nonactin (BioDeep_00000008534)

   

natural product


代谢物信息卡片


Upjohn 170t (high melting)

化学式: C40H64O12 (736.4398)
中文名称: 无活菌素 来源于灰色链霉菌变种
谱图信息: 最多检出来源 not specific(not specific) 0%

分子结构信息

SMILES: CC1CC2CCC(O2)C(C(=O)OC(CC3CCC(O3)C(C(=O)OC(CC4CCC(O4)C(C(=O)OC(CC5CCC(O5)C(C(=O)O1)C)C)C)C)C)C)C
InChI: InChI=1S/C40H64O12/c1-21-17-29-9-13-34(49-29)26(6)38(42)46-23(3)19-31-11-15-36(51-31)28(8)40(44)48-24(4)20-32-12-16-35(52-32)27(7)39(43)47-22(2)18-30-10-14-33(50-30)25(5)37(41)45-21/h21-36H,9-20H2,1-8H3/t21-,22+,23+,24-,25-,26+,27+,28-,29-,30+,31+,32-,33-,34+,35+,36-

描述信息

同义名列表

4 个代谢物同义名

nonactin; Upjohn 170t (high melting); Werramycin-A; Nonactin



数据库引用编号

13 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

2 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 6 ANXA5, CTNNB1, HSPB1, MAPK14, MYLK, TUBB4B
Peripheral membrane protein 2 ANXA5, COQ10A
Endoplasmic reticulum membrane 2 HSP90B1, RTN4
Nucleus 8 CS, CTNNB1, HSP90B1, HSPB1, MAPK14, SEMG1, TRIM33, TUBB4B
cytosol 9 ANXA5, CTNNB1, HEATR5B, HSP90B1, HSPB1, MAPK14, MYLK, SLC22A16, TUBB4B
centrosome 1 CTNNB1
nucleoplasm 4 ATP2B1, CTNNB1, MAPK14, TRIM33
Cell membrane 4 ATP2B1, CTNNB1, RTN4, SLC22A16
Cytoplasmic side 1 RTN4
Cleavage furrow 1 MYLK
lamellipodium 2 CTNNB1, MYLK
Multi-pass membrane protein 3 ATP2B1, RTN4, SLC22A16
Synapse 4 ATP2B1, CTNNB1, MYLK, RTN4
cell cortex 1 CTNNB1
cell junction 2 CTNNB1, RTN4
glutamatergic synapse 4 ATP2B1, CTNNB1, MAPK14, RTN4
mitochondrial inner membrane 1 COQ10A
neuronal cell body 1 RTN4
presynaptic membrane 2 ATP2B1, CTNNB1
sarcolemma 1 ANXA5
smooth endoplasmic reticulum 1 HSP90B1
plasma membrane 5 ATP2B1, CTNNB1, MYLK, RTN4, SLC22A16
synaptic vesicle membrane 1 ATP2B1
Membrane 7 ANXA5, ATP2B1, CS, CTNNB1, HEATR5B, HSP90B1, SLC22A16
basolateral plasma membrane 2 ATP2B1, CTNNB1
extracellular exosome 9 A2ML1, ANXA5, ATP2B1, CS, CTNNB1, HSP90B1, HSPB1, SEMG1, TUBB4B
endoplasmic reticulum 2 HSP90B1, RTN4
extracellular space 7 A2ML1, CRP, HSPB1, IL2, IL4, IL5, SEMG1
perinuclear region of cytoplasm 3 CTNNB1, HEATR5B, HSP90B1
Schaffer collateral - CA1 synapse 1 CTNNB1
adherens junction 1 CTNNB1
apicolateral plasma membrane 1 CTNNB1
bicellular tight junction 1 CTNNB1
mitochondrion 3 COQ10A, CS, MAPK14
protein-containing complex 3 CTNNB1, HSP90B1, SEMG1
intracellular membrane-bounded organelle 2 ATP2B1, HEATR5B
postsynaptic density 1 RTN4
Secreted 6 A2ML1, CRP, IL2, IL4, IL5, SEMG1
extracellular region 10 A2ML1, ANXA5, CRP, HSP90B1, IL2, IL4, IL5, MAPK14, SEMG1, TUBB4B
Mitochondrion matrix 1 CS
mitochondrial matrix 1 CS
Extracellular side 1 RTN4
anchoring junction 1 RTN4
transcription regulator complex 1 CTNNB1
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 ATP2B1
