Decursin (BioDeep_00000000096)

PANOMIX_OTCML-2023 natural product


代谢物信息卡片


CROTONIC ACID, 3-METHYL-, ESTER WITH 7,8-DIHYDRO-7-HYDROXY-8,8-DIMETHYL-2H,6H-BENZO(1,2-B:5,4-B)DIPYRAN-2-ONE, (+)-

化学式: C19H20O5 (328.1311)
中文名称: 紫花前胡醇当归酯, 紫花前胡素, 紫花前胡醇当归酸酯
谱图信息: 最多检出来源 Viridiplantae(otcml) 51.92%

分子结构信息

SMILES: C/C(C)=C\C(O[C@H](C(C)(C)O1)CC2=C1C=C(O3)C(C=CC3=O)=C2)=O
InChI: InChI=1S/C19H20O5/c1-11(2)7-18(21)23-16-9-13-8-12-5-6-17(20)22-14(12)10-15(13)24-19(16,3)4/h5-8,10,16H,9H2,1-4H3/t16-/m0/s1

描述信息

Decursin is a member of coumarins.
Decursin is a natural product found in Scutellaria lateriflora, Angelica glauca, and other organisms with data available.
See also: Angelica gigas root (part of).
D020536 - Enzyme Activators
Decursinol angelate is a natural product found in Angelica glauca and Angelica gigas with data available.
See also: Angelica gigas root (part of).
Decursin ((+)-Decursin) is a potent anti-tumor agent. Decursin also is a cytotoxic agent and a potent protein kinase C activator. Decursin induces apoptosis and cell cycle arrest at G1 phase. Decursin decreases the expression of CDK2, CDK4, CDK6, cyclin D1 protein at 48 h. Decursin inhibits cell proliferation and migration. Decursin shows anti-tumor, anti-inflammatory and analgesic activities[1][2][3][4].
Decursin ((+)-Decursin) is a potent anti-tumor agent. Decursin also is a cytotoxic agent and a potent protein kinase C activator. Decursin induces apoptosis and cell cycle arrest at G1 phase. Decursin decreases the expression of CDK2, CDK4, CDK6, cyclin D1 protein at 48 h. Decursin inhibits cell proliferation and migration. Decursin shows anti-tumor, anti-inflammatory and analgesic activities[1][2][3][4].
Decursinol angelate, a cytotoxic and protein kinase C (PKC) activating agent from the root of Angelica gigas, possesses anti-tumor and anti-inflammatory activities[1][2].

同义名列表

36 个代谢物同义名

CROTONIC ACID, 3-METHYL-, ESTER WITH 7,8-DIHYDRO-7-HYDROXY-8,8-DIMETHYL-2H,6H-BENZO(1,2-B:5,4-B)DIPYRAN-2-ONE, (+)-; 2-butenoic acid, 2-methyl-, (7S)-7,8-dihydro-8,8-dimethyl-2-oxo-2H,6H-benzo(1,2-b:5,4-b)dipyran-7-yl ester, (2Z)-; 2-butenoic acid, 3-methyl-, (7S)-7,8-dihydro-8,8-dimethyl-2-oxo-2H,6H-pyrano(3,2-G)-1-benzopyran-7-yl ester; 2-Butenoic acid, 3-methyl-, 7,8-dihydro-8,8-dimethyl-2-oxo-2H,6H-benzo(1,2-b:5,4-b)dipyran-7-yl ester, (S)-; 2-Butenoic acid, 3-methyl-, (7S)-7,8-dihydro-8,8-dimethyl-2-oxo-2H,6H-benzo[1,2-b:5,4-b]dipyran-7-yl ester; 3-methyl-2-butenoic acid, (7S)-7,8-dihydro-8,8-dimethyl-2-oxo-2H,6H-pyrano[3,2-g]-1-benzopyran-7-yl ester; (S)-7,8-Dihydro-8,8-dimethyl-2-oxo-2H,6H-benzo(1,2-b:5,4-b)dipyran-7-yl 3-methyl-2-butenoate; 8,8-Dimethyl-2-oxo-7,8-dihydro-2H,6H-benzo[1,2-b:5,4-b]dipyran-7-yl 3-methylbut-2-enoate; (S)-8,8-Dimethyl-2-oxo-7,8-dihydro-2H,6H-pyrano[3,2-g]chromen-7-yl 3-methylbut-2-enoate; (S)-2,2-dimethyl-8-oxo-2,3,4,8-tetrahydropyrano[3,2-g]chromen-3-yl 3-methylbut-2-enoate; [(3S)-2,2-dimethyl-8-oxo-3,4-dihydropyrano[3,2-g]chromen-3-yl] 3-methylbut-2-enoate; 2H,6H-benzo(1,2-b:5,4-b)dipyran-2-one, 7,8-dihydro-7-hydroxy-8,8-dimethyl-, (S)-; Decursin ((+)-Decursin); decursinol angelate; (S)-(+)-Decursin; UNII-E95RTO3YQR; DECURSIN [INCI]; (+)-Decursin; decursinol; E95RTO3YQR; Decursin; AC1L9CAH; 3-methylbut-2-enoic acid [(7S)-2-keto-8,8-dimethyl-6,7-dihydropyrano[5,6-g]chromen-7-yl] ester; 3-methylbut-2-enoic acid [(7S)-8,8-dimethyl-2-oxo-6,7-dihydropyrano[5,6-g]chromen-7-yl] ester; [(7S)-8,8-dimethyl-2-oxo-6,7-dihydropyrano[5,6-g]chromen-7-yl] 3-methylbut-2-enoate; 5928-25-6; C09258; 2-Butenoic acid, 2-methyl-, 7,8-dihydro-8,8-dimethyl-2-oxo-2H,6H-benzo(1,2-b:5,4-b)dipyran-7-yl ester, (S-(Z))-; (S)-8,8-dimethyl-2-oxo-7,8-dihydro-2H,6H-pyrano[3,2-g]chromen-7-yl (Z)-2-methylbut-2-enoate; [(3S)-2,2-dimethyl-8-oxo-3,4-dihydropyrano[3,2-g]chromen-3-yl] (Z)-2-methylbut-2-enoate; (S)-(+)-Decursinol Angelate; AGABNGOXUSXQDD-XKGFZTIGSA-N; Decursinolangelate; Acutilobin; Decursin; Decursin



