BioDeep LC-MS Annotation Workflow: endogenous

Endogenous workflow

Endogenous metabolites are the molecules that are produced within a living organism as part of its normal metabolic processes. These include a wide range of compounds such as sugars, lipids, amino acids, vitamins, hormones, neurotransmitters, and various other small molecules that are involved in maintaining the organism's physiological functions. Endogenous metabolites are essential for life as they participate in numerous biochemical pathways and cellular processes. They are involved in energy production (e.g., ATP), structural components (e.g., lipids in cell membranes), signaling (e.g., hormones and neurotransmitters), and the maintenance of homeostasis. The field of metabolomics is dedicated to the study of these metabolites, their interactions, and the metabolic pathways they are involved in. By analyzing the levels of endogenous metabolites in biological samples, researchers can gain insights into the biochemical status of an organism and how it may be affected by disease, environmental factors, or genetic variation.

find top 500 related metabolites that could be annotated by the biodeep LC-MS endogenous metabolite annotation workflow. All of these metabolites can be stably annotated through the current metabolite annotation process from your sample data.

Carnitine

(3R)-3-hydroxy-4-(trimethylazaniumyl)butanoate

C7H15NO3 (161.105188)


(R)-carnitine is the (R)-enantiomer of carnitine. It has a role as an antilipemic drug, a water-soluble vitamin (role), a nutraceutical, a nootropic agent and a Saccharomyces cerevisiae metabolite. It is a conjugate base of a (R)-carnitinium. It is an enantiomer of a (S)-carnitine. Constituent of striated muscle and liver. It is used therapeutically to stimulate gastric and pancreatic secretions and in the treatment of hyperlipoproteinemias. L-Carnitine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Levocarnitine is a Carnitine Analog. Levocarnitine is a natural product found in Mucidula mucida, Pseudo-nitzschia multistriata, and other organisms with data available. Levocarnitine is an amino acid derivative. Levocarnitine facilitates long-chain fatty acid entry into mitochondria, delivering substrate for oxidation and subsequent energy production. Fatty acids are utilized as an energy substrate in all tissues except the brain. (NCI04) Carnitine is not an essential amino acid; it can be synthesized in the body. However, it is so important in providing energy to muscles including the heart-that some researchers are now recommending carnitine supplements in the diet, particularly for people who do not consume much red meat, the main food source for carnitine. Carnitine has been described as a vitamin, an amino acid, or a metabimin, i.e., an essential metabolite. Like the B vitamins, carnitine contains nitrogen and is very soluble in water, and to some researchers carnitine is a vitamin (Liebovitz 1984). It was found that an animal (yellow mealworm) could not grow without carnitine in its diet. However, as it turned out, almost all other animals, including humans, do make their own carnitine; thus, it is no longer considered a vitamin. Nevertheless, in certain circumstances-such as deficiencies of methionine, lysine or vitamin C or kidney dialysis--carnitine shortages develop. Under these conditions, carnitine must be absorbed from food, and for this reason it is sometimes referred to as a metabimin or a conditionally essential metabolite. Like the other amino acids used or manufactured by the body, carnitine is an amine. But like choline, which is sometimes considered to be a B vitamin, carnitine is also an alcohol (specifically, a trimethylated carboxy-alcohol). Thus, carnitine is an unusual amino acid and has different functions than most other amino acids, which are most usually employed by the body in the construction of protein. Carnitine is an essential factor in fatty acid metabolism in mammals. Its most important known metabolic function is to transport fat into the mitochondria of muscle cells, including those in the heart, for oxidation. This is how the heart gets most of its energy. In humans, about 25\\\\\% of carnitine is synthesized in the liver, kidney and brain from the amino acids lysine and methionine. Most of the carnitine in the body comes from dietary sources such as red meat and dairy products. Inborn errors of carnitine metabolism can lead to brain deterioration like that of Reyes syndrome, gradually worsening muscle weakness, Duchenne-like muscular dystrophy and extreme muscle weakness with fat accumulation in muscles. Borurn et al. (1979) describe carnitine as an essential nutrient for pre-term babies, certain types (non-ketotic) of hypoglycemics, kidney dialysis patients, cirrhosis, and in kwashiorkor, type IV hyperlipidemia, heart muscle disease (cardiomyopathy), and propionic or organic aciduria (acid urine resulting from genetic or other anomalies). In all these conditions and the inborn errors of carnitine metabolism, carnitine is essential to life and carnitine supplements are valuable. carnitine therapy may also be useful in a wide variety of clinical conditions. carnitine supplementation has improved some patients who have angina secondary to coronary artery disease. It may be worth a trial in any form of hyperlipidemia or muscle weakness. carnitine supplements may... (-)-Carnitine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=541-15-1 (retrieved 2024-06-29) (CAS RN: 541-15-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Carnitine ((R)-Carnitine), a highly polar, small zwitterion, is an essential co-factor for the mitochondrial β-oxidation pathway. L-Carnitine functions to transport long chain fatty acyl-CoAs into the mitochondria for degradation by β-oxidation. L-Carnitine is an antioxidant. L-Carnitine can ameliorate metabolic imbalances in many inborn errors of metabolism[1][2][3]. L-Carnitine ((R)-Carnitine), a highly polar, small zwitterion, is an essential co-factor for the mitochondrial β-oxidation pathway. L-Carnitine functions to transport long chain fatty acyl-CoAs into the mitochondria for degradation by β-oxidation. L-Carnitine is an antioxidant. L-Carnitine can ameliorate metabolic imbalances in many inborn errors of metabolism[1][2][3].

   

L-Valine

(2S)-2-amino-3-methylbutanoic acid

C5H11NO2 (117.0789746)


L-valine is the L-enantiomer of valine. It has a role as a nutraceutical, a micronutrient, a human metabolite, an algal metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is a pyruvate family amino acid, a proteinogenic amino acid, a valine and a L-alpha-amino acid. It is a conjugate base of a L-valinium. It is a conjugate acid of a L-valinate. It is an enantiomer of a D-valine. It is a tautomer of a L-valine zwitterion. Valine is a branched-chain essential amino acid that has stimulant activity. It promotes muscle growth and tissue repair. It is a precursor in the penicillin biosynthetic pathway. L-Valine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Valine is an aliphatic and extremely hydrophobic essential amino acid in humans related to leucine, Valine is found in many proteins, mostly in the interior of globular proteins helping to determine three-dimensional structure. A glycogenic amino acid, valine maintains mental vigor, muscle coordination, and emotional calm. Valine is obtained from soy, cheese, fish, meats and vegetables. Valine supplements are used for muscle growth, tissue repair, and energy. (NCI04) Valine (abbreviated as Val or V) is an -amino acid with the chemical formula HO2CCH(NH2)CH(CH3)2. It is named after the plant valerian. L-Valine is one of 20 proteinogenic amino acids. Its codons are GUU, GUC, GUA, and GUG. This essential amino acid is classified as nonpolar. Along with leucine and isoleucine, valine is a branched-chain amino acid. Branched chain amino acids (BCAA) are essential amino acids whose carbon structure is marked by a branch point. These three amino acids are critical to human life and are particularly involved in stress, energy and muscle metabolism. BCAA supplementation as therapy, both oral and intravenous, in human health and disease holds great promise. BCAA denotes valine, isoleucine and leucine which are branched chain essential amino acids. Despite their structural similarities, the branched amino acids have different metabolic routes, with valine going solely to carbohydrates, leucine solely to fats and isoleucine to both. The different metabolism accounts for different requirements for these essential amino acids in humans: 12 mg/kg, 14 mg/kg and 16 mg/kg of valine, leucine and isoleucine respectively. Furthermore, these amino acids have different deficiency symptoms. Valine deficiency is marked by neurological defects in the brain, while isoleucine deficiency is marked by muscle tremors. Many types of inborn errors of BCAA metabolism exist, and are marked by various abnormalities. The most common form is the maple syrup urine disease, marked by a characteristic urinary odor. Other abnormalities are associated with a wide range of symptoms, such as mental retardation, ataxia, hypoglycemia, spinal muscle atrophy, rash, vomiting and excessive muscle movement. Most forms of BCAA metabolism errors are corrected by dietary restriction of BCAA and at least one form is correctable by supplementation with 10 mg of biotin daily. BCAA are decreased in patients with liver disease, such as hepatitis, hepatic coma, cirrhosis, extrahepatic biliary atresia or portacaval shunt; aromatic amino acids (AAA) tyrosine, tryptophan and phenylalanine, as well as methionine are increased in these conditions. Valine in particular, has been established as a useful supplemental therapy to the ailing liver. All the BCAA probably compete with AAA for absorption into the brain. Supplemental BCAA with vitamin B6 and zinc help normalize the BCAA:AAA ratio. In sickle-cell disease, valine substitutes for the hydrophilic amino acid glutamic acid in hemoglobin. Because valine is hydrophobic, the hemoglobin does not fold correctly. Valine is an essential amino acid, hence it must be ingested, usually as a component of proteins. A branched-chain essential amino acid that has stimulant activity. It promotes muscle growth and ... Valine (Val) or L-valine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (‚ÄìNH2) and carboxyl (‚ÄìCOOH) functional groups, along with a side chain (R group) specific to each amino acid. L-valine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Valine is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aliphatic amino acid. Valine was first isolated from casein in 1901 by Hermann Emil Fischer. The name valine comes from valeric acid, which in turn is named after the plant valerian due to the presence of valine in the roots of the plant. Valine is essential in humans, meaning the body cannot synthesize it, and it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, beans and legumes. L-valine is a branched chain amino acid (BCAA). The BCAAs consist of leucine, valine and isoleucine (and occasionally threonine). BCAAs are essential amino acids whose carbon structure is marked by a branch point at the beta-carbon position. BCAAs are critical to human life and are particularly involved in stress, energy and muscle metabolism. BCAA supplementation as therapy, both oral and intravenous, in human health and disease holds great promise. BCAAs have different metabolic routes, with valine going solely to carbohydrates (glucogenic), leucine solely to fats (ketogenic) and isoleucine being both a glucogenic and a ketogenic amino acid. The different metabolism accounts for different requirements for these essential amino acids in humans: 12 mg/kg, 14 mg/kg and 16 mg/kg of valine, leucine and isoleucine respectively. Like other branched-chain amino acids, the catabolism of valine starts with the removal of the amino group by transamination, giving alpha-ketoisovalerate, an alpha-keto acid, which is converted to isobutyryl-CoA through oxidative decarboxylation by the branched-chain Œ±-ketoacid dehydrogenase complex. This is further oxidised and rearranged to succinyl-CoA, which can enter the citric acid cycle. Furthermore, these amino acids have different deficiency symptoms. Valine deficiency is marked by neurological defects in the brain, while isoleucine deficiency is marked by muscle tremors. Many types of inborn errors of BCAA metabolism exist, and are marked by various abnormalities. The most common form is the maple syrup urine disease, marked by a characteristic urinary odor. Other abnormalities are associated with a wide range of symptoms, such as mental retardation, ataxia, hypoglycemia, spinal muscle atrophy, rash, vomiting and excessive muscle movement. Most forms of BCAA metabolism errors are corrected by dietary restriction of BCAA and at least one form is correctable by supplementation with 10 mg of biotin daily. BCAA are decreased in patients with liver disease, such as hepatitis, hepatic coma, cirrhosis, extrahepatic biliary atresia or portacaval shunt. Valine in particular, has been established as a useful supplemental therapy to the ailing liver. Valine, like other branched-chain amino acids, is associated with insulin resistance: higher levels of valine are observed in the blood of diabetic mice, rats, and humans (PMID: 25287287). Mice fed a valine deprivation diet for one day have improved insulin sensitivity and feeding of a valine deprivation diet for one week significantly decreases blood glucose levels (PMID: 24684822). In diet-induced obese and insulin resistant mice, a diet with decreased levels of valine and the other branched-chain amino acids results in reduced adiposity and improved insulin sensitivity (PMID: 29266268). In sickle-cell disease, valine substitutes for the hydrophilic amino acid glutamic acid in hemoglobin. Because valine ... L-valine, also known as (2s)-2-amino-3-methylbutanoic acid or L-(+)-alpha-aminoisovaleric acid, belongs to valine and derivatives class of compounds. Those are compounds containing valine or a derivative thereof resulting from reaction of valine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. L-valine is soluble (in water) and a moderately acidic compound (based on its pKa). L-valine can be found in watermelon, which makes L-valine a potential biomarker for the consumption of this food product. L-valine can be found primarily in most biofluids, including cerebrospinal fluid (CSF), breast milk, urine, and blood, as well as in human epidermis and fibroblasts tissues. L-valine exists in all living species, ranging from bacteria to humans. In humans, L-valine is involved in several metabolic pathways, some of which include streptomycin action pathway, tetracycline action pathway, methacycline action pathway, and kanamycin action pathway. L-valine is also involved in several metabolic disorders, some of which include methylmalonic aciduria due to cobalamin-related disorders, 3-methylglutaconic aciduria type III, isovaleric aciduria, and methylmalonic aciduria. Moreover, L-valine is found to be associated with schizophrenia, alzheimers disease, paraquat poisoning, and hypervalinemia. L-valine is a non-carcinogenic (not listed by IARC) potentially toxic compound. Valine (abbreviated as Val or V) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated −NH3+ form under biological conditions), an α-carboxylic acid group (which is in the deprotonated −COO− form under biological conditions), and a side chain isopropyl group, making it a non-polar aliphatic amino acid. It is essential in humans, meaning the body cannot synthesize it: it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, beans and legumes. In the genetic code it is encoded by all codons starting with GU, namely GUU, GUC, GUA, and GUG (Applies to Valine, Leucine and Isoleucine)
This group of essential amino acids are identified as the branched-chain amino acids, BCAAs. Because this arrangement of carbon atoms cannot be made by humans, these amino acids are an essential element in the diet. The catabolism of all three compounds initiates in muscle and yields NADH and FADH2 which can be utilized for ATP generation. The catabolism of all three of these amino acids uses the same enzymes in the first two steps. The first step in each case is a transamination using a single BCAA aminotransferase, with a-ketoglutarate as amine acceptor. As a result, three different a-keto acids are produced and are oxidized using a common branched-chain a-keto acid dehydrogenase, yielding the three different CoA derivatives. Subsequently the metabolic pathways diverge, producing many intermediates.
The principal product from valine is propionylCoA, the glucogenic precursor of succinyl-CoA. Isoleucine catabolism terminates with production of acetylCoA and propionylCoA; thus isoleucine is both glucogenic and ketogenic. Leucine gives rise to acetylCoA and acetoacetylCoA, and is thus classified as strictly ketogenic.
There are a number of genetic diseases associated with faulty catabolism of the BCAAs. The most common defect is in the branched-chain a-keto acid dehydrogenase. Since there is only one dehydrogenase enzyme for all three amino acids, all three a-keto acids accumulate and are excreted in the urine. The disease is known as Maple syrup urine disease because of the characteristic odor of the urine in afflicted individuals. Mental retardation in these cases is extensive. Unfortunately, since these are essential amino acids, they cannot be heavily restricted in the diet; ultimately, the life of afflicted individuals is short and development is abnormal The main neurological pr... L-Valine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=7004-03-7 (retrieved 2024-06-29) (CAS RN: 72-18-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Valine (Valine) is a new nonlinear semiorganic material[1]. L-Valine (Valine) is a new nonlinear semiorganic material[1].

   

Thymidine

1-(2-Deoxy-beta-D-ribofuranosyl)-5-methyluracil; 1-(2-Deoxy-beta-D-ribofuranosyl)thymine; Thymine deoxyriboside; 2-Deoxythymidine; 5-Methyldeoxyuridine

C10H14N2O5 (242.09026740000002)


Deoxythymidine, also known as 2-deoxy-5-methyluridine or 5-methyl-2-deoxyuridine, is a member of the class of compounds known as pyrimidine 2-deoxyribonucleosides. Pyrimidine 2-deoxyribonucleosides are compounds consisting of a pyrimidine linked to a ribose which lacks a hydroxyl group at position 2. Deoxythymidine is soluble (in water) and a very weakly acidic compound (based on its pKa). Deoxythymidine can be synthesized from thymine. Deoxythymidine is also a parent compound for other transformation products, including but not limited to, tritiated thymidine, alpha-tritiated thymidine, and 5,6-dihydrothymidine. Deoxythymidine can be found in a number of food items such as butternut squash, mammee apple, catjang pea, and climbing bean, which makes deoxythymidine a potential biomarker for the consumption of these food products. Deoxythymidine can be found primarily in most biofluids, including blood, amniotic fluid, cerebrospinal fluid (CSF), and urine, as well as throughout most human tissues. Deoxythymidine exists in all living species, ranging from bacteria to humans. In humans, deoxythymidine is involved in the pyrimidine metabolism. Deoxythymidine is also involved in few metabolic disorders, which include beta ureidopropionase deficiency, dihydropyrimidinase deficiency, MNGIE (mitochondrial neurogastrointestinal encephalopathy), and UMP synthase deficiency (orotic aciduria). Moreover, deoxythymidine is found to be associated with canavan disease and degenerative disc disease. Thymidine (deoxythymidine; other names deoxyribosylthymine, thymine deoxyriboside) is a pyrimidine deoxynucleoside. Deoxythymidine is the DNA nucleoside T, which pairs with deoxyadenosine (A) in double-stranded DNA. In cell biology it is used to synchronize the cells in G1/early S phase . Thymidine, also known as deoxythymidine or deoxyribosylthymine or thymine deoxyriboside, is a pyrimidine deoxynucleoside. It consists of the nucleobase thymine attached to deoxyribose through a beta N- glycosidic bond. Thymidine also belongs to the class of organic compounds known as pyrimidine 2-deoxyribonucleosides. Pyrimidine 2-deoxyribonucleosides are compounds consisting of a pyrimidine linked to a ribose which lacks a hydroxyl group at position 2. Deoxythymidine (or thymidine) is the DNA nucleoside T, which pairs with deoxyadenosine (A) in double-stranded DNA. Therefore, thymidine is essential to all life. Indeed, thymidine exists in all living species, ranging from bacteria to plants to humans. Within humans, thymidine participates in a number of enzymatic reactions. In particular, thymidine can be biosynthesized from 5-thymidylic acid through its interaction with the enzyme cytosolic purine 5-nucleotidase. In addition, thymidine can be converted into 5-thymidylic acid; which is catalyzed by the enzyme thymidine kinase. Deoxythymidine can be phosphorylated with one, two or three phosphoric acid groups, creating dTMP (deoxythymidine monophosphate), dTDP, or dTTP (for the di- and tri- phosphates, respectively). dTMP can be incorporated into DNA via DNA polymerases. In cell biology, thymidine can be used to synchronize the cells in S phase. Derivatives of thymidine are used in a number of drugs, including Azidothymidine (AZT), which is used in the treatment of HIV infection. AZT inhibits the process of reverse transcription in the human immunodeficiency virus. Thymidine is a pyrimidine 2-deoxyribonucleoside having thymine as the nucleobase. It has a role as a metabolite, a human metabolite, an Escherichia coli metabolite and a mouse metabolite. It is functionally related to a thymine. It is an enantiomer of a telbivudine. Thymidine is a pyrimidine deoxynucleoside. Thymidine is the DNA nucleoside T, which pairs with deoxyadenosine (A) in double-stranded DNA. In cell biology it is used to synchronize the cells in S phase. Thymidine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Thymidine is a natural product found in Fritillaria thunbergii, Saussurea medusa, and other organisms with data available. Thymidine is a pyrimidine nucleoside that is composed of the pyrimidine base thymine attached to the sugar deoxyribose. As a constituent of DNA, thymidine pairs with adenine in the DNA double helix. (NCI04) Thymidine is a metabolite found in or produced by Saccharomyces cerevisiae. A nucleoside in which THYMINE is linked to DEOXYRIBOSE. A pyrimidine 2-deoxyribonucleoside having thymine as the nucleobase. KEIO_ID T014; [MS2] KO009272 KEIO_ID T014 Thymidine, a specific precursor of deoxyribonucleic acid, is used as a cell synchronizing agent. Thymidine is a DNA synthesis inhibitor that can arrest cell at G1/S boundary, prior to DNA replication[1][2][3]. Thymidine, a specific precursor of deoxyribonucleic acid, is used as a cell synchronizing agent. Thymidine is a DNA synthesis inhibitor that can arrest cell at G1/S boundary, prior to DNA replication[1][2][3].

   

Protopine

15-methyl-7,9,19,21-tetraoxa-15-azapentacyclo[15.7.0.0^{4,12}.0^{6,10}.0^{18,22}]tetracosa-1(24),4(12),5,10,17,22-hexaen-3-one

C20H19NO5 (353.12631640000006)


Protopine is a dibenzazecine alkaloid isolated from Fumaria vaillantii. It has a role as a plant metabolite. Protopine is a natural product found in Corydalis heterocarpa var. japonica, Fumaria capreolata, and other organisms with data available. Protopine is a benzylisoquinoline alkaloid occurring in opium poppies and other plants of the family papaveraceae. It has been found to inhibit histamine H1 receptors and platelet aggregation, and acts as an opioid analgesic. See also: Sanguinaria canadensis root (part of); Chelidonium majus flowering top (part of). Protopine is a benzylisoquinoline alkaloid occurring in opium poppies and other plants of the family papaveraceae. It has been found to inhibit histamine H1 receptors and platelet aggregation, and acts as an opioid analgesic [HMDB] Protopine is a benzylisoquinoline alkaloid occurring in opium poppies and other plants of the family papaveraceae. It has been found to inhibit histamine H1 receptors and platelet aggregation, and acts as an opioid analgesic. Protopine is an alkaloid occurring in opium poppy,[2] Corydalis tubers[3] and other plants of the family papaveraceae, like Fumaria officinalis.[4] Protopine is metabolically derived from the benzylisoquinoline alkaloid (S)-Reticuline through a progressive series of five enzymatic transformations: 1) berberine bridge enzyme to (S)-Scoulerine; 2) (S)-cheilanthifoline synthase/CYP719A25 to (S)-Cheilanthifoline; 3) (S)-stylopine synthase/CYP719A20 to (S)-Stylopine; 4) (S)-tetrahydroprotoberberine N-methyltransferase to (S)-cis-N-Methylstylopine; and ultimately, 5) N-methylstylopine hydroxylase to protopine.[5] It has been found to inhibit histamine H1 receptors and platelet aggregation, and acts as an analgesic.[6][7] Protopine (Corydinine), an isoquinoline alkaloid, is a specific reversible and competitive inhibitor of acetylcholinesterase. Protopine exhibits anti-inflammation, anti-microbial, anti-angiogenic and anti-tumour activity[1][2]. Protopine (Corydinine), an isoquinoline alkaloid, is a specific reversible and competitive inhibitor of acetylcholinesterase. Protopine exhibits anti-inflammation, anti-microbial, anti-angiogenic and anti-tumour activity[1][2].

   

Adenosine

(2R,3R,4S,5R)-2-(6-amino-9H-purin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol

C10H13N5O4 (267.09674980000005)


Adenosine is a ribonucleoside composed of a molecule of adenine attached to a ribofuranose moiety via a beta-N(9)-glycosidic bond. It has a role as an anti-arrhythmia drug, a vasodilator agent, an analgesic, a human metabolite and a fundamental metabolite. It is a purines D-ribonucleoside and a member of adenosines. It is functionally related to an adenine. The structure of adenosine was first described in 1931, though the vasodilating effects were not described in literature until the 1940s. Adenosine is indicated as an adjunct to thallium-201 in myocardial perfusion scintigraphy, though it is rarely used in this indication, having largely been replaced by [dipyridamole] and [regadenson]. Adenosine is also indicated in the treatment of supraventricular tachycardia. Adenosine was granted FDA approval on 30 October 1989. Adenosine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Adenosine is an Adenosine Receptor Agonist. The mechanism of action of adenosine is as an Adenosine Receptor Agonist. Adenosine is a natural product found in Smilax bracteata, Mikania laevigata, and other organisms with data available. Adenosine is a ribonucleoside comprised of adenine bound to ribose, with vasodilatory, antiarrhythmic and analgesic activities. Phosphorylated forms of adenosine play roles in cellular energy transfer, signal transduction and the synthesis of RNA. Adenosine is a nucleoside that is composed of adenine and d-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. For instance, adenosine plays an important role in energy transfer - as adenosine triphosphate (ATP) and adenosine diphosphate (ADP). It also plays a role in signal transduction as cyclic adenosine monophosphate, cAMP. Adenosine itself is both a neurotransmitter and potent vasodilator. When administered intravenously, adenosine causes transient heart block in the AV node. Because of the effects of adenosine on AV node-dependent supraventricular tachycardia, adenosine is considered a class V antiarrhythmic agent. Adenosine is a metabolite found in or produced by Saccharomyces cerevisiae. A nucleoside that is composed of adenine and d-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. See also: Adenosine; Niacinamide (component of); Adenosine; Glycerin (component of); Adenosine; ginsenosides (component of) ... View More ... Adenosine is a nucleoside that is composed of adenine and D-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. For instance, adenosine plays an important role in energy transfer as adenosine triphosphate (ATP) and adenosine diphosphate (ADP). It also plays a role in signal transduction as cyclic adenosine monophosphate (cAMP). Adenosine itself is both a neurotransmitter and potent vasodilator. When administered intravenously adenosine causes transient heart block in the AV node. Due to the effects of adenosine on AV node-dependent supraventricular tachycardia, adenosine is considered a class V antiarrhythmic agent. Overdoses of adenosine intake (as a drug) can lead to several side effects including chest pain, feeling faint, shortness of breath, and tingling of the senses. Serious side effects include a worsening dysrhythmia and low blood pressure. When present in sufficiently high levels, adenosine can act as an immunotoxin and a metabotoxin. An immunotoxin disrupts, limits the function, or destroys immune cells. A metabotoxin is an endogenous metabolite that causes adverse health effects at chronically high levels. Chronically high levels of adenosine are associated with adenosine deaminase deficiency. Adenosine is a precursor to deoxyadenosine, which is a precursor to dATP. A buildup of dATP in cells inhibits ribonucleotide reductase and prevents DNA synthesis, so cells are unable to divide. Since developing T cells and B cells are some of the most mitotically active cells, they are unable to divide and propagate to respond to immune challenges. High levels of deoxyadenosine also lead to an increase in S-adenosylhomocysteine, which is toxic to immature lymphocytes. Adenosine is a nucleoside composed of a molecule of adenine attached to a ribose sugar molecule (ribofuranose) moiety via a beta-N9-glycosidic bond. [Wikipedia]. Adenosine is found in many foods, some of which are borage, japanese persimmon, nuts, and barley. COVID info from PDB, Protein Data Bank, COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials A ribonucleoside composed of a molecule of adenine attached to a ribofuranose moiety via a beta-N(9)-glycosidic bond. Adenosine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=58-61-7 (retrieved 2024-06-29) (CAS RN: 58-61-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2].

   

Berberine

16,17-dimethoxy-5,7-dioxa-13lambda5-azapentacyclo[11.8.0.0^{2,10}.0^{4,8}.0^{15,20}]henicosa-1(21),2,4(8),9,13,15,17,19-octaen-13-ylium

[C20H18NO4]+ (336.1235768)


Berberine is an organic heteropentacyclic compound, an alkaloid antibiotic, a botanical anti-fungal agent and a berberine alkaloid. It has a role as an antilipemic drug, a hypoglycemic agent, an antioxidant, a potassium channel blocker, an antineoplastic agent, an EC 1.1.1.21 (aldehyde reductase) inhibitor, an EC 1.1.1.141 [15-hydroxyprostaglandin dehydrogenase (NAD(+))] inhibitor, an EC 1.13.11.52 (indoleamine 2,3-dioxygenase) inhibitor, an EC 1.21.3.3 (reticuline oxidase) inhibitor, an EC 2.1.1.116 [3-hydroxy-N-methyl-(S)-coclaurine 4-O-methyltransferase] inhibitor, an EC 3.1.1.4 (phospholipase A2) inhibitor, an EC 3.4.21.26 (prolyl oligopeptidase) inhibitor, an EC 3.4.14.5 (dipeptidyl-peptidase IV) inhibitor, an EC 3.1.3.48 (protein-tyrosine-phosphatase) inhibitor, an EC 3.1.1.7 (acetylcholinesterase) inhibitor, an EC 3.1.1.8 (cholinesterase) inhibitor, an EC 2.7.11.10 (IkappaB kinase) inhibitor, an EC 2.1.1.122 [(S)-tetrahydroprotoberberine N-methyltransferase] inhibitor, a geroprotector and a metabolite. An alkaloid from Hydrastis canadensis L., Berberidaceae. It is also found in many other plants. It is relatively toxic parenterally, but has been used orally for various parasitic and fungal infections and as antidiarrheal. Berberine is a quaternary ammonia compound found in many botanical products, including goldenseal, barberry and Oregon grape, which is used for its purported antioxidant and antimicrobial properties for a host of conditions, including obesity, diabetes, hyperlipidemia, heart failure, H. pylori infection and colonic adenoma prevention. Berberine has not been linked to serum aminotransferase elevations during therapy nor to instances of clinically apparent liver injury. Berberine is a natural product found in Berberis poiretii, Thalictrum delavayi, and other organisms with data available. Berberine is a quaternary ammonium salt of an isoquinoline alkaloid and active component of various Chinese herbs, with potential antineoplastic, radiosensitizing, anti-inflammatory, anti-lipidemic and antidiabetic activities. Although the mechanisms of action through which berberine exerts its effects are not yet fully elucidated, upon administration this agent appears to suppress the activation of various proteins and/or modulate the expression of a variety of genes involved in tumorigenesis and inflammation, including, but not limited to transcription factor nuclear factor-kappa B (NF-kB), myeloid cell leukemia 1 (Mcl-1), B-cell lymphoma 2 (Bcl-2), B-cell lymphoma-extra large (Bcl-xl), cyclooxygenase (COX)-2, tumor necrosis factor (TNF), interleukin (IL)-6, IL-12, inducible nitric oxide synthase (iNOS), intercellular adhesion molecule-1 (ICAM-1), E-selectin, monocyte chemoattractant protein-1 (MCP-1), C-X-C motif chemokine 2 (CXCL2), cyclin D1, activator protein (AP-1), hypoxia-inducible factor 1 (HIF-1), signal transducer and activator of transcription 3 (STAT3), peroxisome proliferator-activated receptor (PPAR), arylamine N-acetyltransferase (NAT), and DNA topoisomerase I and II. The modulation of gene expression may induce cell cycle arrest and apoptosis, and inhibit cancer cell proliferation. In addition, berberine modulates lipid and glucose metabolism. An alkaloid from Hydrastis canadensis L., Berberidaceae. It is also found in many other plants. It is relatively toxic parenterally, but has been used orally for various parasitic and fungal infections and as antidiarrheal. See also: Goldenseal (part of); Berberis aristata stem (part of). Berberine is a quaternary ammonium salt that belongs to the protoberberine group of benzylisoquinoline alkaloids. Chemically, berberine is classified as an isoquinoline alkaloid. More specifically, berberine is a plant alkaloid derived from tyrosine through a complex 8 step biosynthetic process. Berberine is found in plants such as Berberis vulgaris (barberry), Berberis aristata (tree turmeric), Mahonia aquifolium (Oregon grape) and Hydrastis canadensis (goldenseal). Two other known berberine-containing plants are Phellodendron chinense and Phellodendron amurense. Berberine is usually found in the roots, rhizomes, stems, and bark of Berberis plants. Due to berberines intense yellow color, plants that contain berberine were traditionally used to dye wool, leather, and wood. Under ultraviolet light, berberine shows a strong yellow fluorescence, making it useful in histology for staining heparin in mast cells. Berberine is a bioactive plant compound that has been frequently used in traditional medicine. Among the known physiological effects or bioactivities are: 1) Antimicrobial action against bacteria, fungi, protozoa, viruses, helminthes, and Chlamydia; 2) Antagonism against the effects of cholera and E coli heat-stable enterotoxin; 3) Inhibition of intestinal ion secretion and of smooth muscle contraction; 4) Reduction of inflammation and 5) Stimulation of bile secretion and bilirubin discharge (PMID:32335802). Berberine can inhibit bacterial growth in the gut, including Helicobacter pylori, protect the intestinal epithelial barrier from injury, and ameliorate liver injury. Currently, berberine is sold as an Over-the-Counter (OTC) drug for treating gastrointestinal infections in China (PMID:18442638). Berberine also inhibits the proliferation of various types of cancer cells and impedes invasion and metastasis (PMID:32335802). Recent evidence has also confirmed that berberine improves the efficacy and safety of both chemo and radiotherapies for cancer treatment (PMID:32335802). Berberine has also been shown to regulate glucose and lipid metabolism in vitro and in vivo (PMID:18442638). In fact, berberine is the main active component of an ancient Chinese herb Coptis chinensis French, which has been used to treat diabetes for thousands of years. As an anti-diabetic, berberine increases glucose uptake by muscle fibers independent of insulin levels. It triggers AMPK activation and increases glycolysis, leading to decreased insulin resistance and decreased oxygen respiration. The same mechanism leads to a reduction in gluconeogenesis in the liver. AMPK activation by berberine also leads to an antiatherosclerotic effect in mice. Berberines AMPK activation may also underlie berberines anti-obesity effects and favorable influence on weight loss (PMID:18442638). While its use as a medication is widely touted, it is important to remember that berberine inhibits CYP2D6 and CYP3A4 enzymes, both of which are involved in the metabolism of many endogenous substances and xenobiotics, including a number of prescription drugs. An alkaloid from Hydrastis canadensis L., Berberidaceae. It is also found in many other plants. It is relatively toxic parenterally, but has been used orally for various parasitic and fungal infections and as antidiarrheal. [HMDB] COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials [Raw Data] CBA98_Berberine_pos_50eV.txt [Raw Data] CBA98_Berberine_pos_10eV.txt [Raw Data] CBA98_Berberine_pos_20eV.txt [Raw Data] CBA98_Berberine_pos_40eV.txt [Raw Data] CBA98_Berberine_pos_30eV.txt Berberine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2086-83-1 (retrieved 2024-09-04) (CAS RN: 2086-83-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Tryptamine

2-(1H-indol-3-yl)ethan-1-amine

C10H12N2 (160.1000432)


Tryptamine, also known as TrpN, is a catabolite of tryptophan converted by the gut microbiota. After absorption through the intestinal epithelium, tryptophan catabolites enter the bloodstream and are later excreted in the urine. Both Clostridium sp. and Ruminococcus sp. have been found to convert tryptophan into tryptamine (PMID: 30120222). Tryptamine is a monoamine compound that is a common precursor molecule to many hormones and neurotransmitters. Biosynthesis generally proceeds from the amino acid tryptophan, with tryptamine acting as a precursor for other compounds. Substitutions to the tryptamine molecule give rise to a group of compounds collectively known as tryptamines. The most well-known tryptamines are serotonin, an important neurotransmitter, and melatonin, a hormone involved in regulating the sleep-wake cycle. Tryptamine has been detected, but not quantified in, several different foods, such as onion-family vegetables, acerola, Japanese walnuts, custard apples, and green zucchinis. This could make tryptamine a potential biomarker for the consumption of these foods. Tryptamine is an aminoalkylindole consisting of indole having a 2-aminoethyl group at the 3-position. It has a role as a human metabolite, a plant metabolite and a mouse metabolite. It is an aminoalkylindole, an indole alkaloid, an aralkylamino compound and a member of tryptamines. It is a conjugate base of a tryptaminium. Tryptamine is a natural product found in Mus musculus, Prosopis glandulosa, and other organisms with data available. Occurs widely in plants, especies Lens esculenta (lentil) and the fungi Coprinus micaceus (glistening ink cap) An aminoalkylindole consisting of indole having a 2-aminoethyl group at the 3-position. KEIO_ID T031

   

L-Tryptophan

L-Tryptophan, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 99.0-101.0\\%

C11H12N2O2 (204.0898732)


Tryptophan (Trp) or L-tryptophan is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-tryptophan is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Tryptophan is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aromatic amino acid. Tryptophan is an essential amino acid, meaning the body cannot synthesize it, and it must be obtained from the diet. The requirement for tryptophan and protein decreases with age. The minimum daily requirement for adults is 3 mg/kg/day or about 200 mg a day. There is 400 mg of tryptophan in a cup of wheat germ. A cup of low-fat cottage cheese contains 300 mg of tryptophan and chicken and turkey contain up to 600 mg of tryptophan per pound (http://www.dcnutrition.com). Tryptophan is particularly plentiful in chocolate, oats, dried dates, milk, yogurt, cottage cheese, red meat, eggs, fish, poultry, sesame, chickpeas, almonds, sunflower seeds, pumpkin seeds, buckwheat, spirulina, and peanuts. Tryptophan is the precursor of both serotonin and melatonin. Melatonin is a hormone that is produced by the pineal gland in animals, which regulates sleep and wakefulness. Serotonin is a brain neurotransmitter, platelet clotting factor, and neurohormone found in organs throughout the body. Metabolism of tryptophan into serotonin requires nutrients such as vitamin B6, niacin, and glutathione. Niacin (also known as vitamin B3) is an important metabolite of tryptophan. It is synthesized via kynurenine and quinolinic acids, which are products of tryptophan degradation. There are a number of conditions or diseases that are characterized by tryptophan deficiencies. For instance, fructose malabsorption causes improper absorption of tryptophan in the intestine, which reduces levels of tryptophan in the blood and leads to depression. High corn diets or other tryptophan-deficient diets can cause pellagra, which is a niacin-tryptophan deficiency disease with symptoms of dermatitis, diarrhea, and dementia. Hartnups disease is a disorder in which tryptophan and other amino acids are not absorbed properly. Symptoms of Hartnups disease include skin rashes, difficulty coordinating movements (cerebellar ataxia), and psychiatric symptoms such as depression or psychosis. Tryptophan supplements may be useful for treating Hartnups disease. Assessment of tryptophan deficiency is done through studying excretion of tryptophan metabolites in the urine or blood. Blood may be the most sensitive test because the amino acid tryptophan is transported in a unique way. Increased urination of tryptophan breakdown products (such as kynurenine) correlates with increased tryptophan degradation, which occurs with oral contraception, depression, mental retardation, hypertension, and anxiety states. Tryptophan plays a role in "feast-induced" drowsiness. Ingestion of a meal rich in carbohydrates triggers the release of insulin. Insulin, in turn, stimulates the uptake of large neutral branched-chain amino acids (BCAAs) into muscle, increasing the ratio of tryptophan to BCAA in the bloodstream. The increased tryptophan ratio reduces competition at the large neutral amino acid transporter (which transports both BCAAs and tryptophan), resulting in greater uptake of tryptophan across the blood-brain barrier into the cerebrospinal fluid (CSF). Once in the CSF, tryptophan is converted into serotonin and the resulting serotonin is further metabolized into melatonin by the pineal gland, which promotes sleep. Because tryptophan is converted into 5-hydroxytryptophan (5-HTP) which is then converted into the neurotransmitter serotonin, it has been proposed th... L-tryptophan is a white powder with a flat taste. An essential amino acid; occurs in isomeric forms. (NTP, 1992) L-tryptophan is the L-enantiomer of tryptophan. It has a role as an antidepressant, a nutraceutical, a micronutrient, a plant metabolite, a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is an erythrose 4-phosphate/phosphoenolpyruvate family amino acid, a proteinogenic amino acid, a tryptophan and a L-alpha-amino acid. It is a conjugate base of a L-tryptophanium. It is a conjugate acid of a L-tryptophanate. It is an enantiomer of a D-tryptophan. It is a tautomer of a L-tryptophan zwitterion. An essential amino acid that is necessary for normal growth in infants and for nitrogen balance in adults. It is a precursor of indole alkaloids in plants. It is a precursor of serotonin (hence its use as an antidepressant and sleep aid). It can be a precursor to niacin, albeit inefficiently, in mammals. L-Tryptophan is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Tryptophan is the least plentiful of all 22 amino acids and an essential amino acid in humans (provided by food), Tryptophan is found in most proteins and a precursor of serotonin. Tryptophan is converted to 5-hydroxy-tryptophan (5-HTP), converted in turn to serotonin, a neurotransmitter essential in regulating appetite, sleep, mood, and pain. Tryptophan is a natural sedative and present in dairy products, meats, brown rice, fish, and soybeans. (NCI04) Tryptophan is an essential amino acid which is the precursor of serotonin. Serotonin is a brain neurotransmitter, platelet clotting factor and neurohormone found in organs throughout the body. Metabolism of tryptophan to serotonin requires nutrients such as vitamin B6, niacin and glutathione. Niacin is an important metabolite of tryptophan. High corn or other tryptophan-deficient diets can cause pellagra, which is a niacin-tryptophan deficiency disease with symptoms of dermatitis, diarrhea and dementia. Inborn errors of tryptophan metabolism exist where a tumor (carcinoid) makes excess serotonin. Hartnups disease is a disease where tryptophan and other amino acids are not absorbed properly. Tryptophan supplements may be useful in each condition, in carcinoid replacing the over-metabolized nutrient and in Hartnups supplementing a malabsorbed nutrient. Some disorders of excess tryptophan in the blood may contribute to mental retardation. Assessment of tryptophan deficiency is done through studying excretion of tryptophan metabolites in the urine or blood. Blood may be the most sensitive test because the amino acid tryptophan is transported in a unique way. Increased urination of tryptophan fragments correlates with increased tryptophan degradation, which occurs with oral contraception, depression, mental retardation, hypertension and anxiety states. The requirement for tryptophan and protein decreases with age. Adults minimum daily requirement is 3 mg/kg/day or about 200 mg a day. This may be an underestimation, for there are 400 mg of tryptophan in just a cup of wheat germ. A cup of low fat cottage cheese contains 300 mg of tryptophan and chicken and turkey contain up to 600 mg per pound. An essential amino acid that is necessary for normal growth in infants and for NITROGEN balance in adults. It is a precursor of INDOLE ALKALOIDS in plants. It is a precursor of SEROTONIN (hence its use as an antidepressant and sleep aid). It can be a precursor to NIACIN, albeit inefficiently, in mammals. See also: Serotonin; tryptophan (component of); Chamomile; ginger; melatonin; thiamine; tryptophan (component of) ... View More ... Constituent of many plants. Enzymatic hydrolysis production of most plant and animal proteins. Dietary supplement, nutrient D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants COVID info from PDB, Protein Data Bank The L-enantiomer of tryptophan. Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA09_Tryptophan_pos_30eV_1-1_01_662.txt [Raw Data] CBA09_Tryptophan_pos_20eV_1-1_01_661.txt [Raw Data] CBA09_Tryptophan_neg_30eV_1-1_01_716.txt [Raw Data] CBA09_Tryptophan_pos_10eV_1-1_01_660.txt [Raw Data] CBA09_Tryptophan_neg_10eV_1-1_01_714.txt [Raw Data] CBA09_Tryptophan_neg_40eV_1-1_01_717.txt [Raw Data] CBA09_Tryptophan_neg_20eV_1-1_01_715.txt [Raw Data] CBA09_Tryptophan_pos_50eV_1-1_01_664.txt [Raw Data] CBA09_Tryptophan_neg_50eV_1-1_01_718.txt [Raw Data] CBA09_Tryptophan_pos_40eV_1-1_01_663.txt IPB_RECORD: 253; CONFIDENCE confident structure KEIO_ID T003 DL-Tryptophan is an endogenous metabolite. L-Tryptophan (Tryptophan) is an essential amino acid that is the precursor of serotonin, melatonin, and vitamin B3[1]. L-Tryptophan (Tryptophan) is an essential amino acid that is the precursor of serotonin, melatonin, and vitamin B3[1].

   

Scoparone

6,7-dimethoxychromen-2-one

C11H10O4 (206.057906)


Scoparone is a member of the class of coumarins that is esculetin in which the two hydroxy groups at positions 6 and 7 are replaced by methoxy groups. It is a major constituent of the Chinese herbal medicine Yin Chen Hao, and exhibits a variety of pharmacological activities such as anti-inflammatory, anti-allergic, and anti-tumor activities. It has a role as a plant metabolite, an anti-inflammatory agent, an antilipemic drug, an immunosuppressive agent, an antihypertensive agent and an anti-allergic agent. It is a member of coumarins and an aromatic ether. It is functionally related to an esculetin. Scoparone is a natural product found in Haplophyllum ramosissimum, Haplophyllum thesioides, and other organisms with data available. A member of the class of coumarins that is esculetin in which the two hydroxy groups at positions 6 and 7 are replaced by methoxy groups. It is a major constituent of the Chinese herbal medicine Yin Chen Hao, and exhibits a variety of pharmacological activities such as anti-inflammatory, anti-allergic, and anti-tumor activities. D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics Scoparone is found in anise. Scoparone is found in several citrus oil D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Found in several citrus oils Scoparone is isolated from Artemisia capillaris Thunb., has anticoagulant, vasorelaxant antioxidant, anti-inflammatory activities[1]. Scoparone is isolated from Artemisia capillaris Thunb., has anticoagulant, vasorelaxant antioxidant, anti-inflammatory activities[1].

   

Tetrahydropalmatine

(13aS)-2,3,9,10-tetramethoxy-6,8,13,13a-tetrahydro-5H-isoquinolino[2,1-b]isoquinoline

C21H25NO4 (355.178349)


Tetrahydropalmatine is a berberine alkaloid obtained by formal addition of two molecules of hydrogen to the pyridine ring of palmatine. It has a role as an adrenergic agent, a non-narcotic analgesic and a dopaminergic antagonist. It is a berberine alkaloid, an organic heterotetracyclic compound and an an (S)-7,8,13,14-tetrahydroprotoberberine. It is functionally related to a palmatine. Tetrahydropalmatine is under investigation in clinical trial NCT02118610 (Treatment of Schizophrenia With L-tetrahydropalmatine (l-THP): a Novel Dopamine Antagonist With Anti-inflammatory and Antiprotozoal Activity). Tetrahydropalmatine is a natural product found in Corydalis heterocarpa, Ceratocapnos heterocarpa, and other organisms with data available. A berberine alkaloid obtained by formal addition of two molecules of hydrogen to the pyridine ring of palmatine. Tetrahydropalmatine (THP) is an isoquinoline alkaloid found in several different plant species, mainly in the genus Corydalis (Yan Hu Suo),[1][2] but also in other plants such as Stephania rotunda.[3] These plants have traditional uses in Chinese herbal medicine. The pharmaceutical industry has synthetically produced the more potent enantiomer Levo-tetrahydropalmatine (Levo-THP), which has been marketed worldwide under different brand names as an alternative to anxiolytic and sedative drugs of the benzodiazepine group and analgesics such as opiates. It is also sold as a dietary supplement. In 1940, a Vietnamese scientist Sang Dinh Bui extracted an alkaloid from the root of Stephania rotunda with the yield of 1.2–1.5\\\\\\\% and he named this compound rotundine. From 1950 to 1952, two Indian scientists studied and extracted from Stephania glabra another alkaloid named hyndanrine. In 1965, the structure of rotundine and hyndarin was proved to be the same as tetrahydropalmatine. Tetrahydropalmatine has been demonstrated to possess analgesic effects and may be beneficial in the treatment of heart disease and liver damage.[5][6] It is a blocker of voltage-activated L-type calcium channel active potassium channels.[citation needed] It is a potent muscle relaxant.[citation needed] It has also shown potential in the treatment of drug addiction to both cocaine and opiates, and preliminary human studies have shown promising results.[7][8][9] The pharmacological profile of l-THP includes antagonism of dopamine D1, and D2 receptors as well as actions at dopamine D3, alpha adrenergic and serotonin receptors. The Ki values for l-THP at D1 and D2 dopamine receptors are approximately 124 nM (D1) and 388 nM (D2). In addition to the antagonism of post-synaptic dopamine receptors, the blockade of pre-synaptic autoreceptors by l-THP results in increased dopamine release, and it has been suggested that lower affinity of l-THP for D2 receptors may confer some degree of autoreceptor selectivity. Along with dopamine receptors, l-THP has been reported to interact with a number of other receptor types, including alpha-1 adrenergic receptors, at which it functions as an antagonist, and GABA-A receptors, through positive allosteric modulation. Additionally, l-THP displays significant binding to 5-HT1A and alpha-2 adrenergic receptors. In the case of 5-HT1A receptors, l-THP binds with a Ki of approximately 340 nM.[10] Animal experiments have shown that the sedative effect of THP results from blocking dopaminergic neurons in the brain. Dopamine is an important neurotransmitter in the central nervous system where it occurs in several important signaling systems that regulate muscular activity and attention, as well as feelings of joy, enthusiasm, and creativity. Therefore, THP causes no feelings of euphoria, and has been seen as an alternative to addictive drugs for people suffering from anxiety and pain, and as a possibility for relief for people not helped by existing drugs.[citation needed] Several cases of poisoning related to THP have been reported.[11] These cases involved negative effects on respiration, cardiac activity, and the nervous system. In addition, chronic hepatitis has been reported, caused by THP production in East Asia under conditions that were insufficiently sterile. Fatalities started to be reported in 1999 in cases where THP had been used in combination with other drugs having analgesic and anti-anxiety effects. All 1999 deaths could be tied to a single THP-based supplement, sold under the name "Jin Bu Huan Anodyne Tablets". Toxicity with even Jin Bu Huan has been reported.[12] This product was therefore blacklisted by US and European health authorities. In some other countries, such as Singapore, THP is treated as a controlled substance, and license is required to sell it.[citation needed] Rotundine is an antagonist of dopamine D1, D2 and D3 receptors with IC50s of 166 nM, 1.4 μM and 3.3 μM, respectively. Rotundine is also an antagonist of 5-HT1A with an IC50 of 370 nM. Rotundine is an antagonist of dopamine D1, D2 and D3 receptors with IC50s of 166 nM, 1.4 μM and 3.3 μM, respectively. Rotundine is also an antagonist of 5-HT1A with an IC50 of 370 nM. Rotundine is an antagonist of dopamine D1, D2 and D3 receptors with IC50s of 166 nM, 1.4 μM and 3.3 μM, respectively. Rotundine is also an antagonist of 5-HT1A with an IC50 of 370 nM. Tetrahydropalmatine possesses analgesic effects. Tetrahydropalmatine acts through inhibition of amygdaloid release of dopamine to inhibit an epileptic attack in rats[1]. Tetrahydropalmatine possesses analgesic effects. Tetrahydropalmatine acts through inhibition of amygdaloid release of dopamine to inhibit an epileptic attack in rats[1]. Tetrahydropalmatine possesses analgesic effects. Tetrahydropalmatine acts through inhibition of amygdaloid release of dopamine to inhibit an epileptic attack in rats[1].

   

L-Tyrosine

(2S)-2-amino-3-(4-hydroxyphenyl)propanoic acid

C9H11NO3 (181.0738896)


Tyrosine (Tyr) or L-tyrosine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-tyrosine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Tyrosine is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aromatic amino acid. Tyrosine is a non-essential amino acid, meaning the body can synthesize it – usually from phenylalanine. The conversion of phenylalanine to tyrosine is catalyzed by the enzyme phenylalanine hydroxylase, a monooxygenase. This enzyme catalyzes the reaction causing the addition of a hydroxyl group to the end of the 6-carbon aromatic ring of phenylalanine, such that it becomes tyrosine. Tyrosine is found in many high-protein food products such as chicken, turkey, fish, milk, yogurt, cottage cheese, cheese, peanuts, almonds, pumpkin seeds, sesame seeds, soy products, lima beans, avocados and bananas. Tyrosine is one of the few amino acids that readily passes the blood-brain barrier. Once in the brain, it is a precursor for the neurotransmitters dopamine, norepinephrine and epinephrine, better known as adrenalin. These neurotransmitters are an important part of the bodys sympathetic nervous system, and their concentrations in the body and brain are directly dependent upon dietary tyrosine. Tyrosine is not found in large concentrations throughout the body, probably because it is rapidly metabolized. Folic acid, copper and vitamin C are cofactor nutrients of these reactions. Tyrosine is also the precursor for hormones, including thyroid hormones (diiodotyrosine), catecholestrogens and the major human pigment, melanin. Tyrosine is an important amino acid in many proteins, peptides and even enkephalins, the bodys natural pain reliever. Valine and other branched amino acids, and possibly tryptophan and phenylalanine may reduce tyrosine absorption. A number of genetic errors of tyrosine metabolism have been identified, such as hawkinsinuria and tyrosinemia I. The most common feature of these diseases is the increased amount of tyrosine in the blood, which is marked by decreased motor activity, lethargy and poor feeding. Infection and intellectual deficits may occur. Vitamin C supplements can help reverse these disease symptoms. Some adults also develop elevated tyrosine in their blood. This typically indicates a need for more vitamin C. More tyrosine is needed under stress, and tyrosine supplements prevent the stress-induced depletion of norepinephrine and can help aleviate biochemical depression. However, tyrosine may not be good for treating psychosis. Many antipsychotic medications apparently function by inhibiting tyrosine metabolism. L-Dopa, which is directly used in Parkinsons, is made from tyrosine. Tyrosine, the nutrient, can be used as an adjunct in the treatment of Parkinsons. Peripheral metabolism of tyrosine necessitates large doses of tyrosine, however, compared to L-Dopa (http://www.dcnutrition.com). In addition to its role as a precursor for neurotransmitters, tyrosine plays an important role for the function of many proteins. Within many proteins or enzymes, certain tyrosine residues can be tagged (at the hydroxyl group) with a phosphate group (phosphorylated) by specialized protein kinases. In its phosphorylated form, tyrosine is called phosphotyrosine. Tyrosine phosphorylation is considered to be one of the key steps in signal transduction and regulation of enzymatic activity. Tyrosine (or its precursor phenylalanine) is also needed to synthesize the benzoquinone structure which forms part of coenzyme Q10. L-tyrosine is an optically active form of tyrosine having L-configuration. It has a role as an EC 1.3.1.43 (arogenate dehydrogenase) inhibitor, a nutraceutical, a micronutrient and a fundamental metabolite. It is an erythrose 4-phosphate/phosphoenolpyruvate family amino acid, a proteinogenic amino acid, a tyrosine and a L-alpha-amino acid. It is functionally related to a L-tyrosinal. It is a conjugate base of a L-tyrosinium. It is a conjugate acid of a L-tyrosinate(1-). It is an enantiomer of a D-tyrosine. It is a tautomer of a L-tyrosine zwitterion. Tyrosine is a non-essential amino acid. In animals it is synthesized from [phenylalanine]. It is also the precursor of [epinephrine], thyroid hormones, and melanin. L-Tyrosine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). L-Tyrosine is the levorotatory isomer of the aromatic amino acid tyrosine. L-tyrosine is a naturally occurring tyrosine and is synthesized in vivo from L-phenylalanine. It is considered a non-essential amino acid; however, in patients with phenylketonuria who lack phenylalanine hydroxylase and cannot convert phenylalanine into tyrosine, it is considered an essential nutrient. In vivo, tyrosine plays a role in protein synthesis and serves as a precursor for the synthesis of catecholamines, thyroxine, and melanin. Tyrosine is an essential amino acid that readily passes the blood-brain barrier. Once in the brain, it is a precursor for the neurotransmitters dopamine, norepinephrine and epinephrine, better known as adrenalin. These neurotransmitters are an important part of the bodys sympathetic nervous system, and their concentrations in the body and brain are directly dependent upon dietary tyrosine. Tyrosine is not found in large concentrations throughout the body, probably because it is rapidly metabolized. Folic acid, copper and vitamin C are cofactor nutrients of these reactions. Tyrosine is also the precursor for hormones, thyroid, catecholestrogens and the major human pigment, melanin. Tyrosine is an important amino acid in many proteins, peptides and even enkephalins, the bodys natural pain reliever. Valine and other branched amino acids, and possibly tryptophan and phenylalanine may reduce tyrosine absorption. A number of genetic errors of tyrosine metabolism occur. Most common is the increased amount of tyrosine in the blood of premature infants, which is marked by decreased motor activity, lethargy and poor feeding. Infection and intellectual deficits may occur. Vitamin C supplements reverse the disease. Some adults also develop elevated tyrosine in their blood. This indicates a need for more vitamin C. More tyrosine is needed under stress, and tyrosine supplements prevent the stress-induced depletion of norepinephrine and can cure biochemical depression. However, tyrosine may not be good for psychosis. Many antipsychotic medications apparently function by inhibiting tyrosine metabolism. L-dopa, which is directly used in Parkinsons, is made from tyrosine. Tyrosine, the nutrient, can be used as an adjunct in the treatment of Parkinsons. Peripheral metabolism of tyrosine necessitates large doses of tyrosine, however, compared to L-dopa. A non-essential amino acid. In animals it is synthesized from PHENYLALANINE. It is also the precursor of EPINEPHRINE; THYROID HORMONES; and melanin. Dietary supplement, nutrient. Flavouring ingredient. L-Tyrosine is found in many foods, some of which are blue crab, sweet rowanberry, lemon sole, and alpine sweetvetch. An optically active form of tyrosine having L-configuration. L-Tyrosine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=60-18-4 (retrieved 2024-07-01) (CAS RN: 60-18-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Tyrosine is a non-essential amino acid which can inhibit citrate synthase activity in the posterior cortex. L-Tyrosine is a non-essential amino acid which can inhibit citrate synthase activity in the posterior cortex.