external side of plasma membrane 1 ANXA5
Extracellular vesicle 1 TUBB4B
actin cytoskeleton 1 MYLK
Z disc 2 CTNNB1, HSPB1
beta-catenin destruction complex 1 CTNNB1
microtubule cytoskeleton 1 TUBB4B
Wnt signalosome 1 CTNNB1
axon cytoplasm 1 HSPB1
midbody 1 HSP90B1
apical part of cell 1 CTNNB1
cell-cell junction 1 CTNNB1
postsynaptic membrane 1 CTNNB1
Cell projection, lamellipodium 1 MYLK
Cytoplasm, perinuclear region 1 HEATR5B
Mitochondrion inner membrane 1 COQ10A
Matrix side 1 COQ10A
Cytoplasm, cytoskeleton 2 CTNNB1, TUBB4B
Cytoplasm, cytoskeleton, spindle 1 HSPB1
focal adhesion 4 ANXA5, CTNNB1, HSP90B1, HSPB1
microtubule 1 TUBB4B
spindle 1 HSPB1
Cell junction, adherens junction 1 CTNNB1
flotillin complex 1 CTNNB1
collagen-containing extracellular matrix 2 ANXA5, HSP90B1
fascia adherens 1 CTNNB1
lateral plasma membrane 2 ATP2B1, CTNNB1
nuclear speck 2 HEATR5B, MAPK14
Zymogen granule membrane 1 ANXA5
neuron projection 1 RTN4
chromatin 1 TRIM33
cell projection 1 ATP2B1
cell periphery 1 CTNNB1
mitotic spindle 1 TUBB4B
cytoskeleton 2 HSPB1, TUBB4B
Cytoplasm, cytoskeleton, cilium basal body 1 CTNNB1
spindle pole 2 CTNNB1, MAPK14
postsynaptic density, intracellular component 1 CTNNB1
Basolateral cell membrane 1 ATP2B1
microvillus membrane 1 CTNNB1
intercellular bridge 1 TUBB4B
Cytoplasm, cytoskeleton, flagellum axoneme 1 TUBB4B
sperm flagellum 1 TUBB4B
nuclear envelope 1 RTN4
Endomembrane system 1 CTNNB1
Cornified envelope 1 HSPB1
axonemal microtubule 1 TUBB4B
Melanosome 1 HSP90B1
euchromatin 1 CTNNB1
Presynaptic cell membrane 1 ATP2B1
sperm plasma membrane 1 HSP90B1
stress fiber 1 MYLK
clathrin-coated vesicle 1 HEATR5B
ficolin-1-rich granule lumen 1 MAPK14
proteasome complex 1 HSPB1
secretory granule lumen 1 MAPK14
endoplasmic reticulum lumen 1 HSP90B1
Cytoplasmic vesicle, clathrin-coated vesicle 1 HEATR5B
endocytic vesicle 1 HEATR5B
beta-catenin-TCF complex 1 CTNNB1
azurophil granule lumen 1 TUBB4B
immunological synapse 1 ATP2B1
presynaptic active zone cytoplasmic component 1 CTNNB1
vesicle membrane 1 ANXA5
Sarcoplasmic reticulum lumen 1 HSP90B1
Cytoplasm, cytoskeleton, stress fiber 1 MYLK
protein-DNA complex 1 CTNNB1
catenin complex 1 CTNNB1
endocytic vesicle lumen 1 HSP90B1
endoplasmic reticulum chaperone complex 1 HSP90B1
endothelial microparticle 1 ANXA5
photoreceptor ribbon synapse 1 ATP2B1
beta-catenin-TCF7L2 complex 1 CTNNB1
beta-catenin-ICAT complex 1 CTNNB1
Scrib-APC-beta-catenin complex 1 CTNNB1
endoplasmic reticulum tubular network 1 RTN4
endoplasmic reticulum tubular network membrane 1 RTN4
[Isoform a]: Endoplasmic reticulum membrane 1 RTN4
[Isoform b]: Endoplasmic reticulum membrane 1 RTN4
[Isoform C]: Endoplasmic reticulum membrane 1 RTN4