数据库引用编号

24 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

42 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 13 AKT1, ANG, AR, BCL2, BIRC5, CASP3, CCND1, MAPK14, MYC, PIK3CA, PTGS2, STAT3, VEGFA
Peripheral membrane protein 1 PTGS2
Endoplasmic reticulum membrane 3 BCL2, HMOX1, PTGS2
Nucleus 14 AKT1, ANG, AR, BCL2, BIRC5, CASP3, CCND1, GABPA, HMOX1, MAPK14, MYC, PARP1, STAT3, VEGFA
cytosol 13 AKT1, ANG, AR, BCL2, BIRC5, CASP3, CCND1, HMOX1, MAPK14, PARP1, PIK3CA, PRKCQ, STAT3
nuclear body 1 PARP1
centrosome 1 CCND1
nucleoplasm 11 AKT1, AR, BIRC5, CASP3, CCND1, GABPA, HMOX1, MAPK14, MYC, PARP1, STAT3
RNA polymerase II transcription regulator complex 1 STAT3
Cell membrane 3 AKT1, PROKR2, TNF
Cytoplasmic side 1 HMOX1
lamellipodium 2 AKT1, PIK3CA
Multi-pass membrane protein 1 PROKR2
cell cortex 1 AKT1
cell surface 2 TNF, VEGFA
glutamatergic synapse 3 AKT1, CASP3, MAPK14
Golgi apparatus 1 VEGFA
growth cone 1 ANG
neuronal cell body 3 ANG, CASP3, TNF
postsynapse 1 AKT1
Cytoplasm, cytosol 1 PARP1
plasma membrane 7 AKT1, AR, PIK3CA, PRKCQ, PROKR2, STAT3, TNF
Membrane 7 AKT1, AR, BCL2, HMOX1, MYC, PARP1, VEGFA
caveola 1 PTGS2
endoplasmic reticulum 4 BCL2, HMOX1, PTGS2, VEGFA
extracellular space 5 ANG, HMOX1, IL6, TNF, VEGFA
perinuclear region of cytoplasm 2 HMOX1, PIK3CA
adherens junction 1 VEGFA
bicellular tight junction 1 CCND1
intercalated disc 1 PIK3CA
mitochondrion 3 BCL2, MAPK14, PARP1
protein-containing complex 7 AKT1, AR, BCL2, BIRC5, MYC, PARP1, PTGS2
Microsome membrane 1 PTGS2
postsynaptic density 1 CASP3
Secreted 3 ANG, IL6, VEGFA
extracellular region 5 ANG, IL6, MAPK14, TNF, VEGFA
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 2 BCL2, HMOX1
transcription regulator complex 2 PARP1, STAT3
centriolar satellite 1 PRKCQ
Nucleus membrane 2 BCL2, CCND1
Bcl-2 family protein complex 1 BCL2
nuclear membrane 2 BCL2, CCND1
external side of plasma membrane 1 TNF
Secreted, extracellular space, extracellular matrix 1 VEGFA
actin cytoskeleton 1 ANG
microtubule cytoskeleton 2 AKT1, BIRC5
nucleolus 3 ANG, MYC, PARP1
midbody 1 BIRC5
cell-cell junction 1 AKT1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
vesicle 1 AKT1
Membrane raft 1 TNF
pore complex 1 BCL2
Cytoplasm, cytoskeleton, spindle 1 BIRC5
microtubule 1 BIRC5
spindle 2 AKT1, BIRC5
extracellular matrix 1 VEGFA
basement membrane 1 ANG
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
secretory granule 1 VEGFA
nuclear speck 2 AR, MAPK14
interphase microtubule organizing center 1 BIRC5
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
neuron projection 1 PTGS2
ciliary basal body 1 AKT1
chromatin 5 AR, GABPA, MYC, PARP1, STAT3
phagocytic cup 1 TNF
Chromosome 3 ANG, BIRC5, PARP1
centriole 1 BIRC5
Nucleus, nucleolus 3 ANG, MYC, PARP1
spindle pole 1 MAPK14
nuclear replication fork 1 PARP1
chromosome, telomeric region 1 PARP1
nuclear chromosome 1 BIRC5
site of double-strand break 1 PARP1
nuclear envelope 2 MYC, PARP1
Chromosome, centromere 1 BIRC5
Chromosome, centromere, kinetochore 1 BIRC5
Nucleus, nucleoplasm 1 MYC
Cytoplasm, Stress granule 1 ANG
cytoplasmic stress granule 1 ANG
myelin sheath 1 BCL2
ficolin-1-rich granule lumen 1 MAPK14
secretory granule lumen 1 MAPK14
endoplasmic reticulum lumen 2 IL6, PTGS2
transcription repressor complex 1 CCND1
platelet alpha granule lumen 1 VEGFA
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
kinetochore 1 BIRC5
endocytic vesicle 1 ANG
RNA polymerase II transcription repressor complex 1 MYC
immunological synapse 1 PRKCQ
aggresome 1 PRKCQ
Single-pass type IV membrane protein 1 HMOX1
chromosome, centromeric region 1 BIRC5
chromosome passenger complex 1 BIRC5
cytoplasmic microtubule 1 BIRC5
protein-DNA complex 1 PARP1
spindle microtubule 1 BIRC5
survivin complex 1 BIRC5
death-inducing signaling complex 1 CASP3
Rough endoplasmic reticulum 1 MYC
site of DNA damage 1 PARP1
cyclin-dependent protein kinase holoenzyme complex 1 CCND1
Myc-Max complex 1 MYC
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
angiogenin-PRI complex 1 ANG
interleukin-6 receptor complex 1 IL6
[Poly [ADP-ribose] polymerase 1, processed N-terminus]: Chromosome 1 PARP1
[Poly [ADP-ribose] polymerase 1, processed C-terminus]: Cytoplasm 1 PARP1
BAD-BCL-2 complex 1 BCL2
cyclin D1-CDK4 complex 1 CCND1
[N-VEGF]: Cytoplasm 1 VEGFA
[VEGFA]: Secreted 1 VEGFA
[Isoform L-VEGF189]: Endoplasmic reticulum 1 VEGFA
[Isoform VEGF121]: Secreted 1 VEGFA
[Isoform VEGF165]: Secreted 1 VEGFA
VEGF-A complex 1 VEGFA
cyclin D1-CDK6 complex 1 CCND1
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF
nucleoplasmic reticulum 1 MYC


