State Strict Nature Reserve. Molecules (Basel, Switzerland). 2023 Aug; 28(15):. doi: 10.3390/molecules28155888. [PMID: 37570858]
  • Farkhondeh Safari, Hamid Hassanpour, Ahmad Alijanpour. Evaluation of hackberry (Celtis australis L.) fruits as sources of bioactive compounds. Scientific reports. 2023 07; 13(1):12233. doi: 10.1038/s41598-023-39421-x. [PMID: 37507445]
  • Emilia Gligorić, Ružica Igić, Branislava Teofilović, Nevena Grujić-Letić. Phytochemical Screening of Ultrasonic Extracts of Salix Species and Molecular Docking Study of Salix-Derived Bioactive Compounds Targeting Pro-Inflammatory Cytokines. International journal of molecular sciences. 2023 Jul; 24(14):. doi: 10.3390/ijms241411848. [PMID: 37511606]
  • Na Xiao, Tengfei Zhang, Mingli Han, Dan Tian, Jiawei Liu, Shan Li, Lele Yang, Guojun Pan. Chlorogenic Acid Inhibits Ceramide Accumulation to Restrain Hepatic Glucagon Response. Nutrients. 2023 Jul; 15(14):. doi: 10.3390/nu15143173. [PMID: 37513589]
  • Haoyu Xue, Mengjuan Wei, Lili Ji. Chlorogenic acids: A pharmacological systematic review on their hepatoprotective effects. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2023 Jul; 118(?):154961. doi: 10.1016/j.phymed.2023.154961. [PMID: 37453191]
  • Javier Gallardo-Ignacio, Anislada Santibáñez, Octavio Oropeza-Mariano, Ricardo Salazar, Rosa Mariana Montiel-Ruiz, Sandra Cabrera-Hilerio, Manasés Gonzáles-Cortazar, Francisco Cruz-Sosa, Pilar Nicasio-Torres. Chemical and Biological Characterization of Green and Processed Coffee Beans from Coffea arabica Varieties. Molecules (Basel, Switzerland). 2023 Jun; 28(12):. doi: 10.3390/molecules28124685. [PMID: 37375240]
  • Hongyan Luo, Fangfang Zan, Jin Cui. Effect of microneedle roller on promoting transdermal absorption of crossbow-medicine liquid via transdermal administration of Traditional Chinese Medicine and the safety of crossbow-medicine needle therapy: An experimental study. Journal of ethnopharmacology. 2023 Jun; ?(?):116751. doi: 10.1016/j.jep.2023.116751. [PMID: 37295573]
  • Min Chen, Mu Xiao, Boyu Liu, Man Wang, Chengfang Tan, Yi Zhang, Hui Quan, Ying Ruan, Yong Huang. Full-length transcriptome sequencing and transgenic tobacco revealed the key genes in the chlorogenic acid synthesis pathway of Sambucus chinensis L. Physiologia plantarum. 2023 Jun; ?(?):e13944. doi: 10.1111/ppl.13944. [PMID: 37260185]
  • Zheng-Ming Yang, Ci-Ga Dijiu, Jian-Long Lan, Jiang Luo, Yue-Bu Hailai, Tao Wang, Wen-Bing Li, Ying Li, Yuan Liu. [Quality evaluation of Huocao based on UPLC fingerprint and multi-component content determination]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2023 Jun; 48(11):3000-3013. doi: 10.19540/j.cnki.cjcmm.20230218.201. [PMID: 37381974]
  • Eri Kumagawa, Yoshiki Yajima, Hiroshi Takahashi. Calorimetric, volumetric and structural studies of the interaction between chlorogenic acid and dipalmitoylphosphatidylcholine bilayers. Biochimica et biophysica acta. Biomembranes. 2023 06; 1865(5):184158. doi: 10.1016/j.bbamem.2023.184158. [PMID: 37094707]
  • Yifeng Zhou, Meixu Chen, Xinyi Huo, Qilin Xu, Linlin Wu, Liling Wang. Separation of Flavonoids and Purification of Chlorogenic Acid from Bamboo Leaves Extraction Residues by Combination of Macroporous Resin and High-Speed Counter-Current Chromatography. Molecules (Basel, Switzerland). 2023 May; 28(11):. doi: 10.3390/molecules28114443. [PMID: 37298918]
  • Yajuan Bi, Yanchao Xing, Chunshan Gui, Yiqing Tian, Mingzhe Zhang, Yao Yao, Ge Hu, Lifeng Han, Feng He, Youcai Zhang. Potential Involvement of Organic Anion Transporters in Drug Interactions with Shuganning Injection, a Traditional Chinese Patent Medicine. Planta medica. 2023 May; ?(?):. doi: 10.1055/a-2085-2367. [PMID: 37236232]
  • Tin-Yun Ho, Hsin-Yi Lo, Guan-Ling Lu, Pei-Yung Liao, Chien-Yun Hsiang. Analysis of target organs of Houttuynia cordata: A study on the anti-inflammatory effect of upper respiratory system. Journal of ethnopharmacology. 2023 May; ?(?):116687. doi: 10.1016/j.jep.2023.116687. [PMID: 37244408]
  • Ruili Li, Jing Xu, Zengxing Qi, Shiwei Zhao, Ran Zhao, Yanrui Ge, Ruofan Li, Xiuya Kong, Zhenying Wu, Xi Zhang, Qizouhong He, Yan Zhang, Ping-Li Liu, Lei Zhu, Jian-Feng Mao, Chunxiang Fu, George Komis, Paul Grünhofer, Lukas Schreiber, Jinxing Lin. High-resolution genome mapping and functional dissection of chlorogenic acid production in Lonicera maackii. Plant physiology. 2023 May; ?(?):. doi: 10.1093/plphys/kiad295. [PMID: 37226859]
  • Philippa A Jackson, Charlotte Kenney, Joanne Forster, Ellen F Smith, Rian Elcoate, Bethany Spittlehouse, Jodee Johnson, David O Kennedy. Acute Cognitive Performance and Mood Effects of Coffeeberry Extract: A Randomized, Double Blind, Placebo-Controlled Crossover Study in Healthy Humans. Nutrients. 2023 May; 15(11):. doi: 10.3390/nu15112418. [PMID: 37299382]