   

L-Threonine

(2S,3R)-2-amino-3-hydroxybutanoic acid

C4H9NO3 (119.0582404)


L-threonine is an optically active form of threonine having L-configuration. It has a role as a nutraceutical, a micronutrient, a Saccharomyces cerevisiae metabolite, a plant metabolite, an Escherichia coli metabolite, a human metabolite, an algal metabolite and a mouse metabolite. It is an aspartate family amino acid, a proteinogenic amino acid, a threonine and a L-alpha-amino acid. It is a conjugate base of a L-threoninium. It is a conjugate acid of a L-threoninate. It is an enantiomer of a D-threonine. It is a tautomer of a L-threonine zwitterion. An essential amino acid occurring naturally in the L-form, which is the active form. It is found in eggs, milk, gelatin, and other proteins. L-Threonine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Threonine is an essential amino acid in humans (provided by food), Threonine is an important residue of many proteins, such as tooth enamel, collagen, and elastin. An important amino acid for the nervous system, threonine also plays an important role in porphyrin and fat metabolism and prevents fat buildup in the liver. Useful with intestinal disorders and indigestion, threonine has also been used to alleviate anxiety and mild depression. (NCI04) Threonine is an essential amino acid in humans. It is abundant in human plasma, particularly in newborns. Severe deficiency of threonine causes neurological dysfunction and lameness in experimental animals. Threonine is an immunostimulant which promotes the growth of thymus gland. It also can probably promote cell immune defense function. This amino acid has been useful in the treatment of genetic spasticity disorders and multiple sclerosis at a dose of 1 gram daily. It is highly concentrated in meat products, cottage cheese and wheat germ. The threonine content of most of the infant formulas currently on the market is approximately 20\\\\\\% higher than the threonine concentration in human milk. Due to this high threonine content the plasma threonine concentrations are up to twice as high in premature infants fed these formulas than in infants fed human milk. The whey proteins which are used for infant formulas are sweet whey proteins. Sweet whey results from cheese production. Threonine catabolism in mammals appears to be due primarily (70-80\\\\\\%) to the activity of threonine dehydrogenase (EC 1.1.1.103) that oxidizes threonine to 2-amino-3-oxobutyrate, which forms glycine and acetyl CoA, whereas threonine dehydratase (EC 4.2.1.16) that catabolizes threonine into 2-oxobutyrate and ammonia, is significantly less active. Increasing the threonine plasma concentrations leads to accumulation of threonine and glycine in the brain. Such accumulation affects the neurotransmitter balance which may have consequences for the brain development during early postnatal life. Thus, excessive threonine intake during infant feeding should be avoided. (A3450). An essential amino acid occurring naturally in the L-form, which is the active form. It is found in eggs, milk, gelatin, and other proteins. See also: Amlisimod (monomer of) ... View More ... Threonine (Thr) or L-threonine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-threonine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Threonine is found in all organisms ranging from bacteria to plants to animals. It is classified as a polar, uncharged (at physiological pH), aliphatic amino acid. Threonine is sometimes considered as a branched chain amino acid. Threonine was actually the last of the 20 amino acids to be discovered (in 1938). It was named threonine because it was similar in structure to threonic acid, a four-carbon monosaccharide. Threonine is an essential amino acid in humans, meaning the body cannot synthesize it and that it must be obtained from the diet. Foods high in threonine include cottage cheese, poultry, fish, meat, lentils, black turtle bean and sesame seeds. Adult humans require about 20 mg/kg body weight/day. In plants and microorganisms, threonine is synthesized from aspartic acid via alpha-aspartyl-semialdehyde and homoserine. In proteins, the threonine residue is susceptible to numerous posttranslational modifications. The hydroxyl side-chain can undergo O-linked glycosylation and phosphorylation through the action of a threonine kinase. Threonine is abundant in human plasma, particularly in newborns. Severe deficiency of threonine causes neurological dysfunction and lameness in experimental animals. Threonine is an immunostimulant which promotes the growth of thymus gland. It also can probably promote cell immune defense function. The threonine content of most of the infant formulas currently on the market is approximately 20\\\\\\% higher than the threonine concentration in human milk. Due to this high threonine content the plasma threonine concentrations are up to twice as high in premature infants fed these formulas than in infants fed human milk. The whey proteins which are used for infant formulas are sweet whey proteins. Sweet whey results from cheese production. Increasing the threonine plasma concentrations leads to accumulation of threonine and glycine in the brain. Such accumulation affects the neurotransmitter balance which may have consequences for the brain development during early postnatal life. Thus, excessive threonine intake during infant feeding should be avoided. (PMID 9853925). Threonine is metabolized in at least two ways. In many animals it is converted to pyruvate via threonine dehydrogenase. An intermediate in this pathway can undergo thiolysis with CoA to produce acetyl-CoA and glycine. In humans the gene for threonine dehydrogenase is an inactive pseudogene, so threonine is converted to alpha-ketobutyrate. From wide variety of protein hydrolysates. Dietary supplement, nutrient L-Threonine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=72-19-5 (retrieved 2024-07-01) (CAS RN: 72-19-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). DL-Threonine, an essential amino acid, has the potential to treat hypostatic leg ulceration[1]. L-Threonine is a natural amino acid, can be produced by microbial fermentation, and is used in food, medicine, or feed[1]. L-Threonine is a natural amino acid, can be produced by microbial fermentation, and is used in food, medicine, or feed[1].

   

Niacinamide

pyridine-3-carboxamide

C6H6N2O (122.0480106)


Nicotinamide is a white powder. (NTP, 1992) Nicotinamide is a pyridinecarboxamide that is pyridine in which the hydrogen at position 3 is replaced by a carboxamide group. It has a role as an EC 2.4.2.30 (NAD(+) ADP-ribosyltransferase) inhibitor, a metabolite, a cofactor, an antioxidant, a neuroprotective agent, an EC 3.5.1.98 (histone deacetylase) inhibitor, an anti-inflammatory agent, a Sir2 inhibitor, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a mouse metabolite, a human urinary metabolite and a geroprotector. It is a vitamin B3, a pyridinecarboxamide and a pyridine alkaloid. It is functionally related to a nicotinic acid. An important compound functioning as a component of the coenzyme NAD. Its primary significance is in the prevention and/or cure of blacktongue and pellagra. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake. Niacinamide is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Nicotinamide is a natural product found in Mus musculus, Euonymus grandiflorus, and other organisms with data available. Niacinamide is the active form of vitamin B3 and a component of the coenzyme nicotinamide adenine dinucleotide (NAD). Niacinamide acts as a chemo- and radio-sensitizing agent by enhancing tumor blood flow, thereby reducing tumor hypoxia. This agent also inhibits poly(ADP-ribose) polymerases, enzymes involved in the rejoining of DNA strand breaks induced by radiation or chemotherapy. Nicotinamide is a uremic toxin. Uremic toxins can be subdivided into three major groups based upon their chemical and physical characteristics: 1) small, water-soluble, non-protein-bound compounds, such as urea; 2) small, lipid-soluble and/or protein-bound compounds, such as the phenols and 3) larger so-called middle-molecules, such as beta2-microglobulin. Chronic exposure of uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease. Niacinamide or vitamin B3 is an important compound functioning as a component of the coenzyme NAD. Its primary significance is in the prevention and/or cure of blacktongue and pellagra. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake. Niacinamide is used to increase the effect of radiation therapy on tumor cells. Niacin (nicotinic acid) and niacinamide, while both labeled as vitamin B3 also have different applications. Niacinamide is useful in arthritis and early-onset type I diabetes while niacin is an effective reducer of high cholesterol levels. Niacinamide is a metabolite found in or produced by Saccharomyces cerevisiae. An important compound functioning as a component of the coenzyme NAD. Its primary significance is in the prevention and/or cure of blacktongue and PELLAGRA. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake. See also: Adenosine; Niacinamide (component of); Dapsone; niacinamide (component of); Adenosine; Niacinamide; Titanium Dioxide (component of) ... View More ... Niacinamide, also known as nicotinamide (NAM), is a form of vitamin B3 found in food and used as a dietary supplement and medication. Niacinamide belongs to the class of organic compounds known as nicotinamides. These are heterocyclic aromatic compounds containing a pyridine ring substituted at position 3 by a carboxamide group. Its primary significance is in the prevention and/or cure of blacktongue and pellagra. The structure of nicotinamide consists of a pyridine ring to which a primary amide group is attached in the meta position. It is an amide of nicotinic acid. As an aromatic compound, it undergoes electrophilic substitution reactions and transformations of its two functional groups. Niacinamide and phosphoribosyl pyrophosphate can be converted into nicotinic acid mononucleotide and phosphate by the enzyme nicotinamide phosphoribosyltransferase. In humans, niacinamide is involved in the metabolic disorder called the nad+ signalling pathway (cancer). Niacinamide is an odorless tasting compound. Outside of the human body, niacinamide is found, on average, in the highest concentration within a few different foods, such as common sages, cow milk, and cocoa beans and in a lower concentration in common pea. Niacinamide has also been detected, but not quantified in several different foods, such as yardlong beans, roselles, apples, oyster mushrooms, and swiss chards. Niacinamide occurs in trace amounts mainly in meat, fish, nuts, and mushrooms, as well as to a lesser extent in some vegetables. It is commonly added to cereals and other foods. Many multivitamins contain 20–30 mg of vitamin B3 and it is also available in higher doses. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake. COVID info from COVID-19 Disease Map, WikiPathways, PDB, Protein Data Bank, clinicaltrial, clinicaltrials, clinical trial, clinical trials A pyridinecarboxamide that is pyridine in which the hydrogen at position 3 is replaced by a carboxamide group. Widespread in plants, e.g. rice, yeast and fungi. Dietary supplement, may be used in infant formulas Nicotinamide. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=98-92-0 (retrieved 2024-07-01) (CAS RN: 98-92-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4]. Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4]. Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4].

   

Lycorine

1H-[1,3]Dioxolo[4,5-j]pyrrolo[3,2,1-de]phenanthridine-1,2-diol, 2,4,5,7,12b,12c-hexahydro-, (1S,2S,12bS,12cS)-

C16H17NO4 (287.1157522)


Lycorine is an indolizidine alkaloid that is 3,12-didehydrogalanthan substituted by hydroxy groups at positions and 2 and a methylenedioxy group across positions 9 and 10. Isolated from Crinum asiaticum, it has been shown to exhibit antimalarial activity. It has a role as a protein synthesis inhibitor, an antimalarial, a plant metabolite and an anticoronaviral agent. It derives from a hydride of a galanthan. Lycorine is a natural product found in Sternbergia clusiana, Pancratium trianthum, and other organisms with data available. Lycorine is a toxic crystalline alkaloid found in various Amaryllidaceae species, such as the cultivated bush lily (Clivia miniata), surprise lilies (Lycoris), and daffodils (Narcissus). It may be highly poisonous, or even lethal, when ingested in certain quantities. Symptoms of lycorine toxicity are vomiting, diarrhea, and convulsions. Lycorine, definition at mercksource.com Regardless, it is sometimes used medicinally, a reason why some groups may harvest the very popular Clivia miniata. An indolizidine alkaloid that is 3,12-didehydrogalanthan substituted by hydroxy groups at positions and 2 and a methylenedioxy group across positions 9 and 10. Isolated from Crinum asiaticum, it has been shown to exhibit antimalarial activity. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.144 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.136 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.138 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2316 INTERNAL_ID 2316; CONFIDENCE Reference Standard (Level 1) [Raw Data] CBA60_Lycorine_pos_30eV.txt [Raw Data] CBA60_Lycorine_pos_10eV.txt [Raw Data] CBA60_Lycorine_pos_50eV.txt [Raw Data] CBA60_Lycorine_pos_40eV.txt [Raw Data] CBA60_Lycorine_pos_20eV.txt Lycorine is a natural alkaloid extracted from the Amaryllidaceae plant. Lycorine is a potent and orally active SCAP inhibitor with a Kd value 15.24 nM. Lycorine downregulates the SCAP protein level without changing its transcription[2]. Lycorine is also a melanoma vasculogenic inhibitor[3]. Lycorine can be used for the study of prostate cancer and metabolic diseases[2].
Lycorine is a natural alkaloid extracted from the Amaryllidaceae plant. Lycorine is a potent and orally active SCAP inhibitor with a Kd value 15.24 nM. Lycorine downregulates the SCAP protein level without changing its transcription[2]. Lycorine is also a melanoma vasculogenic inhibitor[3]. Lycorine can be used for the study of prostate cancer and metabolic diseases[2].
Lycorine is a natural alkaloid extracted from the Amaryllidaceae plant. Lycorine is a potent and orally active SCAP inhibitor with a Kd value 15.24 nM. Lycorine downregulates the SCAP protein level without changing its transcription[2]. Lycorine is also a melanoma vasculogenic inhibitor[3]. Lycorine can be used for the study of prostate cancer and metabolic diseases[2].

   

Ursolic acid

(1S,2R,4aS,6aS,6bR,8aR,10S,12aR,12bR,14bS)-10-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O3 (456.36032579999994)


Ursolic acid is a ubiquitous triterpenoid in plant kingdom, medicinal herbs, and is an integral part of the human diet. During the last decade over 700 research articles have been published on triterpenoids research, reflecting tremendous interest and progress in our understanding of these compounds. This included the isolation and purification of these tritepernoids from various plants and herbs, the chemical modifications to make more effective and water soluble derivatives, the pharmacological research on their beneficial effects, the toxicity studies, and the clinical use of these triterpenoids in various diseases including anticancer chemotherapies. Ursolic acid (UA), a pentacyclic triterpene acid, has been isolated from many kinds of medicinal plants, such as Eriobotrya japonica, Rosmarinns officinalis, Melaleuca leucadendron, Ocimum sanctum and Glechoma hederaceae. UA has been reported to produce antitumor activities and antioxidant activity, and is reported to have an antioxidant activity. UA may play an important role in regulating the apoptosis induced by high glucose presumably through scavenging of ROS (reactive oxygen species). It has been found recently that ursolic acid treatment affects growth and apoptosis in cancer cells. (PMID: 15994040, 17516235, 17213663). Ursolic acid is a pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. It has a role as a plant metabolite and a geroprotector. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It derives from a hydride of an ursane. Ursolic acid is a natural product found in Gladiolus italicus, Freziera, and other organisms with data available. Ursolic Acid is a pentacyclic triterpenoid found in various fruits, vegetables and medicinal herbs, with a variety of potential pharmacologic activities including anti-inflammatory, antioxidative, antiviral, serum lipid-lowering, and antineoplastic activities. Upon administration, ursolic acid may promote apoptosis and inhibit cancer cell proliferation through multiple mechanisms. This may include the regulation of mitochondrial function through various pathways including the ROCK/PTEN and p53 pathways, the suppression of the nuclear factor-kappa B (NF-kB) pathways, and the increase in caspase-3, caspase-8 and caspase-9 activities. See also: Holy basil leaf (part of); Jujube fruit (part of); Lagerstroemia speciosa leaf (part of). D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors A pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. C274 - Antineoplastic Agent > C129839 - Apoptotic Pathway-targeting Antineoplastic Agent Found in wax of apples, pears and other fruits. V. widely distributed in plants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents D000890 - Anti-Infective Agents D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors 3-Epiursolic Acid is a triterpenoid that can be isolated from Eriobotrya japonica, acts as a competitive inhibitor of cathepsin L (IC50, 6.5 μM; Ki, 19.5 μM), with no obvious effect on cathepsin B[1]. 3-Epiursolic Acid is a triterpenoid that can be isolated from Eriobotrya japonica, acts as a competitive inhibitor of cathepsin L (IC50, 6.5 μM; Ki, 19.5 μM), with no obvious effect on cathepsin B[1]. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy.

   

Rutin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one;Rutin

C27H30O16 (610.153378)


Rutin is a flavonoid known to have a variety of biological activities including antiallergic, anti-inflammatory, antiproliferative, and anticarcinogenic properties. A large number of flavonoids, mostly O-glycosides, are polyphenolic compounds of natural origin that are present in most fruits and vegetables. The average intake of the compounds by humans on a normal diet is more than 1 g per day. Although flavonoids are devoid of classical nutritional value, they are increasingly viewed as beneficial dietary components that act as potential protectors against human diseases such as coronary heart disease, cancers, and inflammatory bowel disease. Rutin acts as a quercetin deliverer to the large intestine; moreover, quercetin is extensively metabolized in the large intestine, which suggests that quercetin liberated from rutin and/or its colonic metabolites may play a role. Rutins anti-inflammatory actions are mediated through a molecular mechanism that underlies the quercetin-mediated therapeutic effects: quercetin-mediated inhibition of tumor necrosis factor-alpha (TNF-alpha)-induced nuclear factor kappa B (NFkB) activation. TNF-alpha-induced NFkB activity plays a central role in the production of pro-inflammatory mediators involved in progression of gut inflammation. (PMID:16132362). Rutin is a rutinoside that is quercetin with the hydroxy group at position C-3 substituted with glucose and rhamnose sugar groups. It has a role as a metabolite and an antioxidant. It is a disaccharide derivative, a quercetin O-glucoside, a tetrahydroxyflavone and a rutinoside. A flavonol glycoside found in many plants, including buckwheat; tobacco; forsythia; hydrangea; viola, etc. It has been used therapeutically to decrease capillary fragility. Rutin is a natural product found in Ficus virens, Visnea mocanera, and other organisms with data available. A flavonol glycoside found in many plants, including BUCKWHEAT; TOBACCO; FORSYTHIA; HYDRANGEA; VIOLA, etc. It has been used therapeutically to decrease capillary fragility. See also: Quercetin (related); Ginkgo (part of); Chamomile (part of) ... View More ... First isolated from Ruta graveolens (rue). Bioflavanoid. Quercetin 3-rutinoside is found in many foods, some of which are tea, bilberry, common oregano, and lemon grass. A rutinoside that is quercetin with the hydroxy group at position C-3 substituted with glucose and rhamnose sugar groups. C - Cardiovascular system > C05 - Vasoprotectives > C05C - Capillary stabilizing agents > C05CA - Bioflavonoids IPB_RECORD: 541; CONFIDENCE confident structure [Raw Data] CBA04_Rutin_neg_50eV.txt [Raw Data] CBA04_Rutin_pos_50eV.txt [Raw Data] CBA04_Rutin_neg_40eV.txt [Raw Data] CBA04_Rutin_pos_10eV.txt [Raw Data] CBA04_Rutin_neg_20eV.txt [Raw Data] CBA04_Rutin_neg_10eV.txt [Raw Data] CBA04_Rutin_neg_30eV.txt [Raw Data] CBA04_Rutin_pos_40eV.txt [Raw Data] CBA04_Rutin_pos_30eV.txt [Raw Data] CBA04_Rutin_pos_20eV.txt Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3]. Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3].

   

Inosine

9-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-6,9-dihydro-3H-purin-6-one

C10H12N4O5 (268.08076619999997)


Inosine, also known as hypoxanthosine or inotin, belongs to the class of organic compounds known as purine nucleosides. Purine nucleosides are compounds comprising a purine base attached to a ribosyl or deoxyribosyl moiety. Inosine is formed when hypoxanthine is attached to a ribose ring a beta-N9-glycosidic bond. Inosine is an intermediate in the degradation of purines and purine nucleosides to uric acid. Inosine is also an intermediate in the purine salvage pathway. Inosine occurs in the anticodon of certain transfer RNA molecules and is essential for proper translation of the genetic code in wobble base pairs. Inosine exists in all living species, ranging from bacteria to plants to humans. Inosine participates in a number of enzymatic reactions. In particular, inosine can be biosynthesized from inosinic acid through its interaction with the enzyme known as cytosolic purine 5-nucleotidase. In addition, inosine can be converted into hypoxanthine and ribose 1-phosphate through its interaction with the enzyme known as purine nucleoside phosphorylase. Altered levels of inosine have also been associated with purine nucleoside phosphorylase deficiency and xanthinuria type I, both of which are inborn errors of metabolism. Animal studies have suggested that inosine has neuroprotective properties. It has been proposed as a potential treatment for spinal cord injury (PMID: 16317421) and for administration after stroke, as inosine appears to induce axonal rewiring (PMID: 12084941). After ingestion, inosine is metabolized into uric acid, which has been found to be a natural antioxidant and peroxynitrite scavenger. As such, inosine may have potential benefits to patients with multiple sclerosis and Parkinson’s disease (PMID: 19425822). Inosine can also be produced by gut bacteria and appears to have a number of beneficial effects. Inosine, has been shown to activate peroxisome proliferator-activated receptor (PPAR)-gamma signaling in human colon epithelial cells. Furthermore, exogenous treatment of inosine has been found to protect against DSS-induced colitis in rodents by improving adenosine 2A receptor (A2AR)/PPAR-gamma-dependent mucosal barrier functions (PMID: 33820558). Microbiome-derived inosine has also been shown to modulate the response to checkpoint inhibitor immunotherapy in cancer models. In particular, decreased gut barrier function induced by immunotherapy increases systemic translocation of bacterially derived inosine and activates antitumor T cells. The effect of inosine is dependent on T cell expression of the adenosine A2A receptor and requires co-stimulation. Inosine appears to have other roles in non-mammalian system. For instance, it has been found to be an important feed stimulant by itself or in combination with certain amino acids in some species of farmed fish. For example, inosine and inosine-5-monophosphate have been reported as specific feeding stimulants for turbot fry, (Scophthalmus maximus) and Japanese amberjack. Inosine is a purine nucleoside in which hypoxanthine is attached to ribofuranose via a beta-N(9)-glycosidic bond. It has a role as a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is a purines D-ribonucleoside and a member of inosines. It is functionally related to a hypoxanthine and a ribofuranose. A purine nucleoside that has hypoxanthine linked by the N9 nitrogen to the C1 carbon of ribose. It is an intermediate in the degradation of purines and purine nucleosides to uric acid and in pathways of purine salvage. It also occurs in the anticodon of certain transfer RNA molecules. (Dorland, 28th ed) Inosine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Inosine is a natural product found in Fritillaria thunbergii, Cichorium endivia, and other organisms with data available. Inosine is a metabolite found in or produced by Saccharomyces cerevisiae. A purine nucleoside that has hypoxanthine linked by the N9 nitrogen to the C1 carbon of ribose. It is an intermediate in the degradation of purines and purine nucleosides to uric acid and in pathways of purine salvage. It also occurs in the anticodon of certain transfer RNA molecules. (Dorland, 28th ed) G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06B - Chemotherapeutics for topical use > D06BB - Antivirals A purine nucleoside in which hypoxanthine is attached to ribofuranose via a beta-N(9)-glycosidic bond. COVID info from COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials S - Sensory organs > S01 - Ophthalmologicals Present in meat extracts and sugar beet Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS [Spectral] Inosine (exact mass = 268.08077) and L-Methionine (exact mass = 149.05105) and Adenosine (exact mass = 267.09675) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Inosine (exact mass = 268.08077) and L-Tyrosine (exact mass = 181.07389) and Guanosine (exact mass = 283.09167) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Inosine (exact mass = 268.08077) and S-Adenosyl-L-homocysteine (exact mass = 384.12159) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Inosine (exact mass = 268.08077) and Guanosine (exact mass = 283.09167) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 110 KEIO_ID I003 Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3].

   

Guanosine

2-amino-9-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-6,9-dihydro-1H-purin-6-one

C10H13N5O5 (283.0916648)


Guanosine (G), also known as 2-amino-inosine, belongs to the class of organic compounds known as purine nucleosides. Purine nucleosides are compounds comprising a purine base attached to a ribosyl or deoxyribosyl sugar moiety. Guanosine consists of a guanine base attached to a ribose (ribofuranose) ring via a beta-N9-glycosidic bond. Guanosine is a white, crystalline powder with no odor and mild saline taste. It is very soluble in acetic acid, and slightly soluble in water, but insoluble in ethanol, diethyl ether, benzene, and chloroform. Guanosine exists in all living species, ranging from bacteria to plants to humans. High levels of guanosine can be found in clovers, coffee plants, and the pollen of pines. It has been detected, but not quantified in, several different foods, such as leeks, garlic, chicory roots, green bell peppers, and black-eyed peas. Guanosine plays an important role in various biochemical processes including the synthesis of nucleic acids such as RNA and intracellular signal transduction (cGMP). The antiviral drug acyclovir, often used in herpes treatment, and the anti-HIV drug abacavir, are both structurally similar to guanosine. Guanosine can be phosphorylated to become guanosine monophosphate (GMP), cyclic guanosine monophosphate (cGMP), guanosine diphosphate (GDP), and guanosine triphosphate (GTP). In humans, guanosine is involved in intracellular signalling through the adenosine receptors A1R and A2AR (PMID: 31847113). Evidence from rodent and cell models has shown a number of important neurotrophic and neuroprotective effects of guanosine. In particular, it is effective in preventing deleterious consequences of seizures, spinal cord injury, pain, mood disorders and aging-related diseases, such as ischemia, Parkinson‚Äôs and Alzheimer‚Äôs diseases (PMID: 27699087). Studies with rodent models of Parkinson‚Äôs disease have shown that guanosine decreases neuronal apoptotic cell death and increases dopaminergic neurons at substantia nigra pars compacta, accompanied by an improvement of motor symptoms in Parkinson‚Äôs disease (i.e. a reduction of bradykinesia). Guanosine promotes neurite arborization, outgrowth, proliferation and differentiation. Systemic administration of guanosine for eight weeks (8 mg/kg) has been shown to stimulate neuroprogenitors proliferation in the subventricular zone (SVZ) in a mouse model of Parkinsonism (PMID: 27699087). The effect of guanosine treatment is accompanied by an increased number of fibroblast growth factor (FGF-2)-positive cells which is an important regulator of neuroprogenitor/stem cell proliferation, survival and differentiation (PMID: 27699087). Guanosine prevents reactive oxygen species (ROS) generation and cell death in hippocampal slices subjected to the oxygen/glucose deprivation (PMID: 31847113). Guanosine is a purine nucleoside in which guanine is attached to ribofuranose via a beta-N(9)-glycosidic bond. It has a role as a fundamental metabolite. It is a purines D-ribonucleoside and a member of guanosines. It is functionally related to a guanine. Guanosine is a nucleoside comprising guanine attached to a ribose (ribofuranose) ring via a β-N9-glycosidic bond. Guanosine can be phosphorylated to become GMP (guanosine monophosphate), cGMP (cyclic guanosine monophosphate), GDP (guanosine diphosphate) and GTP (guanosine triphosphate) which are factors in signal transduction pathways. Guanosine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Guanosine is a natural product found in Ulva australis, Allium chinense, and other organisms with data available. Guanosine is a purine nucleoside formed from a beta-N9-glycosidic bond between guanine and a ribose ring and is essential for metabolism. Guanosine is a metabolite found in or produced by Saccharomyces cerevisiae. A purine nucleoside that has guanine linked by its N9 nitrogen to the C1 carbon of ribose. It is a component of ribonucleic acid and its nucleotides play important roles in metabolism. (From Dorland, 28th ed) Guanosine is a nucleoside comprising guanine attached to a ribose (ribofuranose) ring via a beta-N9-glycosidic bond. Guanosine can be phosphorylated to become GMP (guanosine monophosphate), cGMP (cyclic guanosine monophosphate), GDP (guanosine diphosphate) and GTP (guanosine triphosphate). ; The nucleoside guanosine exert important neuroprotective and neuromodulator roles in the central nervous system, which may be related to inhibition of the glutamatergic neurotransmission activity. Guanosine is the specific extracellular guanine-based purines effector and indicate that its conversion occurs not only in the central nervous system but also peripherally. (PMID: 16325434); Guanosine is a nucleoside comprising guanine attached to a ribose (ribofuranose) ring via a ?-N9-glycosidic bond. Guanosine is found in many foods, some of which are elderberry, malus (crab apple), acerola, and arrowhead. A purine nucleoside in which guanine is attached to ribofuranose via a beta-N(9)-glycosidic bond. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS [Spectral] Guanosine (exact mass = 283.09167) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) and Glutathione disulfide (exact mass = 612.15196) and AMP (exact mass = 347.06308) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Guanosine (exact mass = 283.09167) and Guanine (exact mass = 151.04941) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Acquisition and generation of the data is financially supported in part by CREST/JST. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.125 CONFIDENCE standard compound; INTERNAL_ID 317 KEIO_ID G015; [MS2] KO008966 Annotation level-2 KEIO_ID G015 Guanosine (DL-Guanosine) is a purine nucleoside comprising guanine attached to a ribose (ribofuranose) ring via a β-N9-glycosidic bond. Guanosine possesses anti-HSV activity. Guanosine (DL-Guanosine) is a purine nucleoside comprising guanine attached to a ribose (ribofuranose) ring via a β-N9-glycosidic bond. Guanosine possesses anti-HSV activity. Guanosine (DL-Guanosine) is a purine nucleoside comprising guanine attached to a ribose (ribofuranose) ring via a β-N9-glycosidic bond. Guanosine possesses anti-HSV activity.

   

Gingerol

3-Decanone, 5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-, (5S)-, 5-Hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-decanone

C17H26O4 (294.1830996)


Gingerol is a beta-hydroxy ketone that is 5-hydroxydecan-3-one substituted by a 4-hydroxy-3-methoxyphenyl moiety at position 1; believed to inhibit adipogenesis. It is a constituent of fresh ginger. It has a role as an antineoplastic agent and a plant metabolite. It is a beta-hydroxy ketone and a member of guaiacols. Gingerol is a natural product found in Illicium verum, Piper nigrum, and other organisms with data available. See also: Ginger (part of). Gingerol, a plant polyphenol, is the active constituent of fresh ginger. Chemically, gingerol is a relative of capsaicin, the compound that gives chile peppers their spiciness. It is normally found as a pungent yellow oil, but also can form a low-melting crystalline solid. Constituent of ginger Zingiber officinale. (S)-[6]-Gingerol is found in many foods, some of which are caraway, star anise, cumin, and ginger. [6]-Gingerol is an active compound isolated from Ginger (Zingiber officinale), exhibits a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation. [6]-Gingerol is an active compound isolated from Ginger (Zingiber officinale), exhibits a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation. [6]-Gingerol is an active compound isolated from Ginger (Zingiber officinale), exhibits a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation.

   

(2R,3R,4R)-2-Amino-4-hydroxy-3-methylpentanoic acid

(2S,3R,4S)-2-Amino-4-hydroxy-3-methylpentanoic acid (H-L-Ile(4-OH)-OH)

C6H13NO3 (147.0895388)


(4S)-4-hydroxy-L-isoleucine is an L-isoleucine derivative that is L-isoleucine bearing a (4S)-hydroxy substituent. It has a role as a plant metabolite. It is an amino alcohol, a L-isoleucine derivative and a non-proteinogenic L-alpha-amino acid. It is a tautomer of a (4S)-4-hydroxy-L-isoleucine zwitterion. See also: Fenugreek seed (part of). L-Ribo-2-Amino-4-hydroxy-3-methylpentanoic acid is found in herbs and spices. L-Ribo-2-Amino-4-hydroxy-3-methylpentanoic acid is a major constituent of Trigonella foenum-graecum (fenugreek (2S,3R,4S)-4-Hydroxyisoleucine is an orally active compound isolated from Trigonella foenum-graecum, with anti-diabetes and anti-diabetic nephropathy activity[1]. (2S,3R,4S)-4-Hydroxyisoleucine is an orally active compound isolated from Trigonella foenum-graecum, with anti-diabetes and anti-diabetic nephropathy activity[1]. 4-Hydroxyisoleucine (4-?Hydroxy-?L-?isoleucine) is an amino acid which can be extracted and purified from fenugreek seeds. 4-Hydroxyisoleucine (4-?Hydroxy-?L-?isoleucine) displays an insulinotropic activity of great interest[1]. 4-Hydroxyisoleucine (4-?Hydroxy-?L-?isoleucine) is an amino acid which can be extracted and purified from fenugreek seeds. 4-Hydroxyisoleucine (4-?Hydroxy-?L-?isoleucine) displays an insulinotropic activity of great interest[1].

   

Guanine

Guanine, Pharmaceutical Secondary Standard; Certified Reference Material

C5H5N5O (151.049408)


Guanine is one of the five main nucleobases found in the nucleic acids DNA and RNA. Guanine is a derivative of purine, consisting of a fused pyrimidine-imidazole ring system with conjugated double bonds. Being unsaturated, the bicyclic molecule is planar. The guanine nucleoside is called guanosine. The first isolation of guanine was reported in 1844 from the excreta of sea birds, known as guano, which was used as a source of fertilizer. High affinity binding of guanine nucleotides and the ability to hydrolyze bound GTP to GDP are characteristics of an extended family of intracellular proteins. Guanine nucleotide-binding regulatory proteins may be involved in the activation of phospholipases C and A2 by hormones and other ligands. The binding of hormones to receptors that activate phospholipase C is decreased by guanine nucleotides and these hormones also stimulate a high-affinity GTPase activity in cell membranes. Effects of hormones on phospholipase C activity in cell-free preparations are dependent on the presence of guanine nucleotides. Hypoxanthine-guanine phosphoribosyltransferase (HPRT, EC 2.4.2.8) is a purine salvage enzyme that catalyses the conversion of hypoxanthine and guanine to their respective mononucleotides. Partial deficiency of this enzyme can result in the overproduction of uric acid leading to a severe form of gout, whilst a virtual absence of HPRT activity causes the Lesch-Nyhan syndrome, an inborn error of metabolism, which is characterised by hyperuricaemia, mental retardation, choreoathetosis and compulsive self-mutilation. Peroxynitrite induces DNA base damage predominantly at guanine (G) and 8-oxoguanine (8-oxoG) nucleobases via oxidation reactions. G and 8-oxoG are the most reactive bases toward Peroxynitrite and possibly the major contributors to peroxynitrite-derived genotoxic and mutagenic lesions. The neutral G radical, reacts with NO2 to yield 8-nitroguanine and 5-nitro-4-guanidinohydantoin (PMID: 16352449, 2435586, 2838362, 1487231). Guanine is a 2-aminopurine carrying a 6-oxo substituent. It has a role as a human metabolite, an algal metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is a purine nucleobase, an oxopurine and a member of 2-aminopurines. It derives from a hydride of a 9H-purine. Guanine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Guanine is a natural product found in Fritillaria thunbergii, Isatis tinctoria, and other organisms with data available. Guanine is a purine base that is a constituent of nucleotides occurring in nucleic acids. Guanine is a mineral with formula of C5H3(NH2)N4O. The corresponding IMA (International Mineralogical Association) number is IMA1973-056. The IMA symbol is Gni. Guanine is a metabolite found in or produced by Saccharomyces cerevisiae. Occurs widely in animals and plants. Component of nucleic acids (CCD) A 2-aminopurine carrying a 6-oxo substituent. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS [Spectral] Guanine (exact mass = 151.04941) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Guanine (exact mass = 151.04941) and D-Gluconic acid (exact mass = 196.0583) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Guanine (exact mass = 151.04941) and L-Valine (exact mass = 117.07898) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 54 CONFIDENCE standard compound; ML_ID 43

   

L-Leucine

(2S)-2-amino-4-methylpentanoic acid

C6H13NO2 (131.0946238)


Leucine (Leu) or L-leucine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (‚ÄìNH2) and carboxyl (‚ÄìCOOH) functional groups, along with a side chain (R group) specific to each amino acid. L-leucine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Leucine is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aliphatic amino acid. Leucine is essential in humans, meaning the body cannot synthesize it, and it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, beans and legumes. L-Leucine is a branched chain amino acid (BCAA). The BCAAs consist of leucine, valine and isoleucine (and occasionally threonine). BCAAs are essential amino acids whose carbon structure is marked by a branch point at the beta-carbon position. BCAAs are critical to human life and are particularly involved in stress, energy and muscle metabolism. BCAA supplementation as therapy, both oral and intravenous, in human health and disease holds great promise. BCAAs have different metabolic routes, with valine going solely to carbohydrates (glucogenic), leucine solely to fats (ketogenic) and isoleucine being both a glucogenic and a ketogenic amino acid. The different metabolism accounts for different requirements for these essential amino acids in humans: 12 mg/kg, 14 mg/kg and 16 mg/kg of valine, leucine and isoleucine respectively. The primary metabolic end products of leucine metabolism are acetyl-CoA and acetoacetate; consequently, it is one of the two exclusively ketogenic amino acids, with lysine being the other. Leucine is the most important ketogenic amino acid in humans. The vast majority of l-leucine metabolism is initially catalyzed by the branched-chain amino acid aminotransferase enzyme, producing alpha-ketoisocaproate (alpha-KIC). alpha-KIC is metabolized by the mitochondrial enzyme branched-chain alpha-ketoacid dehydrogenase, which converts it to isovaleryl-CoA. Isovaleryl-CoA is subsequently metabolized by the enzyme isovaleryl-CoA dehydrogenase and converted to beta-methylcrotonyl-CoA (MC-CoA), which is used in the synthesis of acetyl-CoA and other compounds. During biotin deficiency, HMB can be synthesized from MC-CoA via enoyl-CoA hydratase and an unknown thioesterase enzyme, which convert MC-CoA into HMB-CoA and HMB-CoA into HMB respectively. Leucine has the capacity to directly stimulate myofibrillar muscle protein synthesis (PMID 15051860). This effect of leucine arises results from its role as an activator of the mechanistic target of rapamycin (mTOR) (PMID 23551944) a serine-threonine protein kinase that regulates protein biosynthesis and cell growth. The activation of mTOR by leucine is mediated through Rag GTPases. Leucine, like other BCAAs, is associated with insulin resistance. In particular, higher levels of leucine are observed in the blood of diabetic mice, rats, and humans (PMID 25287287). BCAAs such as leucine have different deficiency symptoms. Valine deficiency is marked by neurological defects in the brain, while isoleucine deficiency is marked by muscle tremors. Persistently low leucine levels can result in decreased appetite, poor feeding, lethargy, poor growth, weight loss, skin rashes, hair loss, and desquamation. Many types of inborn errors of BCAA metabolism exist and these are marked by various abnormalities. The most common form is maple syrup urine disease, marked by a characteristic urinary odor. Other abnormalities are associated with a wide range of symptoms, such as mental retardation, ataxia, hypoglycemia, spinal muscle atrophy, rash, vomiting and excessive muscle movement. Most forms of BCAA metabolism errors are corrected by dietary res... L-leucine is the L-enantiomer of leucine. It has a role as a plant metabolite, an Escherichia coli metabolite, a Saccharomyces cerevisiae metabolite, a human metabolite, an algal metabolite and a mouse metabolite. It is a pyruvate family amino acid, a proteinogenic amino acid, a leucine and a L-alpha-amino acid. It is a conjugate base of a L-leucinium. It is a conjugate acid of a L-leucinate. It is an enantiomer of a D-leucine. It is a tautomer of a L-leucine zwitterion. An essential branched-chain amino acid important for hemoglobin formation. L-Leucine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Leucine is one of nine essential amino acids in humans (provided by food), Leucine is important for protein synthesis and many metabolic functions. Leucine contributes to regulation of blood-sugar levels; growth and repair of muscle and bone tissue; growth hormone production; and wound healing. Leucine also prevents breakdown of muscle proteins after trauma or severe stress and may be beneficial for individuals with phenylketonuria. Leucine is available in many foods and deficiency is rare. (NCI04) Leucine (abbreviated as Leu or L)[2] is a branched-chain л±-amino acid with the chemical formulaHO2CCH(NH2)CH2CH(CH3)2. Leucine is classified as a hydrophobic amino acid due to its aliphatic isobutyl side chain. It is encoded by six codons (UUA, UUG, CUU, CUC, CUA, and CUG) and is a major component of the subunits in ferritin, astacin, and other buffer proteins. Leucine is an essential amino acid, meaning that the human body cannot synthesize it, and it therefore must be ingested. It is important for hemoglobin formation. An essential branched-chain amino acid important for hemoglobin formation. See also: Isoleucine; Leucine (component of) ... View More ... Dietary supplement, nutrient [DFC]. (±)-Leucine is found in many foods, some of which are green bell pepper, italian sweet red pepper, green zucchini, and red bell pepper. L-Leucine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=61-90-5 (retrieved 2024-07-01) (CAS RN: 61-90-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1].

   

Uridine

1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1,2,3,4-tetrahydropyrimidine-2,4-dione

C9H12N2O6 (244.0695332)


Uridine, also known as beta-uridine or 1-beta-D-ribofuranosylpyrimidine-2,4(1H,3H)-dione, is a member of the class of compounds known as pyrimidine nucleosides. Pyrimidine nucleosides are compounds comprising a pyrimidine base attached to a ribosyl or deoxyribosyl moiety. More specifically, uridine is a nucleoside consisting of uracil and D-ribose and a component of RNA. Uridine is soluble (in water) and a very weakly acidic compound (based on its pKa). Uridine can be synthesized from uracil. It is one of the five standard nucleosides which make up nucleic acids, the others being adenosine, thymidine, cytidine and guanosine. The five nucleosides are commonly abbreviated to their one-letter codes U, A, T, C and G respectively. Uridine is also a parent compound for other transformation products, including but not limited to, nikkomycin Z, 3-(enolpyruvyl)uridine 5-monophosphate, and 5-aminomethyl-2-thiouridine. Uridine can be found in most biofluids, including urine, breast milk, cerebrospinal fluid (CSF), and blood. Within the cell, uridine is primarily located in the mitochondria, in the nucleus and the lysosome. It can also be found in the extracellular space. As an essential nucleoside, uridine exists in all living species, ranging from bacteria to humans. In humans, uridine is involved in several metabolic disorders, some of which include dhydropyrimidinase deficiency, MNGIE (mitochondrial neurogastrointestinal encephalopathy), and beta-ureidopropionase deficiency. Moreover, uridine is found to be associated with Lesch-Nyhan syndrome, which is an inborn error of metabolism. Uridine is a nucleoside consisting of uracil and D-ribose and a component of RNA. Uridine plays a role in the glycolysis pathway of galactose. In humans there is no catabolic process to metabolize galactose. Therefore, galactose is converted to glucose and metabolized via the normal glucose metabolism pathways. More specifically, consumed galactose is converted into galactose 1-phosphate (Gal-1-P). This molecule is a substrate for the enzyme galactose-1-phosphate uridyl transferase which transfers a UDP molecule to the galactose molecule. The end result is UDP-galactose and glucose-1-phosphate. This process is continued to allow the proper glycolysis of galactose. Uridine is found in many foods (anything containing RNA) but is destroyed in the liver and gastrointestinal tract, and so no food, when consumed, has ever been reliably shown to elevate blood uridine levels. On the other hand, consumption of RNA-rich foods may lead to high levels of purines (adenine and guanosine) in blood. High levels of purines are known to increase uric acid production and may aggravate or lead to conditions such as gout. Uridine is a ribonucleoside composed of a molecule of uracil attached to a ribofuranose moiety via a beta-N(1)-glycosidic bond. It has a role as a human metabolite, a fundamental metabolite and a drug metabolite. It is functionally related to a uracil. Uridine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Uridine is a Pyrimidine Analog. The chemical classification of uridine is Pyrimidines, and Analogs/Derivatives. Uridine is a natural product found in Ulva australis, Synechocystis, and other organisms with data available. Uridine is a nucleoside consisting of uracil and D-ribose and a component of RNA. Uridine has been studied as a rescue agent to reduce the toxicities associated with 5-fluorouracil (5-FU), thereby allowing the administration of higher doses of 5-FU in chemotherapy regimens. (NCI04) Uridine is a metabolite found in or produced by Saccharomyces cerevisiae. A ribonucleoside in which RIBOSE is linked to URACIL. Uridine is a molecule (known as a nucleoside) that is formed when uracil is attached to a ribose ring (also known as a ribofuranose) via a b-N1-glycosidic bond. ; Uridine is a molecule (known as a nucleoside) that is formed when uracil is attached to a ribose ring (also known as a ribofuranose) via a ?-N1-glycosidic bond. Uridine is found in many foods, some of which are celery leaves, canola, common hazelnut, and hickory nut. A ribonucleoside composed of a molecule of uracil attached to a ribofuranose moiety via a beta-N(1)-glycosidic bond. [Spectral] Uridine (exact mass = 244.06954) and Adenosine (exact mass = 267.09675) and Glutathione (exact mass = 307.08381) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Uridine (exact mass = 244.06954) and Glutathione (exact mass = 307.08381) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Uridine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=58-96-8 (retrieved 2024-06-29) (CAS RN: 58-96-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Uridine (β-Uridine) is a glycosylated pyrimidine-analog containing uracil attached to a ribose ring (or more specifically, aribofuranose) via a β-N1-glycosidic bond. Uridine (β-Uridine) is a glycosylated pyrimidine-analog containing uracil attached to a ribose ring (or more specifically, aribofuranose) via a β-N1-glycosidic bond. Uridine (β-Uridine) is a glycosylated pyrimidine-analog containing uracil attached to a ribose ring (or more specifically, aribofuranose) via a β-N1-glycosidic bond.

   

Raffinose

(2R,3R,4S,5S,6R)-2-((2S,3S,4S,5R)-3,4-dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yloxy)-6-(((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yloxy)methyl)tetrahydro-2H-pyran-3,4,5-triol

C18H32O16 (504.1690272)


Raffinose is a complex carbohydrate. It is a trisaccharide composed of galactose, fructose, and glucose. It can be found in beans, cabbage, brussels sprouts, broccoli, asparagus, other vegetables, and whole grains. Raffinose is hydrolyzed to D-galactose and sucrose by D-galactosidase (D-GAL). D-GAL also hydrolyzes other D-galactosides such as stachyose, verbascose, and galactinol [1-O-(D-galactosyl)-myoinositol], if present. The enzyme does not cleave linked galactose, as in lactose. Raffinose is also known as melitose and may be thought of as galactose and sucrose connected via an alpha(1->6) glycosidic linkage. Thus, raffinose can be broken down into galactose and sucrose via the enzyme alpha-galactosidase. Human intestines do not contain this enzyme. Raffinose is a trisaccharide occurring in Australian manna (from Eucalyptus spp, Myrtaceae) and in cottonseed meal. Raffinose is a trisaccharide composed of alpha-D-galactopyranose, alpha-D-glucopyranose and beta-D-fructofuranose joined in sequence by 1->6 and 1<->2 glycosidic linkages, respectively. It has a role as a plant metabolite, a Saccharomyces cerevisiae metabolite and a mouse metabolite. It is a raffinose family oligosaccharide and a trisaccharide. Raffinose is a natural product found in Teucrium polium, Populus tremula, and other organisms with data available. A trisaccharide occurring in Australian manna (from Eucalyptus spp, Myrtaceae) and in cottonseed meal. See also: Oligosaccharide (related). A trisaccharide composed of alpha-D-galactopyranose, alpha-D-glucopyranose and beta-D-fructofuranose joined in sequence by 1->6 and 1<->2 glycosidic linkages, respectively. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 230 Raffinose (Melitose), a non-digestible short-chain?oligosaccharide, is a trisaccharide composed of galactose, glucose, and fructose and can be found in many plants. Raffinose (Melitose) can be hydrolyzed to D-galactose and sucrose by the enzyme α-galactosidase (α-GAL)[1]. Raffinose (Melitose), a non-digestible short-chain?oligosaccharide, is a trisaccharide composed of galactose, glucose, and fructose and can be found in many plants. Raffinose (Melitose) can be hydrolyzed to D-galactose and sucrose by the enzyme α-galactosidase (α-GAL)[1].

   

alpha-Allocryptopine

7,8-dimethoxy-11-methyl-17,19-dioxa-11-azatetracyclo[12.7.0.04,9.016,20]henicosa-1(21),4(9),5,7,14,16(20)-hexaen-2-one

C21H23NO5 (369.1576148)


Alpha-allocryptopine, also known as alpha-fagarine or beta-homochelidonine, is a member of the class of compounds known as protopine alkaloids. Protopine alkaloids are alkaloids with a structure based on a tricyclic protopine formed by oxidative ring fission of protoberberine N-metho salts. Alpha-allocryptopine is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Alpha-allocryptopine can be found in barley, which makes alpha-allocryptopine a potential biomarker for the consumption of this food product. Allocryptopine is a dibenzazecine alkaloid, an organic heterotetracyclic compound, a tertiary amino compound, a cyclic ketone, a cyclic acetal and an aromatic ether. Allocryptopine is a natural product found in Zanthoxylum beecheyanum, Berberis integerrima, and other organisms with data available. See also: Sanguinaria canadensis root (part of). KEIO_ID A137; [MS2] KO008812 KEIO_ID A137; [MS3] KO008813 KEIO_ID A137 Allocryptopine, a derivative of tetrahydropalmatine, is extracted from Macleaya cordata (Thunb.) Pers. Papaveraceae. Allocryptopine has antiarrhythmic effects and potently blocks human ether-a-go-go related gene (hERG) current[1][2]. Allocryptopine, a derivative of tetrahydropalmatine, is extracted from Macleaya cordata (Thunb.) Pers. Papaveraceae. Allocryptopine has antiarrhythmic effects and potently blocks human ether-a-go-go related gene (hERG) current[1][2].

   

L-Glutamic acid

(1S)-2-[(3-O-beta-D-Glucopyranosyl-beta-D-galactopyranosyl)oxy]-1-{[(9E)-octadec-9-enoyloxy]methyl}ethyl (10E)-nonadec-10-enoic acid

C5H9NO4 (147.0531554)


Glutamic acid (Glu), also known as L-glutamic acid or as glutamate, the name of its anion, is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (‚ÄìNH2) and carboxyl (‚ÄìCOOH) functional groups, along with a side chain (R group) specific to each amino acid. L-glutamic acid is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Glutamic acid is found in all organisms ranging from bacteria to plants to animals. It is classified as an acidic, charged (at physiological pH), aliphatic amino acid. In humans it is a non-essential amino acid and can be synthesized via alanine or aspartic acid via alpha-ketoglutarate and the action of various transaminases. Glutamate also plays an important role in the bodys disposal of excess or waste nitrogen. Glutamate undergoes deamination, an oxidative reaction catalysed by glutamate dehydrogenase leading to alpha-ketoglutarate. In many respects glutamate is a key molecule in cellular metabolism. Glutamate is the most abundant fast excitatory neurotransmitter in the mammalian nervous system. At chemical synapses, glutamate is stored in vesicles. Nerve impulses trigger release of glutamate from the pre-synaptic cell. In the opposing post-synaptic cell, glutamate receptors, such as the NMDA receptor, bind glutamate and are activated. Because of its role in synaptic plasticity, it is believed that glutamic acid is involved in cognitive functions like learning and memory in the brain. Glutamate transporters are found in neuronal and glial membranes. They rapidly remove glutamate from the extracellular space. In brain injury or disease, they can work in reverse and excess glutamate can accumulate outside cells. This process causes calcium ions to enter cells via NMDA receptor channels, leading to neuronal damage and eventual cell death, and is called excitotoxicity. The mechanisms of cell death include: Damage to mitochondria from excessively high intracellular Ca2+. Glu/Ca2+-mediated promotion of transcription factors for pro-apoptotic genes, or downregulation of transcription factors for anti-apoptotic genes. Excitotoxicity due to glutamate occurs as part of the ischemic cascade and is associated with stroke and diseases like amyotrophic lateral sclerosis, lathyrism, and Alzheimers disease. Glutamic acid has been implicated in epileptic seizures. Microinjection of glutamic acid into neurons produces spontaneous depolarization around one second apart, and this firing pattern is similar to what is known as paroxysmal depolarizing shift in epileptic attacks. This change in the resting membrane potential at seizure foci could cause spontaneous opening of voltage activated calcium channels, leading to glutamic acid release and further depolarization (http://en.wikipedia.org/wiki/Glutamic_acid). Glutamate was discovered in 1866 when it was extracted from wheat gluten (from where it got its name. Glutamate has an important role as a food additive and food flavoring agent. In 1908, Japanese researcher Kikunae Ikeda identified brown crystals left behind after the evaporation of a large amount of kombu broth (a Japanese soup) as glutamic acid. These crystals, when tasted, reproduced a salty, savory flavor detected in many foods, most especially in seaweed. Professor Ikeda termed this flavor umami. He then patented a method of mass-producing a crystalline salt of glutamic acid, monosodium glutamate. L-glutamic acid is an optically active form of glutamic acid having L-configuration. It has a role as a nutraceutical, a micronutrient, an Escherichia coli metabolite, a mouse metabolite, a ferroptosis inducer and a neurotransmitter. It is a glutamine family amino acid, a proteinogenic amino acid, a glutamic acid and a L-alpha-amino acid. It is a conjugate acid of a L-glutamate(1-). It is an enantiomer of a D-glutamic acid. A peptide that is a homopolymer of glutamic acid. L-Glutamic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Glutamic acid (Glu), also referred to as glutamate (the anion), is one of the 20 proteinogenic amino acids. It is not among the essential amino acids. Glutamate is a key molecule in cellular metabolism. In humans, dietary proteins are broken down by digestion into amino acids, which serves as metabolic fuel or other functional roles in the body. Glutamate is the most abundant fast excitatory neurotransmitter in the mammalian nervous system. At chemical synapses, glutamate is stored in vesicles. Nerve impulses trigger release of glutamate from the pre-synaptic cell. In the opposing post-synaptic cell, glutamate receptors, such as the NMDA receptor, bind glutamate and are activated. Because of its role in synaptic plasticity, it is believed that glutamic acid is involved in cognitive functions like learning and memory in the brain. Glutamate transporters are found in neuronal and glial membranes. They rapidly remove glutamate from the extracellular space. In brain injury or disease, they can work in reverse and excess glutamate can accumulate outside cells. This process causes calcium ions to enter cells via NMDA receptor channels, leading to neuronal damage and eventual cell death, and is called excitotoxicity. The mechanisms of cell death include: * Damage to mitochondria from excessively high intracellular Ca2+. * Glu/Ca2+-mediated promotion of transcription factors for pro-apoptotic genes, or downregulation of transcription factors for anti-apoptotic genes. Excitotoxicity due to glutamate occurs as part of the ischemic cascade and is associated with stroke and diseases like amyotrophic lateral sclerosis, lathyrism, and Alzheimers disease. glutamic acid has been implicated in epileptic seizures. Microinjection of glutamic acid into neurons produces spontaneous depolarization around one second apart, and this firing pattern is similar to what is known as paroxysmal depolarizing shift in epileptic attacks. This change in the resting membrane potential at seizure foci could cause spontaneous opening of voltage activated calcium channels, leading to glutamic acid release and further depolarization. A non-essential amino acid naturally occurring in the L-form. Glutamic acid is the most common excitatory neurotransmitter in the CENTRAL NERVOUS SYSTEM. See also: Monosodium Glutamate (active moiety of); Glatiramer Acetate (monomer of); Glatiramer (monomer of) ... View More ... obtained from acid hydrolysis of proteins. Since 1965 the industrial source of glutamic acid for MSG production has been bacterial fermentation of carbohydrate sources such as molasses and corn starch hydrolysate in the presence of a nitrogen source such as ammonium salts or urea. Annual production approx. 350000t worldwide in 1988. Seasoning additive in food manuf. (as Na, K and NH4 salts). Dietary supplement, nutrient Glutamic acid (symbol Glu or E;[4] the anionic form is known as glutamate) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a non-essential nutrient for humans, meaning that the human body can synthesize enough for its use. It is also the most abundant excitatory neurotransmitter in the vertebrate nervous system. It serves as the precursor for the synthesis of the inhibitory gamma-aminobutyric acid (GABA) in GABAergic neurons. Its molecular formula is C 5H 9NO 4. Glutamic acid exists in two optically isomeric forms; the dextrorotatory l-form is usually obtained by hydrolysis of gluten or from the waste waters of beet-sugar manufacture or by fermentation.[5][full citation needed] Its molecular structure could be idealized as HOOC−CH(NH 2)−(CH 2)2−COOH, with two carboxyl groups −COOH and one amino group −NH 2. However, in the solid state and mildly acidic water solutions, the molecule assumes an electrically neutral zwitterion structure −OOC−CH(NH+ 3)−(CH 2)2−COOH. It is encoded by the codons GAA or GAG. The acid can lose one proton from its second carboxyl group to form the conjugate base, the singly-negative anion glutamate −OOC−CH(NH+ 3)−(CH 2)2−COO−. This form of the compound is prevalent in neutral solutions. The glutamate neurotransmitter plays the principal role in neural activation.[6] This anion creates the savory umami flavor of foods and is found in glutamate flavorings such as MSG. In Europe, it is classified as food additive E620. In highly alkaline solutions the doubly negative anion −OOC−CH(NH 2)−(CH 2)2−COO− prevails. The radical corresponding to glutamate is called glutamyl. The one-letter symbol E for glutamate was assigned in alphabetical sequence to D for aspartate, being larger by one methylene –CH2– group.[7] DL-Glutamic acid is the conjugate acid of Glutamic acid, which acts as a fundamental metabolite. Comparing with the second phase of polymorphs α and β L-Glutamic acid, DL-Glutamic acid presents better stability[1]. DL-Glutamic acid is the conjugate acid of Glutamic acid, which acts as a fundamental metabolite. Comparing with the second phase of polymorphs α and β L-Glutamic acid, DL-Glutamic acid presents better stability[1]. L-Glutamic acid acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). L-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals. L-Glutamic acid is an excitatory amino acid neurotransmitter that acts as an agonist for all subtypes of glutamate receptors (metabolic rhodophylline, NMDA, and AMPA). L-Glutamic acid has an agonist effect on the release of DA from dopaminergic nerve endings. L-Glutamic acid can be used in the study of neurological diseases[1][2][3][4][5]. L-Glutamic acid acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). L-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals.