文献列表

  • Bao Tan Nguyen, Yoon Jung Choi, Kyeong Ho Kim, Gyu Yong Song, Hyung Min Kim, Jong Seong Kang. Chiral separation and molecular modeling study of decursinol and its derivatives using polysaccharide-based chiral stationary phases. Journal of chromatography. A. 2023 Jun; 1705(?):464165. doi: 10.1016/j.chroma.2023.464165. [PMID: 37419019]
  • Yi Yang, Yan-E Hu, Mao-Yuan Zhao, Yi-Fang Jiang, Xi Fu, Feng-Ming You. [Decursin affects proliferation, apoptosis, and migration of colorectal cancer cells through PI3K/Akt signaling pathway]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2023 May; 48(9):2334-2342. doi: 10.19540/j.cnki.cjcmm.20230117.703. [PMID: 37282862]
  • Gokay Albayrak, Serdar Demir, Halil Koyu, Sura Baykan. Anticholinesterase Compounds from Endemic Prangos uechtritzii. Chemistry & biodiversity. 2022 Nov; 19(11):e202200557. doi: 10.1002/cbdv.202200557. [PMID: 36201258]
  • Renye Que, Mengxing Cao, Yancheng Dai, Yi Zhou, Yirong Chen, Liubing Lin. Decursin ameliorates carbon-tetrachloride-induced liver fibrosis by facilitating ferroptosis of hepatic stellate cells. Biochemistry and cell biology = Biochimie et biologie cellulaire. 2022 Oct; 100(5):378-386. doi: 10.1139/bcb-2022-0027. [PMID: 35785548]
  • Yu-Rim Song, Boyun Jang, Sung-Min Lee, Su-Jin Bae, Seon-Been Bak, Young-Woo Kim. Angelica gigas NAKAI and Its Active Compound, Decursin, Inhibit Cellular Injury as an Antioxidant by the Regulation of AMP-Activated Protein Kinase and YAP Signaling. Molecules (Basel, Switzerland). 2022 Mar; 27(6):. doi: 10.3390/molecules27061858. [PMID: 35335221]
  • Seongwon Pak, Bikash Thapa, Keunwook Lee. Decursinol Angelate Mitigates Sepsis Induced by Methicillin-Resistant Staphylococcus aureus Infection by Modulating the Inflammatory Responses of Macrophages. International journal of molecular sciences. 2021 Oct; 22(20):. doi: 10.3390/ijms222010950. [PMID: 34681611]
  • Meng-Lian Zhu, Jian-Chun Li, Lu Wang, Xia Zhong, Yu-Wei Zhang, Rui-Zhi Tan, Hong-Lian Wang, Jun-Ming Fan, Li Wang. Decursin inhibits the growth of HeLa cervical cancer cells through PI3K/Akt signaling. Journal of Asian natural products research. 2021 Jun; 23(6):584-595. doi: 10.1080/10286020.2020.1821669. [PMID: 33233968]
  • Tae-Kyeong Lee, Ii-Jun Kang, Hyejin Sim, Jae-Chul Lee, Ji-Hyeon Ahn, Dae-Won Kim, Joon-Ha Park, Choong-Hyun Lee, Jong-Dai Kim, Moo-Ho Won, Soo-Young Choi. Therapeutic Effects of Decursin and Angelica gigas Nakai Root Extract in Gerbil Brain after Transient Ischemia via Protecting BBB Leakage and Astrocyte Endfeet Damage. Molecules (Basel, Switzerland). 2021 Apr; 26(8):. doi: 10.3390/molecules26082161. [PMID: 33918660]
  • Su-Jin Ahn, Hyung Joo Kim, Ayoung Lee, Seung-Sik Min, Sangwhan In, Eunmi Kim. Determination of 12 herbal compounds for estimating the presence of Angelica Gigas Root, Cornus Fruit, Licorice Root, Pueraria Root, and Schisandra Fruit in foods by LC-MS/MS. Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment. 2020 Sep; 37(9):1437-1448. doi: 10.1080/19440049.2020.1778187. [PMID: 32530783]
  • Tae-Kyeong Lee, Bora Kim, Dae Won Kim, Ji Hyeon Ahn, Hyejin Sim, Jae-Chul Lee, Go Eun Yang, Young Her, Joon Ha Park, Hyun Sook Kim, Tae Heung Sim, Hyun Sam Lee, Moo-Ho Won. Effects of Decursin and Angelica gigas Nakai Root Extract on Hair Growth in Mouse Dorsal Skin via Regulating Inflammatory Cytokines. Molecules (Basel, Switzerland). 2020 Aug; 25(16):. doi: 10.3390/molecules25163697. [PMID: 32823713]
  • Xueting Wang, Jing Yu, Binlong Ji, Yuling Yang. Decursin inhibits the oxidation of low-density lipoprotein and protects human aortic endothelial cells against oxidative damage. Cellular and molecular biology (Noisy-le-Grand, France). 2020 Jun; 66(3):155-158. doi: . [PMID: 32538763]