文献列表

  • Elina Karhu, Janne Isojärvi, Pia Vuorela, Leena Hanski, Adyary Fallarero. Identification of Privileged Antichlamydial Natural Products by a Ligand-Based Strategy. Journal of natural products. 2017 10; 80(10):2602-2608. doi: 10.1021/acs.jnatprod.6b01052. [PMID: 29043803]
  • Svetlana S Efimova, Olga S Ostroumova. Effect of dipole modifiers on the magnitude of the dipole potential of sterol-containing bilayers. Langmuir : the ACS journal of surfaces and colloids. 2012 Jul; 28(26):9908-14. doi: 10.1021/la301653s. [PMID: 22702338]
  • Pius S Fasinu, Patrick J Bouic, Bernd Rosenkranz. An overview of the evidence and mechanisms of herb-drug interactions. Frontiers in pharmacology. 2012; 3(?):69. doi: 10.3389/fphar.2012.00069. [PMID: 22557968]
  • Tomás Rezanka, Ales Prell, Jaroslav Spízek, Karel Sigler. Pilot-plant cultivation of Streptomyces griseus producing homologues of nonactin by precursor-directed biosynthesis and their identification by LC/MS-ESI. The Journal of antibiotics. 2010 Aug; 63(8):524-9. doi: 10.1038/ja.2010.93. [PMID: 20664602]
  • Jin-Man Lee, Jong-Guk Kim, Tae-Ho Kim, Do S Lee, Jae H Kim, Somi K Cho, Key Z Riu, Dong-Sun Lee, Sang-Han Lee. Nonactin hinders intracellular glycosylation in virus-infected baby hamster kidney cells. Molecular medicine reports. 2010 Jan; 3(1):115-9. doi: 10.3892/mmr_00000227. [PMID: 21472209]
  • Veronica Wasserman, Pablo Kizelsztein, Olga Garbuzenko, Ron Kohen, Haim Ovadia, Rinat Tabakman, Yechezkel Barenholz. The antioxidant tempamine: in vitro antitumor and neuroprotective effects and optimization of liposomal encapsulation and release. Langmuir : the ACS journal of surfaces and colloids. 2007 Feb; 23(4):1937-47. doi: 10.1021/la060218k. [PMID: 17279678]
  • Yuri Sokolov, J Ashot Kozak, Rakez Kayed, Alexandr Chanturiya, Charles Glabe, James E Hall. Soluble amyloid oligomers increase bilayer conductance by altering dielectric structure. The Journal of general physiology. 2006 Dec; 128(6):637-47. doi: 10.1085/jgp.200609533. [PMID: 17101816]
  • V Gh Shlyonsky, V S Markin, I Andreeva, S E Pedersen, S A Simon, D J Benos, I I Ismailov. Role of membrane curvature in mechanoelectrical transduction: ion carriers nonactin and valinomycin sense changes in integral bending energy. Biochimica et biophysica acta. 2006 Nov; 1758(11):1723-31. doi: 10.1016/j.bbamem.2006.09.016. [PMID: 17069752]
  • Sven O Hagge, Malte U Hammer, Andre Wiese, Ulrich Seydel, Thomas Gutsmann. Calcium adsorption and displacement: characterization of lipid monolayers and their interaction with membrane-active peptides/proteins. BMC biochemistry. 2006 May; 7(?):15. doi: 10.1186/1471-2091-7-15. [PMID: 16672047]
  • Pei-Ji Zhao, Li-Ming Fan, Guo-Hong Li, Na Zhu, Yue-Mao Shen. Antibacterial and antitumor macrolides from Streptomyces sp. Is9131. Archives of pharmacal research. 2005 Nov; 28(11):1228-32. doi: 10.1007/bf02978203. [PMID: 16350846]
  • Emine Karakuş, Sule Pekyardimci, Kiliç Esma. Urea biosensors based on PVC membrane containing palmitic acid. Artificial cells, blood substitutes, and immobilization biotechnology. 2005; 33(3):329-41. doi: 10.1081/bio-200066632. [PMID: 16152697]