   

Scopolin

6-methoxy-7-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxychromen-2-one

C16H18O9 (354.0950778)


Scopolin is a member of the class of coumarins that is scopoletin attached to a beta-D-glucopyranosyl residue at position 7 via a glycosidic linkage. It has a role as a plant metabolite. It is a monosaccharide derivative, a member of coumarins and a beta-D-glucoside. It is functionally related to a scopoletin. Scopolin is a natural product found in Artemisia ordosica, Astragalus onobrychis, and other organisms with data available. See also: Chamaemelum nobile flower (part of). A member of the class of coumarins that is scopoletin attached to a beta-D-glucopyranosyl residue at position 7 via a glycosidic linkage. Scopolin is a coumarin isolated from Arabidopsis thaliana (Arabidopsis) roots[1]. Scopolin attenuated hepatic steatosis through activation of SIRT1-mediated signaling cascades[2]. Scopolin is a coumarin isolated from Arabidopsis thaliana (Arabidopsis) roots[1]. Scopolin attenuated hepatic steatosis through activation of SIRT1-mediated signaling cascades[2]. Scopolin is a coumarin isolated from Arabidopsis thaliana (Arabidopsis) roots[1]. Scopolin attenuated hepatic steatosis through activation of SIRT1-mediated signaling cascades[2].

   

L-Phenylalanine

(2S)-2-amino-3-phenylpropanoic acid

C9H11NO2 (165.0789746)


Phenylalanine (Phe), also known as L-phenylalanine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (‚ÄìNH2) and carboxyl (‚ÄìCOOH) functional groups, along with a side chain (R group) specific to each amino acid. L-phenylalanine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Phenylalanine is found in all organisms ranging from bacteria to plants to animals. It is classified as an aromatic, non-polar amino acid. In humans, phenylalanine is an essential amino acid and the precursor of the amino acid tyrosine. Like tyrosine, phenylalanine is also a precursor for catecholamines including tyramine, dopamine, epinephrine, and norepinephrine. Catecholamines are neurotransmitters that act as adrenalin-like substances. Interestingly, several psychotropic drugs (mescaline, morphine, codeine, and papaverine) also have phenylalanine as a constituent. Phenylalanine is highly concentrated in the human brain and plasma. Normal metabolism of phenylalanine requires biopterin, iron, niacin, vitamin B6, copper, and vitamin C. An average adult ingests 5 g of phenylalanine per day and may optimally need up to 8 g daily. Phenylalanine is highly concentrated in a number of high protein foods, such as meat, cottage cheese, and wheat germ. An additional dietary source of phenylalanine is artificial sweeteners containing aspartame (a methyl ester of the aspartic acid/phenylalanine dipeptide). As a general rule, aspartame should be avoided by phenylketonurics and pregnant women. When present in sufficiently high levels, phenylalanine can act as a neurotoxin and a metabotoxin. A neurotoxin is a compound that disrupts or attacks neural cells and neural tissue. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of phenylalanine are associated with at least five inborn errors of metabolism, including Hartnup disorder, hyperphenylalaninemia due to guanosine triphosphate cyclohydrolase deficiency, phenylketonuria (PKU), tyrosinemia type 2 (or Richner-Hanhart syndrome), and tyrosinemia type III (TYRO3). Phenylketonurics have elevated serum plasma levels of phenylalanine up to 400 times normal. High plasma concentrations of phenylalanine influence the blood-brain barrier transport of large neutral amino acids. The high plasma phenylalanine concentrations increase phenylalanine entry into the brain and restrict the entry of other large neutral amino acids (PMID: 19191004). Phenylalanine has been found to interfere with different cerebral enzyme systems. Untreated phenylketonuria (PKU) can lead to intellectual disability, seizures, behavioural problems, and mental disorders. It may also result in a musty smell and lighter skin. Classic PKU dramatically affects myelination and white matter tracts in untreated infants; this may be one major cause of neurological disorders associated with phenylketonuria. Mild phenylketonuria can act as an unsuspected cause of hyperactivity, learning problems, and other developmental problems in children. It has been recently suggested that PKU may resemble amyloid diseases, such as Alzheimers disease and Parkinsons disease, due to the formation of toxic amyloid-like assemblies of phenylalanine (PMID: 22706200). Phenylalanine also has some potential benefits. Phenylalanine can act as an effective pain reliever. Its use in premenstrual syndrome and Parkinsons may enhance the effects of acupuncture and electric transcutaneous nerve stimulation (TENS). Phenylalanine and tyrosine, like L-DOPA, produce a catecholamine-like effect. Phenylalanine is better absorbed than tyrosine and may cause fewer headaches. Low phenylalanine diets have been prescribed for certain cancers with mixed results. For instance, some tumours use more phen... L-phenylalanine is an odorless white crystalline powder. Slightly bitter taste. pH (1\\\\\\% aqueous solution) 5.4 to 6. (NTP, 1992) L-phenylalanine is the L-enantiomer of phenylalanine. It has a role as a nutraceutical, a micronutrient, an Escherichia coli metabolite, a Saccharomyces cerevisiae metabolite, a plant metabolite, an algal metabolite, a mouse metabolite, a human xenobiotic metabolite and an EC 3.1.3.1 (alkaline phosphatase) inhibitor. It is an erythrose 4-phosphate/phosphoenolpyruvate family amino acid, a proteinogenic amino acid, a phenylalanine and a L-alpha-amino acid. It is a conjugate base of a L-phenylalaninium. It is a conjugate acid of a L-phenylalaninate. It is an enantiomer of a D-phenylalanine. It is a tautomer of a L-phenylalanine zwitterion. Phenylalanine is an essential aromatic amino acid that is a precursor of melanin, [dopamine], [noradrenalin] (norepinephrine), and [thyroxine]. L-Phenylalanine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Phenylalanine is an essential aromatic amino acid in humans (provided by food), Phenylalanine plays a key role in the biosynthesis of other amino acids and is important in the structure and function of many proteins and enzymes. Phenylalanine is converted to tyrosine, used in the biosynthesis of dopamine and norepinephrine neurotransmitters. The L-form of Phenylalanine is incorporated into proteins, while the D-form acts as a painkiller. Absorption of ultraviolet radiation by Phenylalanine is used to quantify protein amounts. (NCI04) Phenylalanine is an essential amino acid and the precursor for the amino acid tyrosine. Like tyrosine, it is the precursor of catecholamines in the body (tyramine, dopamine, epinephrine and norepinephrine). The psychotropic drugs (mescaline, morphine, codeine, and papaverine) also have phenylalanine as a constituent. Phenylalanine is a precursor of the neurotransmitters called catecholamines, which are adrenalin-like substances. Phenylalanine is highly concentrated in the human brain and plasma. Normal metabolism of phenylalanine requires biopterin, iron, niacin, vitamin B6, copper and vitamin C. An average adult ingests 5 g of phenylalanine per day and may optimally need up to 8 g daily. Phenylalanine is highly concentrated in high protein foods, such as meat, cottage cheese and wheat germ. A new dietary source of phenylalanine is artificial sweeteners containing aspartame. Aspartame appears to be nutritious except in hot beverages; however, it should be avoided by phenylketonurics and pregnant women. Phenylketonurics, who have a genetic error of phenylalanine metabolism, have elevated serum plasma levels of phenylalanine up to 400 times normal. Mild phenylketonuria can be an unsuspected cause of hyperactivity, learning problems, and other developmental problems in children. Phenylalanine can be an effective pain reliever. Its use in premenstrual syndrome and Parkinsons may enhance the effects of acupuncture and electric transcutaneous nerve stimulation (TENS). Phenylalanine and tyrosine, like L-dopa, produce a catecholamine effect. Phenylalanine is better absorbed than tyrosine and may cause fewer headaches. Low phenylalanine diets have been prescribed for certain cancers with mixed results. Some tumors use more phenylalanine (particularly melatonin-producing tumors called melanoma). One strategy is to exclude this amino acid from the diet, i.e., a Phenylketonuria (PKU) diet (compliance is a difficult issue; it is hard to quantify and is under-researched). The other strategy is just to increase phenylalanines competing amino acids, i.e., tryptophan, valine, isoleucine and leucine, but not tyrosine. An essential aromatic amino acid that is a precursor of MELANIN; DOPAMINE; noradrenalin (NOREPINEPHRINE), and THYROXINE. See also: Plovamer (monomer of); Plovamer Acetate (monomer of) ... View More ... L-phenylalanine, also known as phe or f, belongs to phenylalanine and derivatives class of compounds. Those are compounds containing phenylalanine or a derivative thereof resulting from reaction of phenylalanine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. L-phenylalanine is slightly soluble (in water) and a moderately acidic compound (based on its pKa). L-phenylalanine can be found in watermelon, which makes L-phenylalanine a potential biomarker for the consumption of this food product. L-phenylalanine can be found primarily in most biofluids, including sweat, blood, urine, and cerebrospinal fluid (CSF), as well as throughout all human tissues. L-phenylalanine exists in all living species, ranging from bacteria to humans. In humans, L-phenylalanine is involved in a couple of metabolic pathways, which include phenylalanine and tyrosine metabolism and transcription/Translation. L-phenylalanine is also involved in few metabolic disorders, which include phenylketonuria, tyrosinemia type 2 (or richner-hanhart syndrome), and tyrosinemia type 3 (TYRO3). Moreover, L-phenylalanine is found to be associated with viral infection, dengue fever, hypothyroidism, and myocardial infarction. L-phenylalanine is a non-carcinogenic (not listed by IARC) potentially toxic compound. Phenylalanine (Phe or F) is an α-amino acid with the formula C 9H 11NO 2. It can be viewed as a benzyl group substituted for the methyl group of alanine, or a phenyl group in place of a terminal hydrogen of alanine. This essential amino acid is classified as neutral, and nonpolar because of the inert and hydrophobic nature of the benzyl side chain. The L-isomer is used to biochemically form proteins, coded for by DNA. The codons for L-phenylalanine are UUU and UUC. Phenylalanine is a precursor for tyrosine; the monoamine neurotransmitters dopamine, norepinephrine (noradrenaline), and epinephrine (adrenaline); and the skin pigment melanin . Hepatic. L-phenylalanine that is not metabolized in the liver is distributed via the systemic circulation to the various tissues of the body, where it undergoes metabolic reactions similar to those that take place in the liver (DrugBank). If PKU is diagnosed early, an affected newborn can grow up with normal brain development, but only by managing and controlling phenylalanine levels through diet, or a combination of diet and medication. The diet requires severely restricting or eliminating foods high in phenylalanine, such as meat, chicken, fish, eggs, nuts, cheese, legumes, milk and other dairy products. Starchy foods, such as potatoes, bread, pasta, and corn, must be monitored. Optimal health ranges (or "target ranges") of serum phenylalanine are between 120 and 360 µmol/L, and aimed to be achieved during at least the first 10 years of life. Recently it has been found that a chiral isomer of L-phenylalanine (called D-phenylalanine) actually arrests the fibril formation by L-phenylalanine and gives rise to flakes. These flakes do not propagate further and prevent amyloid formation by L-phenylalanine. D-phenylalanine may qualify as a therapeutic molecule in phenylketonuria (A8161) (T3DB). L-Phenylalanine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=63-91-2 (retrieved 2024-07-01) (CAS RN: 63-91-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4]. L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4]. L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4].

   

Palmatine

dibenzo(a,g)quinolizinium, 5,6-dihydro-2,3,9,10-tetramethoxy-, hydroxide (1:1)

[C21H22NO4]+ (352.15487520000005)


Annotation level-1 Palmatine is a berberine alkaloid and an organic heterotetracyclic compound. It has a role as a plant metabolite. Palmatine is a natural product found in Coptis chinensis var. brevisepala, Thalictrum petaloideum, and other organisms with data available. See also: Berberis aristata stem (part of). KEIO_ID P071; [MS2] KO009210 KEIO_ID P071

   

Tyrosol

4-hydroxy-Benzeneethanol;4-Hydroxyphenylethanol;beta-(4-Hydroxyphenyl)ethanol

C8H10O2 (138.06807600000002)


Tyrosol is a phenolic compound present in two of the traditional components of the Mediterranean diet: wine and virgin olive oil. The presence of tyrosol has been described in red and white wines. Tyrosol is also present in vermouth and beer. Tyrosol has been shown to be able to exert antioxidant activity in vitro studies. Oxidation of low-density lipoprotein (LDL) appears to occur predominantly in arterial intimae in microdomains sequestered from antioxidants of plasma. The antioxidant content of the LDL particle is critical for its protection. The ability of tyrosol to bind human LDL has been reported. The bioavailability of tyrosol in humans from virgin olive oil in its natural form has been demonstrated. Urinary tyrosol increases, reaching a peak at 0-4 h after virgin olive oil administration. Men and women show a different pattern of urinary excretion of tyrosol. Moreover, tyrosol is absorbed in a dose-dependent manner after sustained and moderate doses of virgin olive oil. Tyrosol from wine or virgin olive oil could exert beneficial effects on human health in vivo if its biological properties are confirmed (PMID 15134375). Tyrosol is a microbial metabolite found in Bifidobacterium, Escherichia and Lactobacillus (PMID:28393285). 2-(4-hydroxyphenyl)ethanol is a phenol substituted at position 4 by a 2-hydroxyethyl group. It has a role as an anti-arrhythmia drug, an antioxidant, a cardiovascular drug, a protective agent, a fungal metabolite, a geroprotector and a plant metabolite. It is functionally related to a 2-phenylethanol. 2-(4-Hydroxyphenyl)ethanol is a natural product found in Thalictrum petaloideum, Casearia sylvestris, and other organisms with data available. Tyrosol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Sedum roseum root (part of); Rhodiola crenulata root (part of). D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents A phenol substituted at position 4 by a 2-hydroxyethyl group. D020011 - Protective Agents > D000975 - Antioxidants Tyrosol is a derivative of phenethyl alcohol. Tyrosol attenuates pro-inflammatory cytokines from cultured astrocytes and NF-κB activation. Anti-oxidative and anti-inflammatory effects[1]. Tyrosol is a derivative of phenethyl alcohol. Tyrosol attenuates pro-inflammatory cytokines from cultured astrocytes and NF-κB activation. Anti-oxidative and anti-inflammatory effects[1].

   

3,4-Dihydro-2H-1-benzopyran-2-one

InChI=1/C9H8O2/c10-9-6-5-7-3-1-2-4-8(7)11-9/h1-4H,5-6H

C9H8O2 (148.0524268)


3,4-Dihydro-2H-1-benzopyran-2-one, also known as 3,4-dihydrocoumarin or 1,2-benzodihydropyrone, belongs to the class of organic compounds known as 3,4-dihydrocoumarins. These are 3,4-dihydrogenated coumarins. Coumarin is a bicyclic compound that are 1-benzopyran carrying an oxo group at the 2-position. 3,4-Dihydro-2H-1-benzopyran-2-one exists in all living organisms, ranging from bacteria to humans. 3,4-Dihydro-2H-1-benzopyran-2-one is a sweet, almond, and cinnamon tasting compound. 3,4-Dihydro-2H-1-benzopyran-2-one has been detected, but not quantified, in several different foods, such as green vegetables, pulses, sour cherries, and tarragons. A chromanone that is the 3,4-dihydro derivative of coumarin. 3,4-dihydrocoumarin is a white to pale yellow clear oily liquid with a sweet odor. Solidifies around room temperature. (NTP, 1992) 3,4-dihydrocoumarin is a chromanone that is the 3,4-dihydro derivative of coumarin. It has a role as a plant metabolite. It is functionally related to a coumarin. 3,4-Dihydrocoumarin is a natural product found in Glebionis segetum, Prunus mahaleb, and other organisms with data available. Isolated from Melilotus officinalis (sweet clover). Flavouring ingredient. 3,4-Dihydro-2H-1-benzopyran-2-one is found in many foods, some of which are sour cherry, tarragon, green vegetables, and pulses. A chromanone that is the 3,4-dihydro derivative of coumarin. [Raw Data] CB236_3; 4-Dihydrocoumarin_pos_20eV_CB000080.txt [Raw Data] CB236_3; 4-Dihydrocoumarin_pos_30eV_CB000080.txt [Raw Data] CB236_3; 4-Dihydrocoumarin_pos_10eV_CB000080.txt Dihydrocoumarin is a compound found in Melilotus officinalis. Dihydrocoumarin is a yeast Sir2p inhibitor. Dihydrocoumarin also inhibits human SIRT1 and SIRT2 with IC50s of 208 μM and 295 μM, respectively[1]. Dihydrocoumarin is a compound found in Melilotus officinalis. Dihydrocoumarin is a yeast Sir2p inhibitor. Dihydrocoumarin also inhibits human SIRT1 and SIRT2 with IC50s of 208 μM and 295 μM, respectively[1]. Dihydrocoumarin is a compound found in Melilotus officinalis. Dihydrocoumarin is a yeast Sir2p inhibitor. Dihydrocoumarin also inhibits human SIRT1 and SIRT2 with IC50s of 208 μM and 295 μM, respectively[1].

   

Juglone

InChI=1/C10H6O3/c11-7-4-5-9(13)10-6(7)2-1-3-8(10)12/h1-5,12

C10H6O3 (174.03169259999999)


Juglone is a hydroxy-1,4-naphthoquinone that is 1,4-naphthoquinone in which the hydrogen at position 5 has been replaced by a hydroxy group. A plant-derived 1,4-naphthoquinone with confirmed antibacterial and antitumor activities. It has a role as a herbicide, a reactive oxygen species generator and a geroprotector. Juglone is a natural product found in Talaromyces diversus, Carya alba, and other organisms with data available. Occurs in Juglans subspecies and pecan nuts (Carya illinoensis). Juglone is found in many foods, some of which are common walnut, liquor, black walnut, and nuts. Juglone is found in black walnut. Juglone occurs in Juglans species and pecan nuts (Carya illinoensis D000074385 - Food Ingredients > D005503 - Food Additives > D005520 - Food Preservatives D009676 - Noxae > D003603 - Cytotoxins D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors

   

Sanguinarine

24-methyl-5,7,18,20-tetraoxa-24-azahexacyclo[11.11.0.0^{2,10}.0^{4,8}.0^{14,22}.0^{17,21}]tetracosa-1(13),2,4(8),9,11,14(22),15,17(21),23-nonaen-24-ium

[C20H14NO4]+ (332.09227840000005)


Sanguinarine is a benzophenanthridine alkaloid, an alkaloid antibiotic and a botanical anti-fungal agent. Sanguinarine is a natural product found in Fumaria capreolata, Fumaria kralikii, and other organisms with data available. Sanguinarine is found in opium poppy. Consumption of Sanguinarine, present in poppy seeds and in the oil of Argemone mexicana which has been used as an adulterant for mustard oil in India, has been linked to development of glaucoma. Sanguinarine is banned by FDA. Sanguinarine is a quaternary ammonium salt from the group of benzylisoquinoline alkaloids. It is extracted from some plants, including bloodroot (Sanguinaria canadensis), Mexican prickly poppy Argemone mexicana, Chelidonium majus and Macleaya cordata. It is also found in the root, stem and leaves of the opium poppy but not in the capsule. Sanguinarine is a toxin that kills animal cells through its action on the Na+-K+-ATPase transmembrane protein. Epidemic dropsy is a disease that results from ingesting sanguinarine. Sanguinarine has been shown to exhibit antibiotic, anti-apoptotic, anti-fungal, anti-inflammatory and anti-angiogenic functions Sanguinarine belongs to the family of Benzoquinolines. These are organic compounds containing a benzene fused to a quinoline ring system. (A3208, A3209, A3208, A3208, A3208). See also: Sanguinaria canadensis root (part of); Chelidonium majus flowering top (part of). Sanguinarine is found in opium poppy. Consumption of Sanguinarine, present in poppy seeds and in the oil of Argemone mexicana which has been used as an adulterant for mustard oil in India, has been linked to development of glaucoma. Sanguinarine is banned by FDA. Sanguinarine is a quaternary ammonium salt from the group of benzylisoquinoline alkaloids. It is extracted from some plants, including bloodroot (Sanguinaria canadensis), Mexican prickly poppy Argemone mexicana, Chelidonium majus and Macleaya cordata. It is also found in the root, stem and leaves of the opium poppy but not in the capsule.[citation needed]; Sanguinarine is a toxin that kills animal cells through its action on the Na+-K+-ATPase transmembrane protein. Epidemic dropsy is a disease that results from ingesting sanguinarine Sanguinarine (13-methyl[1,3]benzodioxolo[5,6-c]-1,3-dioxolo[4,5-i]phenanthridinium) is derived from the root of Sanguinaria canadensis and other poppy-fumaria species (for references, see Ref. 1). This benzophenanthridine alkaloid is a structural homologue of chelerythrine, which is a potent inhibitor of protein kinase C (2). Sanguinarine has been shown to display antitumor (3) and anti-inflammatory properties in animals (4) and to inhibit neutrophil function, including degranulation and phagocytosis in vitro(5). It is also a potent inhibitor of Na-K-dependent ATPase (6, 7, 8) and cholinesterase (9).

   

Corydalis L

(13aS)-3,9,10-trimethoxy-6,8,13,13a-tetrahydro-5H-isoquinolino[2,1-b]isoquinolin-2-ol

C20H23NO4 (341.16269980000004)


(S)-tetrahydrocolumbamine is a berberine alkaloid consisting of columbamine having four extra hydrogens at positions 5, 8, 13 and 13a and (S)-configuration. It is a berberine alkaloid and an organic heterotetracyclic compound. It is functionally related to a columbamine. (S)-Tetrahydrocolumbamine is a natural product found in Corydalis heterocarpa, Ceratocapnos heterocarpa, and other organisms with data available. A berberine alkaloid consisting of columbamine having four extra hydrogens at positions 5, 8, 13 and 13a and (S)-configuration. (-)-Isocorypalmine (Tetrahydrocolumbamine), isolated from the crude base fraction of Corydalis chaerophylla, is a dopamine receptor ligand[1]. Recombinant CYP719A21 displays strict substrate specificity and high affinity (Km=4.63 ± 0.71 μM) for (-)-Isocorypalmine[2]. (-)-Isocorypalmine (Tetrahydrocolumbamine), isolated from the crude base fraction of Corydalis chaerophylla, is a dopamine receptor ligand[1]. Recombinant CYP719A21 displays strict substrate specificity and high affinity (Km=4.63 ± 0.71 μM) for (-)-Isocorypalmine[2]. (-)-Isocorypalmine (Tetrahydrocolumbamine), isolated from the crude base fraction of Corydalis chaerophylla, is a dopamine receptor ligand[1]. Recombinant CYP719A21 displays strict substrate specificity and high affinity (Km=4.63 ± 0.71 μM) for (-)-Isocorypalmine[2]. (-)-Isocorypalmine (Tetrahydrocolumbamine), isolated from the crude base fraction of Corydalis chaerophylla, is a dopamine receptor ligand[1]. Recombinant CYP719A21 displays strict substrate specificity and high affinity (Km=4.63 ± 0.71 μM) for (-)-Isocorypalmine[2]. (-)-Isocorypalmine (Tetrahydrocolumbamine), isolated from the crude base fraction of Corydalis chaerophylla, is a dopamine receptor ligand[1]. Recombinant CYP719A21 displays strict substrate specificity and high affinity (Km=4.63 ± 0.71 μM) for (-)-Isocorypalmine[2]. (-)-Isocorypalmine (Tetrahydrocolumbamine), isolated from the crude base fraction of Corydalis chaerophylla, is a dopamine receptor ligand[1]. Recombinant CYP719A21 displays strict substrate specificity and high affinity (Km=4.63 ± 0.71 μM) for (-)-Isocorypalmine[2].

   

Ergosterol

(1R,3aR,7S,9aR,9bS,11aR)-1-[(2R,3E,5R)-5,6-dimethylhept-3-en-2-yl]-9a,11a-dimethyl-1H,2H,3H,3aH,6H,7H,8H,9H,9aH,9bH,10H,11H,11aH-cyclopenta[a]phenanthren-7-ol

C28H44O (396.3391974)


Ergosterol is a phytosterol consisting of ergostane having double bonds at the 5,6-, 7,8- and 22,23-positions as well as a 3beta-hydroxy group. It has a role as a fungal metabolite and a Saccharomyces cerevisiae metabolite. It is a 3beta-sterol, an ergostanoid, a 3beta-hydroxy-Delta(5)-steroid and a member of phytosterols. A steroid of interest both because its biosynthesis in FUNGI is a target of ANTIFUNGAL AGENTS, notably AZOLES, and because when it is present in SKIN of animals, ULTRAVIOLET RAYS break a bond to result in ERGOCALCIFEROL. Ergosterol is a natural product found in Gladiolus italicus, Ramaria formosa, and other organisms with data available. ergosterol is a metabolite found in or produced by Saccharomyces cerevisiae. A steroid occurring in FUNGI. Irradiation with ULTRAVIOLET RAYS results in formation of ERGOCALCIFEROL (vitamin D2). See also: Reishi (part of). Ergosterol, also known as provitamin D2, belongs to the class of organic compounds known as ergosterols and derivatives. These are steroids containing ergosta-5,7,22-trien-3beta-ol or a derivative thereof, which is based on the 3beta-hydroxylated ergostane skeleton. Thus, ergosterol is considered to be a sterol lipid molecule. Ergosterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Ergosterol is the biological precursor to vitamin D2. It is turned into viosterol by ultraviolet light, and is then converted into ergocalciferol, which is a form of vitamin D. Ergosterol is a component of fungal cell membranes, serving the same function that cholesterol serves in animal cells. Ergosterol is not found in mammalian cell membranes. A phytosterol consisting of ergostane having double bonds at the 5,6-, 7,8- and 22,23-positions as well as a 3beta-hydroxy group. Ergosterol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=57-87-4 (retrieved 2024-07-12) (CAS RN: 57-87-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Ergosterol is the primary sterol found in fungi, with antioxidative, anti-proliferative, and anti-inflammatory effects. Ergosterol is the primary sterol found in fungi, with antioxidative, anti-proliferative, and anti-inflammatory effects.

   

Hemigossypol

1-Naphthalenecarboxaldehyde, 2,3,8-trihydroxy-6-methyl-4-(1-methylethyl)-

C15H16O4 (260.1048536)


Hemigossypol is a sesquiterpenoid. Hemigossypol is a natural product found in Sida rhombifolia, Hibiscus trionum, and other organisms with data available.

   

Linamarin

2-Methyl-2-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)propanenitrile

C10H17NO6 (247.10558220000001)


Linamarin is a beta-D-glucoside. It is functionally related to a 2-hydroxy-2-methylpropanenitrile. Linamarin is a natural product found in Osteospermum ecklonis, Lotus arenarius, and other organisms with data available. Linamarin is found in coffee and coffee products. Linamarin occurs in manioc (Manihot utilissimus), flax (Linum usitatissimum), Phaseolus lunatus (butter bean), Trifolium repens (white clover) and other plants. First isloated in 1830. Occurs in manioc (Manihot utilissimus), flax (Linum usitatissimum), Phaseolus lunatus (butter bean), Trifolium repens (white clover) and other plants. First isol in 1830. Linamarin is found in many foods, some of which are gooseberry, chinese broccoli, cascade huckleberry, and leek. Linamarin is found in coffee and coffee products. Linamarin occurs in manioc (Manihot utilissimus), flax (Linum usitatissimum), Phaseolus lunatus (butter bean), Trifolium repens (white clover) and other plants. First isloated in 1830. Linamarin, a natural compound, possesses anticancer activity[1]. Linamarin, a natural compound, possesses anticancer activity[1].

   

2-Hexenal

InChI=1/C6H10O/c1-2-3-4-5-6-7/h4-6H,2-3H2,1H3/b5-4+

C6H10O (98.07316100000001)


(2E)-hexenal is a 2-hexenal in which the olefinic double bond has E configuration. It occurs naturally in a wide range of fruits, vegetables, and spices. It has a role as a flavouring agent, an antibacterial agent and a plant metabolite. 2-Hexenal is a natural product found in Lonicera japonica, Origanum sipyleum, and other organisms with data available. 2-Hexenal is a uremic toxin. Uremic toxins can be subdivided into three major groups based upon their chemical and physical characteristics: 1) small, water-soluble, non-protein-bound compounds, such as urea; 2) small, lipid-soluble and/or protein-bound compounds, such as the phenols and 3) larger so-called middle-molecules, such as beta2-microglobulin. Chronic exposure of uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease. 2-Hexenal is found in allspice. 2-Hexenal is used in perfumery and flavourings. 2-Hexenal belongs to the family of Medium-chain Aldehydes. These are An aldehyde with a chain length containing between 6 and 12 carbon atoms. 2-Hexenal (CAS: 505-57-7), also known as 2-hexenaldehyde or 3-propylacrolein, belongs to the class of organic compounds known as medium-chain aldehydes. These are aldehydes with a chain length containing between 6 and 12 carbon atoms. Thus, 2-hexenal is considered to be a fatty aldehyde lipid molecule. Outside of the human body, 2-hexenal is found, on average, in the highest concentration within a few different foods, such as corn, tea, and bilberries. 2-Hexenal has also been detected, but not quantified in, several different foods, such as common wheat, ginkgo nuts, spearmints, sunflowers, and watermelons. This could make 2-hexenal a potential biomarker for the consumption of these foods. (E)-2-Hexenal is found in allspice. It is used in perfumery and flavouring. (E)-2-Hexenal has also been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators Acquisition and generation of the data is financially supported in part by CREST/JST. Trans-?2-?Hexenal can be used for the determination of low-molecular-weight carbonyl compounds which are reactive with biological nucleophiles in biological samples[1]. Trans-?2-?Hexenal can be used for the determination of low-molecular-weight carbonyl compounds which are reactive with biological nucleophiles in biological samples[1].

   

D-Malic acid

(2R)-2-HYDROXYBUTANEDIOIC ACID; 2-HYDROXY-SUCCINIC ACID

C4H6O5 (134.0215226)


(R)-malic acid is an optically active form of malic acid having (R)-configuration. It is a conjugate acid of a (R)-malate(2-). It is an enantiomer of a (S)-malic acid. (R)-Malate is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). D-malate is a natural product found in Vaccinium macrocarpon, Pogostemon cablin, and other organisms with data available. D-Malic acid is found in herbs and spices. This enantiomer of rare occurrence; reported from fruits and leaves of Hibiscus sabdariffa (roselle) although there are many more isolations of malic acid with no opt. rotn. given and some may be of the R-for An optically active form of malic acid having (R)-configuration. COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Acquisition and generation of the data is financially supported in part by CREST/JST. D-(+)-Malic acid (D-Malic acid), an active enantiomer of Malic acid, is a competitive inhibitor of L(--)malic acid transport[1]. D-(+)-Malic acid (D-Malic acid), an active enantiomer of Malic acid, is a competitive inhibitor of L(--)malic acid transport[1].

   

N-methylproline

(2S)-1-methylpyrrolidin-1-ium-2-carboxylate

C6H11NO2 (129.0789746)


N-Methyl-L-proline, also known as N-methyl-L-proline, (2S)-1-methylpyrrolidine-2-carboxylic acid, hydric acid, or monomethyl proline, is classified as a proline or a proline derivative. It is not naturally produced by humans and can only be obtained from the diet. In particular, it is a metabolically inert cell protectant found in many plants and is used by plants to protect against extremes in osmolarity and growth temperatures. N-Methyl-L-proline is found in the fruit juices of yellow orange, blood orange, lemon, mandarin, and bitter orange (PMID: 21838291). N-methylproline is an L-proline derivative obtained by replacement of the amino hydrogen by a methyl group. It has a role as a plant metabolite and a human metabolite. It is a L-proline derivative and a tertiary amino compound. It is a tautomer of a N-methylproline zwitterion. An L-proline derivative obtained by replacement of the amino hydrogen by a methyl group. Hygric acid (N-Methyl-L-proline) is a proline analogue found in the citrus juices and the juice of bergamot[1].

   

3-Hydroxybenzaldehyde

Benzaldehyde, 3-hydroxy-

C7H6O2 (122.0367776)


3-hydroxybenzaldehyde is a hydroxybenzaldehyde carrying a hydroxy substituent at position 3. 3-Hydroxybenzaldehyde is a natural product found in Rhytidoponera metallica, Marchantia polymorpha, and other organisms with data available. 3-Hydroxybenzaldehyde, also known as 3-hydroxybenzaldehyde or m-hydroxybenzaldehyde, is an organic compound belonging to the class of aromatic aldehydes. Its chemical formula is C7H6O2 and it is characterized by a benzene ring with a hydroxyl group (-OH) and an aldehyde group (-CHO) attached at the meta position on the ring. Biologically, 3-hydroxybenzaldehyde has been found to possess several interesting properties: 1. **Antioxidant Activity**: It exhibits antioxidant properties, which means it can neutralize harmful free radicals in the body. This can be beneficial in reducing oxidative stress, which is associated with various diseases and aging. 2. **Antimicrobial Effects**: 3-Hydroxybenzaldehyde has shown antimicrobial activity against a range of microorganisms, including bacteria and fungi. This makes it a potential candidate for the development of new antimicrobial agents. 3. **Anti-inflammatory Properties**: Some studies have indicated that this compound may have anti-inflammatory effects, which could be useful in the treatment of inflammatory conditions. 4. **Cytotoxicity**: It has been observed to have cytotoxic effects on certain types of cancer cells, suggesting a potential role in cancer therapy. However, more research is needed in this area. 5. **Enzyme Inhibition**: 3-Hydroxybenzaldehyde can inhibit the activity of certain enzymes, which may have implications in the management of conditions where these enzymes play a pathological role. It's important to note that while 3-hydroxybenzaldehyde has these biological properties, its use in practical applications, especially in a medical context, is still largely experimental and requires further research. The compound's effects and safety profile need to be thoroughly evaluated before it can be considered for widespread use in therapeutic or preventive treatments. 3-Hydroxybenzaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=100-83-4 (retrieved 2024-08-06) (CAS RN: 100-83-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 3-Hydroxybenzaldehyde?is a precursor compound for phenolic compounds, such as Protocatechualdehyde (HY-N0295). 3-Hydroxybenzaldehyde is a substrate of aldehyde dehydrogenase (ALDH) in rats and humans (ALDH2). 3-Hydroxybenzaldehyde has vasculoprotective effects?in vitro and in vivo[1]. 3-Hydroxybenzaldehyde?is a precursor compound for phenolic compounds, such as Protocatechualdehyde (HY-N0295). 3-Hydroxybenzaldehyde is a substrate of aldehyde dehydrogenase (ALDH) in rats and humans (ALDH2). 3-Hydroxybenzaldehyde has vasculoprotective effects?in vitro and in vivo[1]. 3-Hydroxybenzaldehyde?is a precursor compound for phenolic compounds, such as Protocatechualdehyde (HY-N0295). 3-Hydroxybenzaldehyde is a substrate of aldehyde dehydrogenase (ALDH) in rats and humans (ALDH2). 3-Hydroxybenzaldehyde has vasculoprotective effects?in vitro and in vivo[1].

   

Pantothenic acid

(D,+)-N(alpha-gamma-Dihydroxy-beta,beta-dimethylbutyryl)-beta-alanine

C9H17NO5 (219.11066720000002)


(R)-pantothenic acid is a pantothenic acid having R-configuration. It has a role as an antidote to curare poisoning, a human blood serum metabolite and a geroprotector. It is a vitamin B5 and a pantothenic acid. It is a conjugate acid of a (R)-pantothenate. Pantothenic acid, also called pantothenate or vitamin B5 (a B vitamin), is a water-soluble vitamin discovered by Roger J. Williams in 1919. For many animals, pantothenic acid is an essential nutrient as it is required to synthesize coenzyme-A (CoA), as well as to synthesize and metabolize proteins, carbohydrates, and fats. Pantothenic acid is the amide between pantoic acid and β-alanine and commonly found as its alcohol analog, the provitamin panthenol, and as calcium pantothenate. Small quantities of pantothenic acid are found in nearly every food, with high amounts in whole-grain cereals, legumes, eggs, meat, royal jelly, avocado, and yogurt. Pantothenic acid is an ingredient in some hair and skin care products. Only the dextrorotatory (D) isomer of pantothenic acid possesses biological activity. while the levorotatory (L) form may antagonize the effects of the dextrorotatory isomer. Pantothenic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Pantothenic acid is a natural product found in Chlamydomonas reinhardtii, Arabidopsis thaliana, and other organisms with data available. Pantothenic Acid is a water-soluble vitamin ubiquitously found in plants and animal tissues with antioxidant property. Vitamin B5 is a component of coenzyme A (CoA) and a part of the vitamin B2 complex. Vitamin B5 is a growth factor and is essential for various metabolic functions, including the metabolism of carbohydrates, proteins, and fatty acids. This vitamin is also involved in the synthesis of cholesterol, lipids, neurotransmitters, steroid hormones, and hemoglobin. (R)-Pantothenic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A butyryl-beta-alanine that can also be viewed as pantoic acid complexed with BETA ALANINE. It is incorporated into COENZYME A and protects cells against peroxidative damage by increasing the level of GLUTATHIONE. See also: Broccoli (part of). Pantothenic acid, also called vitamin B5, is a water-soluble vitamin required to sustain life. Pantothenic acid is needed to form coenzyme-A (CoA), and is thus critical in the metabolism and synthesis of carbohydrates, proteins, and fats. Its name is derived from the Greek pantothen meaning "from everywhere" and small quantities of pantothenic acid are found in nearly every food, with high amounts in whole grain cereals, legumes, eggs, meat, and royal jelly. Pantothenic acid is classified as a member of the secondary alcohols. Secondary alcohols are compounds containing a secondary alcohol functional group, with the general structure HOC(R)(R) (R,R=alkyl, aryl). Pantothenic acid is considered to be soluble (in water) and acidic. (r)-pantothenate, also known as (+)-pantothenic acid or vitamin b5, is a member of the class of compounds known as secondary alcohols. Secondary alcohols are compounds containing a secondary alcohol functional group, with the general structure HOC(R)(R) (R,R=alkyl, aryl) (r)-pantothenate is soluble (in water) and a weakly acidic compound (based on its pKa). (r)-pantothenate can be found in a number of food items such as spirulina, nance, cereals and cereal products, and sparkleberry, which makes (r)-pantothenate a potential biomarker for the consumption of these food products (r)-pantothenate can be found primarily in blood and urine (r)-pantothenate exists in all eukaryotes, ranging from yeast to humans. D018977 - Micronutrients > D014815 - Vitamins A pantothenic acid having R-configuration. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID P032; [MS2] KO009182 KEIO_ID P032; [MS3] KO009183 KEIO_ID P032 D-Pantothenic acid (Pantothenate) is an essential trace nutrient that functions as the obligate precursor of coenzyme A (CoA). D-Pantothenic acid plays key roles in myriad biological processes, including many that regulate carbohydrate, lipid, protein, and nucleic acid metabolism[1]. D-Pantothenic acid (Pantothenate) is an essential trace nutrient that functions as the obligate precursor of coenzyme A (CoA). D-Pantothenic acid plays key roles in myriad biological processes, including many that regulate carbohydrate, lipid, protein, and nucleic acid metabolism[1].

   

Kinetin

Kinetin, BioReagent, plant cell culture tested, amorphous powder

C10H9N5O (215.0807064)


Kinetin is a member of the class of 6-aminopurines that is adenine carrying a (furan-2-ylmethyl) substituent at the exocyclic amino group. It has a role as a geroprotector and a cytokinin. It is a member of furans and a member of 6-aminopurines. Kinetin is a cytokinin which are plant hormones promotes cell division and plant growth. It was shown to naturally exist in DNA of organisms including humans and various plants. While kinetin is used in tissue cultures to produce new plants, it is also found in cosmetic products as an anti-aging agents. Kinetin is a natural product found in Cocos nucifera, Beta vulgaris, and other organisms with data available. A furanyl adenine found in PLANTS and FUNGI. It has plant growth regulation effects. Kinetin can react with UDP-D-glucose to produce kinetin-7-N-glucoside or kinetin-9-N-glucoside, with UDP as a byproduct. The reaction is catalyzed by UDP glycosyltransferase. Kinetin is a hormone derived from plants. Kinetin can react with UDP-D-glucose to produce kinetin-7-N-glucoside or kinetin-9-N-glucoside, with UDP as a byproduct. The reaction is catalyzed by UDP glycosyltransferase. D006133 - Growth Substances > D010937 - Plant Growth Regulators > D003583 - Cytokinins COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2712; ORIGINAL_PRECURSOR_SCAN_NO 2710 CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2714; ORIGINAL_PRECURSOR_SCAN_NO 2711 CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5910; ORIGINAL_PRECURSOR_SCAN_NO 5905 CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2699; ORIGINAL_PRECURSOR_SCAN_NO 2696 CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5865; ORIGINAL_PRECURSOR_SCAN_NO 5864 CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5900; ORIGINAL_PRECURSOR_SCAN_NO 5896 CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2691; ORIGINAL_PRECURSOR_SCAN_NO 2689 CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5890; ORIGINAL_PRECURSOR_SCAN_NO 5889 CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2693; ORIGINAL_PRECURSOR_SCAN_NO 2691 CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5911; ORIGINAL_PRECURSOR_SCAN_NO 5908 CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5893; ORIGINAL_PRECURSOR_SCAN_NO 5891 CONFIDENCE standard compound; INTERNAL_ID 781; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2689; ORIGINAL_PRECURSOR_SCAN_NO 2687 IPB_RECORD: 305; CONFIDENCE confident structure KEIO_ID F014; [MS2] KO008961 KEIO_ID F014 Kinetin (N6-furfuryladenine) belongs to the family of N6-substituted adenine derivatives known as cytokinins, which are plant hormones involved in cell division, differentiation and other physiological processes. Kinetin has anti-aging effects[1]. Kinetin (N6-furfuryladenine) belongs to the family of N6-substituted adenine derivatives known as cytokinins, which are plant hormones involved in cell division, differentiation and other physiological processes. Kinetin has anti-aging effects[1]. Kinetin (N6-furfuryladenine) belongs to the family of N6-substituted adenine derivatives known as cytokinins, which are plant hormones involved in cell division, differentiation and other physiological processes. Kinetin has anti-aging effects[1].

   

Fructose

(3S,4R,5R)-2-(hydroxymethyl)tetrahydro-2H-pyran-2,3,4,5-tetraol

C6H12O6 (180.0633852)


A D-fructopyranose in which the anomeric centre has beta-configuration. Fructose, a member of a group of carbohydrates known as simple sugars, or monosaccharides. Fructose, along with glucose, occurs in fruits, honey, and syrups; it also occurs in certain vegetables. It is a component, along with glucose, of the disaccharide sucrose, or common table sugar. Phosphate derivatives of fructose (e.g., fructose-1-phosphate, fructose-1,6-diphosphate) are important in the metabolism of carbohydrates. D-fructopyranose is a fructopyranose having D-configuration. It has a role as a sweetening agent. It is a fructopyranose, a D-fructose and a cyclic hemiketal. D-Fructose is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). D-Fructose is a natural product found in Gentiana orbicularis, Colchicum schimperi, and other organisms with data available. A monosaccharide in sweet fruits and honey that is soluble in water, alcohol, or ether. It is used as a preservative and an intravenous infusion in parenteral feeding. Fructose is a levorotatory monosaccharide and an isomer of glucose. Although fructose is a hexose (6 carbon sugar), it generally exists as a 5-member hemiketal ring (a furanose). D-Fructose (D(-)-Fructose) is a naturally occurring monosaccharide found in many plants. D-Fructose (D(-)-Fructose) is a naturally occurring monosaccharide found in many plants. Fructose is a simple ketonic monosaccharide found in many plants, where it is often bonded to glucose to form the disaccharide sucrose. Fructose is a simple ketonic monosaccharide found in many plants, where it is often bonded to glucose to form the disaccharide sucrose.

   

Trigonelline (N'-methylnicotinate)

Pyridinium, 3-carboxy-1-methyl-, hydroxide, inner salt

C7H7NO2 (137.0476762)


Trigonelline, also known as caffearin or gynesine, belongs to the class of organic compounds known as alkaloids and derivatives. These are naturally occurring chemical compounds that contain mostly basic nitrogen atoms. This group also includes some related compounds with neutral and even weakly acidic properties. Also some synthetic compounds of similar structure are attributed to alkaloids. In addition to carbon, hydrogen and nitrogen, alkaloids may also contain oxygen, sulfur and more rarely other elements such as chlorine, bromine, and phosphorus. It is also found in coffee, where it may help to prevent dental caries by preventing the bacteria Streptococcus mutans from adhering to teeth. Trigonelline is an alkaloid with chemical formula C7H7NO2 and CAS number 535-83-1. Trigonelline is a product of the metabolism of niacin (vitamin B3) which is excreted in the urine. High amounts of trigonelline have been found in arabica coffee, fenugreeks, and common peas. Another foods such as yellow bell peppers, orange bellpeppers and muskmelons also contain trigonelline but in lower concentrations. Trigonelline has also been detected but not quantified in several different foods, such as rices, triticales, alfalfa, cereals and cereal products, and ryes. Trigonelline in the urine is a biomarker for the consumption of coffee, legumes and soy products. Alkaloid from fenugreek (Trigonella foenum-graecum) (Leguminosae), and very many other subspecies; also present in coffee beans and many animals. Trigonelline is an alkaloid with chemical formula C7H7NO2 and CAS number 535-83-1. It is found in coffee, where it may help to prevent dental caries by preventing the bacteria Streptococcus mutans from adhering to teeth.; Trigonelline is an alkaloid with chemical formula C7H7NO2. It is an inner salt formed by the addition of a methyl group to the nitrogen atom of niacin. Trigonelline is a product of the metabolism of niacin (vitamin B3) which is excreted in the urine. Trigonelline in the urine is a biomarker for the consumption of coffee, legumes and soy products. N-methylnicotinate is an iminium betaine that is the conjugate base of N-methylnicotinic acid, arising from deprotonation of the carboxy group. It has a role as a plant metabolite, a food component and a human urinary metabolite. It is an iminium betaine and an alkaloid. It is functionally related to a nicotinate. It is a conjugate base of a N-methylnicotinic acid. Trigonelline is a natural product found in Hypoestes phyllostachya, Schumanniophyton magnificum, and other organisms with data available. See also: Fenugreek seed (part of). Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; ML_ID 52 KEIO_ID T060 Trigonelline is an alkaloid with potential antidiabetic activity that can be isolated from Trigonella foenum-graecum L or Leonurus artemisia. Trigonelline is a potent Nrf2 inhibitor that blocks Nrf2-dependent proteasome activity, thereby enhancing apoptosis in pancreatic cancer cells. Trigonelline also has anti-HSV-1, antibacterial, and antifungal activity and induces ferroptosis. Trigonelline is an alkaloid with potential antidiabetic activity that can be isolated from Trigonella foenum-graecum L or Leonurus artemisia. Trigonelline is a potent Nrf2 inhibitor that blocks Nrf2-dependent proteasome activity, thereby enhancing apoptosis in pancreatic cancer cells. Trigonelline also has anti-HSV-1, antibacterial, and antifungal activity and induces ferroptosis.

   

L-Isoleucine

(2S,3S)-2-amino-3-methylpentanoic acid

C6H13NO2 (131.0946238)


Isoleucine (Ile) or L-isoleucine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-isolecuine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Isoleucine is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aliphatic amino acid. Isoleucine is an essential amino acid in humans, meaning the body cannot synthesize it and that it must be obtained from the diet. In plants and microorganisms, isoleucine is synthesized starting from pyruvate and alpha-ketobutyrate. Isoleucine is classified as a branched chain amino acid (BCAA). BCAAs include three amino acids: isoleucine, leucine and valine. They are alpha amino acids whose carbon structure is marked by a beta branch point. Despite their structural similarities, BCAAs have different metabolic routes, with valine going solely to carbohydrates (glucogenic), leucine solely to fats (ketogenic) and isoleucine being both a glucogenic and a ketogenic amino acid. Isoleucine is catabolized via with alpha-ketoglutarate where upon it is oxidized and split into propionyl-CoA and acetyl-CoA. Propionyl-CoA is converted into succinyl-CoA, a TCA cycle intermediate which can be converted into oxaloacetate for gluconeogenesis (hence glucogenic). The acetyl-CoA can be fed into the TCA cycle by condensing with oxaloacetate to form citrate or used in the synthesis of ketone bodies or fatty acids. The different metabolism of BCAAs accounts for different requirements for these essential amino acids in humans: 12 mg/kg, 14 mg/kg and 16 mg/kg of valine, leucine and isoleucine are required respectively. Furthermore, these amino acids have different deficiency symptoms. Valine deficiency is marked by neurological defects in the brain, while isoleucine deficiency is marked by muscle tremors. BCAAs are decreased in patients with liver disease, such as hepatitis, hepatic coma, cirrhosis, extrahepatic biliary atresia. An inability to break down isoleucine, along with other amino acids, is associated with maple syrup urine disease (MSUD) (PMID: 34125801). Isoleucine, like other BCAAs, is associated with insulin resistance. In particular, higher levels of isoleucine are observed in the blood of diabetic mice, rats, and humans (PMID 25287287). Mice fed an isoleucine deprivation diet for one day have improved insulin sensitivity, and feeding of an isoleucine deprivation diet for one week significantly decreases blood glucose levels (PMID: 24684822). L-isoleucine is the L-enantiomer of isoleucine. It has a role as a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a plant metabolite, a human metabolite, an algal metabolite and a mouse metabolite. It is an aspartate family amino acid, a proteinogenic amino acid, an isoleucine and a L-alpha-amino acid. It is a conjugate base of a L-isoleucinium. It is a conjugate acid of a L-isoleucinate. It is an enantiomer of a D-isoleucine. It is a tautomer of a L-isoleucine zwitterion. An essential branched-chain aliphatic amino acid found in many proteins. It is an isomer of leucine. It is important in hemoglobin synthesis and regulation of blood sugar and energy levels. L-Isoleucine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Isoleucine is one of nine essential amino acids in humans (present in dietary proteins), Isoleucine has diverse physiological functions, such as assisting wound healing, detoxification of nitrogenous wastes, stimulating immune function, and promoting secretion of several hormones. Necessary for hemoglobin formation and regulating blood sugar and energy levels, isoleucine is concentrated in muscle tissues in humans. Isoleucine is found especially in meats, fish, cheese, eggs, and most seeds and nuts. (NCI04) L-Isoleucine is one of the essential amino acids that cannot be made by the body and is known for its ability to help endurance and assist in the repair and rebuilding of muscle. This amino acid is important to body builders as it helps boost energy and helps the body recover from training. L-Isoleucine is also classified as a branched-chain amino acid (BCAA). It helps promote muscle recovery after exercise. Isoleucine is actually broken down for energy within the muscle tissue. It is important in hemoglobin synthesis and regulation of blood sugar and energy levels. An essential branched-chain aliphatic amino acid found in many proteins. It is an isomer of LEUCINE. It is important in hemoglobin synthesis and regulation of blood sugar and energy levels. L-Isoleucine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=73-32-5 (retrieved 2024-07-01) (CAS RN: 73-32-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-isoleucine is a nonpolar hydrophobic amino acid[1]. L-Isoleucine is an essential amino acid. L-isoleucine is a nonpolar hydrophobic amino acid[1]. L-Isoleucine is an essential amino acid.

   

Dihydrochelirubine

15-methoxy-24-methyl-5,7,18,20-tetraoxa-24-azahexacyclo[11.11.0.02,10.04,8.014,22.017,21]tetracosa-1(13),2,4(8),9,11,14,16,21-octaene

C21H17NO5 (363.1106672)


Dihydrochelirubine is a benzophenanthridine alkaloid that is dihydrosanguinarine bearing a methoxy substituent at position 10. It has a role as a metabolite. It is functionally related to a dihydrosanguinarine. Dihydrochelirubine is a natural product found in Eschscholzia californica, Glaucium flavum, and other organisms with data available. A benzophenanthridine alkaloid that is dihydrosanguinarine bearing a methoxy substituent at position 10.

   

Crocetindial

(2E,4E,6E,8E,10E,12E,14E)-2,6,11,15-tetramethylhexadeca-2,4,6,8,10,12,14-heptaenedial

C20H24O2 (296.17762039999997)


Crocetin dialdehyde is an apo carotenoid diterpenoid compound arising from oxidative degradation of the beta,beta-carotene skeleton at the 8- and 8-positions. It is an enal, a dialdehyde and an apo carotenoid diterpenoid. Crocetin dialdehyde is a natural product found in Plectranthus barbatus with data available.

   

Pinostilbene

3-[2-(4-hydroxyphenyl)vinyl]-5-methoxy-phenol;Pinostilbene

C15H14O3 (242.0942894)


3-methoxy-4,5-dihydroxy-trans-stilbene is a stilbenoid that is trans-resveratrol in which one of the meta-hydroxy groups is converted to the corresponding methyl ether. It is functionally related to a trans-resveratrol. 3-Methoxy-4,5-dihydroxy-trans-stilbene is a natural product found in Soymida febrifuga, Rumex bucephalophorus, and other organisms with data available. A stilbenoid that is trans-resveratrol in which one of the meta-hydroxy groups is converted to the corresponding methyl ether. Pinostilbene (trans-Pinostilbene) is a major metabolite of Pterostilbene. Pinostilbene exhibits inhibitory effects on colon cancer cells[1]. Pinostilbene (trans-Pinostilbene) is a major metabolite of Pterostilbene. Pinostilbene exhibits inhibitory effects on colon cancer cells[1].

   

Medicarpin

9-Methoxy-6a,11a-dimethyl-6a,11a-dihydro-6H-\ 1-benzofuro[3,2-c]chromen-3-ol from Dalbergia Oliveri

C16H14O4 (270.0892044)


A member of the class of pterocarpans that is 3-hydroxyptercarpan with a methoxy substituent at position 9. (+)-medicarpin is the (+)-enantiomer of medicarpin. It is an enantiomer of a (-)-medicarpin. (+)-Medicarpin is a natural product found in Dalbergia sissoo, Machaerium acutifolium, and other organisms with data available. The (+)-enantiomer of medicarpin. (-)-medicarpin is the (-)-enantiomer of medicarpin. It has a role as a plant metabolite. It is an enantiomer of a (+)-medicarpin. Medicarpin is a natural product found in Cicer chorassanicum, Melilotus dentatus, and other organisms with data available. See also: Glycyrrhiza uralensis Root (part of); Medicago sativa whole (part of). The (-)-enantiomer of medicarpin. Medicarpin is a flavonoid isolated from Medicago sativa. Medicarpin induces apoptosis and overcome multidrug resistance in leukemia P388 cells by modulating P-gp-mediated efflux of agents[1]. Medicarpin is a flavonoid isolated from Medicago sativa. Medicarpin induces apoptosis and overcome multidrug resistance in leukemia P388 cells by modulating P-gp-mediated efflux of agents[1].

   

Geranyl acetate

Geranyl acetate, food grade (71\\% geranyl acetate, 29\\% citronellyl acetate)

C12H20O2 (196.14632200000003)


Geranyl acetate is a clear colorless liquid with an odor of lavender. (NTP, 1992) Geranyl acetate is a monoterpenoid that is the acetate ester derivative of geraniol. It has a role as a plant metabolite. It is an acetate ester and a monoterpenoid. It is functionally related to a geraniol. Geranyl acetate is a natural product found in Nepeta nepetella, Xylopia sericea, and other organisms with data available. See also: Lemon oil, cold pressed (part of); Coriander Oil (part of); Java citronella oil (part of). Neryl acetate is found in cardamom. Neryl acetate is found in citrus, kumquat and pummelo peel oils, ginger, cardamon, clary sage, myrtle leaf and myrtle berries. Neryl acetate is a flavouring agent A monoterpenoid that is the acetate ester derivative of geraniol. Geranyl acetate, an acyclic monoterpene ester derived from geraniol, is widely used in the cosmetics industry due to its pleasant scent[1]. Geranyl acetate can induces cell apoptosis[2]. Geranyl acetate, an acyclic monoterpene ester derived from geraniol, is widely used in the cosmetics industry due to its pleasant scent[1]. Geranyl acetate can induces cell apoptosis[2].