  • Bitna Kweon, Yo-Han Han, Ji-Ye Kee, Jeong-Geon Mun, Hee Dong Jeon, Dae Hwan Yoon, Byung-Min Choi, Seung-Heon Hong. Effect of Angelica gigas Nakai Ethanol Extract and Decursin on Human Pancreatic Cancer Cells. Molecules (Basel, Switzerland). 2020 Apr; 25(9):. doi: 10.3390/molecules25092028. [PMID: 32349276]
  • Mi-Yeon Jung, Chang-Seob Seo, Seon-Eun Baek, Jaemin Lee, Myoung-Sook Shin, Ki Sung Kang, Sullim Lee, Jeong-Eun Yoo. Analysis and Identification of Active Compounds from Gami-Soyosan Toxic to MCF-7 Human Breast Adenocarcinoma Cells. Biomolecules. 2019 07; 9(7):. doi: 10.3390/biom9070272. [PMID: 31295870]
  • Alice Nguvoko Kiyonga, Ji-Hun An, Ki Yong Lee, Changjin Lim, Young-Ger Suh, Young-Won Chin, Kiwon Jung. Rapid and Efficient Separation of Decursin and Decursinol Angelate from Angelica gigas Nakai using Ionic Liquid, (BMIm)BF4, Combined with Crystallization. Molecules (Basel, Switzerland). 2019 Jun; 24(13):. doi: 10.3390/molecules24132390. [PMID: 31261662]
  • Wonhwa Lee, O Yuseok, Sumin Yang, Bong-Seon Lee, Jee-Hyun Lee, Eui Kyun Park, Moon-Chang Baek, Gyu-Yong Song, Jong-Sup Bae. JH-4 reduces HMGB1-mediated septic responses and improves survival rate in septic mice. Journal of cellular biochemistry. 2019 04; 120(4):6277-6289. doi: 10.1002/jcb.27914. [PMID: 30378167]
  • Giselle Ann D Fontamillas, Si Won Kim, Hoy-Ung Kim, Sung-Jo Kim, Jong Geun Kim, Tae Sub Park, Byung-Chul Park. Effects of Angelica gigas Nakai on the production of decursin- and decursinol angelate-enriched eggs. Journal of the science of food and agriculture. 2019 Apr; 99(6):3117-3123. doi: 10.1002/jsfa.9526. [PMID: 30536922]
  • Jianchun Li, Honglian Wang, Lu Wang, Ruizhi Tan, Menglian Zhu, Xia Zhong, Yuwei Zhang, Bo Chen, Li Wang. Decursin inhibits the growth of HepG2 hepatocellular carcinoma cells via Hippo/YAP signaling pathway. Phytotherapy research : PTR. 2018 Dec; 32(12):2456-2465. doi: 10.1002/ptr.6184. [PMID: 30251417]
  • Yuna Park, Dayoung Kim, Inho Yang, Bomee Choi, Jin Woo Lee, Seung Namkoong, Hyun Jung Koo, Sung Ryul Lee, Myung Rye Park, Hyosun Lim, Youn Kyu Kim, Sang Jip Nam, Eun-Hwa Sohn. Decursin and Z-Ligustilide in Angelica tenuissima Root Extract Fermented by Aspergillus oryzae Display Anti-Pigment Activity in Melanoma Cells. Journal of microbiology and biotechnology. 2018 Jul; 28(7):1061-1067. doi: 10.4014/jmb.1812.02044. [PMID: 29913552]
  • Eungyoung Kim, Jehyun Nam, Woochul Chang, Ismayil S Zulfugarov, Zhanna M Okhlopkova, Daniil Olennikov, Nadezhda K Chirikova, Sang-Woo Kim. Angelica gigas Nakai and Decursin Downregulate Myc Expression to Promote Cell Death in B-cell Lymphoma. Scientific reports. 2018 Jul; 8(1):10590. doi: 10.1038/s41598-018-28619-z. [PMID: 30002430]
  • Suyeong Nam, Song Yi Lee, Jung-Jin Kim, Wie-Soo Kang, In-Soo Yoon, Hyun-Jong Cho. Polydopamine-coated nanocomposites of Angelica gigas Nakai extract and their therapeutic potential for triple-negative breast cancer cells. Colloids and surfaces. B, Biointerfaces. 2018 May; 165(?):74-82. doi: 10.1016/j.colsurfb.2018.02.014. [PMID: 29454167]
  • Sook-Jin Kim, Se-Mi Ko, Eun-Jeong Choi, Seong-Ho Ham, Young-Dal Kwon, Yong-Bok Lee, Hea-Young Cho. Simultaneous Determination of Decursin, Decursinol Angelate, Nodakenin, and Decursinol of Angelica gigas Nakai in Human Plasma by UHPLC-MS/MS: Application to Pharmacokinetic Study. Molecules (Basel, Switzerland). 2018 04; 23(5):. doi: 10.3390/molecules23051019. [PMID: 29701699]
  • Chinreddy Subramanyam Reddy, Seong Cheol Kim, Mok Hur, Yeon Bok Kim, Chun Geon Park, Woo Moon Lee, Jae Ki Jang, Sung Cheol Koo. Natural Korean Medicine Dang-Gui: Biosynthesis, Effective Extraction and Formulations of Major Active Pyranocoumarins, Their Molecular Action Mechanism in Cancer, and Other Biological Activities. Molecules (Basel, Switzerland). 2017 Dec; 22(12):. doi: 10.3390/molecules22122170. [PMID: 29215592]