  • Frank Killig, Günther Stark. Photodynamic activation of ion transport through lipid membranes and its correlation with an increased dielectric constant of the membrane. Biochimica et biophysica acta. 2002 Aug; 1564(1):207-13. doi: 10.1016/s0005-2736(02)00452-2. [PMID: 12101014]
  • Júlia M C S Magalhães, Adélio A S C Machado. Array of potentiometric sensors for the analysis of creatinine in urine samples. The Analyst. 2002 Aug; 127(8):1069-75. doi: 10.1039/b201173e. [PMID: 12195948]
  • S Bala, M H Kombrabail, B S Prabhananda. Effect of phloretin on ionophore mediated electroneutral transmembrane translocations of H(+), K(+) and Na(+) in phospholipid vesicles. Biochimica et biophysica acta. 2001 Feb; 1510(1-2):258-69. doi: 10.1016/s0005-2736(00)00357-6. [PMID: 11342163]
  • S Torralba, I B Heath. Cytoskeletal and Ca2+ regulation of hyphal tip growth and initiation. Current topics in developmental biology. 2001; 51(?):135-87. doi: 10.1016/s0070-2153(01)51005-4. [PMID: 11236713]
  • Y Sokolov, W S Mailliard, N Tranngo, M Isas, H Luecke, H T Haigler, J E Hall. Annexins V and XII alter the properties of planar lipid bilayers seen by conductance probes. The Journal of general physiology. 2000 May; 115(5):571-82. doi: 10.1085/jgp.115.5.571. [PMID: 10779315]
  • B J Soltys, R S Gupta. Immunoelectron microscopic localization of the 60-kDa heat shock chaperonin protein (Hsp60) in mammalian cells. Experimental cell research. 1996 Jan; 222(1):16-27. doi: 10.1006/excr.1996.0003. [PMID: 8549659]
  • J G Schindler, M M Schindler, K Herna, E Reisinger, B Burk, U Kuhlmann, J Knaack, B Schmidt, H Lange. [Urea sensor for the continuous ammonium-selective enzymatic process control of the artificial kidney]. European journal of clinical chemistry and clinical biochemistry : journal of the Forum of European Clinical Chemistry Societies. 1994 Mar; 32(3):145-52. doi: . [PMID: 8031965]
  • G Vareille, P Marion, J L Kraus, M Castaing. Sodium transport by an ionizable and a neutral mobile carrier: effects of membrane structure on the apparent activation energy. Biochimica et biophysica acta. 1993 Feb; 1146(1):25-37. doi: 10.1016/0005-2736(93)90334-v. [PMID: 8443224]
  • H J Freisleben, D Blöcher, K Ring. Calorimetry of tetraether lipids from Thermoplasma acidophilum: incorporation of alamethicin, melittin, valinomycin, and nonactin. Archives of biochemistry and biophysics. 1992 May; 294(2):418-26. doi: 10.1016/0003-9861(92)90706-3. [PMID: 1567197]
  • G J Brewer, N Matinyan. Congregation of gangliosides at the junction between two model membranes. Biochemistry. 1992 Feb; 31(6):1816-20. doi: 10.1021/bi00121a033. [PMID: 1737034]
  • N S Matinyan, G B Melikyan, V B Arakelyan, S L Kocharov, N V Prokazova, T M Avakian. Interaction of ganglioside-containing planar bilayers with serotonin and inorganic cations. Biochimica et biophysica acta. 1989 Sep; 984(3):313-8. doi: 10.1016/0005-2736(89)90298-8. [PMID: 2775780]