   

SS-secoisolariciresinol

1,4-Butanediol, 2,3-bis((4-hydroxy-3-methoxyphenyl)methyl)-, (S-(R*,R*))-

C20H26O6 (362.17292960000003)


(+)-secoisolariciresinol is an enantiomer of secoisolariciresinol having (+)-(2S,3S)-configuration. It is an enantiomer of a (-)-secoisolariciresinol. (+)-Secoisolariciresinol is a natural product found in Taxus baccata, Phyllanthus polyphyllus, and other organisms with data available. An enantiomer of secoisolariciresinol having (+)-(2S,3S)-configuration. (+)-Secoisolariciresinol, a lignan compound, is a (+)-enantiomer of Secoisolariciresinol[1].

   

Dicrocin

(2S,3R,4S,5S,6R)-3,4,5-Trihydroxy-6-(hydroxymethyl)oxan-2-yl (3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2E,4E,6E,8E,10E,12E,14E)-2,6,11,15-tetramethylhexadeca-2,4,6,8,10,12,14-heptaenedioic acid

C32H44O14 (652.2730924)


Dicrocin is a water-soluble crocetin glycoside, a carotenoid pigment of saffron (Crocus sativus L.) that has been used as a spice for flavoring and coloring food preparations, and in Chinese traditional medicine as an anodyne or tranquilizer. Saffron is now used worldwide in folk medicine and is reputed to be useful in treating various human disorders such as heart and blood disorders. Stroke and heart attack are involved in reputed folkloric uses of saffron. Saffron is orally administrated as a decoction. Saffron extract exerts a protective effect on renal ischemia reperfusion induced oxidative damage in rats. (PMID: 17215084). Crocetin esters present in saffron stigmas and in Gardenia jasminoides Ellis fruit are the compounds responsible for their color. (PMID: 16448211). Bis(beta-D-glucosyl) crocetin is a diester resulting from the formal condensation of each of the carboxylic acid groups of crocetin with an anomeric hydroxy group of beta-D-glucopyranose. It is a diester and a beta-D-glucoside. It is functionally related to a crocetin and a beta-D-glucose. Dicrocin is a natural product found in Crocus sativus with data available.

   

Pluviatolide

2(3H)-Furanone, 4-(1,3-benzodioxol-5-ylmethyl)dihydro-3-((4-hydroxy-3-methoxyphenyl)methyl)-, (3R-trans)-

C20H20O6 (356.125982)


(-)-pluviatolide is a butan-4-olide that is dihydrofuran-2(3H)-one which is substituted by a vanillyl group at position 3 and by a 3,4-methylenedioxybenzyl group at position 4 (the R,R stereoisomer). It has a role as a plant metabolite. It is a member of phenols, a member of benzodioxoles, an aromatic ether, a lignan and a butan-4-olide. Pluviatolide is a natural product found in Torreya jackii, Syringa pinnatifolia, and other organisms with data available. A butan-4-olide that is dihydrofuran-2(3H)-one which is substituted by a vanillyl group at position 3 and by a 3,4-methylenedioxybenzyl group at position 4 (the R,R stereoisomer).

   

Indole-3-carboxaldehyde

1H-indole-3-carbaldehyde

C9H7NO (145.0527612)


Indole-3-carboxaldehyde (IAld or I3A), also known as 3-formylindole or 3-indolealdehyde, belongs to the class of organic compounds known as indoles. Indoles are compounds containing an indole moiety, which consists of a pyrrole ring fused to benzene to form 2,3-benzopyrrole. In humans, I3A is a biologically active metabolite which acts as a receptor agonist at the aryl hydrocarbon receptor in intestinal immune cells. It stimulates the production of interleukin-22 which facilitates mucosal reactivity (PMID:27102537). I3A is a microbially derived tryptophan metabolite produced by Clostridium and Lactobacillus (PMID:30120222, 27102537). I3A has also been found in the urine of patients with untreated phenylketonuria (PMID:5073866). I3A has been detected, but not quantified, in several different foods, such as beans, Brussels sprouts, cucumbers, cereals and cereal products, and white cabbages. This could make I3A a potential biomarker for the consumption of these foods. Indole-3-carbaldehyde is a heteroarenecarbaldehyde that is indole in which the hydrogen at position 3 has been replaced by a formyl group. It has a role as a plant metabolite, a human xenobiotic metabolite, a bacterial metabolite and a marine metabolite. It is a heteroarenecarbaldehyde, an indole alkaloid and a member of indoles. Indole-3-carboxaldehyde is a natural product found in Euphorbia hirsuta, Derris ovalifolia, and other organisms with data available. A heteroarenecarbaldehyde that is indole in which the hydrogen at position 3 has been replaced by a formyl group. Found in barley and tomato seedlings and cotton Indole-3-carboxaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=487-89-8 (retrieved 2024-07-02) (CAS RN: 487-89-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Indole-3-carboxaldehyde (3-Formylindole), a banlangen extract, is the product of the oxidative degradation of indole-3-acetic acid (IAA) by crude enzyme preparations from etiolated pea seedlings. Indole-3-carboxaldehyde (3-Formylindole) is a biochemical used to prepare analogs of the indole phytoalexin cyclobrassinin[1]. Indole-3-carboxaldehyde (3-Formylindole), a banlangen extract, is the product of the oxidative degradation of indole-3-acetic acid (IAA) by crude enzyme preparations from etiolated pea seedlings. Indole-3-carboxaldehyde (3-Formylindole) is a biochemical used to prepare analogs of the indole phytoalexin cyclobrassinin[1].

   

3-Hexen-1-ol

(3Z)-3-Hexen-1-ol ; (z)-3-hexen-1-o;3-Hexen-1-ol;Cis-3-Hexenol

C6H12O (100.0888102)


(Z)-hex-3-en-1-ol is a hex-3-en-1-ol in which the double bond adopts a Z-configuration. Also known as leaf alcohol, it is emitted by green plants upon mechanical damage. Used as a flavourant in tea. It has a role as an insect attractant, a plant metabolite and a fragrance. cis-3-Hexen-1-ol is a natural product found in Lonicera japonica, Santolina corsica, and other organisms with data available. cis-3-hexen-1-ol is a metabolite found in or produced by Saccharomyces cerevisiae. 3-Hexen-1-ol, also known as 1-hydroxy-3-hexene, is a colourless oily liquid with an intense grassy-green odour of freshly cut green grass and leaves. It is produced in small amounts by most plants and it acts as an attractant to many predatory insects. 3-Hexen-1-ol is a very important aroma compound that is used in fruit and vegetable flavours and in perfumes. The yearly production is about 30 tonnes. 3-Hexen-1-ol is found in black elderberry. It is used as tea flavourant. Preferred to (E)-isomer in perfumes and flavours to add natural `green notes. Occurs in geranium, tea, citrus and other oils, and many fruits, e.g. banana, concord grape, quince. (Z)-3-Hexen-1-ol is found in many foods, some of which are allspice, dill, citrus, and garden tomato (variety). A hex-3-en-1-ol in which the double bond adopts a Z-configuration. Also known as leaf alcohol, it is emitted by green plants upon mechanical damage. Used as a flavourant in tea. cis-3-Hexen-1-ol ((Z)-3-Hexen-1-ol) is a green grassy smelling compound found in many fresh fruits and vegetables. cis-3-Hexen-1-ol is widely used as an added flavor in processed food to provide a fresh green quality. cis-3-Hexen-1-ol is an attractant to various insects[1][2]. cis-3-Hexen-1-ol ((Z)-3-Hexen-1-ol) is a green grassy smelling compound found in many fresh fruits and vegetables. cis-3-Hexen-1-ol is widely used as an added flavor in processed food to provide a fresh green quality. cis-3-Hexen-1-ol is an attractant to various insects[1][2].

   

(+)-alpha-Pinene

(R)-(+)--Pinene;(+)--Pinene; (1R)-(+)--Pinene; (1R)--Pinene; (1R,5R)-(+)--Pinene

C10H16 (136.1251936)


alpha-Pinene (CAS: 80-56-8) is an organic compound of the terpene class and is one of two isomers of pinene. It is found in the oils of many species of many coniferous trees, notably the pine. It is also found in the essential oil of rosemary (Rosmarinus officinalis). Both enantiomers are known in nature. 1S,5S- or (-)-alpha-pinene is more common in European pines, whereas the 1R,5R- or (+)-alpha-isomer is more common in North America. The racemic mixture is present in some oils such as eucalyptus oil (Wikipedia). alpha-Pinene is an organic compound of the terpene class, one of two isomers of pinene. It is found in the oils of many species of many coniferous trees, notably the pine. It is also found in the essential oil of rosemary (Rosmarinus officinalis). Both enantiomers are known in nature; 1S,5S- or (-)-alpha-pinene is more common in European pines, whereas the 1R,5R- or (+)-alpha-isomer is more common in North America. The racemic mixture is present in some oils such as eucalyptus oil. (+)-alpha-pinene is the (+)-enantiomer of alpha-pinene. It has a role as a plant metabolite and a human metabolite. It is an enantiomer of a (-)-alpha-pinene. (+)-alpha-Pinene is a natural product found in Juniperus drupacea, Eucalyptus deglupta, and other organisms with data available. The (+)-enantiomer of alpha-pinene. (1R)-α-Pinene is a volatile monoterpene with antimicrobial activities. (1R)-α-Pinene reduces Bacillus cereus population growth, and exhibits repellent effects[1][2]. (1R)-α-Pinene is a volatile monoterpene with antimicrobial activities. (1R)-α-Pinene reduces Bacillus cereus population growth, and exhibits repellent effects[1][2].

   

Bis(2-ethylhexyl) phthalate

1,2-Benzenedicarboxylic acid bis(2-ethylhexyl) ester

C24H38O4 (390.2769948)


Di(2-ethylhexyl) phthlate (DEHP) is a manufactured chemical that is commonly added to plastics to make them flexible. DEHP is a colorless liquid with almost no odor. DEHP is present in plastic products such as wall coverings, tablecloths, floor tiles, furniture upholstery, shower curtains, garden hoses, swimming pool liners, rainwear, baby pants, dolls, some toys, shoes, automobile upholstery and tops, packaging film and sheets, sheathing for wire and cable, medical tubing, and blood storage bags. Di(2-ethylhexyl) phthalate is a colorless to pale yellow oily liquid. Nearly odorless. (USCG, 1999) Bis(2-ethylhexyl) phthalate is a phthalate ester that is the bis(2-ethylhexyl) ester of benzene-1,2-dicarboxylic acid. It has a role as an apoptosis inhibitor, an androstane receptor agonist and a plasticiser. It is a phthalate ester and a diester. Dioctyl phthalate. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=8033-53-2 (retrieved 2024-10-11) (CAS RN: 117-81-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

atrazine

6-chloro-N2-ethyl-N4-(1-methylethyl)-1,3,5-triazine-2,4,-diamine

C8H14ClN5 (215.0937674)


A diamino-1,3,5-triazine that is 1,3,5-triazine-2,4-diamine substituted by a chloro group at position 6 while one of hydrogens of each amino group is replaced respectively by an ethyl and a propan-2-yl group. D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals CONFIDENCE standard compound; INTERNAL_ID 718; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8568; ORIGINAL_PRECURSOR_SCAN_NO 8565 CONFIDENCE standard compound; INTERNAL_ID 718; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8581; ORIGINAL_PRECURSOR_SCAN_NO 8579 CONFIDENCE standard compound; INTERNAL_ID 718; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8572; ORIGINAL_PRECURSOR_SCAN_NO 8570 CONFIDENCE standard compound; INTERNAL_ID 718; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8520; ORIGINAL_PRECURSOR_SCAN_NO 8518 CONFIDENCE standard compound; INTERNAL_ID 718; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8527; ORIGINAL_PRECURSOR_SCAN_NO 8525 CONFIDENCE standard compound; INTERNAL_ID 718; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8492; ORIGINAL_PRECURSOR_SCAN_NO 8489 CONFIDENCE standard compound; EAWAG_UCHEM_ID 288 CONFIDENCE standard compound; INTERNAL_ID 4033 CONFIDENCE standard compound; INTERNAL_ID 3109 CONFIDENCE standard compound; INTERNAL_ID 8414 CONFIDENCE standard compound; INTERNAL_ID 29

   

2-Aminobenzoic acid

Anthranilic acid, calcium (2:1) salt

C7H7NO2 (137.0476762)


2-Aminobenzoic acid, also known as anthranilic acid or O-aminobenzoate, belongs to the class of organic compounds known as aminobenzoic acids. These are benzoic acids containing an amine group attached to the benzene moiety. Within humans, 2-aminobenzoic acid participates in a number of enzymatic reactions. In particular, 2-aminobenzoic acid and formic acid can be biosynthesized from formylanthranilic acid through its interaction with the enzyme kynurenine formamidase. In addition, 2-aminobenzoic acid and L-alanine can be biosynthesized from L-kynurenine through its interaction with the enzyme kynureninase. It is a substrate of enzyme 2-Aminobenzoic acid hydroxylase in benzoate degradation via hydroxylation pathway (KEGG). In humans, 2-aminobenzoic acid is involved in tryptophan metabolism. Outside of the human body, 2-Aminobenzoic acid has been detected, but not quantified in several different foods, such as mamey sapotes, prairie turnips, rowals, natal plums, and hyacinth beans. This could make 2-aminobenzoic acid a potential biomarker for the consumption of these foods. 2-Aminobenzoic acid is a is a tryptophan-derived uremic toxin with multidirectional properties that can affect the hemostatic system. Uremic syndrome may affect any part of the body and can cause nausea, vomiting, loss of appetite, and weight loss. Chronic exposure of uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease. It can also cause changes in mental status, such as confusion, reduced awareness, agitation, psychosis, seizures, and coma. 2-Aminobenzoic acid is an organic compound. It is a substrate of enzyme anthranilate hydroxylase [EC 1.14.13.35] in benzoate degradation via hydroxylation pathway (KEGG). [HMDB]. Anthranilic acid is found in many foods, some of which are butternut squash, sunflower, ginger, and hyssop. Acquisition and generation of the data is financially supported in part by CREST/JST. D002491 - Central Nervous System Agents > D000927 - Anticonvulsants CONFIDENCE standard compound; INTERNAL_ID 8844 CONFIDENCE standard compound; INTERNAL_ID 8009 CONFIDENCE standard compound; INTERNAL_ID 115 KEIO_ID A010

   

1-Methylxanthine

2-hydroxy-1-methyl-6,9-dihydro-1H-purin-6-one

C6H6N4O2 (166.0490736)


1-Methylxanthine is one of the major metabolites of caffeine in humans. The oxidation of 1-methylxanthine to 1-methyluric acid occurs so rapidly that the parent compound could not be detected in plasma, and only low concentrations could be detected in the brain (PMID: 28863020). 1-methylxanthine is the major metabolites of caffeine in the human. The oxidation of 1-methylxanthine to 1-methyluric acid occurred so rapidly that the parent compound could not be detected in plasma, and only low concentrations could be detected in brain. (PMID: 28863020 [HMDB] 1-Methylxanthine, a caffeine derivative, is an essential human urinary metabolite of caffeine and theophylline (1,3-dimethylxanthine, TP)[1]. 1-Methylxanthine enhances the radiosensitivity of tumor cells[2]. 1-Methylxanthine, a caffeine derivative, is an essential human urinary metabolite of caffeine and theophylline (1,3-dimethylxanthine, TP)[1]. 1-Methylxanthine enhances the radiosensitivity of tumor cells[2].

   

Deoxycytidine

4-Amino-1-[(2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl]pyrimidin-2(1H)-one

C9H13N3O4 (227.0906018)


Deoxycytidine, also known as dC, belongs to the class of organic compounds known as pyrimidine 2-deoxyribonucleosides. Pyrimidine 2-deoxyribonucleosides are compounds consisting of a pyrimidine linked to a ribose which lacks a hydroxyl group at position 2. Deoxycytidine is also classified as a deoxyribonucleoside, a component of deoxyribonucleic acid (DNA). Deoxycytidine is similar to the ribonucleoside cytidine, but with one hydroxyl group removed from the 2 position. Deoxycytidine exists in all living species, ranging from bacteria to plants to humans. Degradation of DNA through apoptosis or cell death produces deoxycytidine. Within humans, deoxycytidine participates in a number of enzymatic reactions. In particular, deoxycytidine can be biosynthesized from dCMP through the action of the enzyme cytosolic purine 5-nucleotidase. In addition, deoxycytidine can be converted into dCMP; which is mediated by the enzyme uridine-cytidine kinase-like 1. Deoxycytidine can be phosphorylated at the C-5 position by the enzyme deoxycytidine kinase to produce deoxycytidine monophosphate (dCMP), and to a lesser extent, deoxycytidine diphosphate (dCDP), and deoxycytidine triphosphate (dCTP). Deoxycytidine can also be phosphorylated by thymidine kinase 2 (TK2). Deoxycytidine can potentially be used for the treatment of the metabolic disorder known as thymidine kinase 2 deficiency (TK2 deficiency). TK2 deficiency has three disease subtypes: i) infantile-onset myopathy with rapid progression to early death ii) childhood-onset myopathy, which resembles spinal muscular atrophy (SMA) type III, begins between ages 1 and 12 years with progression to loss of ambulation within few years and iii) late-onset myopathy starting at age 12 year or later with moderate to severe myopathy manifesting as either isolated chronic progressive external ophthalmoplegia (CPEO) or a generalized myopathy with CPEO plus facial and limb weakness, gradual progression, and, in some cases, respiratory failure and loss of ability to walk in adulthood (PMID: 28318037). In mouse models of TK2, dC was shown to delay disease onset, prolong life span and restore mtDNA copy number as well as respiratory chain enzyme activities (PMID: 28318037). One of the principal nucleosides of DNA composed of cytosine and deoxyribose. A nucleoside consists of only a pentose sugar linked to a purine or pyrimidine base, without a phosphate group. When N1 is linked to the C1 of deoxyribose, deoxynucleosides and nucleotides are formed from cytosine and deoxyribose; deoxycytidine monophosphate (dCMP), deoxycytidine diphosphate (dCDP), deoxycytidine triphosphate (dCTP). CTP is the source of the cytidine in RNA (ribonucleic acid) and deoxycytidine triphosphate (dCTP) is the source of the deoxycytidine in DNA (deoxyribonucleic acid). [HMDB]. Deoxycytidine is found in many foods, some of which are japanese pumpkin, turmeric, prairie turnip, and kai-lan. C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite Acquisition and generation of the data is financially supported in part by CREST/JST. C26170 - Protective Agent > C2459 - Chemoprotective Agent COVID info from COVID-19 Disease Map KEIO_ID D055; [MS2] KO008940 Corona-virus KEIO_ID D055 Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2'-Deoxycytidine, a deoxyribonucleoside, can inhibit biological effects of Bromodeoxyuridine (Brdu). 2'-Deoxycytidine is essential for the synthesis of nucleic acids, that can be used for the research of cancer[1][2]. 2'-Deoxycytidine, a deoxyribonucleoside, could inhibit biological effects of Bromodeoxyuridine (Brdu).

   

Deoxyuridine

1-[(2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-1,2,3,4-tetrahydropyrimidine-2,4-dione

C9H12N2O5 (228.07461819999997)


Deoxyuridine, also known as dU, belongs to the class of organic compounds known as pyrimidine 2-deoxyribonucleosides. Pyrimidine 2-deoxyribonucleosides are compounds consisting of a pyrimidine linked to a ribose which lacks a hydroxyl group at position 2. It is similar in chemical structure to uridine, but without the 2-hydroxyl group. Deoxyuridine exists in all living organisms, ranging from bacteria to humans. Within humans, deoxyuridine participates in a number of enzymatic reactions. In particular, deoxyuridine can be biosynthesized from deoxycytidine through its interaction with the enzyme cytidine deaminase. In addition, deoxyuridine can be converted into uracil and deoxyribose 1-phosphate through its interaction with the enzyme thymidine phosphorylase. Deoxyuridine is considered to be an antimetabolite that is converted into deoxyuridine triphosphate during DNA synthesis. Laboratory suppression of deoxyuridine is used to diagnose megaloblastic anemia due to vitamin B12 and folate deficiencies. In humans, deoxyuridine is involved in the metabolic disorder called UMP synthase deficiency (orotic aciduria). Outside of the human body, deoxyuridine has been detected, but not quantified in, several different foods, such as lichee, highbush blueberries, agaves, macadamia nut (M. tetraphylla), and red bell peppers. This could make deoxyuridine a potential biomarker for the consumption of these foods. 2-Deoxyuridine is a naturally occurring nucleoside. It is similar in chemical structure to uridine, but without the 2-hydroxyl group. It is considered to be an antimetabolite that is converted to deoxyuridine triphosphate during DNA synthesis. Laboratory suppression of deoxyuridine is used to diagnose megaloblastic anemia due to vitamin B12 and folate deficiencies. [HMDB]. Deoxyuridine is found in many foods, some of which are garden tomato (variety), hickory nut, banana, and hazelnut. Deoxyuridine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=951-78-0 (retrieved 2024-07-01) (CAS RN: 951-78-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 2'-Deoxyuridine could increase chromosome breakage and results in a decreased thymidylate synthetase activity. A known use of 2'-Deoxyuridine is as a precursor in the synthesis of Edoxudine. 2'-Deoxyuridine could increase chromosome breakage and results in a decreased thymidylate synthetase activity. A known use of 2'-Deoxyuridine is as a precursor in the synthesis of Edoxudine. 2'-Deoxyuridine could increase chromosome breakage and results in a decreased thymidylate synthetase activity. A known use of 2'-Deoxyuridine is as a precursor in the synthesis of Edoxudine.

   

2,4-Quinolinediol

4-hydroxy-1,2-dihydroquinolin-2-one

C9H7NO2 (161.0476762)


   

Deoxyadenosine

(2R,3S,5R)-5-(6-Amino-9H-purin-9-yl)-2-(hydroxymethyl)tetrahydrofuran-3-ol

C10H13N5O3 (251.10183480000003)


Deoxyadenosine is a derivative of the nucleoside adenosine. It is composed of adenine attached to a deoxyribose moiety via a N9-glycosidic bond. Deoxyribose differs from ribose by the absence of oxygen in the 3 position of its ribose ring. Deoxyadenosine is a critical component of DNA. When present in sufficiently high levels, deoxyadensoine can act as an immunotoxin and a metabotoxin. An immunotoxin disrupts, limits the function, or destroys immune cells. A metabotoxin is an endogenous metabolite that causes adverse health effects at chronically high levels. Chronically high levels of deoxyadenosine are associated with adenosine deaminase (ADA) deficiency, an inborn error of metabolism. ADA deficiency damages the immune system and causes severe combined immunodeficiency (SCID). People with SCID lack virtually all immune protection from bacteria, viruses, and fungi. They are prone to repeated and persistent infections that can be very serious or life-threatening. These infections are often caused by "opportunistic" organisms that ordinarily do not cause illness in people with a normal immune system. The main symptoms of ADA deficiency are pneumonia, chronic diarrhea, and widespread skin rashes. The mechanism by which dATP functions as an immunotoxin is as follows: because deoxyadenosine is a precursor to dATP, a buildup of dATP in cells inhibits ribonucleotide reductase and prevents DNA synthesis, so cells are unable to divide. Since developing T cells and B cells are some of the most mitotically active cells, they are unable to divide and propagate to respond to immune challenges. High levels of deoxyadenosine also lead to an increase in S-adenosylhomocysteine, which is toxic to immature lymphocytes. Deoxyadenosine is a derivative of nucleoside adenosine. It is comprised of adenine attached to a deoxyribose moiety via a N9-glycosidic bond. Deoxyribose differs from ribose by the absence of oxygen in the 3 position of its ribose ring. Deoxyadenosine is a critical component of DNA. [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST. D000890 - Anti-Infective Agents > D000998 - Antiviral Agents COVID info from COVID-19 Disease Map D009676 - Noxae > D009153 - Mutagens KEIO_ID D069 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2'-Deoxyadenosine is a nucleoside adenosine derivative, pairing with deoxythymidine (T) in double-stranded DNA. 2'-Deoxyadenosine is a nucleoside adenosine derivative, pairing with deoxythymidine (T) in double-stranded DNA. 2'-Deoxyadenosine is a nucleoside adenosine derivative, pairing with deoxythymidine (T) in double-stranded DNA.

   

Tryptophol

3-(2-Hydroxyethyl)-1H-indole

C10H11NO (161.0840596)


Tryptophol, also known as indole-3-ethanol, is an indolyl alcohol that is ethanol substituted by a 1H-indol-3-yl group at position 2. It has a role as a Saccharomyces cerevisiae metabolite, an auxin and a plant metabolite. Tryptophol is a catabolite of tryptophan converted by the gut microbiota. After absorption through the intestinal epithelium, tryptophan catabolites enter the bloodstream and are later excreted in the urine (PMID:30120222). Tryptophol production was negatively associated with interferon-gamma production (IFNγ) which suggests that tryptophol has anti-inflammatory properties (PMID:27814509). Tryptophol has also been identified as the hypnotic agent in trypanosomal sleeping sickness, and because it is formed in vivo after ethanol or disulfiram treatment, it is also associated with the study of alcoholism (PMID:7241135). Indole-3-ethanol is a dietary indole present in cruciferous vegetables that has been shown to influence estradiol metabolism in humans and may provide a new chemopreventive approach to estrogen-dependent diseases. (PMID 2342128) Tryptophol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=526-55-6 (retrieved 2024-06-29) (CAS RN: 526-55-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Tryptophol (Indole-3-ethanol) is an endogenous metabolite. Tryptophol (Indole-3-ethanol) is an endogenous metabolite.

   

Dehydroepiandrosterone

(1S,2R,5S,10R,11S,15S)-5-hydroxy-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-14-one

C19H28O2 (288.2089188)


Dehydroepiandrosterone (DHEA) is a natural steroid hormone produced from cholesterol by the adrenal glands. DHEA is also produced in the gonads, adipose tissue and the brain. DHEA is structurally similar to, and is a precursor of, androstenedione, testosterone, estradiol, estrone and estrogen. It is the most abundant hormone in the human body. Most of DHEA is sulfated (dehydroepiandrosterone sulfate- DEHAS) before secretion. DHEAS is the sulfated version of DHEA; - this conversion is reversibly catalyzed by sulfotransferase (SULT2A1) primarily in the adrenals, the liver, and small intestines. In blood, most DHEA is found as DHEAS with levels that are about 300 times higher than free DHEA. Blood measurements of DHEAS/DHEA are useful to detect excess adrenal activity as seen in adrenal cancer or hyperplasia, including certain forms of congenital adrenal hyperplasia. Women with polycystic ovary syndrome tend to have normal or mildly elevated levels of DHEAS. [HMDB]. Dehydroepiandrosterone is found in many foods, some of which are summer grape, quinoa, calabash, and chinese chives. Dehydroepiandrosterone (DHEA) is a natural steroid hormone produced from cholesterol by the adrenal glands. DHEA is also produced in the gonads, adipose tissue, and the brain. DHEA is structurally similar to and is a precursor of, androstenedione, testosterone, estradiol, estrone, and estrogen. It is the most abundant hormone in the human body. Most of DHEA is sulfated (dehydroepiandrosterone sulfate or DHEA-S) before secretion. DHEA-S is the sulfated version of DHEA; this conversion is reversibly catalyzed by sulfotransferase (SULT2A1) primarily in the adrenals, the liver, and small intestines. In blood, most DHEA is found as DHEA-S with levels that are about 300 times higher than free DHEA. Blood measurements of DHEA-S/DHEA are useful to detect excess adrenal activity as seen in adrenal cancer or hyperplasia, including certain forms of congenital adrenal hyperplasia. Women with polycystic ovary syndrome tend to have normal or mildly elevated levels of DHEA-S. A - Alimentary tract and metabolism > A14 - Anabolic agents for systemic use > A14A - Anabolic steroids > A14AA - Androstan derivatives G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones CONFIDENCE standard compound; EAWAG_UCHEM_ID 3085 D007155 - Immunologic Factors

   

Androstenedione

(1S,2R,10R,11S,15S)-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-6-ene-5,14-dione

C19H26O2 (286.1932696)


Androst-4-en-3,17-dione, also known as androstenedione or delta(4)-androsten-3,17-dione, belongs to androgens and derivatives class of compounds. Those are 3-hydroxylated C19 steroid hormones. They are known to favor the development of masculine characteristics. They also show profound effects on scalp and body hair in humans. Thus, androst-4-en-3,17-dione is considered to be a steroid lipid molecule. Androst-4-en-3,17-dione is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Androst-4-en-3,17-dione can be found in a number of food items such as naranjilla, purslane, common cabbage, and oval-leaf huckleberry, which makes androst-4-en-3,17-dione a potential biomarker for the consumption of these food products. Androst-4-en-3,17-dione can be found primarily in blood, cerebrospinal fluid (CSF), and urine, as well as throughout most human tissues. In humans, androst-4-en-3,17-dione is involved in a couple of metabolic pathways, which include androgen and estrogen metabolism and androstenedione metabolism. Androst-4-en-3,17-dione is also involved in a couple of metabolic disorders, which include 17-beta hydroxysteroid dehydrogenase III deficiency and aromatase deficiency. Moreover, androst-4-en-3,17-dione is found to be associated with rheumatoid arthritis, thyroid cancer , cushings Syndrome, and schizophrenia. Androst-4-en-3,17-dione is a non-carcinogenic (not listed by IARC) potentially toxic compound. Androstenedione is a delta-4 19-carbon steroid that is produced not only in the testis, but also in the ovary and the adrenal cortex. Depending on the tissue type, androstenedione can serve as a precursor to testosterone as well as estrone and estradiol. It is the common precursor of male and female sex hormones. Some androstenedione is also secreted into the plasma and may be converted in peripheral tissues to testosterone and estrogens. Androstenedione originates either from the conversion of dehydroepiandrosterone or from 17-hydroxyprogesterone. It is further converted to either testosterone or estrone. The production of adrenal androstenedione is governed by ACTH, while the production of gonadal androstenedione is under control by gonadotropins. CONFIDENCE standard compound; INTERNAL_ID 396; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9081; ORIGINAL_PRECURSOR_SCAN_NO 9076 CONFIDENCE standard compound; INTERNAL_ID 396; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9111; ORIGINAL_PRECURSOR_SCAN_NO 9108 CONFIDENCE standard compound; INTERNAL_ID 396; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9069; ORIGINAL_PRECURSOR_SCAN_NO 9064 CONFIDENCE standard compound; INTERNAL_ID 396; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9077; ORIGINAL_PRECURSOR_SCAN_NO 9075 CONFIDENCE standard compound; INTERNAL_ID 396; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9113; ORIGINAL_PRECURSOR_SCAN_NO 9112 C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones CONFIDENCE standard compound; INTERNAL_ID 2803 INTERNAL_ID 2803; CONFIDENCE standard compound CONFIDENCE standard compound; INTERNAL_ID 4165

   

Cholestenone

(1S,2R,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-6-en-5-one

C27H44O (384.3391974)


Cholestenone belongs to the class of organic compounds known as cholesterols and derivatives. Cholesterols and derivatives are compounds containing a 3-hydroxylated cholestane core. Thus, cholestenone is considered to be a sterol lipid molecule. Cholestenone is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Cholestenone is a dehydrocholestanone. It is a product of cholesterol oxidase {EC 1.1.3.6] in the Bile acid biosynthesis pathway (KEGG). [HMDB] Cholestenone (4-Cholesten-3-one), the intermediate oxidation product of cholesterol, is metabolized primarily in the liver. Cholestenone is highly mobile in membranes and influences cholesterol flip-flop and efflux. Cholestenone may cause long-term functional defects in cells[1][2]. Cholestenone (4-Cholesten-3-one), the intermediate oxidation product of cholesterol, is metabolized primarily in the liver. Cholestenone is highly mobile in membranes and influences cholesterol flip-flop and efflux. Cholestenone may cause long-term functional defects in cells[1][2].

   

Tetrahydrobiopterin

(-)-(6R)-2-Amino-6-((1R,2S)-1,2-dihydroxypropyl)-5,6,7,8-tetrahydro-4(3H)-pteridinone

C9H15N5O3 (241.11748400000002)


Tetrahydrobiopterin (CAS: 17528-72-2), also known as BH4, is an essential cofactor in the synthesis of neurotransmitters and nitric oxide (PMID: 16946131). In fact, it is used by all three human nitric-oxide synthases (NOS) eNOS, nNOS, and iNOS as well as the enzyme glyceryl-ether monooxygenase. It is also essential in the conversion of phenylalanine into tyrosine by the enzyme phenylalanine-4-hydroxylase; the conversion of tyrosine into L-dopa by the enzyme tyrosine hydroxylase; and the conversion of tryptophan into 5-hydroxytryptophan via tryptophan hydroxylase. Specifically, tetrahydrobiopterin is a cofactor for tryptophan 5-hydroxylase 1, tyrosine 3-monooxygenase, and phenylalanine hydroxylase, all of which are essential for the formation of the neurotransmitters dopamine, noradrenaline, and adrenaline. Tetrahydrobiopterin has been proposed to be involved in the promotion of neurotransmitter release in the brain and the regulation of human melanogenesis. A defect in BH4 production and/or a defect in the enzyme dihydropteridine reductase (DHPR) causes phenylketonuria type IV, as well as dopa-responsive dystonias. BH4 is also implicated in Parkinsons disease, Alzheimers disease, and depression. Tetrahydrobiopterin is present in probably every cell or tissue of higher animals. On the other hand, most bacteria, fungi and plants do not synthesize tetrahydrobiopterin (Wikipedia). A - Alimentary tract and metabolism > A16 - Other alimentary tract and metabolism products > A16A - Other alimentary tract and metabolism products > A16AX - Various alimentary tract and metabolism products C26170 - Protective Agent > C275 - Antioxidant Tetrahydrobiopterin ((Rac)-Sapropterin) is a cofactor of the aromatic amino acid hydroxylases enzymes and also acts as an essential cofactor for all nitric oxide synthase (NOS) isoforms.

   

5-methylthioadenosine (MTA)

(2R,3R,4S,5S)-2-(6-amino-9H-purin-9-yl)-5-[(methylsulfanyl)methyl]oxolane-3,4-diol

C11H15N5O3S (297.089556)


5-Methylthioadenosine, also known as MTA or thiomethyladenosine, belongs to the class of organic compounds known as 5-deoxy-5-thionucleosides. These are 5-deoxyribonucleosides in which the ribose is thio-substituted at the 5position by a S-alkyl group. 5-Methylthioadenosine is metabolized solely by MTA-phosphorylase, to yield 5-methylthioribose-1-phosphate and adenine, a crucial step in the methionine and purine salvage pathways, respectively. 5-Methylthioadenosine exists in all living species, ranging from bacteria to humans. 5-Methylthioadenosine (MTA) is a naturally occurring sulfur-containing nucleoside present in all mammalian tissues. Within humans, 5-methylthioadenosine participates in a number of enzymatic reactions. In particular, 5-methylthioadenosine and spermidine can be biosynthesized from S-adenosylmethioninamine and putrescine through the action of the enzyme spermidine synthase. In addition, 5-methylthioadenosine can be converted into 5-methylthioribose 1-phosphate and L-methionine; which is catalyzed by the enzyme S-methyl-5-thioadenosine phosphorylase. It is produced from S-adenosylmethionine mainly through the polyamine biosynthetic pathway, where it behaves as a powerful inhibitory product. For instance, 5-Methylthioadenosine has been shown to influence the regulation of gene expression, proliferation, differentiation, and apoptosis (PMID:15313459). In humans, 5-methylthioadenosine is involved in the metabolic disorder called hypermethioninemia. Outside of the human body, 5-Methylthioadenosine has been detected, but not quantified in several different foods, such as soursops, allspices, summer grapes, alaska wild rhubarbs, and breadfruits. Elevated excretion appears in children with severe combined immunodeficiency syndrome (SCID) (PMID:3987052). Evidence suggests that 5-Methylthioadenosine can affect cellular processes in many ways. 5-Methylthioadenosine can be found in human urine. 5-deoxy-5-methylthioadenosine, also known as S-methyl-5-thioadenosine or mta, is a member of the class of compounds known as 5-deoxy-5-thionucleosides. 5-deoxy-5-thionucleosides are 5-deoxyribonucleosides in which the ribose is thio-substituted at the 5position by a S-alkyl group. 5-deoxy-5-methylthioadenosine is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 5-deoxy-5-methylthioadenosine can be found in a number of food items such as allspice, sesame, roselle, and bayberry, which makes 5-deoxy-5-methylthioadenosine a potential biomarker for the consumption of these food products. 5-deoxy-5-methylthioadenosine can be found primarily in blood and urine, as well as in human fibroblasts, platelet and prostate tissues. 5-deoxy-5-methylthioadenosine exists in all living species, ranging from bacteria to humans. In humans, 5-deoxy-5-methylthioadenosine is involved in a couple of metabolic pathways, which include methionine metabolism and spermidine and spermine biosynthesis. 5-deoxy-5-methylthioadenosine is also involved in several metabolic disorders, some of which include glycine n-methyltransferase deficiency, methionine adenosyltransferase deficiency, homocystinuria-megaloblastic anemia due to defect in cobalamin metabolism, cblg complementation type, and hypermethioninemia. 5'-Methylthioadenosine (5'-(Methylthio)-5'-deoxyadenosine) is a nucleoside generated from S-adenosylmethionine (SAM) during polyamine synthesis[1]. 5'-Methylthioadenosine suppresses tumors by inhibiting tumor cell proliferation, invasion, and the induction of apoptosis while controlling the inflammatory micro-environments of tumor tissue. 5'-Methylthioadenosine and its associated materials have striking regulatory effects on tumorigenesis[2]. 5'-Methylthioadenosine (5'-(Methylthio)-5'-deoxyadenosine) is a nucleoside generated from S-adenosylmethionine (SAM) during polyamine synthesis[1]. 5'-Methylthioadenosine suppresses tumors by inhibiting tumor cell proliferation, invasion, and the induction of apoptosis while controlling the inflammatory micro-environments of tumor tissue. 5'-Methylthioadenosine and its associated materials have striking regulatory effects on tumorigenesis[2]. 5'-Methylthioadenosine (5'-(Methylthio)-5'-deoxyadenosine) is a nucleoside generated from S-adenosylmethionine (SAM) during polyamine synthesis[1]. 5'-Methylthioadenosine suppresses tumors by inhibiting tumor cell proliferation, invasion, and the induction of apoptosis while controlling the inflammatory micro-environments of tumor tissue. 5'-Methylthioadenosine and its associated materials have striking regulatory effects on tumorigenesis[2].

   

5-Hydroxyindoleacetic acid

2-(5-hydroxy-1H-indol-3-yl)acetic acid

C10H9NO3 (191.0582404)


5-Hydroxyindoleacetic acid, also known as 5-hydroxyindole-3-acetate or 5-HIAA, belongs to the class of organic compounds known as indole-3-acetic acid derivatives. Indole-3-acetic acid derivatives are compounds containing an acetic acid (or a derivative) linked to the C3 carbon atom of an indole. 5-Hydroxyindoleacetic acid exists in all living organisms, ranging from bacteria to humans. In humans, 5-hydroxyindoleacetic acid is a breakdown product of serotonin that is excreted in the urine and it also participates in a number of enzymatic reactions. 5-hydroxyindoleacetic acid can be biosynthesized from 5-hydroxyindoleacetaldehyde; which is catalyzed by the mitochondrial enzyme aldehyde dehydrogenase. In addition, 5-hydroxyindoleacetic acid and S-adenosylmethionine can be converted into 5-methoxyindoleacetate and S-adenosylhomocysteine through its interaction with the enzyme acetylserotonin O-methyltransferase. 5-Hydroxyindoleacetic acid is also involved in the metabolism of tryptophan. 5-Hydroxyindoleacetic acid has been found to be associated with several human diseases such as brunner syndrome, friedreichs ataxia, schizophrenia, and olivopontocerebral atrophy; 5-hydroxyindoleacetic acid has also been linked to the inborn metabolic disorder sepiapterin reductase deficiency. Elevated levels of 5-hydroxyindoleacetic acid in urine (>20 uM) are indicative of appendicitis and gastroenteritis (PMID: 11462886). Serotonin and 5-Hydroxyindoleacetic acid are produced in excess amounts by carcinoid tumors, and levels of these substances may be measured in the urine to test for carcinoid tumors (NCI). 5-Hydroxyindoleacetic acid has also been found to be a product of human gut microbiota. 5-Hydroxyindoleacetic acid (5-HIAA) is the main metabolite of serotonin in the human body. In chemical analysis of urine samples, 5-HIAA is used to determine the bodys levels of serotonin. 5-Hydroxyindole-3-acetic acid is found in many foods, some of which are pitanga, dandelion, coconut, and white cabbage. 5-Hydroxyindole-3-acetic acid is the main metabolite of serotonin or metanephrines, which can be used as a biomarker of neuroendocrine tumors.

   

5-Methoxyindoleacetate

2-(5-Methoxy-1H-indol-3-yl)ethanoic acid

C11H11NO3 (205.0738896)


5-Methoxyindoleacetate, also known as 5-methoxy-IAA or 5-MIAA, belongs to the class of organic compounds known as indole-3-acetic acid derivatives. Indole-3-acetic acid derivatives are compounds containing an acetic acid (or a derivative) linked to the C3 carbon atom of an indole. 5-Methoxyindoleacetic acid is formed through oxidative deamination. It is identified in the urine, and the concentration is determined to be 1.3 µg/mL using GC-MS (PMID: 12908946). An increase in urinary 5-MIAA excretion was shown in patients with cancer of the stomach, rectum, and lung (PMID: 2446428). D006133 - Growth Substances > D010937 - Plant Growth Regulators > D007210 - Indoleacetic Acids 5-methoxyindoleacetic acid(5-MIAA) is formed through oxidative deamination. COVID info from PDB, Protein Data Bank KEIO_ID M078; [MS2] KO009067 KEIO_ID M078 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 5-Methoxyindole-3-acetic acid is a metabolite of Melatonin[1].

   

5-Methyltetrahydrofolic acid

(2R)-2-[(4-{[(2-amino-5-methyl-4-oxo-3,4,5,6,7,8-hexahydropteridin-6-yl)methyl]amino}phenyl)formamido]pentanedioic acid

C20H25N7O6 (459.186623)


5 methyltetrahydrofolic acid (5-MTHF) is the most biologically active form of the B-vitamin known as folic acid, also known generically as folate. 5-MTHF functions, in concert with vitamin B12, as a methyl-group donor involved in the conversion of the amino acid homocysteine to methionine. Methyl (CH3) group donation is vital to many bodily processes, including serotonin, melatonin, and DNA synthesis. Therapeutically, 5-MTHF is instrumental in reducing homocysteine levels, preventing neural tube defects, and improving vascular endothelial function. Research on folate supplementation suggests it plays a key role in preventing cervical dysplasia and protecting against neoplasia in ulcerative colitis. Folic acid also shows promise as part of a nutritional protocol to treat vitiligo, and may reduce inflammation of the gingiva. Furthermore, certain neurological, cognitive, and psychiatric presentations may be secondary to folate deficiency. Such presentations include depression, peripheral neuropathy, myelopathy, restless legs syndrome, insomnia, dementia, forgetfulness, irritability, endogenous depression, organic psychosis, and schizophrenia-like syndromes. After ingestion, the process of conversion of folic acid to the metabolically active coenzyme forms is relatively complex. Synthesis of the active forms of folic acid requires several enzymes, adequate liver and intestinal function, and adequate supplies of riboflavin (B2), niacin (B3), pyridoxine (B6), zinc, vitamin C, and serine. After formation of the coenzyme forms of the vitamin in the liver, these metabolically active compounds are secreted into the small intestine with bile (the folate enterohepatic cycle), where they are reabsorbed and distributed to tissues throughout the body. Human pharmacokinetic studies indicate folic acid has high bioavailability, with large oral doses of folic acid substantially raising plasma levels in healthy subjects in a time and dose dependent manner. Red blood cells (RBCs) appear to be the storage depot for folic acid, as RBC levels remain elevated for periods in excess of 40 days following discontinuation of supplementation. Folic acid is poorly transported to the brain and rapidly cleared from the central nervous system. The primary methods of elimination of absorbed folic acid are fecal (through bile) and urinary. Despite the biochemical complexity of this process, evidence suggests oral supplementation with folic acid increases the bodys pool of 5-MTHF in healthy individuals. However, enzyme defects, mal-absorption, digestive system pathology, and liver disease can result in impaired ability to activate folic acid. In fact, some individuals have a severe congenital deficiency of the enzyme Methyl tetrahydrofolate reductase (5-MTHFR), which is needed to convert folic acid to 5-MTHF. Milder forms of this enzyme defect likely interact with dietary folate status to determine risk for some disease conditions. In individuals with a genetic defect of this enzyme (whether mild or severe), supplementation with 5- MTHF might be preferable to folic acid supplementation. (PMID: 17176169). 5 methyltetrahydrofolic acid (5-MTHF) is the most biologically active form of the B-vitamin folic acid, also known generically as folate. 5-MTHF functions, in concert with vitamin B12, as a methyl-group donor involved in the conversion of the amino acid homocysteine to methionine. Methyl (CH3) group donation is vital to many bodily processes, including serotonin, melatonin, and DNA synthesis. Therapeutically, 5-MTHF is instrumental in reducing homocysteine levels, preventing neural tube defects, and improving vascular endothelial function. Research on folate supplementation suggests it plays a key role in preventing cervical dysplasia and protecting against neoplasia in ulcerative colitis. Folic acid also shows promise as part of a nutritional protocol to treat vitiligo, and may reduce inflammation of the gingiva. Furthermore, certain neurological, cognitive, and psychiatric presentations may be secondary to folate deficiency. Such presentations include depression, peripheral neuropathy, myelopathy, restless legs syndrome, insomnia, dementia, forgetfulness, irritability, endogenous depression, organic psychosis, and schizophrenia-like syndromes. After ingestion, the process of conversion of folic acid to the metabolically active coenzyme forms is relatively complex. Synthesis of the active forms of folic acid requires several enzymes, adequate liver and intestinal function, and adequate supplies of riboflavin (B2), niacin (B3), pyridoxine (B6), zinc, vitamin C, and serine. After formation of the coenzyme forms of the vitamin in the liver, these metabolically active compounds are secreted into the small intestine with bile (the folate enterohepatic cycle), where they are reabsorbed and distributed to tissues throughout the body. Human pharmacokinetic studies indicate folic acid has high bioavailability, with large oral doses of folic acid substantially raising plasma levels in healthy subjects in a time and dose dependent manner. Red blood cells (RBCs) appear to be the storage depot for folic acid, as RBC levels remain elevated for periods in excess of 40 days following discontinuation of supplementation. Folic acid is poorly transported to the brain and rapidly cleared from the central nervous system. The primary methods of elimination of absorbed folic acid are fecal (through bile) and urinary. Despite the biochemical complexity of this process, evidence suggests oral supplementation with folic acid increases the bodys pool of 5-MTHF in healthy individuals. However, enzyme defects, mal-absorption, digestive system pathology, and liver disease can result in impaired ability to activate folic acid. In fact, some individuals have a severe congenital deficiency of the enzyme Methyl tetrahydrofolate reductase (5-MTHFR), which is needed to convert folic acid to 5-MTHF. Milder forms of this enzyme defect likely interact with dietary folate status to determine risk for some disease conditions. In individuals with a genetic defect of this enzyme (whether mild or severe), supplementation with 5- MTHF might be preferable to folic acid supplementation. (PMID: 17176169) [HMDB] 5-Methyltetrahydrofolic acid (5-Methyl THF) is a biologically active form of folic acid. 5-Methyltetrahydrofolic acid is a methylated derivate of tetrahydrofolate. 5-Methyltetrahydrofolic acid is the predominant natural dietary folate and the principal form of folate in plasma and cerebrospinal fluid[1]. Levomefolic acid (5-MTHF) is an orally active, brain-penetrant natural active form of folic acid and is one of the most widely used folic acid food supplements[1][2].

   

Aminocaproic acid

Sanofi winthrop brand OF aminocaproic acid

C6H13NO2 (131.0946238)


Aminocaproic acid (marketed as Amicar) is a drug used to treat bleeding disorders. It is an antifibrinolytic agent that acts by inhibiting plasminogen activators which have fibrinolytic properties. It is a derivative of the amino acid lysine. It binds reversibly to the kringle domain of plasminogen and blocks the binding of plasminogen to fibrin and its activation to plasmin. [HMDB] Aminocaproic acid (marketed as Amicar) is a drug used to treat bleeding disorders. It is an antifibrinolytic agent that acts by inhibiting plasminogen activators which have fibrinolytic properties. It is a derivative of the amino acid lysine. It binds reversibly to the kringle domain of plasminogen and blocks the binding of plasminogen to fibrin and its activation to plasmin. B - Blood and blood forming organs > B02 - Antihemorrhagics > B02A - Antifibrinolytics > B02AA - Amino acids Acquisition and generation of the data is financially supported in part by CREST/JST. D006401 - Hematologic Agents > D003029 - Coagulants > D006490 - Hemostatics C78275 - Agent Affecting Blood or Body Fluid > C78311 - Hemostatic Agent D050299 - Fibrin Modulating Agents > D000933 - Antifibrinolytic Agents IPB_RECORD: 266; CONFIDENCE confident structure KEIO_ID A053 6-Aminocaproic acid (EACA), a monoamino carboxylic acid, is a potent and orally active inhibitor of plasmin and plasminogen. 6-Aminocaproic acid is a potent antifibrinolytic agent. 6-Aminocaproic acid prevents clot lysis through the competitive binding of lysine residues on plasminogen, inhibiting plasmin formation and reducing fibrinolysis. 6-Aminocaproic acid can be used for the research of bleeding disorders[1][2].

   

Acetyl-N-formyl-5-methoxykynurenamine

N-[3-[2-(formylamino)-5-methoxyphenyl]-3-oxypropyl]-acetamide

C13H16N2O4 (264.1110016)


Acetyl-N-formyl-5-methoxykynurenamine (AFMK) results from the oxidative cleavage of the pyrrole ring during melatonin oxidation by myeloperoxidase (MPO), a superoxide anion (O)-dependent reaction. AFMK is also expected to be formed from oxidation catalyzed by the unspecific enzyme indoleamine-2,3-dioxygenase (IDO), found in a variety of cell types including monocyte/macrophage lineages. MPO- and IDO-catalyzed melatonin oxidation has the requirement of O in common, a species formed in large amounts in inflammatory conditions. The non-enzymatic formation of AFMK can also be expected by its direct reaction with highly reactive oxygen species, such as hydroxyl radical and singlet oxygen. Thus, we assume that AFMK is a product formed in a route of melatonin metabolism, especially active in inflammation. As AFMK is biologically more active on leukocytes than melatonin, the metabolizing of melatonin to AFMK at inflammatory sites possibly plays a role in immunomodulation. AFMK is found in the CSF of patients with meningitis, and in some samples at a remarkably high concentration, with AFMK found in some patients exceeding the concentration of melatonin normally found in serum. (PMID: 16150112) [HMDB] Acetyl-N-formyl-5-methoxykynurenamine (AFMK) results from the oxidative cleavage of the pyrrole ring during melatonin oxidation by myeloperoxidase (MPO), a superoxide anion (O)-dependent reaction. AFMK is also expected to be formed from oxidation catalyzed by the unspecific enzyme indoleamine-2,3-dioxygenase (IDO), found in a variety of cell types including monocyte/macrophage lineages. MPO- and IDO-catalyzed melatonin oxidation has the requirement of O in common, a species formed in large amounts in inflammatory conditions. The non-enzymatic formation of AFMK can also be expected by its direct reaction with highly reactive oxygen species, such as hydroxyl radical and singlet oxygen. Thus, we assume that AFMK is a product formed in a route of melatonin metabolism, especially active in inflammation. As AFMK is biologically more active on leukocytes than melatonin, the metabolizing of melatonin to AFMK at inflammatory sites possibly plays a role in immunomodulation. AFMK is found in the CSF of patients with meningitis, and in some samples at a remarkably high concentration. AFMK was also found in some patients to exceed the concentration of melatonin normally found in serum (PMID: 16150112).

   

Argininosuccinic acid disodium

(2S)-2-[[N-[(4S)-4-amino-4-carboxybutyl]carbamimidoyl]amino]butanedioic acid

C10H18N4O6 (290.12262880000003)


Arginosuccinic acid is a basic amino acid. Some cells synthesize it from citrulline, aspartic acid and use it as a precursor for arginine in the urea cycle or Citrulline-NO cycle. The enzyme that catalyzes the reaction is argininosuccinate synthetase. Argininosuccinic acid is a precursor to fumarate in the citric acid cycle via argininosuccinate lyase. Defects in the argininosuccinate lyase enzyme can lead to argininosuccinate lyase deficiency, which is an inborn error of metabolism. Argininosuccinate (ASA) lyase deficiency results in defective cleavage of ASA. This leads to an accumulation of ASA in cells and an excessive excretion of ASA in urine (argininosuccinic aciduria). In virtually all respects, this disorder shares the characteristics of other urea cycle defects. The most important characteristic of ASA lyase deficiency is its propensity to cause hyperammonemia in affected individuals. ASA in affected individuals is excreted by the kidney at a rate practically equivalent to the glomerular filtration rate (GFR). Whether ASA itself causes a degree of toxicity due to hepatocellular accumulation is unknown; such an effect could help explain hyperammonemia development in affected individuals. Regardless, the name of the disease is derived from the rapid clearance of ASA in urine, although elevated levels of ASA can be found in plasma. ASA lyase deficiency is associated with high mortality and morbidity rates. Symptoms of ASA lyase deficiency include anorexia, irritability rapid breathing, lethargy and vomiting. Extreme symptoms include coma and cerebral edema. Arginosuccinic acid is a basic amino acid. Some cells synthesize it from citrulline, aspartic acid and use it as a precursor for arginine in the urea cycle or Citrulline-NO cycle. The enzyme that catalyzes the reaction is argininosuccinate synthetase. Argininosuccinic acid is a precursor to fumarate in the citric acid cycle via argininosuccinate lyase. Defects in the arginosuccinate lyase enzyme can lead to arginosuccinate lyase deficiency. Argininosuccinate (ASA) lyase deficiency results in defective cleavage of ASA. This leads to an accumulation of ASA in cells and an excessive excretion of ASA in urine (arginosuccinic aciduria). In virtually all respects, this disorder shares the characteristics of other urea cycle defects. The most important characteristic of ASA lyase deficiency is its propensity to cause hyperammonemia in affected individuals. ASA in affected individuals is excreted by the kidney at a rate practically equivalent to the glomerular filtration rate (GFR). Whether ASA itself causes a degree of toxicity due to hepatocellular accumulation is unknown; such an effect could help explain hyperammonemia development in affected individuals. Regardless, the name of the disease is derived from the rapid clearance of ASA in urine, although elevated levels of ASA can be found in plasma. ASA lyase deficiency is associated with high mortality and morbidity rates. Symptoms of ASA lyase deficiency include anorexia, irritability rapid breathing, lethargy and vomiting. Extreme symptoms include coma and cerebral edema. [HMDB] KEIO_ID A039; [MS2] KO008844 KEIO_ID A039

   

D-Alanyl-D-alanine

(2R)-2-[(2R)-2-aminopropanamido]propanoic acid

C6H12N2O3 (160.0847882)


The ATP-dependent carboxylate-amine/thiol ligase superfamily is known to contain enzymes catalyzing the formation of various types of peptide, one of which is d-alanyl-d-alanine.(PMID: 16030213). The glycopeptide antibiotic vancomycin acts by binding to the D-alanyl-D-alanine terminus of the cell wall precursor lipid II in the cytoplasmic membrane.(PMID: 17418637). D-alanine-D-alanine ligase from Thermotoga maritima ATCC 43589 (TmDdl) was a useful biocatalyst for synthesizing D-amino acid dipeptides.D-Alanine-D-alanine ligase (Ddl) catalyzes the biosynthesis of an essential bacterial peptidoglycan precursor D-alanyl-D-alanine and it represents an important target for development of new antibacterial drugs. (PMID: 17267218). D-Alanyl-D-alanine is a microbial metabolite. Alanyl-alanine, also known as ala-ala or A-a dipeptide, is a member of the class of compounds known as dipeptides. Dipeptides are organic compounds containing a sequence of exactly two alpha-amino acids joined by a peptide bond. Alanyl-alanine is soluble (in water) and a weakly acidic compound (based on its pKa). Alanyl-alanine can be found in chives, which makes alanyl-alanine a potential biomarker for the consumption of this food product. Alanyl-alanine can be found primarily in feces. Alanyl-alanine exists in all living organisms, ranging from bacteria to humans. Acquisition and generation of the data is financially supported in part by CREST/JST. D-Ala-D-Ala constitutes the terminus of the peptide part of the peptidoglycan monomer unit and is involved in the transpeptidation reaction as the substrate. D-Ala-D-Ala is catalyzed by D-Alanine-D-Alanine ligase. D-Ala-D-Ala is a bacterial endogenous metabolite[1][2].