  • Song Yi Lee, Jeong-Jun Lee, Suyeong Nam, Wie-Soo Kang, In-Soo Yoon, Hyun-Jong Cho. Fabrication of polymer matrix-free nanocomposites based on Angelica gigas Nakai extract and their application to breast cancer therapy. Colloids and surfaces. B, Biointerfaces. 2017 Nov; 159(?):781-790. doi: 10.1016/j.colsurfb.2017.08.040. [PMID: 28886514]
  • Cuiqiong Li, Jianchun Li, Junming Fan, Lifeng Meng, Ling Cao. [Decursin reduces reactive oxygen species and inhibits cisplatin-induced apoptosis in rat renal tubular epithelial cells]. Xi bao yu fen zi mian yi xue za zhi = Chinese journal of cellular and molecular immunology. 2017 Oct; 33(10):1328-1334. doi: . [PMID: 29169416]
  • Wei Wu, Su-Ni Tang, Yong Zhang, Manohar Puppala, Timothy K Cooper, Chengguo Xing, Cheng Jiang, Junxuan Lü. Prostate Cancer Xenograft Inhibitory Activity and Pharmacokinetics of Decursinol, a Metabolite of Angelica gigas Pyranocoumarins, in Mouse Models. The American journal of Chinese medicine. 2017; 45(8):1773-1792. doi: 10.1142/s0192415x17500963. [PMID: 29121805]
  • Jeong-Jun Lee, Suyeong Nam, Ju-Hwan Park, Song Yi Lee, Jae Young Jeong, Jae-Young Lee, Wie-Soo Kang, In-Soo Yoon, Dae-Duk Kim, Hyun-Jong Cho. Nanocomposites based on Soluplus and Angelica gigas Nakai extract fabricated by an electrohydrodynamic method for oral administration. Journal of colloid and interface science. 2016 Dec; 484(?):146-154. doi: 10.1016/j.jcis.2016.08.080. [PMID: 27599383]
  • Jeong-Jun Lee, Ju-Hwan Park, Jae-Young Lee, Jae Young Jeong, Song Yi Lee, In-Soo Yoon, Wie-Soo Kang, Dae-Duk Kim, Hyun-Jong Cho. Omega-3 fatty acids incorporated colloidal systems for the delivery of Angelica gigas Nakai extract. Colloids and surfaces. B, Biointerfaces. 2016 Apr; 140(?):239-245. doi: 10.1016/j.colsurfb.2015.12.047. [PMID: 26764107]
  • Jaekwang Kim, Miyong Yun, Eun-Ok Kim, Deok-Beom Jung, Gunho Won, Bonglee Kim, Ji Hoon Jung, Sung-Hoon Kim. Decursin enhances TRAIL-induced apoptosis through oxidative stress mediated- endoplasmic reticulum stress signalling in non-small cell lung cancers. British journal of pharmacology. 2016 Mar; 173(6):1033-44. doi: 10.1111/bph.13408. [PMID: 26661339]
  • Woong Jin Bae, U Syn Ha, Jin Bong Choi, Kang Sup Kim, Su Jin Kim, Hyuk Jin Cho, Sung Hoo Hong, Ji Youl Lee, Zhiping Wang, Sung Yeoun Hwang, Sae Woong Kim. Protective Effect of Decursin Extracted from Angelica gigas in Male Infertility via Nrf2/HO-1 Signaling Pathway. Oxidative medicine and cellular longevity. 2016; 2016(?):5901098. doi: 10.1155/2016/5901098. [PMID: 27034737]
  • Jinhui Zhang, Li Li, Suni Tang, Yong Zhang, Maciej Markiewski, Chengguo Xing, Cheng Jiang, Junxuan Lü. Pyranocoumarin Tissue Distribution, Plasma Metabolome and Prostate Transcriptome Impacts of Sub-Chronic Exposure to Korean Angelica Supplement in Mice. The American journal of Chinese medicine. 2016; 44(2):321-53. doi: 10.1142/s0192415x16500191. [PMID: 27080944]
  • Li Li, Jikun Du, Liyi Zou, Haishan Xia, Tie Wu, Yongho Kim, Yongwoo Lee. The Neuroprotective Effects of Decursin Isolated from Angelica gigas Nakai Against Amyloid β-Protein-Induced Apoptosis in PC 12 Cells via a Mitochondria-Related Caspase Pathway. Neurochemical research. 2015 Aug; 40(8):1555-62. doi: 10.1007/s11064-015-1623-0. [PMID: 26077922]
  • Joon Hyeong Cho, Jung Eun Kwon, Youngmi Cho, Inhye Kim, Se Chan Kang. Anti-Inflammatory Effect of Angelica gigas via Heme Oxygenase (HO)-1 Expression. Nutrients. 2015 Jun; 7(6):4862-74. doi: 10.3390/nu7064862. [PMID: 26083119]
  • Jinhui Zhang, Li Li, Thomas W Hale, Wayne Chee, Chengguo Xing, Cheng Jiang, Junxuan Lü. Single oral dose pharmacokinetics of decursin and decursinol angelate in healthy adult men and women. PloS one. 2015; 10(2):e0114992. doi: 10.1371/journal.pone.0114992. [PMID: 25695490]
  • Jinhui Zhang, Li Li, Suni Tang, Thomas W Hale, Chengguo Xing, Cheng Jiang, Junxuan Lü. Cytochrome P450 Isoforms in the Metabolism of Decursin and Decursinol Angelate from Korean Angelica. The American journal of Chinese medicine. 2015; 43(6):1211-30. doi: 10.1142/s0192415x1550069x. [PMID: 26394652]