  • R Awiszus, G Stark. A laser-T-jump study of the adsorption of dipolar molecules to planar lipid membranes. I. 2,4-dichlorophenoxyacetic acid. European biophysics journal : EBJ. 1988; 15(5):299-310. doi: 10.1007/bf00256481. [PMID: 3366096]
  • M B Sankaram, B P Shastri, K R Easwaran. Interaction of carrier ionophores with phospholipid vesicles. Biochemistry. 1987 Aug; 26(16):4936-41. doi: 10.1021/bi00390a008. [PMID: 3117109]
  • M Strässle, G Stark, M Wilhelm. Effect of ionizing radiation on artificial (planar) lipid membranes. II. The ion carriers valinomycin and nonactin as probes for radiation induced structural changes of the membrane. International journal of radiation biology and related studies in physics, chemistry, and medicine. 1987 Feb; 51(2):287-302. doi: 10.1080/09553008714550771. [PMID: 3493991]
  • G N Ling, M M Ochsenfeld. Membrane lipid layers vs. polarized water dominated by fixed ions: a comparative study of the effects of three macrocyclic ionophores on the K+ permeability of frog skeletal muscle, frog ovarian eggs, and human erythrocytes. Physiological chemistry and physics and medical NMR. 1986; 18(2):109-24. doi: . [PMID: 3492720]
  • J Widmer, J M Gaillard, Y Raffin, D Mouthon, R Tissot. In vitro effects of ionophores and inhibitors of main sodium and calcium movements on tyrosine and tryptophan transport by human erythrocytes. Neuropsychobiology. 1986; 16(4):175-80. doi: 10.1159/000118322. [PMID: 3112604]
  • C van Dijk, R de Levie. An experimental comparison between the continuum and single jump descriptions of nonactin-mediated potassium transport through black lipid membranes. Biophysical journal. 1985 Jul; 48(1):125-36. doi: 10.1016/s0006-3495(85)83766-8. [PMID: 3839420]
  • B A Sinha, P Smejtek. Effect of 3-phenylindole on lipophilic ion and carrier-mediated ion transport across bilayer lipid membranes. The Journal of membrane biology. 1983; 71(1-2):119-30. doi: 10.1007/bf01870680. [PMID: 6687614]
  • O A Gracheva, A E Sokolova, A A Lev. [Phase separation in dipalmitoyl phosphatidylcholine bilayers induced by ionophores and binary electrolytes]. Biofizika. 1982 Sep; 27(5):795-9. doi: ". [PMID: 6897197]
  • J Y Lapointe, R Laprade. Kinetics of carrier-mediated ion transport in two new types of solvent-free lipid bilayers. Biophysical journal. 1982 Aug; 39(2):141-50. doi: 10.1016/s0006-3495(82)84501-3. [PMID: 6896832]
  • R Laprade, F Grenier, J Y Lapointe, S Asselin. Effects of variation of ion and methylation of carrier on the rate constants of macrotetralide-mediated ion transport in lipid bilayers. The Journal of membrane biology. 1982; 68(3):191-206. doi: 10.1007/bf01872264. [PMID: 6897080]
  • E Diaz, J Sandblom. Displacement currents in lipid bilayer membranes. Upsala journal of medical sciences. 1982; 87(1):33-42. doi: 10.3109/03009738209178407. [PMID: 6896941]
  • P Smejtek, M Paulis-Illangasekare. Modification of ion transport in lipid bilayer membranes in the presence of 2,4-dichlorophenoxyacetic acid. I. Enhancement of cationic conductance and changes of the kinetics of nonactin-mediated transport of potassium. Biophysical journal. 1979 Jun; 26(3):441-66. doi: 10.1016/s0006-3495(79)85264-9. [PMID: 263687]