   

Sphinganine

D-Erythro-1,3-dihydroxy-2-aminooctadecane

C18H39NO2 (301.2980634)


Sphinganine, also known as c18-dihydrosphingosine or safingol, is a member of the class of compounds known as 1,2-aminoalcohols. 1,2-aminoalcohols are organic compounds containing an alkyl chain with an amine group bound to the C1 atom and an alcohol group bound to the C2 atom. Thus, sphinganine is considered to be a sphingoid base lipid molecule. Sphinganine is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Sphinganine can be found in a number of food items such as agar, biscuit, herbs and spices, and pasta, which makes sphinganine a potential biomarker for the consumption of these food products. Sphinganine can be found primarily in blood, feces, and urine, as well as throughout most human tissues. Sphinganine exists in all eukaryotes, ranging from yeast to humans. In humans, sphinganine is involved in few metabolic pathways, which include globoid cell leukodystrophy, metachromatic leukodystrophy (MLD), and sphingolipid metabolism. Sphinganine is also involved in few metabolic disorders, which include fabry disease, gaucher disease, and krabbe disease. Moreover, sphinganine is found to be associated with pregnancy. Sphinganine is a lyso-sphingolipid protein kinase inhibitor. It has the molecular formula C18H39NO2 and is a colorless solid. Medicinally, safingol has demonstrated promising anticancer potential as a modulator of multi-drug resistance and as an inducer of necrosis. The administration of safingol alone has not been shown to exert a significant effect on tumor cell growth. However, preclinical and clinical studies have shown that combining safingol with conventional chemotherapy agents such as fenretinide, vinblastine, irinotecan and mitomycin C can dramatically potentiate their antitumor effects. Currently in Phase I clinical trials, it is believed to be safe to co-administer with cisplatin . Sphinganine belongs to the class of organic compounds known as 1,2-aminoalcohols. These are organic compounds containing an alkyl chain with an amine group bound to the C1 atom and an alcohol group bound to the C2 atom. Thus, sphinganine is considered to be a sphingoid base lipid molecule. Sphinganine is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Sphinganine exists in all living species, ranging from bacteria to humans. Within humans, sphinganine participates in a number of enzymatic reactions. In particular, sphinganine can be converted into 3-dehydrosphinganine through its interaction with the enzyme 3-ketodihydrosphingosine reductase. In addition, sphinganine can be converted into sphinganine 1-phosphate; which is catalyzed by the enzyme sphingosine kinase 2. Outside of the human body, sphinganine has been detected, but not quantified in, several different foods, such as Mexican oregano, jostaberries, winter squash, angelica, and epazotes. This could make sphinganine a potential biomarker for the consumption of these foods. Sphinganine blocks postlysosomal cholesterol transport by inhibiting low-density lipoprotein-induced esterification of cholesterol and causing unesterified cholesterol to accumulate in perinuclear vesicles. It has been suggested that endogenous sphinganine may inhibit cholesterol transport in Niemann-Pick Type C (NPC) disease (PMID: 1817037). D004791 - Enzyme Inhibitors KEIO_ID D078 D-Erythro-dihydrosphingosin directly inhibits cytosolic phospholipase A2α (cPLA2α) activity. D-Erythro-dihydrosphingosin directly inhibits cytosolic phospholipase A2α (cPLA2α) activity.

   

Metanephrine

4-[1-hydroxy-2-(methylamino)ethyl]-2-methoxyphenol

C10H15NO3 (197.105188)


Metanephrine is a metabolite of epinephrine created by action of catechol O-methyltransferase on epinephrine. Technically it is a product of epinephrine O-methylation. It is a commonly occurring, pharmacologically and physiologically inactive metabolite of epinephrine. The measurement of plasma free metanephrines is considered to be the best tool in the diagnosis of pheochromocytoma, a rare kind of adrenal medullary neoplasm. In adrenal chromaffin cells, leakage of norepinephrine and epinephrine from storage granules leads to substantial intracellular production of the O-methylated metabolite metanephrine. In fact, the adrenals constitute the single largest source out of any organ system including the liver for circulating metanephrine. In humans, about 93 percent of circulating metanephrine is derived from catecholamines metabolized within adrenal chromaffin cells. (PMID 15317907). Metanephrine is a metabolite of epinephrine created by action of catechol O-methyltransferase on epinephrine. Technically it is a product of epinephrine O-methylation. It is a commonly occurring, pharmacologically and physiologically inactive metabolite of epinephrine. The measurement of plasma free metanephrines is considered to be the best tool in the diagnosis of pheochromocytoma, a rare kind of adrenal medullary neoplasm.

   

L-Aspartic acid

(2S)-2-aminobutanedioic acid

C4H7NO4 (133.0375062)


Aspartic acid (Asp), also known as L-aspartic acid or as aspartate, the name of its anion, is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-aspartic acid is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Aspartic acid is found in all organisms ranging from bacteria to plants to animals. It is classified as an acidic, charged (at physiological pH), aliphatic amino acid. In humans, aspartic acid is a nonessential amino acid derived from glutamic acid by enzymes using vitamin B6. However, in the human body, aspartate is most frequently synthesized through the transamination of oxaloacetate. A non-essential amino acid is an amino acid that can be synthesized from central metabolic pathway intermediates in humans and is not required in the diet. As its name indicates, aspartic acid is the carboxylic acid analog of asparagine. The D-isomer of aspartic acid (D-aspartic acid) is one of two D-amino acids commonly found in mammals. Aspartic acid was first discovered in 1827 by Auguste-Arthur Plisson and Étienne Ossian Henry by hydrolysis of asparagine, which had been isolated from asparagus juice in 1806. Aspartate has many biochemical roles. It is a neurotransmitter, a metabolite in the urea cycle and it participates in gluconeogenesis. It carries reducing equivalents in the malate-aspartate shuttle, which utilizes the ready interconversion of aspartate and oxaloacetate, which is the oxidized (dehydrogenated) derivative of malic acid. Aspartate donates one nitrogen atom in the biosynthesis of inosine, the precursor to the purine bases which are key to DNA biosynthesis. In addition, aspartic acid acts as a hydrogen acceptor in a chain of ATP synthase. Aspartic acid is a major excitatory neurotransmitter, which is sometimes found to be increased in epileptic and stroke patients. It is decreased in depressed patients and in patients with brain atrophy. As a neurotransmitter, aspartic acid may provide resistance to fatigue and thus lead to endurance, although the evidence to support this idea is not strong (Wikipedia). Aspartic acid supplements are being evaluated. Five grams can raise blood levels. Magnesium and zinc may be natural inhibitors of some of the actions of aspartic acid. Aspartic acid, when chemically coupled with the amino acid D-phenylalanine, is a part of a natural sweetener, aspartame. This sweetener is an advance in artificial sweeteners, and is probably safe in normal doses to all except phenylketonurics. Aspartic acid may be a significant immunostimulant of the thymus and can protect against some of the damaging effects of radiation. Aspartic acid is found in higher abundance in: oysters, luncheon meats, sausage meat, wild game, sprouting seeds, oat flakes, avocado, asparagus, young sugarcane, and molasses from sugar beets. [Spectral] L-Aspartate (exact mass = 133.03751) and Taurine (exact mass = 125.01466) and L-Asparagine (exact mass = 132.05349) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] L-Aspartate (exact mass = 133.03751) and L-Threonine (exact mass = 119.05824) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. L-Aspartic acid is is an amino acid, shown to be a suitable proagent for colon-specific agent deliverly. L-Aspartic acid is is an amino acid, shown to be a suitable proagent for colon-specific agent deliverly.

   

L-Histidinol

(2S)-2-amino-3-(1H-imidazol-5-yl)propan-1-ol

C6H11N3O (141.09020759999999)


L-Histidinol, a structural analogue of the essential amino acid L-histidine, enhances the toxicity of a variety of anticancer drugs for many tumour cells of animal origin (PMID:8297120). L-Histidinol inhibits human myristoyl-CoA:protein-myristoyltransferase (hNMT), an essential eukaryotic enzyme that catalyzes the cotranslational transfer of myristate into the NH2-terminal glycine residue of a number of important proteins of diverse function (PMID:9778369). L-Histidinol, a structural analogue of the essential amino acid L-histidine, enhances the toxicity of a variety of anticancer drugs for many tumor cells of animal origin. (PMID 8297120)

   

L-Homoserine

(2S)-2-Amino-4-hydroxybutanoic acid

C4H9NO3 (119.0582404)


L-homoserine, also known as 2-amino-4-hydroxybutanoic acid or isothreonine, is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. L-homoserine is soluble (in water) and a moderately acidic compound (based on its pKa). L-homoserine can be found in common pea, which makes L-homoserine a potential biomarker for the consumption of this food product. L-homoserine can be found primarily in blood, feces, and urine, as well as in human prostate tissue. L-homoserine exists in all living species, ranging from bacteria to humans. In humans, L-homoserine is involved in the methionine metabolism. L-homoserine is also involved in several metabolic disorders, some of which include glycine n-methyltransferase deficiency, hypermethioninemia, cystathionine beta-synthase deficiency, and methylenetetrahydrofolate reductase deficiency (MTHFRD). Homoserine (also called isothreonine) is an α-amino acid with the chemical formula HO2CCH(NH2)CH2CH2OH. L-Homoserine is not one of the common amino acids encoded by DNA. It differs from the proteinogenic amino acid serine by insertion of an additional -CH2- unit into the backbone. Homoserine, or its lactone form, is the product of a cyanogen bromide cleavage of a peptide by degradation of methionine . Homoserine is a more reactive variant of the amino acid serine. In this variant, the hydroxyl side chain contains an additional CH2 group which brings the hydroxyl group closer to its own carboxyl group, allowing it to chemically react to form a five-membered ring. This occurs at the point that amino acids normally join to their neighbours in a peptide bond. Homoserine is therefore unsuitable for forming proteins and has been eliminated from the repertoire of amino acids used by living things. Homoserine is the final product on the C-terminal end of the N-terminal fragment following a cyanogen bromide cleavage. (wikipedia). Homoserine is also a microbial metabolite. L-Homoserine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=672-15-1 (retrieved 2024-07-02) (CAS RN: 672-15-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Homoserine is a non - protein amino acid, which is an important biosynthetic intermediate of threonine, methionine and lysine. L-Homoserine is a non - protein amino acid, which is an important biosynthetic intermediate of threonine, methionine and lysine.

   

N-alpha-acetylornithine

(2S)-5-Amino-2-acetamidopentanoic acid

C7H14N2O3 (174.1004374)


N2-Acetylornithine, also known as N(alpha)-acetylornithine, belongs to the class of organic compounds known as N-acyl-L-alpha-amino acids. These are N-acylated alpha-amino acids which have the L-configuration of the alpha-carbon atom. N-Acetylornithine is a minor component of the deproteinized blood plasma of human blood. Human blood plasma contains a variable amount of acetylornithine, averaging 1.1 +/- 0.4 umol/L (range 0.8-0.2 umol/L). Urine contains a very small amount of acetylornithine, approximately 1 nmol/mg creatinine (1 umol/day) (PMID:508804). Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 160 KEIO_ID A032 N-Acetylornithine is an intermediate in the enzymatic biosynthesis of the amino acid L-arginine from L-glutamate.

   

L-Ornithine

(2S)-2,5-diaminopentanoic acid

C5H12N2O2 (132.0898732)


Ornithine, also known as (S)-2,5-diaminopentanoic acid or ornithine, (L)-isomer, is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. Ornithine is soluble (in water) and a moderately acidic compound (based on its pKa). Ornithine can be found in a number of food items such as pine nut, lingonberry, turnip, and cassava, which makes ornithine a potential biomarker for the consumption of these food products. Ornithine can be found primarily in most biofluids, including urine, cerebrospinal fluid (CSF), feces, and saliva, as well as throughout most human tissues. Ornithine exists in all living species, ranging from bacteria to humans. In humans, ornithine is involved in few metabolic pathways, which include arginine and proline metabolism, glycine and serine metabolism, spermidine and spermine biosynthesis, and urea cycle. Ornithine is also involved in several metabolic disorders, some of which include ornithine transcarbamylase deficiency (OTC deficiency), prolidase deficiency (PD), citrullinemia type I, and arginine: glycine amidinotransferase deficiency (AGAT deficiency). Moreover, ornithine is found to be associated with cystinuria, alzheimers disease, leukemia, and uremia. Ornithine is a non-carcinogenic (not listed by IARC) potentially toxic compound. Ornithine is a drug which is used for nutritional supplementation, also for treating dietary shortage or imbalance. it has been claimed that ornithine improves athletic performance, has anabolic effects, has wound-healing effects, and is immuno-enhancing. Ornithine is a non-proteinogenic amino acid that plays a role in the urea cycle. Ornithine is abnormally accumulated in the body in ornithine transcarbamylase deficiency. The radical is ornithyl . L-Ornithine is metabolised to L-arginine. L-arginine stimulates the pituitary release of growth hormone. Burns or other injuries affect the state of L-arginine in tissues throughout the body. As De novo synthesis of L-arginine during these conditions is usually not sufficient for normal immune function, nor for normal protein synthesis, L-ornithine may have immunomodulatory and wound-healing activities under these conditions (by virtue of its metabolism to L-arginine) (DrugBank). Chronically high levels of ornithine are associated with at least 9 inborn errors of metabolism including: Cystathionine Beta-Synthase Deficiency, Hyperornithinemia with gyrate atrophy, Hyperornithinemia-hyperammonemia-homocitrullinuria syndrome, Hyperornithinemia-hyperammonemia-homocitrullinuria syndrome, Hyperprolinemia Type II, Lysinuric Protein Intolerance, Ornithine Aminotransferase Deficiency, Ornithine Transcarbamylase Deficiency and Prolinemia Type II (T3DB). Ornithine or L-ornithine, also known as (S)-2,5-diaminopentanoic acid is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. L-ornithine is soluble (in water) and a moderately basic compound. Ornithine is a non-proteinogenic amino acid that plays a role in the urea cycle. It is considered to be a non-essential amino acid. A non-essential amino acid is an amino acid that can be synthesized from central metabolic pathway intermediates in humans and is not required in the diet. L-Ornithine is one of the products of the action of the enzyme arginase on L-arginine, creating urea. Therefore, ornithine is a central part of the urea cycle, which allows for the disposal of excess nitrogen. Outside the human body, L-ornithine is abundant in a number of food items such as wild rice, brazil nuts, common oregano, and common grapes. L-ornithine can be found throughout most human tissues; and in most biofluids, some of which include blood, urine, cerebrospinal fluid (CSF), sweat, saliva, and feces. L-ornithine exists in all living species, from bacteria to plants to humans. L-Ornithine is also a precursor of citrulline and arginine. In order for ornithine that is produced in the cytosol to be converted to citrulline, it must first cross the inner mitochondrial membrane into the mitochondrial matrix where it is carbamylated by the enzyme known as ornithine transcarbamylase. This transfer is mediated by the mitochondrial ornithine transporter (SLC25A15; AF112968; ORNT1). Mutations in the mitochondrial ornithine transporter result in hyperammonemia, hyperornithinemia, homocitrullinuria (HHH) syndrome, a disorder of the urea cycle (PMID: 16256388). The pathophysiology of the disease may involve diminished ornithine transport into mitochondria, resulting in ornithine accumulation in the cytoplasm and reduced ability to clear carbamoyl phosphate and ammonia loads (OMIM 838970). In humans, L-ornithine is involved in a number of other metabolic disorders, some of which include, ornithine transcarbamylase deficiency (OTC deficiency), argininemia, and guanidinoacetate methyltransferase deficiency (GAMT deficiency). Ornithine is abnormally accumulated in the body in ornithine transcarbamylase deficiency. Moreover, Ornithine is found to be associated with cystinuria, hyperdibasic aminoaciduria I, and lysinuric protein intolerance, which are inborn errors of metabolism. It has been claimed that ornithine improves athletic performance, has anabolic effects, has wound-healing effects, and is immuno-enhancing. L-Ornithine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=70-26-8 (retrieved 2024-07-01) (CAS RN: 70-26-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Ornithine ((S)-2,5-Diaminopentanoic acid) is a non-proteinogenic amino acid, is mainly used in urea cycle removing excess nitrogen in vivo. L-Ornithine shows nephroprotective[1][2]. L-Ornithine ((S)-2,5-Diaminopentanoic acid) is a non-proteinogenic amino acid, is mainly used in urea cycle removing excess nitrogen in vivo. L-Ornithine shows nephroprotective[1][2].

   

Pregnenolone

1-[(3S,8S,9S,10R,13S,14S,17S)-3-hydroxy-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl]ethanone

C21H32O2 (316.24021719999996)


Pregnenolone is a derivative of cholesterol, the product of cytochrome P450 side-chain cleavage (EC 1.14.15.6, CYP11A1. This reaction consists of three consecutive monooxygenations, a 22-hydroxylation, a 20-hydroxylation, and the cleavage of the C20-C22 bond, yielding pregnenolone. Pregnenolone is the precursor to gonadal steroid hormones and the adrenal corticosteroids. This reaction occurs in steroid hormone-producing tissues such as the adrenal cortex, corpus luteum, and placenta. The most notable difference between the placenta and other steroidogenic tissues is that electron supply to CYP11A1 limits the rate at which cholesterol is converted into pregnenolone in the placenta. The limiting component for electron delivery to CYP11A1 is the concentration of adrenodoxin reductase in the mitochondrial matrix which is insufficient to maintain the adrenodoxin pool in a fully reduced state. Pregnenolone is also a neurosteroid, and is produced in the spinal cord; CYP11A1 is the key enzyme catalyzing the conversion of cholesterol into pregnenolone, the rate-limiting step in the biosynthesis of all classes of steroids, and has been localized in sensory networks of the spinal cord dorsal horn. In the adrenal glomerulosa cell, angiotensin II, one of the major physiological regulators of mineralocorticoid synthesis, appears to affect most of the cholesterol transfer to the mitochondrial outer membrane and many steps in the transport to the inner membrane. Thus, it exerts a powerful control over the use of cholesterol for aldosterone production (PMID: 17222962, 15823613, 16632873, 15134809). C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Pregnenolone (3β-Hydroxy-5-pregnen-20-one) is a powerful neurosteroid, the main precursor of various steroid hormones including steroid ketones. Pregnenolone acts as a signaling-specific inhibitor of cannabinoid CB1 receptor, inhibits the effects of tetrahydrocannabinol (THC) that are mediated by the CB1 receptors. Pregnenolone can protect the brain from cannabis intoxication[1][2]. Pregnenolone is also a TRPM3 channel activator, and also can weakly activate TRPM1 channels[3]. Pregnenolone (3β-Hydroxy-5-pregnen-20-one) is a powerful neurosteroid, the main precursor of various steroid hormones including steroid ketones. Pregnenolone acts as a signaling-specific inhibitor of cannabinoid CB1 receptor, inhibits the effects of tetrahydrocannabinol (THC) that are mediated by the CB1 receptors. Pregnenolone can protect the brain from cannabis intoxication[1][2]. Pregnenolone is also a TRPM3 channel activator, and also can weakly activate TRPM1 channels[3].

   

Daidzein

Daidzein, Pharmaceutical Secondary Standard; Certified Reference Material

C15H10O4 (254.057906)


Daidzein is a member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone substituted by an additional hydroxy group at position 4. It has a role as an antineoplastic agent, a phytoestrogen, a plant metabolite, an EC 3.2.1.20 (alpha-glucosidase) inhibitor and an EC 2.7.7.7 (DNA-directed DNA polymerase) inhibitor. It is a conjugate acid of a daidzein(1-). Daidzein is a natural product found in Pericopsis elata, Thermopsis lanceolata, and other organisms with data available. Daidzein is an isoflavone extract from soy, which is an inactive analog of the tyrosine kinase inhibitor genistein. It has antioxidant and phytoestrogenic properties. (NCI) Daidzein is one of several known isoflavones. Isoflavones compounds are found in a number of plants, but soybeans and soy products like tofu and textured vegetable protein are the primary food source. Up until recently, daidzein was considered to be one of the most important and most studied isoflavones, however more recently attention has shifted to isoflavone metabolites. Equol represents the main active product of daidzein metabolism, produced via specific microflora in the gut. The clinical effectiveness of soy isoflavones may be a function of the ability to biotransform soy isoflavones to the more potent estrogenic metabolite, equol, which may enhance the actions of soy isoflavones, owing to its greater affinity for estrogen receptors, unique antiandrogenic properties, and superior antioxidant activity. However, not all individuals consuming daidzein produce equol. Only approximately one-third to one-half of the population is able to metabolize daidzein to equol. This high variability in equol production is presumably attributable to interindividual differences in the composition of the intestinal microflora, which may play an important role in the mechanisms of action of isoflavones. But, the specific bacterial species in the colon involved in the production of equol are yet to be discovered. (A3191, A3189). See also: Trifolium pratense flower (part of). Daidzein is one of several known isoflavones. Isoflavones compounds are found in a number of plants, but soybeans and soy products like tofu and textured vegetable protein are the primary food source. Up until recently, daidzein was considered to be one of the most important and most studied isoflavones, however more recently attention has shifted to isoflavone metabolites. Equol represents the main active product of daidzein metabolism, produced via specific microflora in the gut. The clinical effectiveness of soy isoflavones may be a function of the ability to biotransform soy isoflavones to the more potent estrogenic metabolite, equol, which may enhance the actions of soy isoflavones, owing to its greater affinity for estrogen receptors, unique antiandrogenic properties, and superior antioxidant activity. However, not all individuals consuming daidzein produce equol. Only approximately one-third to one-half of the population is able to metabolize daidzein to equol. This high variability in equol production is presumably attributable to interindividual differences in the composition of the intestinal microflora, which may play an important role in the mechanisms of action of isoflavones. But, the specific bacterial species in the colon involved in the production of equol are yet to be discovered. (PMID:18045128, 17579894). Daidzein is a biomarker for the consumption of soy beans and other soy products. Widespread isoflavone in the Leguminosae, especies Phaseolus subspecies (broad beans, lima beans); also found in soy and soy products (tofu, miso), chick peas (Cicer arietinum) and peanuts (Arachis hypogaea). Nutriceutical with anticancer and bone protective props. A member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone substituted by an additional hydroxy group at position 4. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4894; ORIGINAL_PRECURSOR_SCAN_NO 4890 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3575; ORIGINAL_PRECURSOR_SCAN_NO 3572 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4858; ORIGINAL_PRECURSOR_SCAN_NO 4855 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7978; ORIGINAL_PRECURSOR_SCAN_NO 7973 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4898; ORIGINAL_PRECURSOR_SCAN_NO 4894 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4884; ORIGINAL_PRECURSOR_SCAN_NO 4881 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7989; ORIGINAL_PRECURSOR_SCAN_NO 7985 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7952; ORIGINAL_PRECURSOR_SCAN_NO 7950 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4852; ORIGINAL_PRECURSOR_SCAN_NO 4847 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7907; ORIGINAL_PRECURSOR_SCAN_NO 7904 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7956; ORIGINAL_PRECURSOR_SCAN_NO 7952 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7917; ORIGINAL_PRECURSOR_SCAN_NO 7913 CONFIDENCE Reference Standard (Level 1); NaToxAq - Natural Toxins and Drinking Water Quality - From Source to Tap (https://natoxaq.ku.dk) Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2315 IPB_RECORD: 1801; CONFIDENCE confident structure IPB_RECORD: 421; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 8828 CONFIDENCE standard compound; INTERNAL_ID 2874 CONFIDENCE standard compound; INTERNAL_ID 4239 CONFIDENCE standard compound; INTERNAL_ID 4163 CONFIDENCE standard compound; INTERNAL_ID 181 Daidzein is a soy isoflavone, which acts as a PPAR activator. Daidzein is a soy isoflavone, which acts as a PPAR activator. Daidzein is a soy isoflavone, which acts as a PPAR activator.

   

Dihydrobiopterin

2-amino-6-[(1R,2S)-1,2-dihydroxypropyl]-1,4,7,8-tetrahydropteridin-4-one

C9H13N5O3 (239.1018348)


Dihydrobiopterin, also known as BH2, 7,8-dihydrobiopterin, L-erythro-7,8-dihydrobiopterin, quinonoid dihydrobiopterin or q-BH2, belongs to the class of organic compounds known as biopterins and derivatives. These are coenzymes containing a 2-amino-pteridine-4-one derivative. Dihydrobiopterin is also classified as a pteridine. Pteridines are aromatic compounds composed of fused pyrimidine and pyrazine rings. Dihydrobiopterin is produced during the synthesis of neurotransmitters L-DOPA, dopamine, norepinephrine and epinephrine. It is restored to the required cofactor tetrahydrobiopterin via the NADPH-dependant reduction of dihydrobiopterin reductase. Dihydrobiopterin can also be converted to tetrahydrobiopterin by nitric oxide synthase (NOS) which is catalyzed by the flavoprotein "diaphorase" activity of NOS. This activity is located on the reductase (C-terminal) domain of NOS, whereas the high affinity tetrahydrobiopterin site involved in NOS activation is located on the oxygenase (N-terminal) domain (PMID: 8626754). Sepiapterin reductase (SPR) is another enzyme that plays a role in the production of dihydrobiopterin. SPR catalyzes the reduction of sepiapterin to dihydrobiopterin (BH2), the precursor for tetrahydrobiopterin (BH4). BH4 is a cofactor critical for nitric oxide biosynthesis and alkylglycerol and aromatic amino acid metabolism (PMID: 25550200). Dihydrobiopterin is known to be synthesized in several parts of the body, including the pineal gland. Dihydrobiopterin exists in all eukaryotes, ranging from yeast to humans. In humans, dihydrobiopterin is involved in several metabolic disorders including dihydropteridine reductase (DHPR) deficiency. DHPR deficiency is a severe form of hyperphenylalaninemia (HPA) due to impaired regeneration of tetrahydrobiopterin (BH4) leading to decreased levels of neurotransmitters (dopamine, serotonin) and folate in cerebrospinal fluid, and causing neurological symptoms such as psychomotor delay, hypotonia, seizures, abnormal movements, hypersalivation, and swallowing difficulties. Dihydrobiopterin is also associated with another metabolic disorder known as sepiapterin reductase deficiency (SRD). Sepiapterin reductase catalyzes the (NADP-dependent) reduction of carbonyl derivatives, including pteridines, and plays an important role in tetrahydrobiopterin biosynthesis. Low dihydrofolate reductase activity in the brain leads to the accumulation of dihydrobiopterin, which in turn, inhibits tyrosine and tryptophan hydroxylases. This uncouples neuronal nitric oxide synthase, leading to neurotransmitter deficiencies and neuronal cell death. SRD is characterized by low cerebrospinal fluid neurotransmitter levels and the presence of elevated cerebrospinal fluid dihydrobiopterin. SRD is characterized by motor delay, axial hypotonia, language delay, diurnal fluctuation of symptoms, dystonia, weakness, oculogyric crises, dysarthria, parkinsonian signs and hyperreflexia. Dihydrobiopterin (BH2) is an oxidation product of tetrahydrobiopterin. Tetrahydrobiopterin is a natural occurring cofactor of the aromatic amino acid hydroxylase and is involved in the synthesis of tyrosine and the neurotransmitters dopamine and serotonin. Tetrahydrobiopterin is also essential for nitric oxide synthase catalyzed oxidation of L-arginine to L-citrulline and nitric oxide. [HMDB] 7,8-Dihydro-L-biopterin is an oxidation product of tetrahydrobiopterin.

   

6-Chloro-N-(1-methylethyl)-1,3,5-triazine-2,4-diamine

6-chloro-N-(1-Methylethyl)-1,3,5-triazine-2,4-diamine, 9ci

C6H10ClN5 (187.06246900000002)


CONFIDENCE standard compound; INTERNAL_ID 1296; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7123; ORIGINAL_PRECURSOR_SCAN_NO 7121 CONFIDENCE standard compound; INTERNAL_ID 1296; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7114; ORIGINAL_PRECURSOR_SCAN_NO 7112 CONFIDENCE standard compound; INTERNAL_ID 1296; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7136; ORIGINAL_PRECURSOR_SCAN_NO 7132 CONFIDENCE standard compound; INTERNAL_ID 1296; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7127; ORIGINAL_PRECURSOR_SCAN_NO 7125 CONFIDENCE standard compound; INTERNAL_ID 1296; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7139; ORIGINAL_PRECURSOR_SCAN_NO 7137 CONFIDENCE standard compound; INTERNAL_ID 1296; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7129; ORIGINAL_PRECURSOR_SCAN_NO 7127 6-Chloro-N-(1-methylethyl)-1,3,5-triazine-2,4-diamine is a major soil metabolite of Atrazine DKW85-F. Environmental pollutant of soil and water. Major soil metabolite of Atrazine DKW85-F. Environmental pollutant of soil and water. CONFIDENCE standard compound; EAWAG_UCHEM_ID 309 CONFIDENCE standard compound; INTERNAL_ID 4025 INTERNAL_ID 3016; CONFIDENCE standard compound CONFIDENCE standard compound; INTERNAL_ID 8408 CONFIDENCE standard compound; INTERNAL_ID 3016 CONFIDENCE standard compound; INTERNAL_ID 2537

   

Diaminopimelic acid

( (R*,s*)-2,6-diamino-heptanedioic acid

C7H14N2O4 (190.0953524)


Diaminopimelic acid or DAPA is a lysine-like amino acid derivative that is a key component of the bacterial cell wall. DAPA is incorporated or integrated into peptidoglycan of gram negative bacteria and is the attachment point for Brauns lipoprotein (BLP or Murein Lipoprotein). BLP is found in gram-negative cell walls and is one of the most abundant membrane proteins. BLP is bound at its C-terminal end (a lysine) by a covalent bond to the peptidoglycan layer (specifically to diaminopimelic acid molecules) and is embedded in the outer membrane by its hydrophobic head (a cysteine with lipids attached). BLP tightly links the two layers and provides structural integrity to the bacterial outer membrane. Diaminopimelic acid can be found in human urine or feces due to the lysis or enzymatic breakdown of gram negative gut microbes. Acquisition and generation of the data is financially supported in part by CREST/JST. 2,6-Diaminoheptanedioic acid is an endogenous metabolite.

   

Deoxyinosine

9-(2-Deoxy-beta-delta-erythro-pentofuranosyl)-1,9-dihydro-6H-purin-6-one

C10H12N4O4 (252.08585119999998)


Deoxyinosine is a nucleoside that is formed when hypoxanthine is attached to a deoxyribose ring (also known as a ribofuranose) via a beta-N9-glycosidic bond. Deoxyinosine is found in DNA while inosine is found in RNA. Inosine is a nucleic acid important for RNA editing. Adenosine deaminase (ADA) catalyzes the conversion of adenosine and deoxyadenosine to inosine and deoxyinosine, respectively. ADA-deficient individuals suffer from severe combined immunodeficiency (SCID) and are unable to produce significant numbers of mature T or B lymphocytes. This occurs as a consequence of the accumulation of ADA substrates or their metabolites. Inosine is also an intermediate in a chain of purine nucleotides reactions required for muscle movements. Moreover, deoxyinosine is found to be associated with purine nucleoside phosphorylase (PNP) deficiency, which is an inborn error of metabolism. Isolated from Phaseolus vulgaris (kidney bean). 2-Deoxyinosine is found in pulses, yellow wax bean, and green bean. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2’-deoxyadenosine inhibits the growth of human colon-carcinoma cell lines and is found to be associated with purine nucleoside phosphorylase (PNP) deficiency. 2’-deoxyadenosine inhibits the growth of human colon-carcinoma cell lines and is found to be associated with purine nucleoside phosphorylase (PNP) deficiency.

   

Maltotriose

(2R,3R,4S,5S,6R)-2-{[(2R,3S,4R,5R,6R)-4,5-dihydroxy-2-(hydroxymethyl)-6-{[(2R,3S,4R,5R)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C18H32O16 (504.1690272)


Maltotriose is a trisaccharide (three-part sugar) consisting of three glucose molecules linked with α-1,4 glycosidic bonds. It is most commonly produced by the digestive enzyme alpha-amylase (a common enzyme in human saliva) on amylose in starch. The creation of both maltotriose and maltose during this process is due to the random manner in which alpha amylase hydrolyses α-1,4 glycosidic bonds. It is the shortest chain oligosaccharide that can be classified as maltodextrin. Maltotriose belongs to the class of organic compounds known as oligosaccharides. These are carbohydrates made up of 3 to 10 monosaccharide units linked to each other through glycosidic bonds. Maltotriose is a common oligosaccharide metabolite found in human urine after maltose ingestion or infusion (PMID:6645121). Maltotriose is increased in glycogen storage disease II (OMIM: 232300) due to a mutation of the enzyme alpha-1,4-glucosidase (EC 3.2.1.20) (PMID:4286143). Constituent of corn syrup. Amylolysis production from starch. Maltooligosaccharide mixtures are important food additives (sweeteners, gelling agents and viscosity modifiers) Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Maltotriose, the second most abundant sugar present in brewing, is an inducer of the maltose regulon of Escherichia coli. Maltotriose can induce beta-galactosidase synthesis[1][2]. Maltotriose, the second most abundant sugar present in brewing, is an inducer of the maltose regulon of Escherichia coli. Maltotriose can induce beta-galactosidase synthesis[1][2].

   

4-Hydroxyphenylpyruvic acid

4-Hydroxy-alpha-oxobenzenepropanoic acid

C9H8O4 (180.0422568)


3-(4-hydroxy-phenyl)pyruvic acid, also known as 4-hydroxy a-oxobenzenepropanoate or 3-(p-hydroxyphenyl)-2-oxopropanoate, belongs to phenylpyruvic acid derivatives class of compounds. Those are compounds containing a phenylpyruvic acid moiety, which consists of a phenyl group substituted at the second position by an pyruvic acid. 3-(4-hydroxy-phenyl)pyruvic acid is slightly soluble (in water) and a moderately acidic compound (based on its pKa). 3-(4-hydroxy-phenyl)pyruvic acid can be synthesized from pyruvic acid. 3-(4-hydroxy-phenyl)pyruvic acid can also be synthesized into 4-hydroxyphenylpyruvic acid oxime. 3-(4-hydroxy-phenyl)pyruvic acid can be found in a number of food items such as garden onion (variety), rose hip, sourdough, and horseradish tree, which makes 3-(4-hydroxy-phenyl)pyruvic acid a potential biomarker for the consumption of these food products. 3-(4-hydroxy-phenyl)pyruvic acid can be found primarily in blood and urine, as well as in human prostate tissue. 3-(4-hydroxy-phenyl)pyruvic acid exists in all eukaryotes, ranging from yeast to humans. In humans, 3-(4-hydroxy-phenyl)pyruvic acid is involved in few metabolic pathways, which include disulfiram action pathway, phenylalanine and tyrosine metabolism, and tyrosine metabolism. 3-(4-hydroxy-phenyl)pyruvic acid is also involved in several metabolic disorders, some of which include tyrosinemia type I, phenylketonuria, tyrosinemia, transient, of the newborn, and alkaptonuria. Moreover, 3-(4-hydroxy-phenyl)pyruvic acid is found to be associated with hawkinsinuria and phenylketonuria. 4-Hydroxyphenylpyruvic acid (4-HPPA) is a keto acid that is involved in the tyrosine catabolism pathway. It is a product of the enzyme (R)-4-hydroxyphenyllactate dehydrogenase (EC 1.1.1.222) and is formed during tyrosine metabolism. The conversion from tyrosine to 4-HPPA is catalyzed by tyrosine aminotransferase. Additionally, 4-HPPA can be converted to homogentisic acid which is one of the precursors to ochronotic pigment. The enzyme 4-hydroxyphenylpyruvic acid dioxygenase (HPD) catalyzes the reaction that converts 4-hydroxyphenylpyruvic acid to homogentisic acid. A deficiency in the catalytic activity of HPD is known to lead to tyrosinemia type III, an autosomal recessive disorder characterized by elevated levels of blood tyrosine and massive excretion of tyrosine derivatives into urine. It has been shown that hawkinsinuria, an autosomal dominant disorder characterized by the excretion of hawkinsin, may also be a result of HPD deficiency (PMID: 11073718). Moreover, 4-hydroxyphenylpyruvic acid is also found to be associated in phenylketonuria, which is also an inborn error of metabolism. There are two isomers of HPPA, specifically 4HPPA and 3HPPA, of which 4HPPA is the most common. 4-HPPA has been found to be a microbial metabolite in Escherichia (ECMDB). KEIO_ID H007 4-Hydroxyphenylpyruvic acid is an intermediate in the metabolism of the amino acid phenylalanine. 4-Hydroxyphenylpyruvic acid is an intermediate in the metabolism of the amino acid phenylalanine.

   

DL-Malic acid

2-Hydroxyethane-1,2-dicarboxylic acid

C4H6O5 (134.0215226)


Malic acid (CAS: 6915-15-7) is a tart-tasting organic dicarboxylic acid that plays a role in many sour or tart foods. Apples contain malic acid, which contributes to the sourness of a green apple. Malic acid can make a wine taste tart, although the amount decreases with increasing fruit ripeness (Wikipedia). In its ionized form, malic acid is called malate. Malate is an intermediate of the TCA cycle along with fumarate. It can also be formed from pyruvate as one of the anaplerotic reactions. In humans, malic acid is both derived from food sources and synthesized in the body through the citric acid cycle or Krebs cycle which takes place in the mitochondria. Malates importance to the production of energy in the body during both aerobic and anaerobic conditions is well established. Under aerobic conditions, the oxidation of malate to oxaloacetate provides reducing equivalents to the mitochondria through the malate-aspartate redox shuttle. During anaerobic conditions, where a buildup of excess reducing equivalents inhibits glycolysis, malic acids simultaneous reduction to succinate and oxidation to oxaloacetate is capable of removing the accumulating reducing equivalents. This allows malic acid to reverse hypoxias inhibition of glycolysis and energy production. In studies on rats, it has been found that only tissue malate is depleted following exhaustive physical activity. Other key metabolites from the citric acid cycle needed for energy production were found to be unchanged. Because of this, a deficiency of malic acid has been hypothesized to be a major cause of physical exhaustion. Notably, the administration of malic acid to rats has been shown to elevate mitochondrial malate and increase mitochondrial respiration and energy production. Malic acid has been found to be a metabolite in Aspergillus (Hugo Vanden Bossche, D.W.R. Mackenzie and G. Cauwenbergh. Aspergillus and Aspergillosis, 1987). Acidulant, antioxidant, flavouring agent, flavour enhancer. Not for use in baby foods (GRAS) Malic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=617-48-1 (retrieved 2024-07-01) (CAS RN: 6915-15-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (S)-Malic acid ((S)-2-Hydroxysuccinic acid) is a dicarboxylic acid in naturally occurring form, contributes to the pleasantly sour taste of fruits and is used as a food additive. (S)-Malic acid ((S)-2-Hydroxysuccinic acid) is a dicarboxylic acid in naturally occurring form, contributes to the pleasantly sour taste of fruits and is used as a food additive. Malic acid (Hydroxybutanedioic acid) is a dicarboxylic acid that is naturally found in fruits such as apples and pears. It plays a role in many sour or tart foods. Malic acid (Hydroxybutanedioic acid) is a dicarboxylic acid that is naturally found in fruits such as apples and pears. It plays a role in many sour or tart foods.

   

Porphobilinogen

3-[5-(aminomethyl)-4-(carboxymethyl)-1H-pyrrol-3-yl]propanoic acid

C10H14N2O4 (226.0953524)


Porphobilinogen (PBG) is a pyrrole-containing intermediate in the biosynthesis of porphyrins. It is generated from aminolevulinate (ALA) by the enzyme ALA dehydratase. Porphobilinogen is then converted into hydroxymethylbilane by the enzyme porphobilinogen deaminase (also known as hydroxymethylbilane synthase). Under certain conditions, porphobilinogen can act as a phototoxin, a neurotoxin, and a metabotoxin. A phototoxin leads to cell damage upon exposure to light. A neurotoxin causes damage to nerve cells and nerve tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of porphyrins are associated with porphyrias such as porphyria variegate, acute intermittent porphyria, and hereditary coproporphyria (HCP). There are several types of porphyrias (most are inherited). Hepatic porphyrias are characterized by acute neurological attacks (seizures, psychosis, extreme back and abdominal pain, and an acute polyneuropathy), while the erythropoietic forms present with skin problems (usually a light-sensitive blistering rash and increased hair growth). The neurotoxicity of porphyrins may be due to their selective interactions with tubulin, which disrupt microtubule formation and cause neural malformations (PMID: 3441503). Porphobilinogen is a pyrrole involved in porphyrin metabolism. -- Wikipedia; It consists of a pyrrole ring with acetyl, propionyl, and aminomethyl side chains; It is a key monopyrrolic intermediate in porphyrin, chlorophyll and vitamin B12 biosynthesis. Porphobilinogen is generated by the enzyme ALA dehydratase by combining two molecules of dALA together, and converted into hydroxymethyl bilane by the enzyme porphobilinogen deaminase. 4 molecules of porphobilinogen are condensed to form one molecule of uroporphyrinogen III, which is then converted successively to coproporphyrinogen III, protoporphyrin IX, and heme. Porphobilinogen is produced in excess and excreted in the urine in acute intermittent porphyria and several other porphyrias. [HMDB]. Porphobilinogen is found in many foods, some of which are strawberry guava, amaranth, parsnip, and ostrich fern.

   

Mevalonic acid

beta,delta-Dihydroxy-beta-methylvaleric acid

C6H12O4 (148.0735552)


Mevalonic acid, also known as MVA, mevalonate, or hiochic acid, belongs to the class of organic compounds known as hydroxy fatty acids. These are fatty acids in which the chain bears a hydroxyl group. Mevalonic acid is a key organic compound in biochemistry. It is found in most higher organisms ranging from plants to animals. Mevalonic acid is a precursor in the biosynthetic pathway known as the mevalonate pathway that produces terpenes (in plants) and steroids (in animals). Mevalonic acid is the primary precursor of isopentenyl pyrophosphate (IPP), that is in turn the basis for all terpenoids. The production of mevalonic acid by the enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, is the rate-limiting step in the biosynthesis of cholesterol (PMID: 12872277). The cholesterol biosynthetic pathway has three major steps: (1) acetate to mevalonate, (2) mevalonate to squalene, and (3) squalene to cholesterol. In the first step, which catalyzed by thiolase, two acetyl-CoA molecules form acetoacetyl-CoA and one CoA molecule is released, then the acetoacetyl-CoA reacts with another molecule of acetyl-CoA and generates 3-hydroxy-3-methylglutaryl-CoA (HMGCoA). The enzyme responsible for this reaction is 3-hydroxy-3-methylglutaryl-CoA synthase (HMG-CoA synthase): In the pathway to synthesize cholesterol, one of the HMG-CoA carboxyl groups undergoes reduction to an alcohol, releasing CoA, leading to the formation of mevalonate, a six carbon compound. This reaction is catalyzed by hydroxy-methylglutaryl-CoA reductase, In the second step (mevalonate to squalene) mevalonate receives a phosphoryl group from ATP to form 5-phosphomevalonate. This compound accepts another phosphate to generate mevalonate-5-pyrophosphate. After a third phosphorylation, the compound is decarboxylated, loses water, and generates isopentenyl pyrophosphate (IPP). Then through successive condensations, IPP forms squalene, a terpene hydrocarbon that contains 30 carbon atoms. By cyclization and other changes, this compound will finally result in cholesterol. Mevalonic acid is found, on average, in the highest concentration within a few different foods, such as apples, corns, and wild carrots and in a lower concentration in garden tomato (var.), pepper (C. frutescens), and cucumbers. Mevalonic acid has also been detected, but not quantified in, several different foods, such as sweet oranges, potato, milk (cow), cabbages, and white cabbages. This could make mevalonic acid a potential biomarker for the consumption of these foods. Plasma concentrations and urinary excretion of MVA are decreased by HMG-CoA reductase inhibitor drugs such as pravastatin, simvastatin, and atorvastatin (PMID: 8808497). Mevalonic acid (MVA) is a key organic compound in biochemistry. The anion of mevalonic acid, the predominant form in biological media, is known as mevalonate. This compound is of major pharmaceutical importance. Drugs, such as the statins, stop the production of mevalonate by inhibiting HMG-CoA reductase. [Wikipedia]. Mevalonic acid is found in many foods, some of which are pepper (c. frutescens), cabbage, wild carrot, and white cabbage.

   

Protoporphyrin IX

3-[20-(2-carboxyethyl)-9,14-diethenyl-5,10,15,19-tetramethyl-21,22,23,24-tetraazapentacyclo[16.2.1.1^{3,6}.1^{8,11}.1^{13,16}]tetracosa-1(21),2,4,6,8(23),9,11,13,15,17,19-undecaen-4-yl]propanoic acid

C34H34N4O4 (562.2579924)


Protoporphyrins are tetrapyrroles containing 4 methyl, 2 propionic, and 2 vinyl side chains. Protoporphyrin is produced by oxidation of the methylene bridge of protoporphyrinogen. Protoporphyrin IX is the only naturally occurring isomer; it is an intermediate in heme biosynthesis, combining with ferrous iron to form protoheme IX, the heme prosthetic group of hemoglobin. Protoporphyrin IX is created by the enzyme protoporphyrinogen oxidase. The enzyme ferrochelatase converts it into heme. Protoporphyrin IX naturally occurs in small amounts in feces. Protoporphyrin IX is also responsible for the brown pigment (ooporphyrin) of birds eggs. Protoporphyrin IX is used as a branch point in the biosynthetic pathway leading to heme (by insertion of iron) and chlorophylls (by insertion of Mg and further side-chain transformation). Protoporphyrin IX can be used to treat liver disorders, mainly as the sodium salt. Under certain conditions, protoporphyrin IX can act as a neurotoxin, a phototoxin, and a metabotoxin. A neurotoxin causes damage to nerve cells and nerve tissues. A phototoxin causes cell damage upon exposure to light. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of porphyrins are associated with porphyrias such as porphyria variegate, acute intermittent porphyria, and hereditary coproporphyria (HCP). In particular, it is accumulated and excreted excessively in the feces in acute intermittent porphyria, protoporphyria, and variegate porphyria. There are several types of porphyrias (most are inherited). Hepatic porphyrias are characterized by acute neurological attacks (seizures, psychosis, extreme back and abdominal pain, and an acute polyneuropathy), while the erythropoietic forms present with skin problems (usually a light-sensitive blistering rash and increased hair growth). The neurotoxicity of porphyrins may be due to their selective interactions with tubulin, which disrupt microtubule formation and cause neural malformations (PMID: 3441503). obtained by demetallation of Haemin, occurs in small amounts in faeces. Brown pigment (Ooporphyrin) of birds eggs. Isolated from Atolla wyvillei (CCD). Protoporphyrin is found in red beetroot. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents COVID info from COVID-19 Disease Map C1420 - Photosensitizing Agent D003879 - Dermatologic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Protoporphyrin IX is the final intermediate in the heme biosynthetic pathway. Protoporphyrin IX is the final intermediate in the heme biosynthetic pathway.

   

Equol

(3S)-3-(4-hydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-7-ol

C15H14O3 (242.0942894)


Equol is a metabolite of daidzein, a phytoestrogen common in the human diet and abundant in soy. Intestinal bacteria in humans can reduce daidzein to equol, and can be found in normal human urine. The clinical effectiveness of soy isoflavones may be a function of the ability to biotransform soy isoflavones to the more potent estrogenic metabolite, equol, which may enhance the actions of soy isoflavones, owing to its greater affinity for estrogen receptors, unique antiandrogenic properties, and superior antioxidant activity. However, not all individuals consuming daidzein produce equol. Only approximately one-third to one-half of the population is able to metabolize daidzein to equol. This high variability in equol production is presumably attributable to interindividual differences in the composition of the intestinal microflora, which may play an important role in the mechanisms of action of isoflavones. (PMID: 17579895, 17579894). Equol can be found in Bacteroides, Bifidobacterium, Enterococcus, Lactobacillus and Eggerthella (PMID: 20519412; PMID: 18838805). Equol is a metabolite of daidzein, a phytoestrogen common in the human diet and abundant in soy. Intestinal bacteria in humans can reduce daidzein to equol, and can be found in normal human urine. The clinical effectiveness of soy isoflavones may be a function of the ability to biotransform soy isoflavones to the more potent estrogenic metabolite, equol, which may enhance the actions of soy isoflavones, owing to its greater affinity for estrogen receptors, unique antiandrogenic properties, and superior antioxidant activity. However, not all individuals consuming daidzein produce equol. Only approximately one-third to one-half of the population is able to metabolize daidzein to equol. This high variability in equol production is presumably attributable to interindividual differences in the composition of the intestinal microflora, which may play an important role in the mechanisms of action of isoflavones. (PMID: 17579895, 17579894) [HMDB] D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen (-)-(S)-Equol is a high affinity ligand for estrogen receptor β with a Ki of 0.73 nM. (-)-(S)-Equol is a high affinity ligand for estrogen receptor β with a Ki of 0.73 nM. (-)-(S)-Equol is a high affinity ligand for estrogen receptor β with a Ki of 0.73 nM. (-)-(S)-Equol is a high affinity ligand for estrogen receptor β with a Ki of 0.73 nM. (±)-Equol is the racemate of equol. (±)-equol exhibits EC50s of 200 and 74 nM for human ERα and ERβ, respectively. Equol is a metabolite of the soy isoflavones, daidzin and daidzein.

   

Phenylpyruvate

2-Oxo-3-phenylpropanoic acid (Mixture oxo and keto)

C9H8O3 (164.0473418)


Phenylpyruvic acid is a keto-acid that is an intermediate or catabolic byproduct of phenylalanine metabolism. It has a slight honey-like odor. Levels of phenylpyruvate are normally very low in blood or urine. High levels of phenylpyruvic acid can be found in the urine of individuals with phenylketonuria (PKU), an inborn error of metabolism. PKU is due to lack of the enzyme phenylalanine hydroxylase (PAH), so that phenylalanine is converted not to tyrosine but to phenylpyruvic acid. In particular, excessive phenylalanine can be metabolized into phenylketones through, a transaminase pathway route involving glutamate. Metabolites of this transamination reaction include phenylacetate, phenylpyruvate and phenethylamine. In persons with PKU, dietary phenylalanine either accumulates in the body or some of it is converted to phenylpyruvic acid. Individuals with PKU tend to excrete large quantities of phenylpyruvate, phenylacetate and phenyllactate, along with phenylalanine, in their urine. If untreated, mental retardation effects and microcephaly are evident by the first year along with other symptoms which include: unusual irritability, epileptic seizures and skin lesions. Hyperactivity, EEG abnormalities and seizures, and severe learning disabilities are major clinical problems later in life. A "musty or mousy" odor of skin, hair, sweat and urine (due to phenylacetate accumulation); and a tendency to hypopigmentation and eczema are also observed. The neural-development effects of PKU are primarily due to the disruption of neurotransmitter synthesis. In particular, phenylalanine is a large, neutral amino acid which moves across the blood-brain barrier (BBB) via the large neutral amino acid transporter (LNAAT). Excessive phenylalanine in the blood saturates the transporter. Thus, excessive levels of phenylalanine significantly decrease the levels of other LNAAs in the brain. But since these amino acids are required for protein and neurotransmitter synthesis, phenylalanine accumulation disrupts brain development, leading to mental retardation. Phenylpyruvic acid is also a microbial metabolite, it can be produced by Lactobacillus plantarum (PMID: 9687465). Flavouring ingredient Phenylpyruvic acid is used in the synthesis of 3-phenyllactic acid (PLA) by lactate dehydrogenase[1]. Phenylpyruvic acid is used in the synthesis of 3-phenyllactic acid (PLA) by lactate dehydrogenase[1].

   

Deoxyguanosine

2-amino-9-[(2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-6,9-dihydro-1H-purin-6-one

C10H13N5O4 (267.09674980000005)


Deoxyguanosine, also known as dG, belongs to the class of organic compounds known as purine 2-deoxyribonucleosides. Purine 2-deoxyribonucleosides are compounds consisting of a purine linked to a ribose which lacks a hydroxyl group at position 2‚Äô. Deoxyguanosine is a nucleoside consisting of the base guanine and the sugar deoxyribose. Deoxyguanosine is one of the four deoxyribonucleosides that make up DNA. Deoxyguanosine exists in all living species, ranging from bacteria to plants to humans. Deoxyguanosine participates in a number of enzymatic reactions. In particular, deoxyguanosine can be biosynthesized from 2-deoxyguanosine 5-monophosphate through the enzyme known as cytosolic purine 5-nucleotidase. In addition, deoxyguanosine can be converted into 2-deoxyguanosine 5-monophosphate (dGMP); which is mediated by the enzyme deoxyguanosine kinase. Deoxyguanosine is involved in the rare, inherited metabolic disorder called the purine nucleoside phosphorylase deficiency (PNP deficiency). In particular PNP deficiency is characterized by elevated levels of dGTP (deoxyguanosine triphosphate). PNP accounts for approximately 4\\\\% of patients with severe combined immunodeficiency (PMID: 1931007). PNP-deficient patients suffer from recurrent infections, usually beginning in the first year of life. Two thirds of patients have evidence of neurologic disorders with spasticity, developmental delay and mental retardation. Deoxyguanosine can be converted to 8-hydroxy-deoxyguanosine (8-OHdG) due to hydroxyl radical attack at the C8 of guanine. 8-hydroxy-deoxyguanosine is a sensitive marker of the DNA damage This damage, if left unrepaired, has been proposed to contribute to mutagenicity and cancer promotion. Isolated from plants, e.g. Phaseolus vulgaris (kidney bean) COVID info from COVID-19 Disease Map KEIO_ID D057; [MS2] KO008942 KEIO_ID D057 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2’-Deoxyguanosine (Deoxyguanosine) is a purine nucleoside with a variety of biological activities. 2’-Deoxyguanosine can induce DNA division in mouse thymus cells. 2’-Deoxyguanosine is a potent cell division inhibitor in plant cells[1][2][3]. 2'-Deoxyguanosine (Deoxyguanosine) is deoxyguanosine.

   

Farnesyl pyrophosphate

{[hydroxy({[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]oxy})phosphoryl]oxy}phosphonic acid

C15H28O7P2 (382.1310198)


Farnesyl pyrophosphate is an intermediate in the HMG-CoA reductase pathway used by organisms in the biosynthesis of terpenes and terpenoids. -- Wikipedia [HMDB]. Farnesyl pyrophosphate is found in many foods, some of which are kumquat, macadamia nut, sweet bay, and agave. Farnesyl pyrophosphate is an intermediate in the HMG-CoA reductase pathway used by organisms in the biosynthesis of terpenes and terpenoids. -- Wikipedia.

   

Bisphenol A

4,4-Isopropylidenediphenol C12-15 alcohol phosphite

C15H16O2 (228.1150236)


Bisphenol A, commonly abbreviated as BPA, is an organic compound with two phenol functional groups. It is a difunctional building block of several important plastics and plastic additives. With an annual production of 2–3 million metric tonnes, it is an important monomer in the production of polycarbonate. It is a potential food contaminant arising from its use in reusable polycarbonate food containers such as water carboys, baby bottles and kitchen utensils D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens D004785 - Environmental Pollutants > D000393 - Air Pollutants D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants CONFIDENCE standard compound; EAWAG_UCHEM_ID 163 Bisphenol A is a phenolic, organic synthetic compound widely used in the production of polycarbonate plastics and epoxy resins. Bisphenol A is a reproductive, developmental, and systemic toxicant, often classified as an endocrine-disrupting compound (EDC). Bisphenol A is associated with many diseases, including cardiovascular diseases, respiratory diseases, diabetes, kidney diseases, obesity, and reproductivedisorders[1][2][3].