  • Li Li, Jinhui Zhang, Chengguo Xing, Sung-Hoon Kim, Cheng Jiang, Junxuan Lü. In vitro metabolism of pyranocoumarin isomers decursin and decursinol angelate by liver microsomes from man and rodents. Planta medica. 2013 Nov; 79(16):1536-44. doi: 10.1055/s-0033-1350796. [PMID: 24026903]
  • Bimit Mahat, Jung-woo Chae, In-hwan Baek, Gyu-yong Song, Jin-sook Song, Jin-yeul Ma, Kwang-il Kwon. Biopharmaceutical characterization of decursin and their derivatives for drug discovery. Drug development and industrial pharmacy. 2013 Oct; 39(10):1523-30. doi: 10.3109/03639045.2012.717296. [PMID: 23003006]
  • Li Li, Jinhui Zhang, Chengguo Xing, Sung-Hoon Kim, Junxuan Lü. Single oral dose pharmacokinetics of decursin, decursinol angelate, and decursinol in rats. Planta medica. 2013 Mar; 79(3-4):275-80. doi: 10.1055/s-0032-1328202. [PMID: 23364885]
  • Kyeong-Ok Choi, Inae Lee, Sae-Yeol-Rim Paik, Dong Eun Kim, Jung Dae Lim, Wie-Soo Kang, Sanghoon Ko. Ultrafine Angelica gigas powder normalizes ovarian hormone levels and has antiosteoporosis properties in ovariectomized rats: particle size effect. Journal of medicinal food. 2012 Oct; 15(10):863-72. doi: 10.1089/jmf.2011.2047. [PMID: 23039111]
  • Sang Min Lee, Hye-Jin Kim, Young Pyo Jang. Chemometric classification of morphologically similar Umbelliferae medicinal herbs by DART-TOF-MS fingerprint. Phytochemical analysis : PCA. 2012 Sep; 23(5):508-12. doi: 10.1002/pca.2348. [PMID: 22271502]
  • Hyun Seo Park, Byunghyun Kim, Ju-Hee Oh, Young Choong Kim, Young-Joo Lee. First-pass metabolism of decursin, a bioactive compound of Angelica gigas, in rats. Planta medica. 2012 Jun; 78(9):909-13. doi: 10.1055/s-0031-1298517. [PMID: 22573368]
  • Jin Woo Lee, Cheong-Yong Yun, Eunmiri Roh, Chul Lee, Qinghao Jin, Kwon Ki Bang, Sang-Hun Jung, Dongho Lee, Mi Kyeong Lee, Youngsoo Kim, Bang Yeon Hwang. Melanogenesis inhibitory bisabolane-type sesquiterpenoids from the roots of Angelica koreana. Bioorganic & medicinal chemistry letters. 2012 Apr; 22(8):2927-31. doi: 10.1016/j.bmcl.2012.02.047. [PMID: 22450129]
  • Nam Il Park, Jee Hee Park, Sang Un Park. Overexpression of cinnamate 4-hydroxylase gene enhances biosynthesis of decursinol angelate in Angelica gigas hairy roots. Molecular biotechnology. 2012 Feb; 50(2):114-20. doi: 10.1007/s12033-011-9420-8. [PMID: 21626264]
  • Li Li, Jinhui Zhang, Ahmad Ali Shaik, Yong Zhang, Lei Wang, Chengguo Xing, Sung-Hoon Kim, Junxuan Lü. Quantitative determination of decursin, decursinol angelate, and decursinol in mouse plasma and tumor tissue using liquid-liquid extraction and HPLC. Planta medica. 2012 Feb; 78(3):252-9. doi: 10.1055/s-0031-1280384. [PMID: 22116603]
  • Bimit Mahat, Jung-Woo Chae, In-Hwan Baek, Gyu-Yong Song, Jin-Sook Song, Seong-Kwon Cho, Kwang-Il Kwon. Physicochemical characterization and toxicity of decursin and their derivatives from Angelica gigas. Biological & pharmaceutical bulletin. 2012; 35(7):1084-90. doi: 10.1248/bpb.b12-00046. [PMID: 22791156]
  • Sa-Ra Choi, Ju-Hye Lee, Jae-Yong Kim, Kyoung-Wuk Park, Il-Yun Jeong, Ki-Hwan Shim, Mi-Kyung Lee, Kwon-Il Seo. Decursin from Angelicagigas Nakai induces apoptosis in RC-58T/h/SA#4 primary human prostate cancer cells via a mitochondria-related caspase pathway. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2011 Oct; 49(10):2517-23. doi: 10.1016/j.fct.2011.06.016. [PMID: 21693165]
  • Jin Sook Song, Jung-Woo Chae, Kyeong-Ryoon Lee, Byung Hoi Lee, Eun Jeong Choi, Sung Hoon Ahn, Kwang-il Kwon, Myung Ae Bae. Pharmacokinetic characterization of decursinol derived from Angelica gigas Nakai in rats. Xenobiotica; the fate of foreign compounds in biological systems. 2011 Oct; 41(10):895-902. doi: 10.3109/00498254.2011.587551. [PMID: 21657833]