   

Glycerol 3-phosphate

alpha-Glycerophosphoric acid, 1,2,3-propanetriol-1-(18)O,3-(dihydrogen phosphate)-labeled

C3H9O6P (172.0136744)


Glycerol 3-phosphate, also known as glycerophosphoric acid or alpha-glycerophosphorate, is a member of the class of compounds known as glycerophosphates. Glycerophosphates are compounds containing a glycerol linked to a phosphate group. Glycerol 3-phosphate is soluble (in water) and a moderately acidic compound (based on its pKa). Glycerol 3-phosphate can be found in a number of food items such as sacred lotus, common oregano, mixed nuts, and yautia, which makes glycerol 3-phosphate a potential biomarker for the consumption of these food products. Glycerol 3-phosphate can be found primarily in blood, feces, saliva, and urine, as well as in human prostate tissue. Glycerol 3-phosphate exists in all living species, ranging from bacteria to humans. In humans, glycerol 3-phosphate is involved in several metabolic pathways, some of which include cardiolipin biosynthesis cl(i-12:0/i-21:0/a-21:0/i-21:0), cardiolipin biosynthesis cl(i-12:0/a-25:0/i-13:0/i-12:0), cardiolipin biosynthesis cl(i-13:0/i-21:0/i-21:0/a-25:0), and cardiolipin biosynthesis cl(i-13:0/a-25:0/i-18:0/a-13:0). Glycerol 3-phosphate is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis tg(i-24:0/19:0/16:0), de novo triacylglycerol biosynthesis TG(16:0/22:4(7Z,10Z,13Z,16Z)/16:1(9Z)), de novo triacylglycerol biosynthesis TG(18:0/18:3(9Z,12Z,15Z)/14:1(9Z)), and de novo triacylglycerol biosynthesis TG(18:3(6Z,9Z,12Z)/22:5(4Z,7Z,10Z,13Z,16Z)/20:2(11Z,14Z)). Glycerol 3-phosphate is a chemical intermediate in the glycolysis metabolic pathway. It is commonly confused with the similarly named glycerate 3-phosphate or glyceraldehyde 3-phosphate. Glycerol 3-phosphate is produced from glycerol, the triose sugar backbone of triglycerides and glycerophospholipids, by the enzyme glycerol kinase. Glycerol 3-phospate may then be converted by dehydrogenation to dihydroxyacetone phosphate (DHAP) by the enzyme glycerol-3-phosphate dehydrogenase. DHAP can then be rearranged into glyceraldehyde 3-phosphate (GA3P) by triose phosphate isomerase (TIM), and feed into glycolysis. The glycerol 3-phosphate shuttle is used to rapidly regenerate NAD+ in the brain and skeletal muscle cells of mammals (wikipedia). Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID G072

   

6-Benzylaminopurine

N-(Phenylmethyl)-1H-purin-6-amine

C12H11N5 (225.1014406)


6-Benzylaminopurine (6-BAP), also known as N6-benzyladenine or cytokinin B, belongs to the class of organic compounds known as 6-alkylaminopurines. 6-Alkylaminopurines are compounds that contain an alkylamine group attached at the 6-position of a purine. Purine is a bicyclic aromatic compound made up of a pyrimidine ring fused to an imidazole ring. 6-Benzylaminopurine is a very strong basic compound (based on its pKa). Outside of the human body, 6-benzylaminopurine has been detected, but not quantified in, garden tomato (var.) and wild celeries. This could make 6-benzylaminopurine a potential biomarker for the consumption of these foods. 6-Benzylaminopurine is a synthetic cytokinin applied externally postharvest to maintain the quality, delay senescence, and improve the nutritional value of green vegetables (PMID: 22148319). 6-Benzylaminopurine, benzyl adenine or BAP is a first-generation synthetic cytokinin which elicits plant growth and development responses, setting blossoms and stimulating fruit richness by stimulating cell division. It is an inhibitor of respiratory kinase in plants, and increases post-harvest life of green vegetables. Cytokinin B is found in wild celery and garden tomato (variety). CONFIDENCE standard compound; INTERNAL_ID 202; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6963; ORIGINAL_PRECURSOR_SCAN_NO 6960 CONFIDENCE standard compound; INTERNAL_ID 202; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3175; ORIGINAL_PRECURSOR_SCAN_NO 3173 CONFIDENCE standard compound; INTERNAL_ID 202; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6962; ORIGINAL_PRECURSOR_SCAN_NO 6960 CONFIDENCE standard compound; INTERNAL_ID 202; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6947; ORIGINAL_PRECURSOR_SCAN_NO 6945 CONFIDENCE standard compound; INTERNAL_ID 202; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6966; ORIGINAL_PRECURSOR_SCAN_NO 6965 CONFIDENCE standard compound; INTERNAL_ID 202; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6971; ORIGINAL_PRECURSOR_SCAN_NO 6967 CONFIDENCE standard compound; INTERNAL_ID 202; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3236; ORIGINAL_PRECURSOR_SCAN_NO 3235 CONFIDENCE standard compound; INTERNAL_ID 202; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6911; ORIGINAL_PRECURSOR_SCAN_NO 6907 CONFIDENCE standard compound; INTERNAL_ID 202; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3181; ORIGINAL_PRECURSOR_SCAN_NO 3179 CONFIDENCE standard compound; INTERNAL_ID 202; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3214; ORIGINAL_PRECURSOR_SCAN_NO 3213 CONFIDENCE standard compound; INTERNAL_ID 202; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3173; ORIGINAL_PRECURSOR_SCAN_NO 3171 D006133 - Growth Substances > D010937 - Plant Growth Regulators KEIO_ID B015; [MS2] KO008874 KEIO_ID B015 6-Benzylaminopurine (Benzyladenine) is the first cytokinin that causes plant growth and development by stimulating cell division and inhibiting respiratory kinases, thereby prolonging the preservation of green vegetables[1]. 6-Benzylaminopurine is the first cytokinin that causes plant growth and development by stimulating cell division and inhibiting respiratory kinases, thereby prolonging the preservation of green vegetables.

   

pyrethrin I

Cyclopropanecarboxylic acid, 2,2-dimethyl-3-(2-methyl-1-propenyl)-, (1S)-2-methyl-4-oxo-3-(2Z)-2,4-pentadienyl-2-cyclopenten-1-yl ester, (1R,3R)-

C21H28O3 (328.2038338)


D010575 - Pesticides > D007306 - Insecticides > D011722 - Pyrethrins

   

Glucosamine

(3R,4R,5S,6R)-3-Amino-6-(hydroxymethyl)oxane-2,4,5-triol

C6H13NO5 (179.0793688)


Glucosamine (C6H13NO5) is an amino sugar and a prominent precursor in the biochemical synthesis of glycosylated proteins and lipids. Glucosamine is part of the structure of two polysaccharides, chitosan and chitin. Glucosamine is one of the most abundant monosaccharides. Produced commercially by the hydrolysis of shellfish exoskeletons or, less commonly, by fermentation of a grain such as corn or wheat, glucosamine has many names depending on country. Although a common dietary supplement, there is little evidence that it is effective for relief of arthritis or pain, and is not an approved prescription drug. In the United States, glucosamine is not approved by the Food and Drug Administration for medical use in humans. Since glucosamine is classified as a dietary supplement, evidence of safety and efficacy is not required as long as it is not advertised as a treatment for a medical condition. Nevertheless, glucosamine is a popular alternative medicine used by consumers for the treatment of osteoarthritis. Glucosamine is also extensively used in veterinary medicine as an unregulated but widely accepted supplement. Treatment with oral glucosamine is commonly used for the treatment of osteoarthritis. Since glucosamine is a precursor for glycosaminoglycans, and glycosaminoglycans are a major component of joint cartilage, supplemental glucosamine may help to rebuild cartilage and treat arthritis. However, there is little evidence that any clinical effect of glucosamine works this way. Its use as a therapy for osteoarthritis appears safe but there is conflicting evidence as to its effectiveness. Glucosamine is naturally present in the shells of shellfish, animal bones, bone marrow, and fungi. D-Glucosamine is made naturally in the form of glucosamine-6-phosphate, and is the biochemical precursor of all nitrogen-containing sugars. Specifically in humans, glucosamine-6-phosphate is synthesized from fructose 6-phosphate and glutamine by glutamine—fructose-6-phosphate transaminase as the first step of the hexosamine biosynthesis pathway. The end-product of this pathway is uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), which is then used for making glycosaminoglycans, proteoglycans, and glycolipids. As the formation of glucosamine-6-phosphate is the first step for the synthesis of these products, glucosamine may be important in regulating their production; however, the way that the hexosamine biosynthesis pathway is actually regulated, and whether this could be involved in contributing to human disease remains unclear. Present in mucopolysaccharides and in polysaccharides found in bacteria, fungi, higher plants, invertebrates, vertebrates, antibiotics and UDP complexes. Obt. comly. by hydrol. of seashells [CCD] M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID G051 Glucosamine (D-Glucosamine) is an amino sugar and a prominent precursor in the biochemical synthesis of glycosylated proteins and lipids, is used as a dietary supplement. Glucosamine also is a natural constituent of glycosaminoglycans in the cartilage matrix and synovial fluid, which when administered exogenously, exerts pharmacological effects on osteoarthritic cartilage and chondrocytes[1]. Glucosamine (D-Glucosamine) is an amino sugar and a prominent precursor in the biochemical synthesis of glycosylated proteins and lipids, is used as a dietary supplement. Glucosamine also is a natural constituent of glycosaminoglycans in the cartilage matrix and synovial fluid, which when administered exogenously, exerts pharmacological effects on osteoarthritic cartilage and chondrocytes[1]. Glucosamine (D-Glucosamine) is an amino sugar and a prominent precursor in the biochemical synthesis of glycosylated proteins and lipids, is used as a dietary supplement. Glucosamine also is a natural constituent of glycosaminoglycans in the cartilage matrix and synovial fluid, which when administered exogenously, exerts pharmacological effects on osteoarthritic cartilage and chondrocytes[1].

   

Pyroglutamic acid

(S)-(-)-gamma-Butyrolactam-gamma-carboxylic acid

C5H7NO3 (129.0425912)


Pyroglutamic acid (5-oxoproline) is a cyclized derivative of L-glutamic acid. It is an uncommon amino acid derivative in which the free amino group of glutamic acid cyclizes to form a lactam. It is formed nonenzymatically from glutamate, glutamine, and gamma-glutamylated peptides, but it can also be produced by the action of gamma-glutamylcyclotransferase on an L-amino acid. Elevated blood levels may be associated with problems of glutamine or glutathione metabolism. This compound is found in substantial amounts in brain tissue and other tissues in bound form, especially skin. It is also present in plant tissues. It is sold, over the counter, as a "smart drug" for improving blood circulation in the brain. Pyroglutamate in the urine is a biomarker for the consumption of cheese. When present in sufficiently high levels, pyroglutamic acid can act as an acidogen and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of pyroglutamic acid are associated with at least five inborn errors of metabolism including 5-oxoprolinuria, 5-oxoprolinase deficiency, glutathione synthetase deficiency, hawkinsinuria, and propionic acidemia. Pyroglutamic acid is an organic acid. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart, liver, and kidney abnormalities, seizures, coma, and possibly death. These are also the characteristic symptoms of the untreated IEMs mentioned above. Many affected children with organic acidemias experience intellectual disability or delayed development. In adults, acidosis or acidemia is characterized by headaches, confusion, feeling tired, tremors, sleepiness, and seizures. It has been shown that pyroglutamic acid releases GABA from the cerebral cortex and displays anti-anxiety effects in a simple approach-avoidance conflict situation in the rat. In clinical pharmacology experiments, pyroglutamic acid significantly shortens the plasma half-life of ethanol during acute intoxication. Found in vegetables, fruits and molasses. A cyclized derivative of L-glutamic acid. It is an uncommon amino acid derivative in which the free amino group of glutamic acid cyclizes to form a lactam. Pyroglutamate in the urine is a biomarker for the consumption of cheese C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent

   

4-ethylamino-6-isopropylamino-1,3,5-triazin-2-ol

4-(Ethylamino)-2-hydroxy-6-(isopropylamino)-1,3,5-triazine

C8H15N5O (197.127654)


4-ethylamino-6-isopropylamino-1,3,5-triazin-2-ol, also known as 2-Hydroxyatrazine, is classified as a member of the 1,3,5-triazines. 1,3,5-triazines are compounds containing a triazine ring, which is a heterocyclic ring, similar to the six-member benzene ring but with three carbons replaced by nitrogen atoms, at ring positions 1, 3, and 5. 4-ethylamino-6-isopropylamino-1,3,5-triazin-2-ol is considered to be practically insoluble (in water) and relatively neutral CONFIDENCE standard compound; EAWAG_UCHEM_ID 279 CONFIDENCE standard compound; INTERNAL_ID 8441 CONFIDENCE standard compound; INTERNAL_ID 2550 KEIO_ID A196

   

Oleamide

(9Z)-octadec-9-enamide

C18H35NO (281.27185000000003)


Oleamide is an amide of the fatty acid oleic acid. It is an endogenous substance: it occurs naturally in the body of animals. It accumulates in the cerebrospinal fluid during sleep deprivation and induces sleep in animals. It is being studied as a potential medical treatment for mood and sleep disorders, and cannabinoid-regulated depression. The mechanism of action of oleamides sleep inducing effects is an area of current research. It is likely that oleamide interacts with multiple neurotransmitter systems. Oleamide is structurally related to the endogenous cannabinoid anandamide, and has the ability to bind to the CB1 receptor as a full agonist. Oleamide. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=301-02-0 (retrieved 2024-07-02) (CAS RN: 301-02-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Oleamide is an endogenous fatty acid amide which can be synthesized de novo in the mammalian nervous system, and has been detected in human plasma.

   

D-Xylose

(3R,4S,5R)-Tetrahydro-2H-pyran-2,3,4,5-tetrol

C5H10O5 (150.052821)


Xylose or wood sugar is an aldopentose - a monosaccharide containing five carbon atoms and an aldehyde functional group. It has chemical formula C5H10O5 and is 40\\\\% as sweet as sucrose. Xylose is found in the embryos of most edible plants. The polysaccharide xylan, which is closely associated with cellulose, consists practically entirely of d-xylose. Corncobs, cottonseed hulls, pecan shells, and straw contain considerable amounts of this sugar. Xylose is also found in mucopolysaccharides of connective tissue and sometimes in the urine. Xylose is the first sugar added to serine or threonine residues during proteoglycan type O-glycosylation. Therefore xylose is involved in the biosythetic pathways of most anionic polysaccharides such as heparan sulphate and chondroitin sulphate. In medicine, xylose is used to test for malabsorption by administering a xylose solution to the patient after fasting. If xylose is detected in the blood and/or urine within the next few hours, it has been absorbed by the intestines. Xylose is said to be one of eight sugars which are essential for human nutrition, the others being galactose, glucose, mannose, N-acetylglucosamine, N-acetylgalactosamine, fucose, and sialic acid. (Wikipedia). Xylose in the urine is a biomarker for the consumption of apples and other fruits. Xylose is a sugar first isolated from wood, and named for it. Xylose is classified as a monosaccharide of the aldopentose type, which means that it contains five carbon atoms and includes an aldehyde functional group. It is the precursor to hemicellulose, one of the main constituents of biomass. D-Xylopyranose is found in flaxseed. D-(+)-xylose (Xylose) is a natural compound that is catalyzed by xylose isomerase to form xylulose, which is a key step in the anaerobic ethanol fermentation of xylose. D-(+)-xylose (Xylose) is a natural compound that is catalyzed by xylose isomerase to form xylulose, which is a key step in the anaerobic ethanol fermentation of xylose.

   

linustatin

2-methyl-2-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxymethyl]-2-tetrahydropyranyl]oxy]propanenitrile

C16H27NO11 (409.15840319999995)


   

Quetiapine

2-[2-(4-{2-thia-9-azatricyclo[9.4.0.0³,⁸]pentadeca-1(15),3,5,7,9,11,13-heptaen-10-yl}piperazin-1-yl)ethoxy]ethan-1-ol

C21H25N3O2S (383.166739)


The most common side effect is sedation, and is prescribed specifically for this effect in patients with sleep disorders. Seroquel will put the patient into a drowsy state, and will help the patient fall asleep. It is one of the most sedating of all anti psychotic drugs, rivaling even the most sedating older antipsychotics. Many prescriptions call for the entire dose to be taken before bedtime because of its sedative effects. Although quetiapine is approved by the FDA for the treatment of schizophrenia and bipolar disorder, it is frequently prescribed for off-label purposes including insomnia or the treatment of anxiety disorders. Due to its sedative side effects, reports of quetiapine abuse (sometimes by insufflating crushed tablets) have emerged in medical literature; Quetiapine belongs to a series of neuroleptics known as "atypical antipsychotics", which have become increasingly popular alternatives to "typical antipsychotics" such as haloperidol. Quetiapine HAS approvals for the treatment of schizophrenia and acute mania in bipolar disorder. It is also used off-label to treat other disorders, such as post-traumatic stress disorder, alcoholism, obsessive compulsive disorder, anxiety disorders, hallucinations in Parkinsons disease patients using ropinirole, and as a sedative for those with sleep disorders. The most common side effect is sedation, and is prescribed specifically for this effect in patients with sleep disorders. Seroquel will put the patient into a drowsy state, and will help the patient fall asleep. It is one of the most sedating of all anti psychotic drugs, rivaling even the most sedating older antipsychotics. Many prescriptions call for the entire dose to be taken before bedtime because of its sedative effects. Although quetiapine is approved by the FDA for the treatment of schizophrenia and bipolar disorder, it is frequently prescribed for off-label purposes including insomnia or the treatment of anxiety disorders. Due to its sedative side effects, reports of quetiapine abuse (sometimes by insufflating crushed tablets) have emerged in medical literature; for the same reason, abuse of other antipsychotics, such as chlorpromazine (Thorazine), may occur as well, but research related to the abuse of typical antipsychotics is limited. for the same reason, abuse of other antipsychotics, such as chlorpromazine (Thorazine), may occur as well, but research related to the abuse of typical antipsychotics is limited. The most common side effect is sedation, and is prescribed specifically for this effect in patients with sleep disorders. Seroquel will put the patient into a drowsy state, and will help the patient fall asleep. It is one of the most sedating of all anti psychotic drugs, rivaling even the most sedating older antipsychotics. Many prescriptions call for the entire dose to be taken before bedtime because of its sedative effects. Although quetiapine is approved by the FDA for the treatment of schizophrenia and bipolar disorder, it is frequently prescribed for off-label purposes including insomnia or the treatment of anxiety disorders. Due to its sedative side effects, reports of quetiapine abuse (sometimes by insufflating crushed tablets) have emerged in medical literature; Quetiapine belongs to a series of neuroleptics known as "atypical antipsychotics", which have become increasingly popular alternatives to "typical antipsychotics" such as haloperidol. N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AH - Diazepines, oxazepines, thiazepines and oxepines D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Quetiapine (ICI204636) is a 5-HT receptors agonist with a pEC50 of 4.77 for human 5-HT1A receptor. Quetiapine is a dopamine receptor antagonist with a pIC50 of 6.33 for human D2 receptor. Quetiapine has moderate to high affinity for the human D2, HT1A, 5-HT2A, 5-HT2C receptor with pKis of 7.25, 5.74, 7.54, 5.55. Antidepressant and anxiolytic effects[1].

   

Artemisinin

3,12-Epoxy-12H-pyranol(4,3-j)-1,2-benzodioxepin-10(3H)-one, octahydro-3,6,9-trimethyl-, (3-alpha,5a-beta,6-beta,8a-beta,9-alpha,12-beta,12aR*)-(+)-

C15H22O5 (282.1467162)


D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides D000890 - Anti-Infective Agents (+)-artemisinin is a sesquiterpene lactone obtained from sweet wormwood, Artemisia annua, which is used as an antimalarial for the treatment of multi-drug resistant strains of falciparum malaria. It has a role as an antimalarial and a plant metabolite. It is a sesquiterpene lactone and an organic peroxide. Artemisinin has been used in trials studying the treatment of Schizophrenia, Malaria, Falciparum, and Plasmodium Falciparum. Artemisinin is a natural product found in Microliabum polymnioides, Artemisia tenuisecta, and other organisms with data available. A sesquiterpene lactone obtained from sweet wormwood, Artemisia annua, which is used as an antimalarial for the treatment of multi-drug resistant strains of falciparum malaria. P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01B - Antimalarials > P01BE - Artemisinin and derivatives, plain C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Origin: Plant; SubCategory_DNP: Sesquiterpenoids CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 9 INTERNAL_ID 9; CONFIDENCE Reference Standard (Level 1) relative retention time with respect to 9-anthracene Carboxylic Acid is 1.152 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.156 [Raw Data] CB176_Artemisinin_pos_30eV_isCID-10eV_rep000004.txt [Raw Data] CB176_Artemisinin_pos_20eV_isCID-10eV_rep000004.txt [Raw Data] CB176_Artemisinin_pos_10eV_isCID-10eV_rep000004.txt [Raw Data] CB176_Artemisinin_pos_40eV_isCID-10eV_rep000004.txt [Raw Data] CB176_Artemisinin_pos_50eV_isCID-10eV_rep000004.txt Artemisinin (Qinghaosu), a sesquiterpene lactone, is an anti-malarial agent isolated from the aerial parts of Artemisia annua L. plants[1]. Artemisinin inhibits AKT signaling pathway by decreasing pAKT in a dose-dependent manner. Artemisinin reduces cancer cell proliferation, migration, invasion, tumorigenesis and metastasis and has neuroprotective effects[2]. Artemisinin (Qinghaosu), a sesquiterpene lactone, is an anti-malarial agent isolated from the aerial parts of Artemisia annua L. plants[1]. Artemisinin inhibits AKT signaling pathway by decreasing pAKT in a dose-dependent manner. Artemisinin reduces cancer cell proliferation, migration, invasion, tumorigenesis and metastasis and has neuroprotective effects[2]. Artemisinin (Qinghaosu), a sesquiterpene lactone, is an anti-malarial agent isolated from the aerial parts of Artemisia annua L. plants[1]. Artemisinin inhibits AKT signaling pathway by decreasing pAKT in a dose-dependent manner. Artemisinin reduces cancer cell proliferation, migration, invasion, tumorigenesis and metastasis and has neuroprotective effects[2].

   

Boldione

(1S,2R,10R,11S,15S)-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadeca-3,6-diene-5,14-dione

C19H24O2 (284.17762039999997)


Boldione is a direct precursor (prohormone) to the anabolic steroid boldenone (1,4-androstadiene-17beta-ol-3-one). It is advertised as a highly anabolic/androgenic compound promoting muscularity, enhancing strength and overall physical performance, and is available on the Internet and in health stores. Conflicting findings regarding the boldenone content of bovine faeces suggest it may be synthesized de novo in emitted faeces. Boldione is the oxidized form of boldenone, an this anabolic steroid is forbidden in EU countries in calves and bulls bred for meat production, and is illegally used as growth promoters, as they improve the growth and feed conversion in food producing animals. (PMID: 16449054, 16308875, 16244993) [HMDB] Boldione is a direct precursor (prohormone) to the anabolic steroid boldenone (1,4-androstadiene-17beta-ol-3-one). It is advertised as a highly anabolic/androgenic compound promoting muscularity, enhancing strength and overall physical performance, and is available on the Internet and in health stores. Conflicting findings regarding the boldenone content of bovine faeces suggest it may be synthesized de novo in emitted faeces. Boldione is the oxidized form of boldenone, an this anabolic steroid is forbidden in EU countries in calves and bulls bred for meat production, and is illegally used as growth promoters, as they improve the growth and feed conversion in food producing animals. (PMID: 16449054, 16308875, 16244993).

   

Machete

N-(butoxymethyl)-2-chloro-N-(2,6-diethylphenyl)acetamide

C17H26ClNO2 (311.1651966)


CONFIDENCE standard compound; INTERNAL_ID 560; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10349; ORIGINAL_PRECURSOR_SCAN_NO 10345 CONFIDENCE standard compound; INTERNAL_ID 560; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10330; ORIGINAL_PRECURSOR_SCAN_NO 10326 CONFIDENCE standard compound; INTERNAL_ID 560; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10216; ORIGINAL_PRECURSOR_SCAN_NO 10211 CONFIDENCE standard compound; INTERNAL_ID 560; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10284; ORIGINAL_PRECURSOR_SCAN_NO 10281 CONFIDENCE standard compound; INTERNAL_ID 560; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10304; ORIGINAL_PRECURSOR_SCAN_NO 10299 CONFIDENCE standard compound; INTERNAL_ID 560; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10247; ORIGINAL_PRECURSOR_SCAN_NO 10245 D010575 - Pesticides > D006540 - Herbicides D009676 - Noxae > D002273 - Carcinogens D016573 - Agrochemicals

   

Aniline

Aniline sulfate (2:1), (14)C-labeled CPD

C6H7N (93.0578462)


Aniline is a weak base. Aromatic amines such as aniline are, in general, much weaker bases than aliphatic amines. Aniline reacts with strong acids to form anilinium (or phenylammonium) ion (C6H5-NH3+). The sulfate forms beautiful white plates. Although aniline is weakly basic, it precipitates zinc, aluminium, and ferric salts, and, on warming, expels ammonia from its salts. The weak basicity is due to a negative inductive effect as the lone pair on the nitrogen is partially delocalised into the pi system of the benzene ring.; Aniline is an organic chemical compound, specifically a primary aromatic amine. It consists of a benzene ring attached to an amino group. Aniline is oily and, although colorless, it can be slowly oxidized and resinified in air to form impurities which can give it a red-brown tint. Its boiling point is 184 degree centigrade and its melting point is -6 degree centegrade. It is a liquid at room temperature. Like most volatile amines, it possesses a somewhat unpleasant odour of rotten fish, and also has a burning aromatic taste; Aniline was first isolated from the destructive distillation of indigo in 1826 by Otto Unverdorben , who named it crystalline. In 1834, Friedrich Runge (Pogg. Ann., 1834, 31, p. 65; 32, p. 331) isolated from coal tar a substance that produced a beautiful blue colour on treatment with chloride of lime, which he named kyanol or cyanol. In 1841, C. J. Fritzsche showed that, by treating indigo with caustic potash, it yielded an oil, which he named aniline, from the specific name of one of the indigo-yielding plants, Indigofera anil, anil being derived from the Sanskrit n?la, dark-blue, and n?l?, the indigo plant. About the same time N. N. Zinin found that, on reducing nitrobenzene, a base was formed, which he named benzidam. August Wilhelm von Hofmann investigated these variously-prepared substances, and proved them to be identical (1855), and thenceforth they took their place as one body, under the name aniline or phenylamine.; Aniline, phenylamine or aminobenzene is an organic compound with the formula C6H7N. It is the simplest and one of the most important aromatic amines, being used as a precursor to more complex chemicals. Its main application is in the manufacture of polyurethane. Like most volatile amines, it possesses the somewhat unpleasant odour of rotten fish and also has a burning aromatic taste; it is a highly-acrid poison. It ignites readily, burning with a smoky flame.; Like phenols, aniline derivatives are highly susceptible to electrophilic substitution reactions. For example, reaction of aniline with sulfuric acid at 180 °C produces sulfanilic acid, NH2C6H4SO3H, which can be converted to sulfanilamide. Sulfanilamide is one of the sulfa drugs that were widely used as antibacterials in the early 20th century.; The great commercial value of aniline was due to the readiness with which it yields, directly or indirectly, dyestuffs. The discovery of mauve in 1856 by William Henry Perkin was the first of a series of an enormous range of dyestuffs, such as fuchsine, safranine and induline. In addition to its use as a precursor to dyestuffs, it is a starting-product for the manufacture of many drugs, such as paracetamol (acetaminophen, Tylenol).; it is a highly acrid poison. It ignites readily, burning with a large smoky flame. Aniline reacts with strong acids to form salts containing the anilinium (or phenylammonium) ion (C6H5-NH3+), and reacts with acyl halides (such as acetyl chloride (ethanoyl chloride), CH3COCl) to form amides. The amides formed from aniline are sometimes called anilides, for example CH3-CO-NH-C6H5 is acetanilide, for which the modern name is N-phenyl ethanamide. Like phenols, aniline derivatives are highly reactive in electrophilic substitution reactions. For example, sulfonation of aniline produces sulfanilic acid, which can be converted to sulfanilamide. Sulfanilamide is one of the sulfa drugs which were widely used as antibacterial in the early 20th cent... Aniline is an organic chemical compound, specifically a primary aromatic amine. It consists of a benzene ring attached to an amino group. Aniline is oily and, although colorless, it can be slowly oxidized and resinified in air to form impurities which can give it a red-brown tint. Its boiling point is 184 degree centigrade and its melting point is -6 degree centegrade. It is a liquid at room temperature. Like most volatile amines, it possesses a somewhat unpleasant odour of rotten fish, and also has a burning aromatic taste; it is a highly acrid poison. It ignites readily, burning with a large smoky flame. Aniline reacts with strong acids to form salts containing the anilinium (or phenylammonium) ion (C6H5-NH3+), and reacts with acyl halides (such as acetyl chloride (ethanoyl chloride), CH3COCl) to form amides. The amides formed from aniline are sometimes called anilides, for example CH3-CO-NH-C6H5 is acetanilide, for which the modern name is N-phenyl ethanamide. Like phenols, aniline derivatives are highly reactive in electrophilic substitution reactions. For example, sulfonation of aniline produces sulfanilic acid, which can be converted to sulfanilamide. Sulfanilamide is one of the sulfa drugs which were widely used as antibacterial in the early 20th century. Aniline was first isolated from the destructive distillation of indigo in 1826 by Otto Unverdorben. In 1834, Friedrich Runge isolated from coal tar a substance which produced a beautiful blue color on treatment with chloride of lime; this he named kyanol or cyanol. In 1841, C. J. Fritzsche showed that by treating indigo with caustic potash it yielded an oil, which he named aniline, from the specific name of one of the indigo-yielding plants, Indigofera anil, anil being derived from the Sanskrit, dark-blue. Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 8060 D009676 - Noxae > D002273 - Carcinogens KEIO_ID A054 KEIO_ID A162

   

Phenylethylamine

Phenethylamine, beta-(14)C-labeled CPD

C8H11N (121.0891446)


Phenylethylamine (PEA) is an aromatic amine, which is a colorless liquid at room temperature. It is soluble in water, ethanol, and ether. Similar to other low-molecular-weight amines, it has a fishy odor. Upon exposure to air, it forms a solid carbonate salt with carbon dioxide. Phenethylamine is strongly basic and forms a stable crystalline hydrochloride salt with a melting point of 217 °C. Phenethylamine is also a skin irritant and possible sensitizer. Phenethylamine also has a constitutional isomer (+)-phenylethylamine (1-phenylethylamine), which has two stereoisomers: (R)-(+)-1-phenylethylamine and (S)-(-)-1-phenylethylamine. In the human brain, 2-phenethylamine is believed to function as a neuromodulator or neurotransmitter (a trace amine). Phenethylamine can be biosynthesized from the amino acid phenylalanine by enzymatic decarboxylation. It is also found in many foods such as chocolate, especially after microbial fermentation. However trace amounts from food are quickly metabolized by the enzyme MAO-B (into phenylacetic acid), preventing significant concentrations from reaching the brain. Phenylethylamine is a precursor to the neurotransmitter phenylethanolamine. High levels of PEA have been found in the urine of schizophrenics but it is not significantly elevated in the serum or CSF of schizophrenics (PMID:7906896, PMID:7360842).¬† Urinary levels of PEA are significantly lower in children with attention deficit hyperactivity disorder (ADHD) (PMID:12205654).¬† It has been found that PEA is the primary compound found in carnivore (especially cat) urine that leads to rodent (mouse and rat) avoidance. In other words, phenylethylamine is useful for scaring off rodent pests.¬† Quantitative HPLC analysis across 38 mammalian species has shown that PEA production in urine is especially enhanced in carnivores, with some producing >3,000-fold more than herbivores (PMID:21690383). Phenethylamine has been found to be a metabolite of Bacillus, Enterococcus and Lactobacillus (PMID:22953951; PMID:17307265; PMID:16630269). Present in cooked cabbage, cheeses, sherry, wine, processed lean fish, cocoa, raw cauliflower, raw beetroot and raw radish. Flavouring ingredient

   

4-Hydroxysphinganine

[2S-(2R*,3R*,4S*)]-2-amino-1,3,4-octadecanetriol

C18H39NO3 (317.2929784)


Phytosphingosine is a phospholipid. Phospholipids are a class of lipids and a major component of all biological membranes; sphingolipid metabolites, such as sphingosine and ceramide, are highly bioactive compounds and are involved in diverse cell processes, including cell-cell interaction, cell proliferation, differentiation, and apoptosis. Phytosphingosine is also one of the most widely distributed natural sphingoid bases, which is abundant in fungi and plants, and also found in animals including humans. Phytosphingosine is structurally similar to sphingosine; phytosphingosine possesses a hydroxyl group at C-4 of the sphingoid long-chain base. The physiological roles of phytosphingosine are largely unknown. Phytosphingosine induces apoptosis in human T-cell lymphoma and non-small cell lung cancer cells, and induces caspase-independent cytochrome c release from mitochondria. In the presence of caspase inhibitors, phytosphingosine-induced apoptosis is almost completely suppressed, suggesting that phytosphingosine-induced apoptosis is largely dependent on caspase activities. (PMID: 12576463, 12531554, 8046331, 8048941,8706124) [HMDB] Phytosphingosine is a phospholipid. Phospholipids are a class of lipids and a major component of all biological membranes; sphingolipid metabolites, such as sphingosine and ceramide, are highly bioactive compounds and are involved in diverse cell processes, including cell-cell interaction, cell proliferation, differentiation, and apoptosis. Phytosphingosine is also one of the most widely distributed natural sphingoid bases, which is abundant in fungi and plants, and also found in animals including humans. Phytosphingosine is structurally similar to sphingosine; phytosphingosine possesses a hydroxyl group at C-4 of the sphingoid long-chain base. The physiological roles of phytosphingosine are largely unknown. Phytosphingosine induces apoptosis in human T-cell lymphoma and non-small cell lung cancer cells, and induces caspase-independent cytochrome c release from mitochondria. In the presence of caspase inhibitors, phytosphingosine-induced apoptosis is almost completely suppressed, suggesting that phytosphingosine-induced apoptosis is largely dependent on caspase activities. (PMID: 12576463, 12531554, 8046331, 8048941,8706124). Phytosphingosine is a?phospholipid and has anti-cancer activities. Phytosphingosine induces cell apoptosis via caspase 8 activation and Bax translocation in cancer cells[1].

   

Epsilon-caprolactam

Hexahydro 2H azepin 2 one

C6H11NO (113.0840596)


Caprolactam, also known as aminocaproic lactam or hexahydro-2h-azepin-2-one, is a member of the class of compounds known as caprolactams. Caprolactams are cyclic amides of caproic acid. Caproic acid is the carboxylic acid derived from hexane with the general formula C5H11COOH. Caprolactam is soluble (in water) and a very weakly acidic compound (based on its pKa). Caprolactam is an amine, bitter, and spicy tasting compound found in sunflower, which makes caprolactam a potential biomarker for the consumption of this food product. Caprolactam (CPL) is an organic compound with the formula (CH2)5C(O)NH. This colourless solid is a lactam (a cyclic amide) of caproic acid. Global demand for this compound is approximately 5 million tons per year, and the vast majority is used to make Nylon 6 filament, fiber, and plastics . Epsilon-caprolactam, also known as Caprolactam or Aminocaproic lactam, is classified as a member of the Caprolactams. Caprolactams are cyclic amides of caproic acid. Caproic acid is the carboxylic acid derived from hexane with the general formula C5H11COOH. Epsilon-caprolactam is considered to be soluble (in water) and relatively neutral. Epsilon-caprolactam is an amine, bitter, and spicy tasting compound found in Sunflowers D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams

   

Thiamine

3-[(4-amino-2-methylpyrimidin-5-yl)methyl]-5-(2-hydroxyethyl)-4-methyl-1,3-thiazol-3-ium

[C12H17N4OS]+ (265.1123012)


Thiamine, also known as aneurin or vitamin B1, belongs to the class of organic compounds known as thiamines. Thiamines are compounds containing a thiamine moiety, which is structurally characterized by a 3-[(4-Amino-2-methyl-pyrimidin-5-yl)methyl]-4-methyl-thiazol-5-yl backbone. Thiamine exists in all living species, ranging from bacteria to plants to humans. Thiamine biosynthesis occurs in bacteria, some protozoans, plants, and fungi. Thiamine is a vitamin and an essential nutrient meaning the body cannot synthesize it, and it must be obtained from the diet. It is soluble in water and insoluble in alcohol. Thiamine decomposes if heated. Thiamine was first discovered in 1897 by Umetaro Suzuki in Japan when researching how rice bran cured patients of Beriberi. Thiamine was the first B vitamin to be isolated in 1926 and was first made in 1936. Thiamine plays a key role in intracellular glucose metabolism and it is thought that thiamine inhibits the effect of glucose and insulin on arterial smooth muscle cell proliferation. Thiamine plays an important role in helping the body convert carbohydrates and fat into energy. It is essential for normal growth and development and helps to maintain proper functioning of the heart and the nervous and digestive systems. Thiamine cannot be stored in the body; however, once absorbed, the vitamin is concentrated in muscle tissue. Thiamine has antioxidant, erythropoietic, cognition-and mood-modulatory, antiatherosclerotic, putative ergogenic, and detoxification activities. Natural derivatives of thiamine, such as thiamine monophosphate (ThMP), thiamine diphosphate (ThDP), also sometimes called thiamine pyrophosphate (TPP), thiamine triphosphate (ThTP), and adenosine thiamine triphosphate (AThTP), act as coenzymes in addition to performing unique biological functions. Thiamine deficiency can lead to beriberi, Wernicke–Korsakoff syndrome, optic neuropathy, Leighs disease, African seasonal ataxia (or Nigerian seasonal ataxia), and central pontine myelinolysis. In Western countries, thiamine deficiency is seen mainly in chronic alcoholism. Thiamine supplements or thiamine therapy can be used for the treatment of a number of disorders including thiamine and niacin deficiency states, Korsakovs alcoholic psychosis, Wernicke-Korsakov syndrome, delirium, and peripheral neuritis. In humans, thiamine is involved in the metabolic disorder called 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency. Outside of the human body, Thiamine is found in high quantities in whole grains, legumes, pork, fruits, and yeast and fish. Grain processing removes much of the thiamine content in grains, so in many countries cereals and flours are enriched with thiamine. Thiamine is an essential vitamin. It is found in many foods, some of which are atlantic croaker, wonton wrapper, cereals and cereal products, and turmeric. A - Alimentary tract and metabolism > A11 - Vitamins > A11D - Vitamin b1, plain and in combination with vitamin b6 and b12 > A11DA - Vitamin b1, plain Acquisition and generation of the data is financially supported in part by CREST/JST. D018977 - Micronutrients > D014815 - Vitamins KEIO_ID T056; [MS2] KO009294 KEIO_ID T056

   

Oxypurinol

1H,2H,4H,5H,6H-pyrazolo[3,4-d]pyrimidine-4,6-dione

C5H4N4O2 (152.0334244)


Oxipurinol is a xanthine oxidase inhibitor. Oxipurinol is potentially used for treatment of congestive heart failure. PMID: 15139781. Oxipurinol is a xanthine oxidase inhibitor. Oxipurinol is potentially used for treatment of congestive heart failure. C471 - Enzyme Inhibitor > C1637 - Xanthine Oxidase Inhibitor D004791 - Enzyme Inhibitors CONFIDENCE standard compound; INTERNAL_ID 864; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 855; ORIGINAL_PRECURSOR_SCAN_NO 853 CONFIDENCE standard compound; INTERNAL_ID 864; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 883; ORIGINAL_PRECURSOR_SCAN_NO 881 CONFIDENCE standard compound; INTERNAL_ID 864; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 893; ORIGINAL_PRECURSOR_SCAN_NO 892 CONFIDENCE standard compound; INTERNAL_ID 864; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 861; ORIGINAL_PRECURSOR_SCAN_NO 860 CONFIDENCE standard compound; INTERNAL_ID 864; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 894; ORIGINAL_PRECURSOR_SCAN_NO 892 Acquisition and generation of the data is financially supported in part by CREST/JST. Oxipurinol (Oxipurinol), the major active metabolite of Allopurinol, is an inhibitor of xanthine oxidase. Oxipurinol can be used to regulate blood urate levels and treat gout[1].

   

AdoMet

(2S)-2-amino-4-[[(2S,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methyl-methylsulfonio]butanoate

C15H22N6O5S (398.1372322)


[Spectral] S-Adenosyl-L-methionine (exact mass = 398.13724) and L-Histidine (exact mass = 155.06948) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. A - Alimentary tract and metabolism > A16 - Other alimentary tract and metabolism products > A16A - Other alimentary tract and metabolism products > A16AA - Amino acids and derivatives Acquisition and generation of the data is financially supported in part by CREST/JST. C26170 - Protective Agent > C275 - Antioxidant COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Benzimidazole

Benzimidazole monohydrochloride

C7H6N2 (118.05309559999999)


CONFIDENCE standard compound; INTERNAL_ID 1348; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3587; ORIGINAL_PRECURSOR_SCAN_NO 3586 CONFIDENCE standard compound; INTERNAL_ID 1348; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2303; ORIGINAL_PRECURSOR_SCAN_NO 2299 CONFIDENCE standard compound; INTERNAL_ID 1348; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2278; ORIGINAL_PRECURSOR_SCAN_NO 2277 CONFIDENCE standard compound; INTERNAL_ID 1348; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3578; ORIGINAL_PRECURSOR_SCAN_NO 3577 CONFIDENCE standard compound; INTERNAL_ID 1348; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3557; ORIGINAL_PRECURSOR_SCAN_NO 3556 CONFIDENCE standard compound; INTERNAL_ID 1348; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2260; ORIGINAL_PRECURSOR_SCAN_NO 2259 CONFIDENCE standard compound; INTERNAL_ID 1348; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2273; ORIGINAL_PRECURSOR_SCAN_NO 2271 CONFIDENCE standard compound; INTERNAL_ID 1348; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2284; ORIGINAL_PRECURSOR_SCAN_NO 2282 CONFIDENCE standard compound; INTERNAL_ID 1348; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3585; ORIGINAL_PRECURSOR_SCAN_NO 3584 CONFIDENCE standard compound; INTERNAL_ID 1348; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3606; ORIGINAL_PRECURSOR_SCAN_NO 3604 CONFIDENCE standard compound; INTERNAL_ID 1348; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3575; ORIGINAL_PRECURSOR_SCAN_NO 3574 CONFIDENCE standard compound; INTERNAL_ID 1348; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2284; ORIGINAL_PRECURSOR_SCAN_NO 2282 D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics CONFIDENCE standard compound; INTERNAL_ID 8120 KEIO_ID B007

   

3-(Pyrazol-1-yl)-L-alanine

alpha-amino-beta-(Pyrazolyl-N)propionic acid

C6H9N3O2 (155.0694734)


L-2-Amino-3-(1-pyrazolyl)propanoic acid is found in fruits. L-2-Amino-3-(1-pyrazolyl)propanoic acid is a amino acid present in seeds of Citrullus vulgaris (watermelon Amino acid present in seeds of Citrullus vulgaris (watermelon). L-2-Amino-3-(1-pyrazolyl)propanoic acid is found in fruits.

   

Dihydrozeatin

(2R)-2-methyl-4-[(9H-purin-6-yl)amino]butan-1-ol

C10H15N5O (221.127654)


Dihydrozeatin (CAS: 23599-75-9) belongs to the class of organic compounds known as 6-alkylaminopurines. 6-Alkylaminopurines are compounds that contain an alkylamine group attached at the 6-position of a purine. Purine is a bicyclic aromatic compound made up of a pyrimidine ring fused to an imidazole ring. Dihydrozeatin is an intermediate in zeatin biosynthesis. It is converted from dihydrozeatin riboside and is then converted into dihydrozeatin-O-glucoside via glycosyltransferases (EC 2.4.1.- ). Dihydrozeatin is a very strong basic compound (based on its pKa). D006133 - Growth Substances > D010937 - Plant Growth Regulators > D003583 - Cytokinins

   

N-(3-Methylbut-2-EN-1-YL)-9H-purin-6-amine

(3-Methyl-but-2-enyl)-(7(9)H-purin-6-yl)-amine

C10H13N5 (203.11708980000003)


N6-prenyladenine, also known as isopentenyladenine or ip, is a member of the class of compounds known as 6-alkylaminopurines. 6-alkylaminopurines are compounds that contain an alkylamine group attached at the 6-position of a purine. Purine is a bicyclic aromatic compound made up of a pyrimidine ring fused to an imidazole ring. N6-prenyladenine is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). N6-prenyladenine can be found in a number of food items such as lime, lemon thyme, nectarine, and napa cabbage, which makes n6-prenyladenine a potential biomarker for the consumption of these food products. D006133 - Growth Substances > D010937 - Plant Growth Regulators > D003583 - Cytokinins Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 74 6-(γ,γ-Dimethylallylamino)purine is a plant growth substance. 6-(γ,γ-Dimethylallylamino)purine is a plant growth substance.

   

isopentenyl adenosine

(2R,3S,4R,5R)-2-(hydroxymethyl)-5-{6-[(3-methylbut-2-en-1-yl)amino]-9H-purin-9-yl}oxolane-3,4-diol

C15H21N5O4 (335.15934660000005)


Riboprine, also known as isopentenyladenosine or ipa, is a member of the class of compounds known as purine nucleosides. Purine nucleosides are compounds comprising a purine base attached to a ribosyl or deoxyribosyl moiety. Riboprine is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Riboprine can be found in a number of food items such as peppermint, chinese mustard, custard apple, and green bean, which makes riboprine a potential biomarker for the consumption of these food products. C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D006133 - Growth Substances > D010937 - Plant Growth Regulators > D003583 - Cytokinins Acquisition and generation of the data is financially supported in part by CREST/JST. Same as: D05726 N6-Isopentenyladenosine (Riboprine), an RNA modification found in cytokinins, which regulate plant growth/differentiation, and a subset of tRNAs, where it improves the efficiency and accuracy of translation. N6-Isopentenyladenosine, an end product of the mevalonate pathway, is an autophagy inhibitor with an interesting anti-melanoma activity[1][2][3].

   

Homoserine, O-succinyl-

Homoserine, O-succinyl-

C8H13NO6 (219.0742838)


Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Styrene

1,1-(1H-Pyrrole-2,5-diyl)diethanamine

C8H8 (104.0625968)


Styrene, also known as vinylbenzene or phenylethylene, belongs to the class of organic compounds known as styrenes. These are organic compounds containing an ethenylbenzene moiety. The metabolites of styrene are excreted mainly in the urine. Styrene is possibly neutral. Styrene is a sweet, balsamic, and floral tasting compound. Styrene has been detected, but not quantified, in several different foods, such as coffee and coffee products, fruits, cocoa and cocoa products, alcoholic beverages, and chinese cinnamons. This could make styrene a potential biomarker for the consumption of these foods. A minor pathway of styrene metabolism involves the formation of phenylacetaldehyde from styrene 7,8-oxide or cytochrome P450 conversion of styrene to pheylethanol and subsequent metabolism to phenylacetic acid. Styrene is formally rated as a possible carcinogen (by IARC 2B) and is also a potentially toxic compound. Styrene oxide is predominantly metabolized by epoxide hydrolase to form styrene glycol; the styrene glycol is subsequently converted to mandelic acid, phenylglyoxylic acid, and hippuric acid. Styrene, with regard to humans, has been found to be associated with several diseases such as nonalcoholic fatty liver disease and ulcerative colitis; styrene has also been linked to the inborn metabolic disorder celiac disease. Styrene may be absorbed following ingestion, inhalation, or dermal exposure. Breathing high levels of styrene may cause nervous system effects such as changes in color vision, tiredness, feeling drunk, slowed reaction time, concentration problems, or balance problems. Chest burning, wheezing, and dyspnea may also occur. Styrene causes nervous system depression and may be carcinogenic. Present in cranberry, bilberry, currants, grapes, vinegar, parsley, milk and dairy products, whisky, cocoa, coffee, tea, roasted filberts and peanuts. Flavouring ingredient. Polymers are used in ion-exchange resins in food processing. Indirect food additive arising from adhesives, oatings and packaging materials

   

1,2-Dihydronaphthalene-1,2-diol

(1R,2S)-cis-1,2-Dihydro-1,2-naphthalenediol

C10H10O2 (162.06807600000002)


A member of the class of naphthalenediols that is 1,2-dihydronaphthalene substituted by hydroxy groups at positions 1 and 2 respectively.

   

Allyl isothiocyanate

Allyl isothiocyanate non-perfume grade

C4H5NS (99.014269)


Allyl isothiocyanate is a volatile organic compound. Allyl isothiocyanate (AITC) is a constituent of mustard, horseradish and wasabi and certain vegetables found in the human diet, mostly in cruciferous vegetables. AITC is a colorless to pale yellow liquid that is slightly soluble in water, but soluble in most organic solvents. AITC possesses numerous biochemical and physiological activities. It is cytotoxic and tumorigenic at high doses and is also a modulator of enzymes involved in metabolism of xenobiotics, including carcinogens. It is plausible that the wide consumption of dietary AITC may have profound effects on human health. oxidative DNA damage may play important roles in carcinogenic processes induced by AITC. Allergic contact dermatitis from AICT is well known but infrequently reported. AITC is occasionally found as a volatile component of normal human biofluids. (PMID:5556886, 8222057, 8000299, 10754276, 15373848). Chief constituent of natural mustard oiland is also found in cooked cabbage, horseradish, etc. Flavouring ingredient. Potential nutriceutical D000074385 - Food Ingredients > D005503 - Food Additives > D005520 - Food Preservatives

   

alpha-Ketoisovaleric acid

3-Methyl-2-oxobutyric acid sodium salt

C5H8O3 (116.0473418)


alpha-Ketoisovaleric acid is an abnormal metabolite that arises from the incomplete breakdown of branched-chain amino acids. alpha-Ketoisovaleric acid is a neurotoxin, an acidogen, and a metabotoxin. A neurotoxin causes damage to nerve cells and nerve tissues. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of alpha-ketoisovaleric acid are associated with maple syrup urine disease. MSUD is a metabolic disorder caused by a deficiency of the branched-chain alpha-keto acid dehydrogenase complex (BCKDC), leading to a buildup of the branched-chain amino acids (leucine, isoleucine, and valine) and their toxic by-products (ketoacids) in the blood and urine. The symptoms of MSUD often show in infancy and lead to severe brain damage if untreated. MSUD may also present later depending on the severity of the disease. If left untreated in older individuals, during times of metabolic crisis, symptoms of the condition include uncharacteristically inappropriate, extreme, or erratic behaviour and moods, hallucinations, anorexia, weight loss, anemia, diarrhea, vomiting, dehydration, lethargy, oscillating hypertonia and hypotonia, ataxia, seizures, hypoglycemia, ketoacidosis, opisthotonus, pancreatitis, rapid neurological decline, and coma. In maple syrup urine disease, the brain concentration of branched-chain ketoacids can increase 10- to 20-fold. This leads to a depletion of glutamate and a consequent reduction in the concentration of brain glutamine, aspartate, alanine, and other amino acids. The result is a compromise of energy metabolism because of a failure of the malate-aspartate shuttle and a diminished rate of protein synthesis (PMID: 15930465). alpha-Ketoisovaleric acid is a keto-acid, which is a subclass of organic acids. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart, liver, and kidney abnormalities, seizures, coma, and possibly death. These are also the characteristic symptoms of untreated MSUD. Many affected children with organic acidemias experience intellectual disability or delayed development. Flavouring ingredient for use in butter-type flavours. Found in banana, bread, cheeses, asparagus, beer and cocoa KEIO_ID M006 3-Methyl-2-oxobutanoic acid is a precursor of pantothenic acid in Escherichia coli.

   

9,10-Epoxyoctadecenoic acid

8-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}octanoic acid

C18H32O3 (296.2351322)


9,10-Epoxyoctadecenoic acid (9,10-EOA) is a peroxidation product of linoleic acid (LA). 9,10-EOA is a naturally occurring component of oxidized low density lipoprotein (LDL), the level of which increases with aging, atherosclerosis, and rheumatoid arthritis, perhaps due to an increase in 15-lipoxygenase and free oxygen radicals. 9,10-EOA is a proliferator-activated receptors (PPAR) gamma2 ligand, that is antiosteogenic without stimulating adipocyte differentiation. Studies in dogs suggest that 9,10-EOA has toxic cardiovascular effects. (PMID: 12665667, 12021203, 10667371).

   

Ganciclovir

2-amino-9-{[(1,3-dihydroxypropan-2-yl)oxy]methyl}-6,9-dihydro-1H-purin-6-one

C9H13N5O4 (255.0967498)


Ganciclovir is only found in individuals that have used or taken this drug. It is an acyclovir analog that is a potent inhibitor of the Herpesvirus family including cytomegalovirus. Ganciclovir is used to treat complications from AIDS-associated cytomegalovirus infections. [PubChem]Ganciclovirs antiviral activity inhibits virus replication. This inhibitory action is highly selective as the drug must be converted to the active form by a virus-encoded cellular enzyme, thymidine kinase (TK). TK catalyzes phosphorylation of ganciclovir to the monophosphate, which is then subsequently converted into the diphosphate by cellular guanylate kinase and into the triphosphate by a number of cellular enzymes. In vitro, ganciclovir triphosphate stops replication of herpes viral DNA. When used as a substrate for viral DNA polymerase, ganciclovir triphosphate competitively inhibits dATP leading to the formation of faulty DNA. This is where ganciclovir triphosphate is incorporated into the DNA strand replacing many of the adenosine bases. This results in the prevention of DNA synthesis, as phosphodiester bridges can longer to be built, destabilizing the strand. Ganciclovir inhibits viral DNA polymerases more effectively than it does cellular polymerase, and chain elongation resumes when ganciclovir is removed. J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AB - Nucleosides and nucleotides excl. reverse transcriptase inhibitors S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AD - Antivirals D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C471 - Enzyme Inhibitor > C29575 - DNA Polymerase Inhibitor C254 - Anti-Infective Agent > C281 - Antiviral Agent KEIO_ID G088; [MS2] KO008989 KEIO_ID G088 Ganciclovir (BW 759), a nucleoside analogue, is an orally active antiviral agent with activity against CMV. Ganciclovir also has activity in vitro against members of the herpes group and some other DNA viruses. Ganciclovir inhibits the in vitro replication of human herpes viruses (HSV 1 and 2, CMV) and adenovirus serotypes 1, 2, 4, 6, 8, 10, 19, 22 and 28. Ganciclovir has an IC50 of 5.2 μM for feline herpesvirus type-1 (FHV-1) and can diffuse into the brain[1][2][3].

   

2,3,4,5-Tetrahydro-2-pyridinecarboxylic acid

(S)-2,3,4,5-Tetrahydropiperidine-2-carboxylic acid

C6H9NO2 (127.0633254)


2,3,4,5-Tetrahydro-2-pyridinecarboxylic acid (CAS: 3038-89-9), also known as 2,3,4,5-tetrahydropiperidine-2-carboxylate and 1-piperideine-6-carboxylic acid, is a cyclic intermediate in lysine degradation. L-Lysine is an essential amino acid that is a necessary building block for all protein in the body and It plays a major role in calcium absorption; building muscle protein; recovering from surgery or sports injuries; and the bodys production of hormones, enzymes, and antibodies. In the lysine degradation pathway, 2,3,4,5-tetrahydro-2-pyridinecarboxylic acid is a substrate for L-aminoadipate-semialdehyde dehydrogenase (amaA) and can be formed by the spontaneous cyclization of 2-aminoadipate-6-semialdehyde. 2,3,4,5-Tetrahydro-2-pyridinecarboxylic acid is also an intermediate in glycine, serine, and threonine metabolism. It is a substrate for peroxisomal sarcosine oxidase. KEIO_ID I015

   

O-acetylhomoserine

O-Acetyl-L-homoserine hydrochloride

C6H11NO4 (161.0688046)


Acetylhomoserine is found in pulses. Acetylhomoserine is found in Pisum sativum (peas) Acquisition and generation of the data is financially supported in part by CREST/JST. Found in green tissues of pea (Pisum sativum)

   

delta-Tocotrienol

(2R)-2,8-Dimethyl-2-[(3E,7E)-4,8,12-trimethyltrideca-3,7,11-trien-1-yl]-3,4-dihydro-2H-1-benzopyran-6-ol

C27H40O2 (396.302814)


delta-Tocotrienol, also known as 8-methyltocotrienol, belongs to the class of organic compounds known as tocotrienols. These are vitamin E derivatives containing an unsaturated trimethyltrideca-3,7,11-trien-1-yl chain attached to the carbon C6 atom of a benzopyran ring system. They differ from tocopherols that contain a saturated trimethyltridecyl chain. Thus, delta-tocotrienol is considered to be a quinone lipid molecule. delta-Tocotrienol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. delta-Tocotrienol is found in American cranberry and palm oil. It is a nutriceutical with anticancer properties and a positive influence on the blood lipid profile. Constituent of palm oil. Nutriceutical with anticancer props. and a positive influence on the blood lipid profile. d-Tocotrienol is found in many foods, some of which are fennel, caraway, coconut, and lichee. Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Cheilanthifoline

(13S)-16-methoxy-5,7-dioxa-1-azapentacyclo[11.8.0.03,11.04,8.014,19]henicosa-3(11),4(8),9,14,16,18-hexaen-17-ol

C19H19NO4 (325.1314014)


Cheilanthifoline is a natural product found in Fumaria densiflora, Fumaria judaica, and other organisms with data available.

   

Violaxanthin

(1R,3S,6S)-6-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(1S,4S,6R)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-1,5,5-trimethyl-7-oxabicyclo[4.1.0]heptan-3-ol

C40H56O4 (600.4178376)


Violaxanthin belongs to the class of organic compounds known as xanthophylls. These are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Xanthophylls arise by oxygenation of the carotene backbone. Thus, violaxanthin is considered to be an isoprenoid lipid molecule. Violaxanthin is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Violaxanthin is an orange-coloured pigment that is found in brown algae and various plants (e.g. pansies). It is biosynthesized from the epoxidation of zeaxanthin. Violaxanthin is a food additive that is only approved for use in Australia and New Zealand (INS: 161e) (PMID: 29890662). 3 (violaxanthin, zeaxanthin and antheraxanthin) participate in series of photo-induced interconversions known as violaxanthin cycle; Xanthophyll; a carotene epoxide that is precursor to capsanthin; cleavage of 9-cis-epoxycarotenoids (violaxanthin) to xanthoxin, catalyzed by 9-cis-epoxycarotenoid dioxygenase, is the key regulatory step of abscisic acid biosynthesis; one of 3 xanthophylls involved in evolution of plastids of green plants (oxygen evolution). (all-E)-Violaxanthin is found in many foods, some of which are orange bell pepper, passion fruit, pepper (c. annuum), and italian sweet red pepper. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Normetanephrine

(+/-)-alpha-(aminomethyl)-4-hydroxy-3-methoxy-benzenemethanol

C9H13NO3 (183.0895388)


Normetanephrine, also known as normetadrenaline or N111, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Normetanephrine is a solid that is soluble in water. Normetanephrine is a metabolite of norepinephrine created by action of catechol-O-methyl transferase on norepinephrine. Within humans, normetanephrine participates in a number of enzymatic reactions. In particular, normetanephrine can be converted into 3-methoxy-4-hydroxyphenylglycolaldehyde through its interaction with the enzyme amine oxidase [flavin-containing] A. It is also involved in the metabolic disorder called transient tyrosinemia of the newborn. This compound is excreted in the urine and is found in certain tissues. It is a marker for catecholamine-secreting tumors such as pheochromocytoma (PMID: 30538672). A methylated metabolite of norepinephrine that is excreted in the urine and found in certain tissues. It is a marker for tumors. [HMDB]

   

Canthaxanthin

2,4,4-trimethyl-3-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-3,7,12,16-tetramethyl-18-(2,6,6-trimethyl-3-oxocyclohex-1-en-1-yl)octadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]cyclohex-2-en-1-one

C40H52O2 (564.3967092)


Canthaxanthin, also known as Cantaxanthin, Cantaxanthine, or Canthaxanthine is a keto-carotenoid, a pigment widely distributed in nature. Carotenoids belong to a larger class of phytochemicals known as terpenoids. Canthaxanin is also classified as a xanthophyll. Xanthophylls are yellow pigments and form one of two major divisions of the carotenoid group; the other division is formed by the carotenes. Both are carotenoids. Xanthophylls and carotenes are similar in structure, but xanthophylls contain oxygen atoms while carotenes are purely hydrocarbons, which do not contain oxygen. Their content of oxygen causes xanthophylls to be more polar (in molecular structure) than carotenes and causes their separation from carotenes in many types of chromatography. (Carotenes are usually more orange in color than xanthophylls. Canthaxanthin is naturally found in bacteria, algae and some fungi. Canthaxanthin is associated with E number E161g and is approved for use as a food coloring agent in different countries, including the United States and the EU. Canthaxanthin is used as poultry feed additive to yield red color in skin and yolks. The European Union permits the use of canthaxanthin in feedstuff at a maximum content of 25 mg/kg of final feedstuff while the United States allows the use of this pigment in broiler chicken and salmonid fish feeds. Canthoxanthin was first isolated in edible chanterelle mushroom (Cantharellus cinnabarinus), from which it derived its name. It has also been found in green algae, bacteria, archea (a halophilic archaeon called Haloferax alexandrines), fungi and bioaccumulates in tissues and egg yolk from wild birds and at low levels in crustaceans and fish such as carp, golden grey mullet, and seabream. Canthaxanthin is not found in wild Atlantic Salmon, but is a minor carotenoid in Pacific Salmon. Canthaxanthin is used in farm-raised trout to give a red/orange color to their flesh similar to wild trout. Canthaxanthin has been used as a food additive for egg yolk, in cosmetics and as a pigmenting agent for human skin applications. It has also been used as a feed additive in fish and crustacean farms. Canthaxanthin is a potent lipid-soluble antioxidant (PMID: 2505240). Canthaxanthin increases resistance to lipid peroxidation primarily by enhancing membrane alpha-tocopherol levels and secondarily by providing weak direct antioxidant activity. Canthaxanthin biosynthesis in bacteria and algae proceeds from beta-carotene via the action of an enzyme known as a beta-carotene ketolase, that is able to add a carbonyl group to carbon 4 and 4 of the beta carotene molecule. Food colouring. Constituent of the edible mushroom (Cantharellus cinnabarinus), sea trout, salmon and brine shrimp. It is used in broiler chicken feed to enhance the yellow colour of chicken skin D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Tephrosin

(1R,14R)-14-hydroxy-17,18-dimethoxy-7,7-dimethyl-2,8,21-trioxapentacyclo[12.8.0.03,12.04,9.015,20]docosa-3(12),4(9),5,10,15,17,19-heptaen-13-one

C23H22O7 (410.1365462)


Tephrosin is a member of the class of rotenones that is 13,13a-dihydro-3H-chromeno[3,4-b]pyrano[2,3-h]chromen-7(7aH)-one substituted with geminal methyl groups at position 3, hydroxy group at position 7a and methoxy groups at positions 9 and 10 (the 7aR,13aR stereoisomer). It is isolated from the leaves and twigs of Antheroporum pierrei and exhibits antineoplastic and pesticidal activities. It has a role as a pesticide, an antineoplastic agent and a metabolite. It is an organic heteropentacyclic compound, an aromatic ether, a cyclic ketone and a member of rotenones. Tephrosin is a natural product found in Millettia ferruginea, Tephrosia vogelii, and other organisms with data available. A member of the class of rotenones that is 13,13a-dihydro-3H-chromeno[3,4-b]pyrano[2,3-h]chromen-7(7aH)-one substituted with geminal methyl groups at position 3, hydroxy group at position 7a and methoxy groups at positions 9 and 10 (the 7aR,13aR stereoisomer). It is isolated from the leaves and twigs of Antheroporum pierrei and exhibits antineoplastic and pesticidal activities.

   

cyclopeptine

(3S)-3-benzyl-4-methyl-3,4-dihydro-1H-1,4-benzodiazepine-2,5-dione

C17H16N2O2 (280.12117159999997)


   

1,4,6-Heptatrien-3-one, 5-hydroxy-1,7-bis(4-hydroxyphenyl)-

(1E,4Z,6E)-5-hydroxy-1,7-bis(4-hydroxyphenyl)hepta-1,4,6-trien-3-one

C19H16O4 (308.1048536)


Bisdemethoxycucurmin (Curcumin III), a curcuminoid, has antioxidant and antiinflammatory activities[1][2]. Bisdemethoxycucurmin (Curcumin III), a curcuminoid, has antioxidant and antiinflammatory activities[1][2].

   

N-Acetyl-b-glucosaminylamine

N-[(2R,3R,4R,5S,6R)-2-amino-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]acetamide

C8H16N2O5 (220.1059166)


N-Acetyl-b-glucosaminylamine is the product of a reaction catalyzed vy the enzyme N(4)-(beta-N-acetylglucosaminyl)-L-asparaginase [EC 3.5.1.26, Aspartylglucosaminidase, AGA]. AGA is a key enzyme in the catabolism of N-linked oligosaccharides of glycoproteins. It cleaves the asparagine from the residual N-acetylglucosamines as one of the final steps in the lysosomal breakdown of glycoproteins. Aspartylglucosaminuria (AGU) is a lysosomal disease caused by deficiency of N-aspartyl-beta-glucosaminidase. AGU is the only known lysosomal storage disease caused by an amidase deficiency. (OMIM208400).

   

Luteolinidin

2-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-1-benzopyrylium(1+), 9ci

C15H11O5+ (271.0606456)


Luteolinidin is found in corn. Luteolinidin is a chemical compound belonging to the 3-deoxyanthocyanidins and that can be found in Sorghum bicolor Luteolinidin is a chemical compound belonging to the 3-deoxyanthocyanidins and that can be found in Sorghum bicolor.

   

beta-Citraurin

(2E,4E,6E,8E,10E,12E,14Z,16E)-17-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-2,6,11,15-tetramethylheptadeca-2,4,6,8,10,12,14,16-octaenal

C30H40O2 (432.302814)


Constituent of orange peel. beta-Citraurin is found in many foods, some of which are yellow bell pepper, passion fruit, pepper (c. annuum), and sweet orange. beta-Citraurin is found in citrus. beta-Citraurin is a constituent of orange peel D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

adonirubin

Phoenicoxanthin/ Adonirubin/ 3-Hydroxycanthaxanthin

C40H52O3 (580.3916242)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Butanone

Methyl(ethyl) ketone

C4H8O (72.0575118)


Butanone occurs as a natural product. It is made by some trees and found in some fruits and vegetables in small amounts. It is also released to the air from car and truck exhausts. The known health effects to people from exposure to butanone are irritation of the nose, throat, skin, and eyes. (wikipedia).

   

n-Butyl acetate

Butyl ester OF acetic acid

C6H12O2 (116.08372519999999)


n-Butyl acetate is a flavouring ingredient used in apple flavours. n-Butyl acetate, also known as butyl ethanoate, is an organic compound commonly used as a solvent in the production of lacquers and other products. It is also used as a synthetic fruit flavoring in foods such as candy, ice cream, cheeses, and baked goods. Butyl acetate is found in many types of fruit, where along with other chemicals it imparts characteristic flavors. Apples, especially of the Red Delicious variety, are flavored in part by this chemical. It is a colourless flammable liquid with a sweet smell of banana. Flavouring ingredient used in apple flavours

   

cis-Hinokiresinol

4-[(1Z,3S)-3-(4-hydroxyphenyl)penta-1,4-dienyl]phenol

C17H16O2 (252.1150236)


cis-Hinokiresinol, a type of lignan, is a natural compound found in various plants, particularly conifers like cypress. Lignans, including cis-Hinokiresinol, have garnered significant interest in the field of pharmacology and nutrition due to their diverse biological functions: 1. **Antioxidant Activity**: cis-Hinokiresinol exhibits antioxidant properties, which means it can help neutralize harmful free radicals in the body. This activity is important for protecting cells from oxidative stress, which is associated with aging and various diseases. 2. **Anti-Inflammatory Effects**: The compound has been found to possess anti-inflammatory properties. Chronic inflammation is linked to numerous diseases, including heart disease, cancer, and autoimmune disorders. By reducing inflammation, cis-Hinokiresinol may contribute to the prevention or treatment of these conditions. 3. **Anticancer Potential**: Some studies suggest that lignans, including cis-Hinokiresinol, may have anti-cancer properties. They may influence cancer cell growth, apoptosis (cell death), and angiogenesis (formation of new blood vessels in tumors). However, more research is needed to fully understand these effects. 4. **Estrogenic and Anti-Estrogenic Activities**: cis-Hinokiresinol and other lignans can bind to estrogen receptors in the body, exhibiting both estrogenic and anti-estrogenic effects. This dual activity might be beneficial in conditions where estrogen balance is crucial, such as in hormone-related cancers. 5. **Prebiotic Effects**: In the gut, lignans can be metabolized by gut bacteria into compounds with estrogenic or anti-estrogenic properties. This transformation contributes to the overall hormonal balance in the body and may have implications for health.

   

L-Formylkynurenine

(2S)-2-azaniumyl-4-(2-formamidophenyl)-4-oxobutanoate

C11H12N2O4 (236.07970319999998)


This compound belongs to the family of Butyrophenones. These are compounds containing 1-phenylbutan-1-one moiety.

   

Nicotinic acid ribonucleoside

3-carboxy-1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1lambda5-pyridin-1-ylium

C11H14NO6+ (256.08210840000004)


Nicotinic acid ribonucleoside (CAS: 17720-18-2) belongs to the class of organic compounds known as glycosylamines. Glycosylamines are compounds consisting of an amine with a beta-N-glycosidic bond to a carbohydrate, thus forming a cyclic hemiaminal ether bond (alpha-amino ether). Nicotinic acid ribonucleoside is involved in the nicotinate and nicotinamide metabolism pathways. Nicotinic acid ribonucleoside can be reversibly converted into nicotinate and nicotinate D-ribonucleoside by purine-nucleoside phosphorylase (EC 2.4.2.1) and 5-nucleotidase (EC 3.1.3.5), respectively. Nicotinate D-ribonucleoside is involved in the nicotinate and nicotinamide metabolism pathways. Nicotinate D-ribonucleoside can be reversibly converted to nicotinate and nicotinate D-ribonucleoside by purine-nucleoside phosphorylase [EC:2.4.2.1] and 5-nucleotidase [EC:3.1.3.5], respectively. [HMDB] COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Oryzalexin E

(2R,4aR,4bS,7S,10aR)-7-ethenyl-1,1,4a,7-tetramethyl-1,2,3,4,4a,4b,5,6,7,9,10,10a-dodecahydrophenanthrene-2,4b-diol

C20H32O2 (304.24021719999996)


Oryzalexin E is found in rice. Phytoalexin from rice leaves. Phytoalexin from rice leaves. Oryzalexin E is found in rice.

   

Palmitaldehyde

Palmitoyl aldehyde

C16H32O (240.2453022)


Palmitaldehyde, also known as 1-hexadecanal, is a member of the class of compounds known as fatty aldehydes. Fatty aldehydes are long chain aldehydes with a chain of at least 12 carbon atoms. Thus, palmitaldehyde is considered to be a fatty aldehyde lipid molecule. Palmitaldehyde is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Palmitaldehyde can be found in a number of food items such as rose hip, lambsquarters, pak choy, and swede, which makes palmitaldehyde a potential biomarker for the consumption of these food products. Palmitaldehyde exists in all eukaryotes, ranging from yeast to humans. In humans, palmitaldehyde is involved in few metabolic pathways, which include globoid cell leukodystrophy, metachromatic leukodystrophy (MLD), and sphingolipid metabolism. Palmitaldehyde is also involved in few metabolic disorders, which include fabry disease, gaucher disease, and krabbe disease. Palmitaldehyde is an intermediate in the metabolism of Glycosphingolipid. It is a substrate for Sphingosine-1-phosphate lyase 1. Hexadecanal (Palmitaldehyde) is a free fatty aldehyde present in animals[1]. Hexadecanal (Palmitaldehyde) is a free fatty aldehyde present in animals[1].

   

5,10-Methylene-THF

2-({4-[(6aR)-1-hydroxy-3-imino-3H,4H,5H,6H,6aH,7H,8H,9H-imidazo[1,5-f]pteridin-8-yl]phenyl}formamido)pentanedioic acid

C20H23N7O6 (457.1709738)


5,10-Methylene-THF is an intermediate in glycine, serine and threonine metabolism and one carbon metabolism. 5,10-CH2-THF can also be used as a coenzyme in the biosynthesis of thymidine. More specifically it is the C1-donor in the reactions catalyzed by thymidylate synthase and thymidylate synthase (FAD). It also acts as a coenzyme in the synthesis of serine from glycine via the enzyme serine hydroxymethyl transferase. 5,10-Methylene-THF is a substrate for Methylenetetrahydrofolate reductase. This enzyme converts 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate. This reaction is required for the multistep process that converts the amino acid homocysteine to methionine. The body uses methionine to make proteins and other important compounds. 5,10-CH2-THF is a substrate for many enzymes including Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase (mitochondrial), Aminomethyltransferase (mitochondrial), Serine hydroxymethyltransferase (mitochondrial), Methylenetetrahydrofolate reductase, C-1-tetrahydrofolate synthase (cytoplasmic), Serine hydroxymethyltransferase (cytosolic) and Thymidylate synthase. 5,10-Methylene-THF is an intermediate in the metabolism of Methane and the metabolism of Nitrogen. It is a substrate for Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase (mitochondrial), Aminomethyltransferase (mitochondrial), Serine hydroxymethyltransferase (mitochondrial), Methylenetetrahydrofolate reductase, C-1-tetrahydrofolate synthase (cytoplasmic), Serine hydroxymethyltransferase (cytosolic) and Thymidylate synthase. [HMDB] COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

ecdysone

17-(3,6-dihydroxy-6-methylheptan-2-yl)-2,3,14-trihydroxy-10,13-dimethyl-2,3,4,5,9,11,12,15,16,17-decahydro-1H-cyclopenta[a]phenanthren-6-one

C27H44O6 (464.3137724)


A 6-oxo steroid that is 5beta-cholest-7-en-6-one substituted by hydroxy groups at positions 2, 3, 14, 22 and 25 respectively (the 2beta, 3beta, 22R stereoisomer). It is a steroid prohormone of the major insect moulting hormone 20-hydroxyecdysone. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Ecdysone, also known as molting hormone, belongs to pentahydroxy bile acids, alcohols and derivatives class of compounds. Those are bile acids, alcohols or derivatives bearing five hydroxyl groups. Thus, ecdysone is considered to be a sterol lipid molecule. Ecdysone is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Ecdysone can be synthesized from 5beta-cholestane. Ecdysone is also a parent compound for other transformation products, including but not limited to, (25R)-11alpha,20,26-trihydroxyecdysone, (24R)-11alpha,20,24-trihydroxyecdysone, and ecdysone 25-O-D-glucopyranoside. Ecdysone can be found in spinach, which makes ecdysone a potential biomarker for the consumption of this food product. Ecdysone is a steroidal prohormone of the major insect molting hormone 20-hydroxyecdysone, which is secreted from the prothoracic glands. Insect molting hormones (ecdysone and its homologues) are generally called ecdysteroids. Ecdysteroids act as moulting hormones of arthropods but also occur in other related phyla where they can play different roles. In Drosophila melanogaster, an increase in ecdysone concentration induces the expression of genes coding for proteins that the larva requires, and it causes chromosome puffs (sites of high expression) to form in polytene chromosomes. Recent findings in Chris Q. Doe lab have found a novel role of this hormone in regulating temporal gene transitions within neural stem cells. Ecdysone and other ecdysteroids also appear in many plants mostly as a protection agent (toxins or antifeedants) against herbivorous insects. These phytoecdysteroids have been reputed to have medicinal value and are part of herbal adaptogenic remedies like Cordyceps, yet an ecdysteroid precursor in plants has been shown to have cytotoxic properties. A pesticide sold with the name MIMIC has ecdysteroid activity, although its chemical structure has little resemblance to the ecdysteroids . Ecdysone (α-Ecdysone), a major steroid hormone in insects and herbs, triggers mineralocorticoid receptor (MR) activation and induces cellular apoptosis. Ecdysone plays essential roles in coordinating developmental transitions and homeostatic sleep regulation through its active metabolite 20-hydroxyecdysone (Crustecdysone; 20E; HY-N6979)[1][2].

   

Pantoate

(2R)-2,4-dihydroxy-3,3-dimethylbutanoic acid

C6H12O4 (148.0735552)


Pantoic acid (along with beta-alanine) is used to synthesize pantothenic acid (vitamin B5) in most microorganisms and plants. Pantothenic acid is a structural component of coenzyme A (CoA) which is involved in essential biological processes such as the citric acid cycle (TCA cycle) and the synthesis of carbohydrates, proteins, and fat. Pantothenic acid is found widespread in foods but especially in egg yolk, offal, fish, whole-grains, legumes, mushrooms, avocados, broccoli, and royal jelly (from bees).

   

Mesoxalic acid

Propanedioic acid, oxo- (9ci)

C3H2O5 (117.9902242)


Occurs in Medicago sativa (alfalfa). Tentatively identified in rhizosphere of sterile white mustard plants (Sinapis alba). Mesoxalic acid is found in cereals and cereal products, herbs and spices, and common pea. Mesoxalic acid is found in cereals and cereal products. Mesoxalic acid occurs in Medicago sativa (alfalfa). Tentatively identified in rhizosphere of sterile white mustard plants (Sinapis alba

   

7,8-Dihydropteroic acid

4-[[(2-Amino-1,4,7,8-tetrahydro-4-oxo-6-pteridinyl)methyl]amino]-benzoic acid

C14H14N6O3 (314.1127334)


In the mammalian host, dihydrofolate biosynthesis occurs via the reduction of folic acid, whereas in plasmodia (e.g. Plasmodium berghei, a malaria parasite) the biosynthesis of 7,8-dihydropteroate, an intermediate product in dihydrofolate synthesis, occurs via the enzymic catalysis of the reaction of 2-amino-4-hydroxy-6-hydroxymethyl-7,8-dihydropteridine pyrophosphate with p-aminobenzoate. Malaria parasites synthesize their folate cofactors de novo and the antimalarial action of sulfonamides is due to their inhibiting the plasmodial dihydropteroate synthesis. The enzymes 6-hydroxymethylpterin pyrophosphokinase (EC 2.7.6.3, HPPK) and dihydropteroate synthase (EC 2.5.1.15, DHPS) catalyze sequential steps in folate biosynthesis. They are present in microorganisms but absent in mammals and therefore are especially suitable targets for antimicrobials. Sulfa drugs (sulfonamides and sulfones) currently are used as antimicrobials targeting DHPS, although resistance to these drugs is increasing. An NADPH-coupled microplate photometric assay could be used for rapid screening of chemical libraries for novel inhibitors of folate biosynthesis as the first step in developing new antimicrobial drugs targeting the folate biosynthetic pathway; in the microplate, the product of the DHPS reaction, 7,8-dihydropteroic acid, is reduced to tetrahydropteroate by excess dihydrofolate reductase (DHFR) using the cofactor NADPH (PMID: 17134675, 4354403, 3546688). 7,8-dihydropteroic acid, also known as dihydropteroinsaeure or h2pte, belongs to pterins and derivatives class of compounds. Those are polycyclic aromatic compounds containing a pterin moiety, which consist of a pteridine ring bearing a ketone and an amine group to form 2-aminopteridin-4(3H)-one. 7,8-dihydropteroic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). 7,8-dihydropteroic acid can be synthesized from pteroic acid. 7,8-dihydropteroic acid can also be synthesized into 2-hydroxy-7,8-dihydropteroic acid. 7,8-dihydropteroic acid can be found in a number of food items such as rice, towel gourd, cauliflower, and silver linden, which makes 7,8-dihydropteroic acid a potential biomarker for the consumption of these food products. 7,8-dihydropteroic acid exists in all living species, ranging from bacteria to humans. In humans, 7,8-dihydropteroic acid is involved in the pterine biosynthesis.

   

4-Pyridoxolactone

7-hydroxy-6-methyl-1H,3H-furo[3,4-c]pyridin-1-one

C8H7NO3 (165.0425912)


4-Pyridoxolactone is a bacterial oxidation metabolite of vitamin B6 (KEGG) [HMDB] 4-Pyridoxolactone is a bacterial oxidation metabolite of vitamin B6 (KEGG).

   

dihydro-3-hydroxy-4,4-dimethyl- 2(3H)-Furanone

2,4-Dihydroxy-3,3-dimethylbutyric acid gamma-lactone

C6H10O3 (130.062991)


Flavouring compound [Flavornet] DL-Pantolactone can be hydrolyzed to Pantoic acid by the lactonohydrolase of Fusarium oxysporum. DL-Pantolactone also can be used in the preparation of 3,5-dinitrobenzoyl-DL-pantolactone[1][2]. DL-Pantolactone can be hydrolyzed to Pantoic acid by the lactonohydrolase of Fusarium oxysporum. DL-Pantolactone also can be used in the preparation of 3,5-dinitrobenzoyl-DL-pantolactone[1][2]. Pantolactone is an endogenous metabolite.

   

Desulfoglucotropeolin

Desulfobenzylglucosinolate

C14H19NO6S (329.0933034)


A aralkylglucosinolate consisting of glucotropeolin lacking the oxime O-sulfo group.

   

Protoporphyrinogen IX

3-[20-(2-carboxyethyl)-9,14-diethenyl-5,10,15,19-tetramethyl-21,22,23,24-tetraazapentacyclo[16.2.1.1^{3,6}.1^{8,11}.1^{13,16}]tetracosa-1(20),3,5,8,10,13,15,18-octaen-4-yl]propanoic acid

C34H40N4O4 (568.30494)


Protoporphyrinogen IX is an intermediate in heme biosynthesis. It is a porphyrinogen in which two pyrrole rings each have one methyl and one propionate side chain, and the other two pyrrole rings each have one methyl and one vinyl side chain. Fifteen isomers are possible but only one, type IX, occurs naturally. Protoporphyrinogen is produced by oxidative decarboxylation of coproporphyrinogen. Under certain conditions, protoporphyrinogen IX can act as a phototoxin, a neurotoxin, and a metabotoxin. A phototoxin leads to cell damage upon exposure to light. A neurotoxin causes damage to nerve cells and nerve tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of porphyrins are associated with porphyrias such as porphyria variegate, acute intermittent porphyria, and hereditary coproporphyria (HCP). In particular, protoporphyrinogen IX is accumulated and excreted excessively in the feces in acute intermittent porphyria, protoporphyria, and variegate porphyria. There are several types of porphyrias (most are inherited). Hepatic porphyrias are characterized by acute neurological attacks (seizures, psychosis, extreme back and abdominal pain, and an acute polyneuropathy), while the erythropoietic forms present with skin problems (usually a light-sensitive blistering rash and increased hair growth). The neurotoxicity of porphyrins may be due to their selective interactions with tubulin, which disrupt microtubule formation and cause neural malformations (PMID: 3441503). Protoporphyrinogen IX is an intermediate in heme biosynthesis. It is a porphyrinogen in which 2 pyrrole rings each have one methyl and one propionate side chain and the other two pyrrole rings each have one methyl and one vinyl side chain. 15 isomers are possible but only one, type IX, occurs naturally. Protoporphyrinogen is produced by oxidative decarboxylation of coproporphyrinogen. [HMDB]. Protoporphyrinogen IX is found in many foods, some of which are elderberry, grapefruit, green vegetables, and pepper (c. annuum). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Sphinganine 1-phosphate

(2S,3R)-2-Amino-3-hydroxyoctadecyl dihydrogen phosphoric acid

C18H40NO5P (381.264396)


Sphinganine 1-phosphate is an intermediate in the metabolism of Glycosphingolipids and sphingolipids. It is a substrate for Sphingosine kinase 1, Lipid phosphate phosphohydrolase 2, Sphingosine kinase 2, Sphingosine-1-phosphate lyase 1, Lipid phosphate phosphohydrolase 1 and Lipid phosphate phosphohydrolase 3. [HMDB]. Sphinganine 1-phosphate is found in many foods, some of which are winter squash, chicory roots, star fruit, and butternut squash. Sphinganine 1-phosphate is an intermediate in the metabolism of Glycosphingolipids and sphingolipids. It is a substrate for Sphingosine kinase 1, Lipid phosphate phosphohydrolase 2, Sphingosine kinase 2, Sphingosine-1-phosphate lyase 1, Lipid phosphate phosphohydrolase 1 and Lipid phosphate phosphohydrolase 3.

   

S-Acetyldihydrolipoamide

S-[6-Amino-6-oxo-1-(2-sulfanylethyl)hexyl] ethanethioic acid

C10H19NO2S2 (249.0857154)


S-Acetyldihydrolipoamide is a thio-acetylated form of dihydrolipoamide. The molecule is commonly conjugated to lysine residues. The structure shown is the free form of the molecule. Pyruvate dehydrogenase complex. The reaction is 2-(alpha-hydroxyethyl)-TPP + lipoamide => S-acetyldihydrolipoamide + TPP [Homo sapiens], occuring in mitochondrial matrix. (reactome.org). S-Acetyldihydrolipoamide is an intermediate in alanine, aspartate and pyruvate metabolism and glycolysis/gluconeogenesis (KEGG:C01136). It is converted from 2-hydroxyethyl-THPP and lipoamide via the enzyme pyruvate dehydrogenase (EC:1.2.4.1). It is then converted to acetyl-CoA via the enzyme pyruvate dehydrogenase E2 component (dihydrolipoamide acetyltransferase) (EC:2.3.1.12). S-Acetyldihydrolipoamide is a thio-acetylated form of dihydrolipoamide. The molecule is commonly conjugated to lysine residues. The structure shown is the free form of the molecule.

   

Serotinose

6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxane-2,3,4,5-tetrol

C11H20O10 (312.105642)


Serotinose is found in fruits. Serotinose is from glucomannan of Tamarindus indic

   

3-Dehydroecdysone

(2S,5R,10R,13R,14S,17R)-17-[(2S,3R)-3,6-dihydroxy-6-methylheptan-2-yl]-2,14-dihydroxy-10,13-dimethyl-1,2,4,5,9,11,12,15,16,17-decahydrocyclopenta[a]phenanthrene-3,6-dione

C27H42O6 (462.2981232)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

CHEMBL441356

(S)-N-Methylcanadine

C21H24NO4+ (354.17052440000003)


   

3-Dehydrosphinganine

(+-)-Isomer OF ketodihydrosphingosine

C18H37NO2 (299.2824142)


3-Dehydrosphinganine is an intermediate in the metabolism of Glycosphingolipids. It is a substrate for Serine palmitoyltransferase 1 and Serine palmitoyltransferase 2. [HMDB]. 3-Dehydrosphinganine is found in many foods, some of which are beech nut, muskmelon, broccoli, and groundcherry. 3-Dehydrosphinganine is an intermediate in the metabolism of Glycosphingolipids. It is a substrate for Serine palmitoyltransferase 1 and Serine palmitoyltransferase 2.

   

Nicotinamide riboside

3-carbamoyl-1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1lambda5-pyridin-1-ylium

C11H15N2O5+ (255.098092)


Nicotinamide riboside is involved in nicotinate and nicotinamide metabolism. Nicotinamide riboside was originally identified as a nutrient in milk. It is a useful compound for the elevation of NAD+ levels in humans. Nicotinamide riboside has recently been discovered to be an NAD(+) precursor that is converted into nicotinamide mononucleotide by specific nicotinamide riboside kinases, Nrk1 and Nrk2. It has been shown that exogenous nicotinamide riboside promotes Sir2-dependent repression of recombination, improves gene silencing, and extends the lifespan of certain animal models without calorie restriction (PMID: 17482543). Supplementation in mammalian cells and mouse tissues increases NAD(+) levels and activates SIRT1 and SIRT3, culminating in enhanced oxidative metabolism and protection against high-fat diet-induced metabolic abnormalities (PMID: 22682224). Recent data suggest that nicotinamide riboside may be the only vitamin precursor that supports neuronal NAD+ synthesis (PMID: 18429699). Nicotinamide riboside kinase has an essential role in the phosphorylation of nicotinamide riboside and the cancer drug tiazofurin (PMID: 15137942). Nicotinamide riboside is involved in nicotinate and nicotinamide metabolism. Nicotinamide riboside has been identified as a nutrient in milk. It is a useful compound for elevation of NAD+ levels in humans. Recent data suggest that nicotinamide riboside may be the only vitamin precursor that supports neuronal NAD+ synthesis (PMID: 18429699). Nicotinamide riboside kinase has an essential role for phosphorylation of nicotinamide riboside and the cancer drug tiazofurin (PMID 15137942). [HMDB] COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials, COVID-19 Disease Map C26170 - Protective Agent > C275 - Antioxidant Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Coproporphyrinogen III

3-[9,14,20-tris(2-carboxyethyl)-5,10,15,19-tetramethyl-21,22,23,24-tetraazapentacyclo[16.2.1.1^{3,6}.1^{8,11}.1^{13,16}]tetracosa-1(20),3,5,8,10,13,15,18-octaen-4-yl]propanoic acid

C36H44N4O8 (660.3158984)


Coproporphyrinogen III is a porphyrin metabolite arising from heme synthesis. Porphyrins are pigments found in both animal and plant life. Coproporphyrinogen III is a tetrapyrrole dead-end product resulting from the spontaneous oxidation of the methylene bridges of coproporphyrinogen arising from heme synthesis. It is secreted in feces and urine. Coproporphyrinogen III is biosynthesized from the tetrapyrrole hydroxymethylbilane, which is converted by the action of uroporphyrinogen III synthase to uroporphyrinogen III. Uroporphyrinogen III is subsequently converted into coproporphyrinogen III through a series of four decarboxylations. Increased levels of coproporphyrinogens can indicate congenital erythropoietic porphyria or sideroblastic anemia, which are inherited disorders. Porphyria is a pathological state characterized by abnormalities of porphyrin metabolism and results in the excretion of large quantities of porphyrins in the urine and in extreme sensitivity to light. A large number of factors are capable of increasing porphyrin excretion, owing to different and multiple causes and etiologies: (1) the main site of the chronic hepatic porphyria disease process concentrates on the liver, (2) a functional and morphologic liver injury is almost regularly associated with this chronic porphyria, and (3) the toxic form due to occupational and environmental exposure takes mainly a subclinical course. Hepatic factors include disturbance in coproporphyrinogen metabolism, which results from inhibition of coproporphyrinogen oxidase as well as from the rapid loss and diminished utilization of coproporphyrinogen in the hepatocytes. This may also explain why coproporphyrin, its autoxidation product, predominates physiologically in the urine. Decreased biliary excretion of coproporphyrin leading to a compensatory urinary excretion. Therefore, the coproporphyrin ring isomer ratio (1:III) becomes a sensitive index for impaired liver function, intrahepatic cholestasis, and disturbed activity of hepatic uroporphyrinogen decarboxylase. In itself, secondary coproporphyrinuria is not associated with porphyria symptoms of a hepatologic-gastroenterologic, neurologic, or dermatologic order, even though coproporphyrinuria can occur with such symptoms (PMID: 3327428). Under certain conditions, coproporphyrinogen III can act as a phototoxin, a neurotoxin, and a metabotoxin. A phototoxin leads to cell damage upon exposure to light. A neurotoxin causes damage to nerve cells and nerve tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of porphyrins are associated with porphyrias such as porphyria variegate, acute intermittent porphyria, hereditary coproporphyria (HCP), congenital erythropoietic porphyria, and sideroblastic anemia. In particular, coproporphyrinogen III is accumulated and excreted excessively in the feces in acute intermittent porphyria, protoporphyria, and variegate porphyria. There are several types of porphyrias (most are inherited). Hepatic porphyrias are characterized by acute neurological attacks (seizures, psychosis, extreme back and abdominal pain, and an acute polyneuropathy), while the erythropoietic forms present with skin problems (usually a light-sensitive blistering rash and increased hair growth). The neurotoxicity of porphyrins may be due to their selective interactions with tubulin, which disrupt microtubule formation and cause neural malformations (PMID: 3441503). Coproporphyrinogen III oxidase is deficient in hereditary coproporphyria. These persons usually have enhanced excretion even in a subclinical state of the disease.(PubMed ID 14605502 ) [HMDB]. Coproporphyrinogen III is found in many foods, some of which are cucumber, climbing bean, horseradish, and pepper (c. frutescens). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Presqualene diphosphate

[({[(1S,2S,3S)-2-[(3E)-4,8-dimethylnona-3,7-dien-1-yl]-2-methyl-3-[(1E,5E)-2,6,10-trimethylundeca-1,5,9-trien-1-yl]cyclopropyl]methoxy}(hydroxy)phosphoryl)oxy]phosphonic acid

C30H52O7P2 (586.3188102)


Presqualene diphosphate is an intermediate in the biosynthesis of Terpenoid. It is a substrate for Farnesyl-diphosphate farnesyltransferase. [HMDB]. Presqualene diphosphate is found in many foods, some of which are soft-necked garlic, pomes, roman camomile, and white cabbage. Presqualene diphosphate is an intermediate in the biosynthesis of Terpenoid. It is a substrate for Farnesyl-diphosphate farnesyltransferase.

   

4,21-dehydrogeissoschizine

1H-Indolo[2,3-a]quinolizin-5-ium, 3-ethylidene-2,3,6,7,12,12b-hexahydro-2-[1-(hydroxymethylene)-2-methoxy-2-oxoethyl]-, [2S-[2α(E),3E,12bβ]]-

C21H23N2O3+ (351.1708588)


An indole alkaloid that is the enol tautomer of geissoschizine, which is also dehydrogenated at the 4,21-position. 1H-Indolo[2,3-a]quinolizin-5-ium, 3-ethylidene-2,3,6,7,12,12b-hexahydro-2-[1-(hydroxymethylene)-2-methoxy-2-oxoethyl]-, [2S-[2α(E),3E,12bβ]]-. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=73385-56-5 (retrieved 2024-07-04) (CAS RN: 73385-56-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Dihydro-O-methylsterigmatocystin

11,15-dimethoxy-6,8,20-trioxapentacyclo[10.8.0.0²,⁹.0³,⁷.0¹⁴,¹⁹]icosa-1(12),2(9),10,14,16,18-hexaen-13-one

C19H16O6 (340.0946836)


Dihydro-O-methylsterigmatocystin is a mycotoxin from Aspergillus flavu D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins

   

isolychnose

3F-alpha-D-Galactosylraffinose

C24H42O21 (666.2218482000001)


   

1,8-diazacyclotetradecane-2,9-dione

1,8-diazacyclotetradecane-2,9-dione

C12H22N2O2 (226.1681192)


   

Pyrroline hydroxycarboxylic acid

3-Hydroxy delta 1-pyrroline-5-carboxylic acid, anion

C5H7NO3 (129.0425912)


Pyrroline hydroxycarboxylic acid is a metabolite identified in the urine of patients with type II hyperprolinemia. (OMIM 239510). The urinary excretion of Pyrroline hydroxycarboxylic acid increased in hyperprolinemic patients but not in healthy controls during oral loading of hydroxyproline and hydroxyproline-ornithine. (PMID: 533224). Hyperprolinemia type II (HP II) is a rare inherited metabolic disease due to the deficiency of pyroline-5-carboxylate dehydrogenase. It is generally believed to be a benign condition although some patients have neurological problems such as refractory convulsions. (PMID: 15214748). The oxidation of pyrroline-carboxylate generates glutamate and pyrroline-hydroxycarboxylate, a reaction catalyzed by hydroxyproline oxidase (PMID: 500817). Pyrroline hydroxycarboxylic acid is a metabolite identified in the urine of patients with type II hyperprolinemia. (OMIM 239510)

   

N-Succinyl-L,L-2,6-diaminopimelate

2-amino-6-[(4-hydroxy-4-oxobutanoyl)amino]heptanedioic acid

C11H18N2O7 (290.11139579999997)


N-Succinyl-L,L-2,6-diaminopimelate is an intermediate in lysine biosynthesis. It is the third to last step in the synthesis of lysine and is converted. from N-Succinyl-2-amino-6-ketopimelate via the enzyme succinyldiaminopimelate transferase (EC 2.6.1.17). It is then converted to L,L-diaminopimelate via the enzyme succinyl-diaminopimelate desuccinylase (EC 3.5.1.18). N-Succinyl-L,L-2,6-diaminopimelate is an intermediate in lysine biosynthesis. It is the third to last step in the synthesis of lysine and is converted

   

1,6,6-Trimethyl-2,7-dioxabicyclo[3.2.2]nonan-3-one

1,6,6-Trimethyl-2,7-dioxabicyclo[3.2.2]nonan-3-one

C10H16O3 (184.1099386)


   

3,4-Dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione

3,4-Dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione

C19H24O4 (316.1674504)


   

7-Dehydrodesmosterol

(1S,2R,5S,11R,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylhept-5-en-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadeca-7,9-dien-5-ol

C27H42O (382.3235482)


7-dehydrodesmosterol, also known as cholesta-5,7,24-trien-3beta-ol or 24-dehydroprovitamin d3, belongs to cholesterols and derivatives class of compounds. Those are compounds containing a 3-hydroxylated cholestane core. Thus, 7-dehydrodesmosterol is considered to be a sterol lipid molecule. 7-dehydrodesmosterol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). 7-dehydrodesmosterol can be found in a number of food items such as nectarine, orange bell pepper, cinnamon, and carrot, which makes 7-dehydrodesmosterol a potential biomarker for the consumption of these food products. In humans, 7-dehydrodesmosterol is involved in several metabolic pathways, some of which include atorvastatin action pathway, simvastatin action pathway, pamidronate action pathway, and steroid biosynthesis. 7-dehydrodesmosterol is also involved in several metabolic disorders, some of which include mevalonic aciduria, wolman disease, chondrodysplasia punctata II, X linked dominant (CDPX2), and hyper-igd syndrome. 7-Dehydrodesmosterol is a sterol intermediate in the biosynthesis of steroids. 7-Dehydrodesmosterol is a substrate of the enzyme 24-dehydrocholesterol reductase (EC:1.3.1.72), an important enzyme in the biosynthesis of Cholesterol. Cholesterol is synthesized from either Lathosterol, 7-Dehydrocholesterol, Desmosterol or Cholestenol by the enzyme 3beta-hydroxysterol delta7 reductase (EC 1.3.1.21, Dhcr7). The Smith-Lemli-Opitz syndrome (SLOS, OMIM 270400) is caused by a genetic defect in cholesterol biosynthesis; mutations in the enzyme 3beta-hydroxysterol delta7 reductase lead to a failure of cholesterol synthesis, with an accumulation of precursor sterols, such as 7-Dehydrodesmosterol. SLOS results in craniofacial, limb as well as major organ defects, including the brain. In individuals with this syndrome, mental retardation, as well as other CNS dysfunction, is almost 100\\% prevalent. (PMID: 15862627, 17197219).

   

12-Hydroxychelirubine

12-Hydroxydihydrochelirubine

C21H17NO6 (379.1055822)


   

Phaseollidin

15-(3-methylbut-2-en-1-yl)-8,17-dioxatetracyclo[8.7.0.0²,⁷.0¹¹,¹⁶]heptadeca-2(7),3,5,11(16),12,14-hexaene-5,14-diol

C20H20O4 (324.13615200000004)


Phaseollidin is found in common bean. Phaseollidin is isolated from kidney bean Phaseolus vulgaris, mung bean Phaseolus aureus, rice bean Phaseolus calcaratus, papadi Dolichos biflorus, and hyacinth bean Lablab niger.

   

Ergosta-5,7,22,24(28)-tetraen-3beta-ol

(3S,10R,13R)-10,13-dimethyl-17-[(E,2R)-6-methyl-5-methylidenehept-3-en-2-yl]-2,3,4,9,11,12,14,15,16,17-decahydro-1H-cyclopenta[a]phenanthren-3-ol

C28H42O (394.3235482)


A 3beta-sterol having double bonds in the 5-, 7- and 22-positions and a methylene group at position 24.

   

5,6-Dihydroxyindole

5,6-Dihydroxyindole

C8H7NO2 (149.0476762)


D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents D004791 - Enzyme Inhibitors > D065098 - Catechol O-Methyltransferase Inhibitors 5,6-Dihydroxyindole is a substrate for Tyrosinase. [HMDB] 5,6-Dihydroxyindole is a substrate for Tyrosinase.

   

Glutathionylspermidine

N1-(γ-L-Glutamyl-L-cysteinyl-glycyl)-spermidine

C17H34N6O5S (434.23112740000005)


The spermidine amide of glutathione.

   

N1-(alpha-D-ribosyl)-5,6-dimethyl-benzimidazole

(2S,5R)-2-(5,6-dimethyl-1H-1,3-benzodiazol-1-yl)-5-(hydroxymethyl)oxolane-3,4-diol

C14H18N2O4 (278.1266508)


N1-(alpha-D-ribosyl)-5,6-dimethyl-benzimidazole is an intermediate in riboflavin metabolism. It is converted from N1-(5-Phospho-alpha-D-ribosyl)-5,6-dimethylbenzimidazole via dephosphorylation by the enzyme phosphohistidine phosphatase 1 (EC 3.1.3.-). Humans do not have all the enzymes needed to synthesize or metabolize riboflavin. However, gut microflora do have the necessary enzymatic machinery to produce and metabolize this vitamin. Riboflavin (or vitamin B2) is an easily absorbed micronutrient with a key role in maintaining health in humans and animals. It is the central component of the cofactors FAD and FMN, and is therefore required by all flavoproteins. Riboflavin is yellow or yellow-orange in color and in addition to being used as a food coloring it is also used to fortify some foods including baby foods, breakfast cereals, pastas, sauces, processed cheese, fruit drinks, vitamin-enriched milk products, some energy drinks, and vitamin supplements. [HMDB] N1-(alpha-D-ribosyl)-5,6-dimethyl-benzimidazole is an intermediate in riboflavin metabolism. It is converted from N1-(5-Phospho-alpha-D-ribosyl)-5,6-dimethylbenzimidazole via dephosphorylation by the enzyme phosphohistidine phosphatase 1 (EC 3.1.3.-). Humans do not have all the enzymes needed to synthesize or metabolize riboflavin. However, gut microflora do have the necessary enzymatic machinery to produce and metabolize this vitamin. Riboflavin (or vitamin B2) is an easily absorbed micronutrient with a key role in maintaining health in humans and animals. It is the central component of the cofactors FAD and FMN, and is therefore required by all flavoproteins. Riboflavin is yellow or yellow-orange in color and in addition to being used as a food coloring it is also used to fortify some foods including baby foods, breakfast cereals, pastas, sauces, processed cheese, fruit drinks, vitamin-enriched milk products, some energy drinks, and vitamin supplements.

   

Phycocyanobilin

(2R,3Z)-Phycocyanobilin

C33H38N4O6 (586.2791208)


Phycocyanobilin is a linear, open-chain tetrapyrrole pigment that belongs to the family of bilins. It serves as a chromophore in various phytochrome photoreceptors found in cyanobacteria, as well as in the chlorosomes of green sulfur bacteria. Phycocyanobilin is a key component of phycobiliproteins, which are water-soluble pigments involved in light harvesting during photosynthesis. **Chemical Structure:** Phycocyanobilin has a molecular formula of C33H36N4O6 and a molecular weight of approximately 596.67 g/mol. Structurally, it consists of a porphyrin backbone with four pyrrole rings connected by methine bridges. The pyrrole rings contain nitrogen atoms that coordinate a central magnesium ion in phycobiliproteins. Unlike chlorophyll, phycocyanobilin has an open-chain structure due to the presence of a double bond between the C-20 and C-21 positions of the macrocyclic ring, which prevents it from forming a fully circular porphyrin ring. **Properties:** - **Color:** Phycocyanobilin imparts a blue color to the phycobiliproteins in which it is bound. The specific color is due to the electronic structure of the phycocyanobilin molecule, which allows it to absorb light in the red region of the visible spectrum, typically around 620-630 nm. - **Solubility:** Unlike many other pigments, phycocyanobilin is water-soluble due to its binding to phycobiliproteins, which enhances its functionality in the thylakoid membranes of cyanobacteria. - **Chemical Reactivity:** Phycocyanobilin can be isomerized and oxidized to form other bilins, such as phycoerythrobilin and phycourobilin, which have different spectral properties and can be found in different phycobiliproteins. **Biological Role:** Phycocyanobilin plays a critical role in the photosynthetic process of cyanobacteria and certain green sulfur bacteria. Its primary functions include: - **Light Harvesting:** In phycobiliproteins like phycocyanin, phycocyanobilin serves as a light-harvesting antenna. It absorbs light energy and transfers it to the photosynthetic reaction centers, where it is used to drive the synthesis of ATP and NADPH. - **Photoregulation:** In cyanobacteria, phycocyanobilin is also involved in the regulation of photosynthesis through the action of phytochrome-like photoreceptors. These photoreceptors can switch between a Pr (red-absorbing) and a Pfr (far-red-absorbing) form in response to light, regulating gene expression and various metabolic processes. **Synthesis:** Phycocyanobilin is synthesized from the amino acid L-arginine through a series of enzymatic reactions that include the production of 5-aminolevulinic acid (ALA), which is then transformed into protoporphyrin IX. The protoporphyrin IX is subsequently modified to form phycocyanobilin, a process that involves the removal of the macrocyclic ring and the introduction of the double bond at the C-20 and C-21 positions. In summary, phycocyanobilin is an essential pigment for the photosynthetic apparatus of certain photosynthetic organisms, contributing to their ability to capture and utilize light energy for the production of organic compounds. Its unique structure and properties allow it to perform a variety of functions that are critical to the survival and ecological success of these organisms.

   

6-Chlorohydroxyquinol

6-Chlorobenzene-1,2,4-triol

C6H5ClO3 (159.99272100000002)


   

Aminoparathion

Phosphorothioic acid, O-(4-aminophenyl) O,O-diethyl ester

C10H16NO3PS (261.0588476)


Aminoparathion is a highly reactive metabolite of parathion. A highly reactive metabolite of parathion [HMDB]

   

ANTIBIOTIC A-31438

3-O-alpha-mycarosylerythronolide B

C28H50O10 (546.34038)


   

Deoxyamidinoproclavaminate

Deoxyguanidinoproclavaminic acid

C9H16N4O3 (228.1222346)


   

Dihydroclavaminate

Dihydroclavaminic acid; Dihydroclavaminate

C8H12N2O4 (200.07970319999998)


   

Clavaminate

Clavaminic acid

C8H10N2O4 (198.064054)


   

Mycothiol

Mycothiol disulfide - Stabilised with trifluoroacetic acid ammonium salt

C17H30N2O12S (486.15193800000003)


A pseudodisaccharide, 1D-myo-inosityl-alpha-D-glucopyranoside, in which the hydroxy group at the 2-position of the glucose moiety is replaced by an (N-acetyl-L-cysteinyl)amido group.

   

5,6-dihydroxy-3-methylquinolin-2(1H)-one

5,6-Dihydroxy-3-methyl-2-oxo-1,2-dihydroquinoline

C10H9NO3 (191.0582404)


   

5,6-dihydroxy-3-methyl-5,6-dihydroquinolin-2(1H)-one

5,6-Dihydroxy-3-methyl-2-oxo-1,2,5,6-tetrahydroquinoline

C10H11NO3 (193.0738896)


   

Tetracenomycin

Tetracenomycin C

C23H20O11 (472.100557)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents

   

2-Aminobiphenyl-2,3-diol

2-Aminobiphenyl-2,3-diol

C12H11NO2 (201.0789746)


   

Neolinustatin

2-methyl-2-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}butanenitrile

C17H29NO11 (423.1740524)


Isolated from flaxseed meal. Neolinustatin is found in many foods, some of which are yardlong bean, european cranberry, hyssop, and macadamia nut. Neolinustatin is found in cereals and cereal products. Neolinustatin is isolated from flaxseed meal.

   

Juvenile hormone III

methyl (2E,6E)-9-[(2R)-3,3-dimethyloxiran-2-yl]-3,7-dimethylnona-2,6-dienoate

C16H26O3 (266.1881846)


Juvenile hormone III is a member of the juvenile hormone family of compounds that is the methyl ester of (2E,6E)-9-[(2R)-3,3-dimethyloxiran-2-yl]-3,7-dimethylnona-2,6-dienoic acid. Juvenile hormone III is found in most insect species. It is an epoxide, an enoate ester, a fatty acid methyl ester and a juvenile hormone.

   

Rishitin

1-methyl-7-(prop-1-en-2-yl)-1,2,3,4,5,6,7,8-octahydronaphthalene-2,3-diol

C14H22O2 (222.1619712)


Constituent of the tubers of white potatoes (Solanum subspecies) infected by Phytophthora infestans. Rishitin is found in many foods, some of which are pepper (c. annuum), yellow bell pepper, red bell pepper, and garden tomato (variety). Rishitin is found in alcoholic beverages. Rishitin is a constituent of the tubers of white potatoes (Solanum species) infected by Phytophthora infestans

   

Solavetivone

6,10-dimethyl-2-(prop-1-en-2-yl)spiro[4.5]dec-6-en-8-one

C15H22O (218.1670562)


Solavetivone is found in alcoholic beverages. Solavetivone is a stress metabolite from potato tubers (Solanum tuberosum Stress metabolite from potato tubers (Solanum tuberosum). Solavetivone is found in alcoholic beverages and potato.

   

(+)-alpha-Carene

(1R,6S)-3,7,7-trimethylbicyclo[4.1.0]hept-3-ene

C10H16 (136.1251936)


(+)-alpha-Carene is found in herbs and spices. (+)-alpha-Carene is widespread plant product, found especially in turpentine oils (from Pinus species) and oil of galbanu Isolated from root oil of Kaempferia galanga. (-)-alpha-Carene is found in many foods, some of which are pummelo, cumin, herbs and spices, and sweet orange.

   

Methyleugenol

METHYLEUGENOL (CONSTITUENT OF HOLY BASIL LEAF) [DSC]

C11H14O2 (178.09937440000002)


Methyleugenol, also known as 4-allylveratrole or eugenol methyl, belongs to the class of organic compounds known as dimethoxybenzenes. These are organic aromatic compounds containing a monocyclic benzene moiety carrying exactly two methoxy groups. FDA noted the action was despite its continuing stance that this substance does not pose a risk to public health under the conditions of its intended use. Methyleugenol is a sweet, anise, and apricot tasting compound. Methyleugenol is found, on average, in the highest concentration within a few different foods, such as allspices, tarragons, and sweet bay and in a lower concentration in sweet basils, rosemaries, and hyssops. Methyleugenol has also been detected, but not quantified, in several different foods, such as soy beans, evergreen blackberries, muskmelons, citrus, and pomes. This could make methyleugenol a potential biomarker for the consumption of these foods. As of October 2018, the US FDA withdrew authorization for the use of methyl eugenol as a synthetic flavoring substance for use in food because petitioners provided data demonstrating that these additives induce cancer in laboratory animals. Methyleugenol is formally rated as a possible carcinogen (by IARC 2B) and is also a potentially toxic compound. Methyl eugenol (allylveratrol) is a natural chemical compound classified as a phenylpropene, a type of phenylpropanoid. It is the methyl ether of eugenol and is important to insect behavior and pollination. Their ability to attract insects, particularly Bactrocera fruit flies was first noticed in 1915 by F. M. Howlett. The compound may have evolved in response to pathogens, as methyl eugenol has some antifungal activity. Methyl eugenol is found in a number of plants (over 450 species from 80 families including both angiosperm and gymnosperm families) and has a role in attracting pollinators. About 350 plant species have them as a component of floral fragrance. Methyleugenol is a clear colorless to pale yellow liquid with a spicy earthy odor. Bitter burning taste. (NTP, 1992) O-methyleugenol is a phenylpropanoid. It is functionally related to a eugenol. Methyleugenol is a natural product found in Vitis rotundifolia, Elettaria cardamomum, and other organisms with data available. Methyleugenol is a yellowish, oily, naturally occurring liquid with a clove-like aroma and is present in many essential oils. Methyleugenol is used as a flavoring agent, as a fragrance and as an anesthetic in rodents. Methyleugenol is mutagenic in animals and is reasonably anticipated to be a human carcinogen based on evidence of carcinogenicity in animals. (NCI05) Methyleugenol is found in allspice. Methyleugenol is present in many essential oils, e.g. nutmeg, mace and also many fruits, e.g. apple, banana, orange juice or peel, grapefruit, bilberryMethyleugenol has been shown to exhibit anti-nociceptive function (A7914).Methyleugenol belongs to the family of Anisoles. These are organic compounds contaiing a methoxybenzene or a derivative thereof. Present in many essential oils, e.g. nutmeg, mace and also many fruits, e.g. apple, banana, orange juice or peel, grapefruit, bilberry. Methyleugenol is found in many foods, some of which are wild carrot, sweet basil, citrus, and fruits. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens Methyl Eugenol, a phenylpropanoid chemical in leaves, fruits, stems, and/or roots, may be released when that corresponding part of a plant is damaged as a result of feeding by an herbivore. Methyl Eugenol is used for male annihilation of the oriental fruit fly[1]. Methyl Eugenol is a bait that has oral activity against oriental fruit fly (Hendel).Methyl Eugenol has anti-cancer and anti-inflammatory activities. Methyl Eugenol can induce Autophagy in cells. Methyl Eugenol can be used in the study of intestinal ischemia/reperfusion injury[1][2][3]. Methyl Eugenol, a phenylpropanoid chemical in leaves, fruits, stems, and/or roots, may be released when that corresponding part of a plant is damaged as a result of feeding by an herbivore. Methyl Eugenol is used for male annihilation of the oriental fruit fly[1].

   

Phaseollin

17,17-dimethyl-4,12,18-trioxapentacyclo[11.8.0.0²,¹¹.0⁵,¹⁰.0¹⁴,¹⁹]henicosa-1(13),5(10),6,8,14(19),15,20-heptaen-7-ol

C20H18O4 (322.1205028)


Isolated from Phaseolus vulgaris (kidney bean) and Vigna unguiculata. Phaseollin is found in many foods, some of which are yellow wax bean, soy bean, pulses, and cowpea. Phaseollin is found in common bean. Phaseollin is isolated from Phaseolus vulgaris (kidney bean) and Vigna unguiculata.

   

Yatein

2(3H)-Furanone, 4-(1,3-benzodioxol-5-ylmethyl)dihydro-3-[(3,4,5-trimethoxyphenyl)methyl]-, (3R-trans)-

C22H24O7 (400.1521954)


Dihydroanhydropodorhizol is a member of the class of butan-4-olides carrying 3,4,5-trimethoxybenzyl and (1,3-benzodioxol-5-yl)methyl substituents at positions 3 and 4 respectively. It has a role as a plant metabolite. It is a lignan, a butan-4-olide, a member of methoxybenzenes and a member of benzodioxoles. Yatein is a natural product found in Austrocedrus chilensis, Podolepis canescens, and other organisms with data available. A member of the class of butan-4-olides carrying 3,4,5-trimethoxybenzyl and (1,3-benzodioxol-5-yl)methyl substituents at positions 3 and 4 respectively.