  • Li Li, Wei Li, Sang-Won Jung, Yong-Woo Lee, Yong-Ho Kim. Protective effects of decursin and decursinol angelate against amyloid β-protein-induced oxidative stress in the PC12 cell line: the role of Nrf2 and antioxidant enzymes. Bioscience, biotechnology, and biochemistry. 2011; 75(3):434-42. doi: 10.1271/bbb.100606. [PMID: 21389625]
  • Jee Hee Park, Nam Il Park, Hui Xu, Sang Un Park. Cloning and characterization of phenylalanine ammonia-lyase and cinnamate 4-hydroxylase and pyranocoumarin biosynthesis in Angelica gigas. Journal of natural products. 2010 Aug; 73(8):1394-7. doi: 10.1021/np1003356. [PMID: 20701298]
  • Ki-Yeon Kim, Sanghyun Lee, Chang-Jun Cha. Biotransformation of plant secondary metabolite decursin by Mycobacterium sp. PYR1001. Journal of agricultural and food chemistry. 2010 Mar; 58(5):2931-4. doi: 10.1021/jf903379c. [PMID: 20155945]
  • Kang Min Kim, Myo Jeong Kim, Jae Seon Kang. Absorption, distribution, metabolism, and excretion of decursin and decursinol angelate from Angelica gigas Nakai. Journal of microbiology and biotechnology. 2009 Dec; 19(12):1569-72. doi: 10.4014/jmb.0905.05028. [PMID: 20075620]
  • Seung Hwa Son, Mi-Jeong Kim, Won-Yoon Chung, Ju-Ah Son, Yeong Shik Kim, Young-Choong Kim, Sam Sik Kang, Sang-Kook Lee, Kwang-Kyun Park. Decursin and decursinol inhibit VEGF-induced angiogenesis by blocking the activation of extracellular signal-regulated kinase and c-Jun N-terminal kinase. Cancer letters. 2009 Jul; 280(1):86-92. doi: 10.1016/j.canlet.2009.02.012. [PMID: 19307054]
  • Young-Jun Seo, Min-Soo Kwon, Soo-Hyun Park, Yun-Beom Sim, Seung-Min Choi, Gyung-He Huh, Jin-Koo Lee, Hong-Won Suh. The analgesic effect of decursinol. Archives of pharmacal research. 2009 Jun; 32(6):937-43. doi: 10.1007/s12272-009-1617-z. [PMID: 19557373]
  • Jing Li, Yuanqing Ding, Xing-Cong Li, Daneel Ferreira, Shabana Khan, Troy Smillie, Ikhlas A Khan. Scuteflorins A and B, dihydropyranocoumarins from Scutellaria lateriflora. Journal of natural products. 2009 Jun; 72(6):983-7. doi: 10.1021/np900068t. [PMID: 19555121]
  • Myung Hwan Jung, Sun Hee Lee, Eun-Mi Ahn, You Mie Lee. Decursin and decursinol angelate inhibit VEGF-induced angiogenesis via suppression of the VEGFR-2-signaling pathway. Carcinogenesis. 2009 Apr; 30(4):655-61. doi: 10.1093/carcin/bgp039. [PMID: 19228635]
  • Eun Ju Yang, Gyu-Yong Song, Ji-Sook Lee, Chi-Young Yun, In Sik Kim. A novel (S)-(+)-decursin derivative, (S)-(+)-3-(3,4-dihydroxy-phenyl)-acrylic acid 2,2-dimethyl-8-oxo-3,4-dihydro-2H,8H-pyrano[3,2-g]chromen-3-yl-ester, inhibits ovalbumin-induced lung inflammation in a mouse model of asthma. Biological & pharmaceutical bulletin. 2009 Mar; 32(3):444-9. doi: 10.1248/bpb.32.444. [PMID: 19252293]
  • Hyo Jeong Lee, Hyo Jung Lee, Eun Ok Lee, Jae Ho Lee, Kuen Sung Lee, Kwan Hyun Kim, Sung-Hoon Kim, Junxuan Lü. In vivo anti-cancer activity of Korean Angelica gigas and its major pyranocoumarin decursin. The American journal of Chinese medicine. 2009; 37(1):127-42. doi: 10.1142/s0192415x09006722. [PMID: 19222117]
  • Gyu-Yong Song, Jee-Hyun Lee, Munju Cho, Byeoung-Soo Park, Dong-Eun Kim, Sangtaek Oh. Decursin suppresses human androgen-independent PC3 prostate cancer cell proliferation by promoting the degradation of beta-catenin. Molecular pharmacology. 2007 Dec; 72(6):1599-606. doi: 10.1124/mol.107.040253. [PMID: 17855653]
  • Hye Hyun Yoo, Min Woo Lee, Young Choong Kim, Chul-Ho Yun, Dong-Hyun Kim. Mechanism-based inactivation of cytochrome P450 2A6 by decursinol angelate isolated from Angelica Gigas. Drug metabolism and disposition: the biological fate of chemicals. 2007 Oct; 35(10):1759-65. doi: 10.1124/dmd.107.016584. [PMID: 17620343]
  • Vamsi L Madgula, Bharathi Avula, Niranjan Reddy V L, Ikhlas A Khan, Shabana I Khan. Transport of decursin and decursinol angelate across Caco-2 and MDR-MDCK cell monolayers: in vitro models for intestinal and blood-brain barrier permeability. Planta medica. 2007 Apr; 73(4):330-5. doi: 10.1055/s-2007-967137. [PMID: 17372866]