   
   

Sesamolinol

4-{[4-(2H-1,3-benzodioxol-5-yl)-hexahydrofuro[3,4-c]furan-1-yl]oxy}-2-methoxyphenol

C20H20O7 (372.120897)


Sesamolinol is found in cereals and cereal products. Sesamolinol is isolated from sesame seeds (Sesamum indicum). Isolated from sesame seeds (Sesamum indicum). Sesamolinol is found in cereals and cereal products and sesame.

   

4-amino-4-deoxychorismate

(3R,4R)-4-amino-3-[(1-carboxyeth-1-en-1-yl)oxy]cyclohexa-1,5-diene-1-carboxylic acid

C10H11NO5 (225.0637196)


4-amino-4-deoxychorismate, also known as adc, belongs to dicarboxylic acids and derivatives class of compounds. Those are organic compounds containing exactly two carboxylic acid groups. 4-amino-4-deoxychorismate is soluble (in water) and a weakly acidic compound (based on its pKa). 4-amino-4-deoxychorismate can be found in a number of food items such as chives, narrowleaf cattail, green vegetables, and chicory leaves, which makes 4-amino-4-deoxychorismate a potential biomarker for the consumption of these food products. 4-amino-4-deoxychorismate exists in E.coli (prokaryote) and yeast (eukaryote).

   

4,4-Dimethylcholesta-8,14,24-trienol

(2S,5S,7R,14R,15R)-2,6,6,15-tetramethyl-14-[(2R)-6-methylhept-5-en-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadeca-1(10),11-dien-5-ol

C29H46O (410.3548466)


4,4-Dimethylcholesta-8,14,24-trienol is a product of the enzyme delta14-sterol reductase [EC 1.3.1.70] (KEGG). It is involved in the biosynthesis of steroids and is involved in the conversion of lanosterol to zymosterol. In particular, lanosterol 14-alpha-demethylase, catalyzes the C-14 demethylation of lanosterol to form 4,4-Dimethylcholesta-8,14,24-trienol in the ergosterol biosynthesis pathway. It is thought to be a meiosis activating sterol. [HMDB] 4,4-Dimethylcholesta-8,14,24-trienol is a product of the enzyme delta14-sterol reductase [EC 1.3.1.70] (KEGG). It is involved in the biosynthesis of steroids and is involved in the conversion of lanosterol to zymosterol. In particular, lanosterol 14-alpha-demethylase, catalyzes the C-14 demethylation of lanosterol to form 4,4-Dimethylcholesta-8,14,24-trienol in the ergosterol biosynthesis pathway. It is thought to be a meiosis activating sterol.

   

Levonordefrin

4-(2-amino-1-Hydroxypropyl)-1,2-benzenediol hydrochloride, (r*,r*)-(+,-)-isomer

C9H13NO3 (183.0895388)


Levonordefrin is only found in individuals that have used or taken this drug. It acts as a topical nasal decongestant and vasoconstrictor, most often used in dentistry.It is designed to mimic the molecular shape of adrenaline. It binds to alpha-adrenergic receptors in the nasal mucosa. Here it can, therefore, cause vasoconstriction C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents Same as: D02388 Levonordefrin, a common alternative to levoepinephrine as a vasoconstrictor in dental local anesthetic preparations, is usually used in fivefold higher concentrations. Levonordefrin is generally considered equivalent to epinephrine[1].

   

2-Heptyl-3-hydroxy-quinolone

2-Heptyl-3-hydroxy-4(1H)-quinolone

C16H21NO2 (259.1572206)


   

taxa-4(20),11-dien-5-alpha-yl acetate

Taxa-4(20),11(12)-dien-5α-yl acetate

C22H34O2 (330.2558664)


   
   

10-deacetyl-2-debenzoylbaccatin III

10-deacetyl-2-debenzoylbaccatin III

C22H32O9 (440.2046222)


   

Methanophenazine

Methanophenazine; 2-(2,3-Dihydro-all-trans-pentaprenyloxy)phenazine; 2-(2,3-Dihydropentaprenyloxy)phenazine

C37H50N2O (538.392293)


   

8,8a-Deoxyoleandolide

(3R,4S,5R,6S,7S,9R,11R,12S,13R,14R)-4,6,12-trihydroxy-3,5,7,9,11,13,14-heptamethyl-oxacyclotetradecane-2,10-dione

C20H36O6 (372.2511756)


8,8a-Deoxyoleandolide is a naturally occurring sesquiterpene lactone, which is a type of organic compound derived from the metabolism of plants. It is characterized by the absence of an oxygen atom at the 8 and 8a positions in its molecular structure, which differentiates it from the related compound oleandolide. Sesquiterpene lactones are known for their biological activities, such as cytotoxic, anti-inflammatory, and antimicrobial properties. 8,8a-Deoxyoleandolide may be found in various plant species and could be of interest for pharmaceutical research due to its potential therapeutic effects. The compound's structure typically includes a lactone ring fused with a sesquiterpene framework, and it may exhibit various substituents depending on its source and the specific plant it is derived from. 13-Deethyl-6,12-dideoxy-13-methylerythronolide A. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=53428-54-9 (retrieved 2024-07-15) (CAS RN: 53428-54-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

L-Olivosyl-oleandolide

(3R,5S,6S,7R,8S,9R,12R,13R,14S,15R)-8-[(2R,4S,5R,6S)-4,5-dihydroxy-6-methyloxan-2-yl]oxy-6,14-dihydroxy-5,7,9,12,13,15-hexamethyl-1,11-dioxaspiro[2.13]hexadecane-10,16-dione

C26H44O10 (516.2934324)


3-O-(alpha-L-olivosyl)oleandolide is a macrolide that is oleandolide having a 2,6-dideoxy-alpha-L-arabino-hexopyranosyl (alpha-L-olivosyl) residue attached at position 3. It has a role as a metabolite. It is a macrolide, a glycoside and a monosaccharide derivative. It is functionally related to an oleandolide. L-Olivosyl-oleandolide is a naturally occurring sesquiterpene lactone derivative that contains an olivosyl moiety, which is a specific type of ester derived from olivolic acid. The "L" in the name indicates that the olivosyl group is in the L-configuration, which refers to the spatial arrangement of atoms around the chiral center in the molecule. This compound is an example of a glycosylated sesquiterpene lactone, where the sesquiterpene lactone oleandolide is modified by the attachment of the olivosyl group. The presence of the olivosyl group can alter the biological properties of the parent compound, oleandolide, potentially affecting its pharmacological activities such as cytotoxicity, anti-inflammatory effects, and antimicrobial activity. L-Olivosyl-oleandolide can be found in certain plant species and may contribute to the plant's defense mechanisms against pathogens and herbivores. In its chemical structure, L-Olivosyl-oleandolide consists of a sesquiterpene lactone core with a lactone ring fused to a sesquiterpene framework, and it is appended with the L-olivosyl ester group, which adds complexity to its molecular structure and function. This compound is of interest in the fields of natural products chemistry and pharmacognosy for its potential therapeutic applications and as a subject of study for understanding the biosynthesis of such natural products.

   

L-Oleandrosyl-oleandolide

L-Oleandrosyl-oleandolide

C27H46O10 (530.3090816)


   

Narbonolide

Narbonolide

C20H32O5 (352.2249622)


A 14-membererd macrolide containing seven stereocentres carrying one ethyl, one hydroxy and five methyl substituents. It is the aglycone of the antibiotic narbonomycin and an intermediate in the biosynthesis of pikromycin.

   

Tylactone

Tylactone; Protylonolide

C23H38O5 (394.2719098)


A 16-membererd macrolide that is the aglycone of the antibiotic 5-O-beta-D-mycaminosyltylactone.

   

5-Hydroxyconiferaldehyde

5-Hydroxyconiferyl aldehyde

C10H10O4 (194.057906)


   

beta-Ionone

InChI=1/C13H20O/c1-10-6-5-9-13(3,4)12(10)8-7-11(2)14/h7-8H,5-6,9H2,1-4H3/b8-7

C13H20O (192.151407)


Beta-ionone is a colorless to light yellow liquid with an odor of cedar wood. In very dilute alcoholic solution the odor resembles odor of violets. Used in perfumery. Beta-ionone is an ionone that is but-3-en-2-one substituted by a 2,6,6-trimethylcyclohex-1-en-1-yl group at position 4. It has a role as an antioxidant and a fragrance. beta-Ionone is a natural product found in Nepeta nepetella, Vitis rotundifolia, and other organisms with data available. beta-Ionone is a metabolite found in or produced by Saccharomyces cerevisiae. beta-Ionone, also known as (e)-b-ionone or trans-beta-ionone, belongs to the class of organic compounds known as sesquiterpenoids. These are terpenes with three consecutive isoprene units. Found in many essential oils including oil of Boronia megastigma (brown boronia) and coml. ionone. Flavouring agent An ionone that is but-3-en-2-one substituted by a 2,6,6-trimethylcyclohex-1-en-1-yl group at position 4. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids β-Ionone is effective in the induction of apoptosis in gastric adenocarcinoma SGC7901 cells. Anti-cancer activity[1]. β-Ionone is effective in the induction of apoptosis in gastric adenocarcinoma SGC7901 cells. Anti-cancer activity[1].

   
   

methyl aklanonate

Aklanonic acid methyl ester

C22H18O8 (410.10016279999996)


   

Demethylphylloquinone

2-[(2E,7R,11R)-3,7,11,15-tetramethylhexadec-2-en-1-yl]-1,4-dihydronaphthalene-1,4-dione

C30H44O2 (436.3341124)


Demethylphylloquinone is a form of vitamin K that occurs in nature as part of a series of compounds with a common 2-methyl-1,4 naphthoquinone nucleus and differing isoprenoid side chains at the 3 position. Vitamin K forms comprise a single major plant form, phylloquinone with a phytyl side chain and a family of bacterially synthesized menaquinones (MKs) with multiprenyl side chains. Bacterially produced menaquinones are biologically active forms of vitamin K that are present in high concentrations in the human lower bowel. Both phylloquinone and menaquinones are bioactive in hepatic gamma-carboxylation but long-chain MKs are less well absorbed. Liver stores of vitamin K are relatively small. The hepatic reserves of phylloquinone (approximately 10\\% of the total) are labile and turn over at a faster rate than menaquinones. Vitamin K is recognised as a factor required for normal blood coagulation, and in relation to its role in bone metabolism. Vitamin K is a substrate for a liver microsomal enzyme that catalyzes the conversion of specific glutamyl residues to gamma-carboxyglutamyl residues in a limited number of proteins. These include the vitamin K-dependent clotting factors: prothrombin (factor II), factor VII, factor IX, and factor X. In the absence of vitamin K, nonfunctional clotting factors are synthesized and hemorrhage can result. Vitamin K is a coenzyme for glutamate carboxylase, which mediates the conversion of glutamate to gamma-carboxyglutamate (Gla). There are at least three Gla proteins associated with bone tissue, of which osteocalcin is the most abundant and best known. Trabecular and cortical bone appear to contain substantial concentrations of both phylloquinone and menaquinones. (PMID: 8642453, 8527227, 15018483, 1573141) [HMDB] Demethylphylloquinone is a form of vitamin K that occurs in nature as part of a series of compounds with a common 2-methyl-1,4 naphthoquinone nucleus and differing isoprenoid side chains at the 3 position. Vitamin K forms comprise a single major plant form, phylloquinone with a phytyl side chain and a family of bacterially synthesized menaquinones (MKs) with multiprenyl side chains. Bacterially produced menaquinones are biologically active forms of vitamin K that are present in high concentrations in the human lower bowel. Both phylloquinone and menaquinones are bioactive in hepatic gamma-carboxylation but long-chain MKs are less well absorbed. Liver stores of vitamin K are relatively small. The hepatic reserves of phylloquinone (approximately 10\\% of the total) are labile and turn over at a faster rate than menaquinones. Vitamin K is recognised as a factor required for normal blood coagulation, and in relation to its role in bone metabolism. Vitamin K is a substrate for a liver microsomal enzyme that catalyzes the conversion of specific glutamyl residues to gamma-carboxyglutamyl residues in a limited number of proteins. These include the vitamin K-dependent clotting factors: prothrombin (factor II), factor VII, factor IX, and factor X. In the absence of vitamin K, nonfunctional clotting factors are synthesized and hemorrhage can result. Vitamin K is a coenzyme for glutamate carboxylase, which mediates the conversion of glutamate to gamma-carboxyglutamate (Gla). There are at least three Gla proteins associated with bone tissue, of which osteocalcin is the most abundant and best known. Trabecular and cortical bone appear to contain substantial concentrations of both phylloquinone and menaquinones. (PMID: 8642453, 8527227, 15018483, 1573141).

   

2-cis,4-trans-xanthoxin

(2Z,4E)-5-[(1S,4S,6R)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-3-methylpenta-2,4-dienal

C15H22O3 (250.1568862)


2-cis,4-trans-xanthoxin, also known as xanthoxin, is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. 2-cis,4-trans-xanthoxin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). 2-cis,4-trans-xanthoxin can be found in a number of food items such as broad bean, canola, mustard spinach, and hickory nut, which makes 2-cis,4-trans-xanthoxin a potential biomarker for the consumption of these food products. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Demanyl phosphate

Phosphodimethylethanolamine

C4H12NO4P (169.0503922)


   

Paxilline

2H-1-Benzopyrano(5,6:6,7)indeno(1,2-b)indol-3(4bh)-one, 5,6,6a,7,12,12b,12c,13,14,14a-decahydro-4b-hydroxy-2-(1-hydroxy-1-methylethyl)-12b,12c-dimethyl-, (2-alpha,4b-beta,6a-alpha,12b-beta,12c-alpha,14a-beta)-

C27H33NO4 (435.2409458000001)


Paxilline is an indole diterpene alkaloid with formula C27H33NO4 isolated from Penicillium paxilli. It is a potent inhibitor of large conductance Ca2(+)- and voltage-activated K(+) (BK)-type channels. It has a role as a mycotoxin, a Penicillium metabolite, an anticonvulsant, an Aspergillus metabolite, a potassium channel blocker, a genotoxin, a geroprotector and an EC 3.6.3.8 (Ca(2+)-transporting ATPase) inhibitor. It is an organic heterohexacyclic compound, a tertiary alcohol, a terpenoid indole alkaloid, an enone and a diterpene alkaloid. Paxilline is a natural product found in Penicillium thiersii, Aspergillus foveolatus, and other organisms with data available. Tremorgenic agent from Penicillium paxilli, Acremonium lorii, Emericella foveolata, Emericella desertorum and Emericella striata Paxilline is a potassium channel blocker. Paxilline is a toxic, tremorgenic indole alkaloid produced by Penicillium paxilli An indole diterpene alkaloid with formula C27H33NO4 isolated from Penicillium paxilli. It is a potent inhibitor of large conductance Ca2(+)- and voltage-activated K(+) (BK)-type channels. Tremorgenic agent from Penicillium paxilli, Acremonium lorii, Emericella foveolata, Emericella desertorum and Emericella striata D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D049990 - Membrane Transport Modulators Paxilline is an indole alkaloid mycotoxin from Penicillium paxilli, acts as a potent BK channels inhibitor by an almost exclusively closed-channel block mechanism. Paxilline also inhibits the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) with IC50s between 5 μM and 50 μM for differing isoforms. Paxilline possesses significant anticonvulsant activity[1][2][3].

   

1-Chloro-2-nitrobenzene

Ortho-chloronitrobenzene

C6H4ClNO2 (156.9930554)


   

9alpha-Hydroxyandrosta-1,4-diene-3,17-dione

9alpha-Hydroxyandrosta-1,4-diene-3,17-dione

C19H24O3 (300.1725354)


   

4a-Hydroxytetrahydrobiopterin

(4aS,6R)-2-amino-6-[(1R,2S)-1,2-dihydroxypropyl]-4a-hydroxy-4,4a,5,6,7,8-hexahydropteridin-4-one

C9H15N5O4 (257.11239900000004)


Tetrahydrobiopterin (BH4) is essential for catalyzing the conversion of phenylalanine into tyrosine by phenylalanine hydroxylase. During this physiological reaction, the oxidation of BH4 creates 4a-hydroxytetrahydropterin (CAS: 70110-58-6) intermediates and hydrogen peroxide is formed. The hydrogen peroxide and the hydroxytetrahydropterin can both be derived from alternate breakdown routes of a common precursor, the corresponding 4a-hydroperoxytetrahydropterin (PMID: 8323303). Tetrahydrobiopterin (BH4) is essential to catalyze the conversion of phenylalanine to tyrosine by phenylalanine hydroxylase. During this physiological reaction, the oxidation of BH4 creates 4a-hydroxytetrahydropterin intermediates and hydrogen peroxide is formed. The hydrogen peroxide and the hydroxytetrahydropterin can both derive from alternate routes of breakdown of a common precursor, the corresponding 4a-hydroperoxytetrahydropterin. (PMID 8323303) [HMDB]

   

ST 27:2;O2

(22,23-dinor)-24-vinyl-cholest-5-en-3beta,24-diol

C27H44O2 (400.3341124)


   

6-(alpha-D-Glucosaminyl)-1D-myo-inositol

(1R,2R,3R,4R,5S,6R)-6-{[(2R,3R,4R,5S,6R)-3-amino-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}cyclohexane-1,2,3,4,5-pentol

C12H23NO10 (341.1321898)


6-(alpha-D-Glucosaminyl)-1D-myo-inositol is a cleavage product of glycosylphosphatidylinositol phospholipase D. This enzyme catalyzes the following reaction: 6-(alpha-D-glucosaminyl)-1-phosphatidyl-1D-myo-inositol + H2O =. 6-(alpha-D-glucosaminyl)-1D-myo-inositol + 3-sn-phosphatidate. 6-(alpha-D-Glucosaminyl)-1D-myo-inositol is a cleavage product of glycosylphosphatidylinositol phospholipase D. This enzyme catalyzes the following reaction: 6-(alpha-D-glucosaminyl)-1-phosphatidyl-1D-myo-inositol + H2O = Same as: G12396

   

Protomycinolide IV

Protomycinolide IV

C21H32O4 (348.2300472)


   

4-(Glutamylamino) butanoate

(2S)-2-amino-4-[(3-carboxypropyl)carbamoyl]butanoic acid

C9H16N2O5 (232.1059166)


4-(Glutamylamino) butanoate is a polyamine that is an intermediate in putrescine degradation II. Polyamines (the most common of which are putrescine , spermidine , and spermine ), a group of positively charged small molecules present in virtually all living organisms, have been implicated in many biological processes, including binding to nucleic acids, stabilizing membranes, and stimulating several enzymes. Although polyamines are clearly necessary for optimal cell growth, a surplus of polyamines can cause inhibition of growth and protein synthesis, and thus a balance is desired between the production and breakdown of polyamines. In putrescine degradation II, 4-(Glutamylamino) butanoate is a substrate for gamma-glutamyl-gamma-aminobutyrate hydrolase (puuD) and can be generated from the hydrolysis of gamma-glutamyl-gamma-aminobutyraldehyde. [HMDB] 4-(Glutamylamino) butanoate is a polyamine that is an intermediate in putrescine degradation II. Polyamines (the most common of which are putrescine , spermidine , and spermine ), a group of positively charged small molecules present in virtually all living organisms, have been implicated in many biological processes, including binding to nucleic acids, stabilizing membranes, and stimulating several enzymes. Although polyamines are clearly necessary for optimal cell growth, a surplus of polyamines can cause inhibition of growth and protein synthesis, and thus a balance is desired between the production and breakdown of polyamines. In putrescine degradation II, 4-(Glutamylamino) butanoate is a substrate for gamma-glutamyl-gamma-aminobutyrate hydrolase (puuD) and can be generated from the hydrolysis of gamma-glutamyl-gamma-aminobutyraldehyde.

   

6-Deoxocastasterone

(1S,2S,4R,5S,7S,10R,11S,14R,15S)-14-[(2S,3R,4R,5S)-3,4-dihydroxy-5,6-dimethylheptan-2-yl]-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecane-4,5-diol

C28H50O4 (450.37089000000003)


6-Deoxocastasterone belongs to the class of organic compounds known as tetrahydroxy bile acids, alcohols, and derivatives. These are prenol lipids structurally characterized by a bile acid or alcohol which bears four hydroxyl groups. Thus, 6-deoxocastasterone is considered to be a sterol lipid molecule. 6-Deoxocastasterone is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. 6-Deoxocastasterone is found in common bean and has been isolated from Phaseolus vulgaris (kidney bean). Isolated from Phaseolus vulgaris (kidney bean). 6-Deoxocastasterone is found in many foods, some of which are jerusalem artichoke, alaska blueberry, sourdough, and yautia.

   

P 518

2,31-dimethoxy-2,6,10,14,19,23,27,31-octamethyldotriaconta-4,6,8,10,12,14,16,18,20,22,24,26,28-tridecaene-3,30-dione

C42H56O4 (624.4178376)


   

(22R,23R)-22,23-dihydroxy-campest-4-en-3-one

(8S,9S,10R,13S,17R)-17-[(2S,3R,4R,5S)-3,4-dihydroxy-5,6-dimethylheptan-2-yl]-10,13-dimethyl-1,2,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-3-one

C28H46O3 (430.34467659999996)


   

17-Hydroxylinolenic acid

(9Z,12Z,15Z)-17-hydroxyoctadeca-9,12,15-trienoic acid

C18H30O3 (294.21948299999997)


17-Hydroxylinolenic acid is a hydroxylated (on the 17th carbon) version of alpha linolenic acid produced from alpha linolenic acid. Another isomer known as 2-hydroxylinolenic acid is also known to exist. Alpha-Linolenic acid is an organic compound found in many common vegetable oils. Systematically, it is named all-cis-9,12,15-octadecatrienoic acid (PMID:11413487). In physiological literature, it is given the name 18:3 (n−3). Alpha-linolenic acid is a carboxylic acid with an 18-carbon chain and three cis double bonds. The first double bond is located at the third carbon from the n end. Thus, α-linolenic acid is a polyunsaturated n−3 (omega-3) fatty acid. It is an isomer of γ-linolenic acid, a polyunsaturated n−6 (omega-6) fatty acid (PMID: 19269799). 17-hydroxylinolenic acid participates in alpha- Linolenic acid metabolism. 17-hydroxylinolenic acid is produced from alpha linolenic acid. Alpha-Linolenic acid is an organic compound found in many common vegetable oils. Systematically, it is named all-cis-9,12,15-octadecatrienoic acid.[1] In physiological literature, it is given the name 18:3 (n−3). Alpha-linolenic acid is a carboxylic acid with an 18-carbon chain and three cis double bonds. The first double bond is located at the third carbon from the n end. Thus, α-linolenic acid is a polyunsaturated n−3 (omega-3) fatty acid. It is an isomer of γ-linolenic acid, a polyunsaturated n−6 (omega-6) fatty acid. [HMDB]

   

methyl farnesoate

(2E,6E)-METHYL 3,7,11-TRIMETHYLDODECA-2,6,10-TRIENOATE

C16H26O2 (250.1932696)


A member of the juvenile hormone family of compounds that is the methyl ester of farnesoic acid. Found in several species of crustaceans.

   

Autumnaline

(1S)-1-[2-(3-hydroxy-4,5-dimethoxyphenyl)ethyl]-6-methoxy-2-methyl-3,4-dihydro-1H-isoquinolin-7-ol

C21H27NO5 (373.1889132)


(S)-Autumnaline is an isoquinoline alkaloid. (S)-autumnaline has been reported in Colchicum autumnale, Colchicum ritchii Autumnaline is a natural organic compound classified as a protoberberine alkaloid, which is a subset of the larger category of alkaloids. It is primarily derived from plants, particularly those of the Colchicum genus, including Colchicum autumnale. This compound shares structural similarities with other alkaloids, such as colchicine, and is known for its potential biological activities. The biological functions of autumnaline are not as extensively studied as those of colchicine, but research suggests it may have several notable effects: Cytotoxic Properties: Like many alkaloids, autumnaline exhibits cytotoxicity, meaning it has the ability to damage or inhibit the growth of cells. This property could be exploited in cancer research, as cytotoxic compounds are often investigated for their potential to Inhibit tumor growth. Antioxidant Activity: Some studies have indicated that autumnaline may possess antioxidant properties. Antioxidants are important in protecting cells from damage caused by reactive oxygen species, which are implicated in various diseases and aging processes. Anti-inflammatory Effects: There is emerging evidence suggesting that certain alkaloids, including some protoberberine alkaloids, may have anti-inflammatory effects. This could be significant in the context of treating inflammatory conditions. Potential Medicinal Uses: Due to its complex structure and biological activities, autumnaline could be of interest for medicinal purposes. However, further research is needed to fully understand its potential therapeutic applications, as well as its safety and efficacy. (1S)-1,2,3,4-Tetrahydro-1-[2-(3-hydroxy-4,5-dimethoxyphenyl)ethyl]-6-methoxy-2-methyl-7-isoquinolinol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=23068-65-7 (retrieved 2024-10-11) (CAS RN: 23068-65-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Isoandrocymbine

(1R,10S)-5-hydroxy-3,4,14-trimethoxy-18-methyl-18-azatetracyclo[8.5.3.01,11.02,7]octadeca-2,4,6,11,14-pentaen-13-one

C21H25NO5 (371.173264)


Isoandrocymbine is an isoquinoline alkaloid. Isoandrocymbine has been reported in Colchicum autumnale

   

O-methylandrocymbine

(1R,10S)-3,4,5,14-tetramethoxy-18-methyl-18-azatetracyclo[8.5.3.01,11.02,7]octadeca-2,4,6,11,14-pentaen-13-one

C22H27NO5 (385.1889132)


O-Methylandrocymbine is an isoquinoline alkaloid. O-methylandrocymbine has been reported in Colchicum ritchii, Colchicum schimperi, and Colchicum szovitsii

   

3-methylthiopropyl-desulfoglucosinolate

3-(methylsulfanyl)propyl-desulfoglucosinolate

C11H21NO6S2 (327.08102460000003)


   

9-methylthiononanaldoxime

9-methylthiononanaldoxime

C10H21NOS (203.1343776)


   

Nocardicin G

Nocardicin G

C19H19N3O6 (385.1273794)


A monobactam obtained by formal condensation of the carboxy group of (2R)-amino(4-hydroxyphenyl)acetic acid with the amino group of (2R)-[(3S)-3-amino-2-oxoazetidin-1-yl](4-hydroxyphenyl)acetic acid

   

ubiquinone-8

2,3-dimethoxy-5-methyl-6-[(2E,6E,10E,14E,18E,22E,26E)-3,7,11,15,19,23,27,31-octamethyldotriaconta-2,6,10,14,18,22,26,30-octaen-1-yl]cyclohexa-2,5-diene-1,4-dione

C49H74O4 (726.5586804)


Ubiquinone-8, also known as coenzyme q8 or coq8, is a member of the class of compounds known as ubiquinones. Ubiquinones are coenzyme Q derivatives containing a 5, 6-dimethoxy-3-methyl(1,4-benzoquinone) moiety to which an isoprenyl group is attached at ring position 2(or 6). Thus, ubiquinone-8 is considered to be a quinone lipid molecule. Ubiquinone-8 is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Ubiquinone-8 can be found in a number of food items such as kumquat, celery leaves, hazelnut, and jicama, which makes ubiquinone-8 a potential biomarker for the consumption of these food products. Ubiquinone-8 may be a unique E.coli metabolite.

   

1-(4-Hydroxyphenyl)-1-decene-3,5-dione

1-(4-Hydroxyphenyl)-1-decene-3,5-dione

C16H20O3 (260.14123700000005)


   

Curcumin monoglucoside

Curcumin monoglucoside

C27H30O11 (530.178803)


   
   

Sophoraflavanone G

(2S)-2-(2,4-dihydroxyphenyl)-5,7-dihydroxy-8-(5-methyl-2-prop-1-en-2-ylhex-4-enyl)-2,3-dihydrochromen-4-one

C25H28O6 (424.1885788)


Sophoraflavanone G (Kushenol F) is iaolated from Sophora flavescens and shows anti-tumor and anti-inflammatory properties.? Sophoraflavanone G (Kushenol F) induces MDA-MB-231 and HL-60 cells apoptosis through suppression of MAPK-related pathways. Sophoraflavanone G. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=97938-30-2 (retrieved 2024-10-11) (CAS RN: 97938-30-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

2,4-DICHLOROTOLUENE

2,4-DICHLOROTOLUENE

C7H6Cl2 (159.9846536)


   

4-Methyl-5-nitrocatechol

4-Methyl-5-nitrocatechol

C7H7NO4 (169.0375062)


A nitrotoluene that is 2-nitrotoluene carrying two hydroxy substituents at positions 4 and 5.

   

2,4,5-Trihydroxytoluene

2,4,5-Trihydroxytoluene

C7H8O3 (140.0473418)


   

4-Oxo-1-(3-pyridyl)-1-butanone

4-oxo-4-Pyridin-3-yl-butyraldehyde

C9H9NO2 (163.06332540000002)


4-Oxo-1-(3-pyridyl)-1-butanone, also known as gamma-oxo-3-Pyridinebutanal or 3-Succinoylsemialdehyde-pyridine, is classified as a member of the Aryl alkyl ketones. Aryl alkyl ketones are ketones have the generic structure RC(=O)R, where R = aryl group and R=alkyl group. 4-Oxo-1-(3-pyridyl)-1-butanone is considered to be soluble (in water) and relatively neutral

   

2-Nitrotoluene

1-Methyl-2-nitrobenzene

C7H7NO2 (137.0476762)


   

germacra-1(10),4,11(13)-trien-12-al

germacra-1(10),4,11(13)-trien-12-al

C15H22O (218.1670562)


   

Phenylacetaldoxime

N-(2-Phenylethylidene)hydroxylamine

C8H9NO (135.0684104)


   

(3S)-3-hydroxycyclocitral

(4R)-4-Hydroxy-2,6,6-trimethylcyclohex-1-en-1-carboxaldehyde

C10H16O2 (168.1150236)


(3s)-3-hydroxycyclocitral, also known as 3beta-hydroxy-beta-cyclocitral, is a member of the class of compounds known as secondary alcohols. Secondary alcohols are compounds containing a secondary alcohol functional group, with the general structure HOC(R)(R) (R,R=alkyl, aryl) (3s)-3-hydroxycyclocitral is slightly soluble (in water) and an extremely weak acidic compound (based on its pKa). (3s)-3-hydroxycyclocitral can be found in a number of food items such as garden tomato (variety), malabar plum, lime, and pot marjoram, which makes (3s)-3-hydroxycyclocitral a potential biomarker for the consumption of these food products.

   

4,4-Diapolycopenedial

(all-E)-2,6,10,15,19,23-hexamethyltetracosa-2,4,6,8,10,12,14,16,18,20,22-undecaenedial

C30H36O2 (428.2715156)


   

Secophenol

3-Hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione

C19H24O3 (300.1725354)


   

beta-D-Glcp-(1->4)-alpha-L-Rhap-(1->3)-D-Glcp

beta-D-Glc-(1->4)-alpha-L-Rha-(1->3)-D-Glc; beta-D-Glcp-(1->4)-alpha-L-Rhap-(1->3)-D-Glcp

C18H32O15 (488.1741122)


   

SCHEMBL14765177

2,4-Bis(acetamido)-2,4,6-trideoxy-beta-L-altropyranose

C10H18N2O5 (246.12156579999998)


   

SCHEMBL13077392

(25S)-26-hydroxycholest-4-en-3-one

C27H44O2 (400.3341124)


   

syn-Stemoden-19-oate

9beta-stemod-13(17)-en-19-oate

C20H30O2 (302.224568)


   

androst-5-ene-3,17-dione

(1S,2R,10R,11S,15S)-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-ene-5,14-dione

C19H26O2 (286.1932696)


androst-5-ene-3,17-dione, also known as delta5-ADD or δ5-add, is classified as an androgen or an Androgen derivative. Androgens are 3-hydroxylated C19 steroid hormones. They are known to favor the development of masculine characteristics. They also show profound effects on scalp and body hair in humans. androst-5-ene-3,17-dione is considered to be practically insoluble (in water) and relatively neutral D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   
   

Dehydroxypaxilline

(1S,2S,5S,7R,14S)-7-(2-hydroxypropan-2-yl)-1,2-dimethyl-6-oxa-23-azahexacyclo[12.10.0.02,11.05,10.016,24.017,22]tetracosa-9,16(24),17,19,21-pentaen-8-one

C27H33NO3 (419.2460308000001)


Dehydroxypaxilline is a metabolite of Emericella striata. Metabolite of Emericella striata

   

PC-M6

(1S,2S,5S,7S,8R,14S)-7-(2-hydroxypropan-2-yl)-1,2-dimethyl-6-oxa-23-azahexacyclo[12.10.0.0²,¹¹.0⁵,¹⁰.0¹⁶,²⁴.0¹⁷,²²]tetracosa-9,16(24),17(22),18,20-pentaen-8-ol

C27H35NO3 (421.26168000000007)


Tremorgenic mycotoxin from Penicillium crustosum, Penicillium paxilli and Acremonium lolii. Tremorgenic mycotoxin from Penicillium crustosum, Penicillium paxilli and Acremonium lolii

   
   

Paspalicine

2,2,13b,13c-tetramethyl-2,3,5b,6,7,7a,8,13,13b,13c,14,15-dodecahydro-4h-3,15a-epoxy[1]benzoxepino[6,7:6,7]indeno[1,2-b]indol-4-one

C27H31NO3 (417.2303816)


   
   

brevianamide F

brevianamide F

C16H17N3O2 (283.1320702)


A pyrrolopyrazine that is hexahydropyrrolo[1,2-a]pyrazine-1,4-dione bearing an indol-3-ylmethyl substituent at position 3 (the 3S,8aS-diastereomer, obtained by formal cyclocondensation of L-tryptophan and L-proline). Brevianamide F (Cyclo(L-Pro-L-Trp)) is a mycotoxin isolated from Colletotrichum gloeosporioides, with antibacterial activity. Brevianamide F shows potent PI3Kα inhibitory activity with an IC50 of 4.8 μM[1][2].

   
   

Fumitremorgin B

5H,14H-Pyrrolo(1,2:4,5)pyrazino(1,2:1,6)pyrido(3,4-b)indole-5,14-dione, 1,2,3,5a,6,11,12,14a-octahydro-5a,6-dihydroxy-9-methoxy-11-(3-methyl-2-butenyl)-12-(2-methyl-1-propenyl)-, (5aR,6S,12S,14aS)-

C27H33N3O5 (479.24200880000006)


Fumitremorgin B is a mycotoxin produced by Aspergillus fumigatus, Aspergillus caespitosus, Penicillium lanosum and Penicillium piscarium. Fumitremorgin B is isolated from A. fumigatus infected rice and mis

   

methyl gibberellin A9

4a.alpha.,4b.beta.-Gibbane-1.alpha.,10.beta.-dicarboxylic acid, 4a-hydroxy-1-methyl-8-methylene-, 1,4a-lactone, methyl ester

C20H26O4 (330.18309960000005)


   

omega-Hydroxyphylloquinone

2-[(E)-16-hydroxy-3,7,11,15-tetramethylhexadec-2-enyl]-3-methylnaphthalene-1,4-dione

C31H46O3 (466.34467659999996)


   

Isotabtoxin

Isotabtoxin; delta-Tabtoxin

C11H19N3O6 (289.1273794)


   

Tabtoxinine-delta-lactam

Tabtoxinine-delta-lactam

C7H12N2O4 (188.07970319999998)


A delta-lactam that is L-pipecolic acid carrying additional hydroxy and aminomethyl substituents at position 5 as well as an oxo substituent at position 6.

   

Oleanolic aldehyde

10-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carbaldehyde

C30H48O2 (440.36541079999995)


Oleanolic aldehyde is found in common grape. Oleanolic aldehyde is found in grapes and olive Found in grapes and olives

   

dapdiamide A

Dapdiamide A; 3-{[(2E)-4-Amino-4-oxobut-2-enoyl]amino}-L-alanyl-L-valine

C12H20N4O5 (300.143363)


A member of the family of dapdiamides consisting of alanylvaline in which one of the methyl hydrogens of alanine is replaced by a fumaramoyl group.

   

3-acetyloctanal

(S)-3-acetyloctanal

C10H18O2 (170.1306728)


   

4-Hydroxy-2-methyl-3-oxo-4-farnesyl-3,4-dihydroquinoline-1-oxide

4-Hydroxy-2-methyl-3-oxo-4-[(2E,6E)-farnesyl]-3,4-dihydroquinoline 1-oxide

C25H33NO3 (395.2460308000001)


A member of the class of quinoline N-oxides that is 4-hydroxy-2-methyl-3-oxo-3,4-dihydroquinoline-1-oxide carrying an additional (2E,6E)-farnesyl group at position 4.

   

3,4-dihydroxy-2-methyl-4-farnesyl-3H-quinolin-1-ium-1-olate

3,4-Dihydroxy-2-methy-4-[(2E,6E)-farnesyl]-3,4-dihydroquinoline 1-oxide

C25H35NO3 (397.26168000000007)


A member of the class of quinoline N-oxides that is 2-methyl-1-oxo-4-3,4-dihydroquinoline-3,4-diol carrying an additional (2E,6E)-farnesyl group at position 4.

   

(-)-5-demethylyatein

(-)-5-Desmethylyatein

C21H22O7 (386.1365462)


   

(25S)-3-oxocholest-4-en-26-al

(25S)-26-Oxocholest-4-en-3-one

C27H42O2 (398.3184632)


   

Aurachin C

Aurachin C

C25H33NO2 (379.25111580000004)


A C-type aurachin that is quinolin-4-one which is substituted by a hydroxy group at positions 1, a methyl group at position 2, and a triprenyl group at position 3.

   

4-hydroxy-2-nonenal (4-HNE)

2-Nonenal, 4-hydroxy-, (2E,4R)-

C9H16O2 (156.1150236)


4-Hydroxynonenal (HNE), one of the major end products of lipid peroxidation, has been shown to be involved in signal transduction and available evidence suggests that it can affect cell cycle events in a concentration-dependent manner. glutathione S-transferases (GSTs) can modulate the intracellular concentrations of HNE by affecting its generation during lipid peroxidation by reducing hydroperoxides and also by converting it into a glutathione conjugate. Overexpression of the Alpha class GSTs in cells leads to lower steady-state levels of HNE, and these cells acquire resistance to apoptosis induced by lipid peroxidation-causing agents such as H(2)O(2), UVA, superoxide anion, and pro-oxidant xenobiotics, suggesting that signaling for apoptosis by these agents is transduced through HNE. Cells with the capacity to exclude HNE from the intracellular environment at a faster rate are relatively more resistant to apoptosis caused by H(2)O(2), UVA, superoxide anion, and pro-oxidant xenobiotics as well as by HNE, suggesting that HNE may be a common denominator in mechanisms of apoptosis caused by oxidative stress. Transfection of adherent cells with HNE-metabolizing GSTs leads to transformation of these cells due to depletion of HNE. (PMID 15288119). HNE has also been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015853 - Cysteine Proteinase Inhibitors D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D003432 - Cross-Linking Reagents Constituent of beef and pork. Lipid peroxidation product 4-Hydroxynonenal (4-HNE) is an α,β unsaturated hydroxyalkenal and an oxidative/nitrosative stress biomarker. 4-Hydroxynonenal is a substrate and an inhibitor of acetaldehyde dehydrogenase 2 (ALDH2). 4-Hydroxynonenal can modulate a number of signaling processes mainly through forming covalent adducts with nucleophilic functional groups in proteins, nucleic acids, and membrane lipids. 4-Hydroxynonenal plays an important role in cancer through mitochondria[1][2][3].

   

3-Dehydro-scyllo-inosose

3-Dehydro-scyllo-inosose; 2,4-Didehydroinositol

C6H8O6 (176.0320868)


A beta-diketone obtained by formal oxidation of the 2 and 4 hydroxy groups of scyllo-inositol to the corresponding ketones.

   

alpha-Isomaltosyl-1,3-isomaltose

alpha-D-glucopyranosyl-(1->6)-alpha-D-glucopyranosyl-(1->3)-alpha-D-glucopyranosyl-(1->6)-D-glucopyranose

C24H42O21 (666.2218482000001)


   

Stellata-2,6,19-triene

Stellata-2,6,19-triene

C25H40 (340.31298400000003)


A tricyclic sesterterpene with formula C25H40 that is obtained from Aspergillus stellatus.

   

Isonicotinoyl radical

4-Pyridinecarboxaldehyde

C6H4NO (106.0292874)


   

4,4-Diapolycopene-4,4-dioate

(2E,4E,6E,8E,10E,12E,14E,16E,18E,20E,22E)-2,6,10,15,19,23-hexamethyltetracosa-2,4,6,8,10,12,14,16,18,20,22-undecaenedioic acid

C30H36O4 (460.2613456)


   

Cyclooctatin

Cyclooctatin

C20H34O3 (322.25078140000005)


A diterpenoid characterized by a 5-8-5 dodecahydrodicyclopenta[a,d]cyclooctene fused-ring system, with a single double bond and one isopropyl, two hydroxy, one hydroxymethyl and two methyl substituents.

   

D-Glucose

(2R,3R,4S,5S,6R)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol

C6H12O6 (180.0633852)


Glucose is a monosaccharide containing six carbon atoms and an aldehyde group. It is referred to as an aldohexose. The glucose molecule can exist in an open-chain (acyclic) and ring (cyclic) form, the latter being the result of an intramolecular reaction between the aldehyde C atom and the C-5 hydroxyl group to form an intramolecular hemiacetal. In aqueous solution, both forms are in equilibrium and at pH 7 the cyclic one is predominant. Glucose is a primary source of energy for all living organisms. It is a fundamental metabolite found in all organisms, ranging from bacteria to plants to humans. Most of the world’s glucose is made by plants and algae during photosynthesis from water and carbon dioxide, where it is used to make cellulose (and other polymeric forms of glucose called polysaccharides) that stabilize plant cell walls. Glucose is also found in fruits and other parts of plants in its free state. In animals, glucose can be generated from the breakdown of glycogen in a process known as glycogenolysis. Glucose can also be synthesized de novo in animals. In particular it can be synthesized in the liver and kidneys from non-carbohydrate intermediates, such as pyruvate and glycerol, by a process known as gluconeogenesis. Humans also consume large amounts of glucose as part of their regular diet. Ingested glucose initially binds to the receptor for sweet taste on the tongue in humans. This complex of the proteins T1R2 and T1R3 makes it possible to identify glucose-containing food sources. Glucose in the body mainly comes from food - about 300 g per day for the average adult. In humans, the breakdown of glucose-containing polysaccharides happens partly during chewing by means of the enzyme known as amylase, which is contained in saliva, as well as by other enzymes such as maltase, lactase and sucrase on the brush border of the small intestine. The blood sugar content of a healthy person in the short-time fasting state, e.g. after overnight fasting, is about 70 to 100 mg/dL of blood (4 to 5.5 mM). In blood plasma, the measured values are about 10–15\\\\% higher. Dysregulated metabolism of glucose can lead to a number of diseases including diabetes. Diabetes is a metabolic disorder where the body is unable to regulate levels of glucose in the blood either because of a lack of insulin in the body or the failure, by cells in the body, to respond properly to insulin. Each of these situations can be caused by persistently high elevations of blood glucose levels, through pancreatic burnout and insulin resistance. A glucoside is a glycoside that is derived from glucose. Glucosides are common in plants, but rare in animals. Glucose is produced when a glucoside is hydrolysed by purely chemical means, or decomposed by fermentation or enzymes. COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS alpha-D-glucose is an endogenous metabolite. alpha-D-glucose is an endogenous metabolite.

   

beta-N-Acetylglucosamine

N-[(2R,3R,4R,5S,6R)-2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]acetamide

C8H15NO6 (221.089933)


beta-N-Acetylglucosamine is an acylaminosugar, which is an organic compound containing a sugar linked to a chain through an N-acyl group. This compound is water-soluble. Glycosylation with beta-N-acetylglucosamine is one of the most common post-translational modifications. All animals and plants dynamically attach and remove beta-N-acetylglucosamine at serine and threonine residues on myriad nuclear and cytoplasmic proteins. beta-N-Acetylglucosamine cycling, which is tightly regulated by the concerted actions of two highly-conserved enzymes, serves as a nutrient and stress sensor. Proteins glycosylated with beta-N-acetylglucosamine can be found in almost every intracellular compartment and almost every functional class (PMID: 17460662).

   

2-((2E)-3,7-Dimethyl-2,6-octadienyl)-5,6-dimethoxy-3-methyl-1,4-benzenediol

2-((2E)-3,7-Dimethyl-2,6-octadienyl)-5,6-dimethoxy-3-methyl-1,4-benzenediol

C19H28O4 (320.19874880000003)


   

Alloepipregnanolone

1-[(1S,2S,5S,7S,10R,11S,14S,15S)-5-hydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl]ethan-1-one

C21H34O2 (318.2558664)


This compound is the byproduct of 3beta-hydroxy-5alpha-steroid dehydrogenase (EC 1.1.1.278). With regard to hypothermia, the compound interferes with the development of rapid tolerance to the anxiolytic effect of ethanol. (PMID: 16612485) [HMDB] This compound is the byproduct of 3beta-hydroxy-5alpha-steroid dehydrogenase (EC 1.1.1.278). With regard to hypothermia, the compound interferes with the development of rapid tolerance to the anxiolytic effect of ethanol. (PMID: 16612485). D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone

   

Coenzyme Q2

Ubiquinone (Q2)

C19H26O4 (318.1830996)


A compound composed of the 2,3-dimethoxy-5-methylbenzoquinone nucleus common to ubiquinones; and a side chain of two isoprenoid units. D020011 - Protective Agents > D000931 - Antidotes CONFIDENCE standard compound; INTERNAL_ID 148

   

Amylopectin

(2R,3R,4S,5S,6R)-2-{[(2R,3S,4R,5R,6S)-6-{[(2R,3S,4R,5R,6R)-4,5-dihydroxy-6-{[(2R,3S,4R,5R,6S)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-3-{[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]methoxy}-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C30H52O26 (828.2746692000001)


Amylopectin is a highly branched polymer of glucose found in plants. It is one of the two components of starch, the other being amylose. It is insoluble in water. Glucose units are linked in a linear way with α(1→4) bonds. Branching takes place with α(1→6) bonds occurring every 24 to 30 glucose units. Its counterpart in animals is glycogen which has the same composition and structure, but with more extensive branching that occurs every 8 to 12 glucose units. Starch is made of about 80\\% amylopectin. Amylopectin is highly branched, being formed of 2 000 to 200 000 glucose units. Its inner chains are formed of 20-24 glucose subunits. The glucose residues are linked through alpha-1,4 glycosidic linkages (Wikipedia). Amylopectin (CAS# 9037-22-3) is a highly branched polymer of glucose found in plants. It is one of the two components of starch, the other being amylose. It is insoluble in water. Same as: D11546

   

D-Lysine

(2R)-2,6-diaminohexanoic acid

C6H14N2O2 (146.1055224)


D-Lysine, also known as D-lysin or DLY, belongs to the class of organic compounds known as d-alpha-amino acids. These are alpha amino acids which have the D-configuration of the alpha-carbon atom. D-Lysine exists in all living organisms, ranging from bacteria to humans. D-Lysine is a potentially toxic compound. The D-enantiomer of the alpha-amino acid lysine. An essential amino acid. It is often added to animal feed. [HMDB]

   

D-Proline

(2R)-Pyrrolidine-2-carboxylic acid

C5H9NO2 (115.0633254)


D-proline is an isomer of the naturally occurring amino acid, L-Proline. D-amino acids have been found in relatively high abundance in human plasma and saliva (PMID: 16480744). These amino acids may be of bacterial origin, but there is also evidence that they are endogenously produced through amino acid racemase activity. (PMID: 1426150) [HMDB] D-proline is an isomer of the naturally occurring amino acid, L-Proline. D-amino acids have been found in relatively high abundance in human plasma and saliva (PMID: 16480744). These amino acids may be of bacterial origin, but there is also evidence that they are endogenously produced through amino acid racemase activity (PMID: 1426150). (R)-pyrrolidine-2-carboxylic acid is an endogenous metabolite. (R)-pyrrolidine-2-carboxylic acid is an endogenous metabolite.

   

alpha-Tocotrienol

(2R)-2,5,7,8-Tetramethyl-2-[(3E,7E)-4,8,12-trimethyltrideca-3,7,11-trien-1-yl]-3,4-dihydro-2H-1-benzopyran-6-ol

C29H44O2 (424.3341124)


alpha-Tocotrienol (CAS: 1721-51-3), also known as 5,7,8-trimethyltocotrienol, belongs to the class of organic compounds known as tocotrienols. These are vitamin E derivatives containing an unsaturated trimethyltrideca-3,7,11-trien-1-yl chain attached to the carbon C6 atom of a benzopyran ring system. They differ from tocopherols that contain a saturated trimethyltridecyl chain. Thus, alpha-tocotrienol is considered to be a quinone lipid molecule. alpha-Tocotrienol is found in the blood plasma and all lipoprotein subfractions. Compared to tocopherols, alpha-tocotrienols are poorly studied. Its presence in the blood plasma at nanomolar concentrations is thought to help to prevent stroke-related neurodegeneration (PMID: 16771695). alpha-Tocotrienol has been found to have vitamin E activity. D020011 - Protective Agents > D000975 - Antioxidants > D024508 - Tocotrienols Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Dolichol phosphate

Dolichyl monophosphate

C25H45O4P (440.30553000000003)


COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

(S)-2-Aceto-2-hydroxybutanoic acid

(2S)-2-Ethyl-2-hydroxy-3-oxobutanoic acid

C6H10O4 (146.057906)


(S)-2-Aceto-2-hydroxybutanoic acid is an intermediate in branched chain amino acid metabolism. It is converted from 2-oxobutanoate or 2-hydoxyethyl ThPP via acetolactate synthase. [HMDB] (S)-2-Aceto-2-hydroxybutanoic acid is an intermediate in branched chain amino acid metabolism. It is converted from 2-oxobutanoate or 2-hydoxyethyl ThPP via acetolactate synthase.

   

(R)-2,3-Dihydroxy-3-methylvalerate

alpha,beta-Dihydroxy-beta-methylvaleric acid

C6H12O4 (148.0735552)


(R) 2,3-Dihydroxy-methylvalerate is an intermediate in valine, leucine and isoleucine biosynthesis. The pathway of valine biosynthesis is a four-step pathway that shares all of its steps with the parallel pathway of isoleucine biosynthesis. These entwined pathways are part of the superpathway of leucine, valine, and isoleucine biosynthesis, that generates not only isoleucine and valine, but also leucine. (R) 2,3-Dihydroxy-methylvalerate is generated from 3-Hydroxy-3-methyl-2-oxopentanoic acid via the enzyme ketol-acid reductoisomerase (EC 1.1.1.86) then it is converted to (S)-3-methyl-2-oxopentanoic via the dihydroxy-acid dehydratase (EC:4.2.1.9). [HMDB] (R)-2,3-Dihydroxy-methylvalerate is an intermediate in valine, leucine, and isoleucine biosynthesis. The pathway of valine biosynthesis is a four-step pathway that shares all of its steps with the parallel pathway of isoleucine biosynthesis. These entwined pathways are part of the superpathway of leucine, valine, and isoleucine biosynthesis, which generates not only isoleucine and valine but also leucine. (R)-2,3-Dihydroxy-methylvalerate is generated from 3-hydroxy-3-methyl-2-oxopentanoic acid via the enzyme ketol-acid reductoisomerase (EC 1.1.1.86). It is converted into (S)-3-methyl-2-oxopentanoic via the dihydroxy-acid dehydratase (EC 4.2.1.9).

   

Ne,Ne dimethyllysine

2-amino-6-(dimethylamino)hexanoic acid

C8H18N2O2 (174.1368208)


Ne,Ne dimethyllysine is an intermediate in lysine degradation. Ne,Ne dimethyllysine a methylated form of lysine found in histones that contributes to gene regulation.

   

2-(3,7-Dimethyl-2,6-octadienyl)-3-methyl-1,4-naphthoquinone

2-(3,7-Dimethyl-2,6-octadienyl)-3-methyl-1,4-naphthoquinone

C21H24O2 (308.17762039999997)


   

typhasterol

14-(3,4-dihydroxy-5,6-dimethylheptan-2-yl)-5-hydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-8-one

C28H48O4 (448.3552408)


2-deoxycastasterone, also known as typhasterol, belongs to trihydroxy bile acids, alcohols and derivatives class of compounds. Those are prenol lipids structurally characterized by a bile acid or alcohol which bears three hydroxyl groups. 2-deoxycastasterone is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 2-deoxycastasterone can be found in a number of food items such as canola, kumquat, asparagus, and salmonberry, which makes 2-deoxycastasterone a potential biomarker for the consumption of these food products.

   

cis-3-Hexenyl acetate

Acetic acid cis-3-hexenyl ester

C8H14O2 (142.09937440000002)


cis-3-Hexenyl acetate, also known as (Z)-3-hexenol acetic acid or acetate(3Z)-3-hexen-1-ol, is an acetate ester that results from the formal condensation of acetic acid with (Z)-hex-3-en-1-ol. It has a role as a metabolite. It is an acetate ester and an olefinic compound. It derives from a (Z)-hex-3-en-1-ol and an acetic acid. It belongs to the class of organic compounds known as carboxylic acid esters. These are carboxylic acid derivatives in which the carbon atom from the carbonyl group is attached to an alkyl or an aryl moiety through an oxygen atom (forming an ester group). cis-3-Hexenyl acetate is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. cis-3-Hexenyl acetate is a sweet, apple, and banana tasting compound. cis-3-Hexenyl acetate has been detected, but not quantified, in several different foods, such as tamarinds, sunburst squash (pattypan squash), carobs, pepper (Capsicum baccatum), and swedes. Present in green tea and fruit volatiles. Flavouring component. cis-3-Hexenyl acetate is found in many foods, some of which are skunk currant, spirulina, dill, and green vegetables.

   

I(-)

Iodure dhydrogene

HI (127.9123016)


I(-) is a substrate for: Iodotyrosine dehalogenase 1.

   

D-Histidine

2-amino-3-(1H-imidazol-5-yl)propanoic acid

C6H9N3O2 (155.06947340000002)


   

Pinene

(1R,5R)-2,6,6-Trimethylbicyclo[3.1.1]hept-2-ene

C10H16 (136.1251936)


Pinene (is a bicyclic monoterpene chemical compound. There are two structural isomers of pinene found in nature: alpha-pinene and beta-pinene. As the name suggests, both forms are important constituents of pine resin; they are also found in the resins of many other conifers, as well as in non-coniferous plants. Both isomers are used by many insects in their chemical communication system.

   

β-Pinene

(1S,5S)-7,7-dimethyl-4-methylidene-bicyclo[3.1.1]heptane

C10H16 (136.1251936)


An isomer of pinene with an exocyclic double bond. It is a component of essential oils from many plants. Widely distributed in plants, usually associated with a-Pinene JPV84-W but in smaller amounts. Found in lime peel oil, ginger, nutmeg, mace, bitter fennel, rosemary and sage. Flavour ingredient β-Pinene ((-)-β-Pinene), a major component of turpentine, inhibit infectious bronchitis virus (IBV) with an IC50 of 1.32 mM. β-Pinene presents antimicrobial activity[1][2]. β-Pinene ((-)-β-Pinene), a major component of turpentine, inhibit infectious bronchitis virus (IBV) with an IC50 of 1.32 mM. β-Pinene presents antimicrobial activity[1][2].

   

2,4-DINITROTOLUENE

2,4-DINITROTOLUENE

C7H6N2O4 (182.0327556)


D009676 - Noxae > D002273 - Carcinogens

   

D-Ribose

D-ribo-2,3,4,5-tetrahydroxyvaleraldehyde

C5H10O5 (150.052821)


CONFIDENCE standard compound; INTERNAL_ID 227 D-Ribose(mixture of isomers) is an energy enhancer, and acts as a sugar moiety of ATP, and widely used as a metabolic therapy supplement for chronic fatigue syndrome or cardiac energy metabolism. D-Ribose(mixture of isomers) is active in protein glycation, induces NF-κB inflammation in a RAGE-dependent manner[1]. D-Ribose(mixture of isomers) is an energy enhancer, and acts as a sugar moiety of ATP, and widely used as a metabolic therapy supplement for chronic fatigue syndrome or cardiac energy metabolism. D-Ribose(mixture of isomers) is active in protein glycation, induces NF-κB inflammation in a RAGE-dependent manner[1]. D-Ribose(mixture of isomers) is an energy enhancer, and acts as a sugar moiety of ATP, and widely used as a metabolic therapy supplement for chronic fatigue syndrome or cardiac energy metabolism. D-Ribose(mixture of isomers) is active in protein glycation, induces NF-κB inflammation in a RAGE-dependent manner[1].