  • Xiu-wei Yang, Bo Xu, Fu-xiang Ran, Rui-qing Wang, Jun Wu, Jing-rong Cui. [Inhibitory effects of 11 coumarin compounds against growth of human bladder carcinoma cell line E-J in vitro]. Zhong xi yi jie he xue bao = Journal of Chinese integrative medicine. 2007 Jan; 5(1):56-60. doi: 10.3736/jcim20070111. [PMID: 17214937]
  • Jung-Hee Kim, Ji-Hye Jeong, Sung-Tak Jeon, Ho Kim, Jiyeon Ock, Kyoungho Suk, Sang-In Kim, Kyung-Sik Song, Won-Ha Lee. Decursin inhibits induction of inflammatory mediators by blocking nuclear factor-kappaB activation in macrophages. Molecular pharmacology. 2006 Jun; 69(6):1783-90. doi: 10.1124/mol.105.021048. [PMID: 16510559]
  • Taichi Ohshiro, Ichiji Namatame, Eun Woo Lee, Hirokazu Kawagishi, Hiroshi Tomoda. Molecular target of decursins in the inhibition of lipid droplet accumulation in macrophages. Biological & pharmaceutical bulletin. 2006 May; 29(5):981-4. doi: 10.1248/bpb.29.981. [PMID: 16651731]
  • Cheng Jiang, Hyo-Jeong Lee, Guang-xun Li, Junming Guo, Barbara Malewicz, Yan Zhao, Eun-Ok Lee, Hyo-Jung Lee, Jae-Ho Lee, Min-Seok Kim, Sung-Hoon Kim, Junxuan Lu. Potent antiandrogen and androgen receptor activities of an Angelica gigas-containing herbal formulation: identification of decursin as a novel and active compound with implications for prevention and treatment of prostate cancer. Cancer research. 2006 Jan; 66(1):453-63. doi: 10.1158/0008-5472.can-05-1865. [PMID: 16397261]
  • Hyeon Ho Kim, Sung Sik Bang, Jin Seok Choi, Hogyu Han, Ik-Hwan Kim. Involvement of PKC and ROS in the cytotoxic mechanism of anti-leukemic decursin and its derivatives and their structure-activity relationship in human K562 erythroleukemia and U937 myeloleukemia cells. Cancer letters. 2005 Jun; 223(2):191-201. doi: 10.1016/j.canlet.2004.10.025. [PMID: 15896453]
  • So Young Kang, Ki Yong Lee, Sang Hyun Sung, Young Choong Kim. Four new neuroprotective dihydropyranocoumarins from Angelica gigas. Journal of natural products. 2005 Jan; 68(1):56-9. doi: 10.1021/np049705v. [PMID: 15679317]
  • Yong Yook Lee, Sanghyun Lee, Jing Ling Jin, Hye Sook Yun-Choi. Platelet anti-aggregatory effects of coumarins from the roots of Angelica genuflexa and A. gigas. Archives of pharmacal research. 2003 Sep; 26(9):723-6. doi: 10.1007/bf02976681. [PMID: 14560920]
  • Sanghyun Lee, Yeon Sil Lee, Sang Hoon Jung, Kuk Hyun Shin, Bak-Kwang Kim, Sam Sik Kang. Anti-tumor activities of decursinol angelate and decursin from Angelica gigas. Archives of pharmacal research. 2003 Sep; 26(9):727-30. doi: 10.1007/bf02976682. [PMID: 14560921]
  • Jin-Koo Lee, Seong-Soo Choi, Han-Kyu Lee, Ki-Jung Han, Eun-Jung Han, Hong-Won Suh. Effects of ginsenoside Rd and decursinol on the neurotoxic responses induced by kainic acid in mice. Planta medica. 2003 Mar; 69(3):230-4. doi: 10.1055/s-2003-38475. [PMID: 12677526]
  • So Young Kang, Ki Yong Lee, Mi Jung Park, Young Chul Kim, George J Markelonis, Tae H Oh, Young Choong Kim. Decursin from Angelica gigas mitigates amnesia induced by scopolamine in mice. Neurobiology of learning and memory. 2003 Jan; 79(1):11-8. doi: 10.1016/s1074-7427(02)00007-2. [PMID: 12482674]
  • S Y Kang, K Y Lee, S H Sung, M J Park, Y C Kim. Coumarins isolated from Angelica gigas inhibit acetylcholinesterase: structure-activity relationships. Journal of natural products. 2001 May; 64(5):683-5. doi: 10.1021/np000441w. [PMID: 11374978]
  • K S Ahn, W S Sim, I K Lee, Y B Seu, I H Kim. Decursinol angelate: a cytotoxic and protein kinase C activating agent from the root of Angelica gigas. Planta medica. 1997 Aug; 63(4):360-1. doi: 10.1055/s-2006-957701. [PMID: 9270380]
  • K S Ahn, W S Sim, I H Kim. Decursin: a cytotoxic agent and protein kinase C activator from the root of Angelica gigas. Planta medica. 1996 Feb; 62(1):7-9. doi: 10.1055/s-2006-957785. [PMID: 8720379]