FA 18:3 (BioDeep_00000408616)

 

Secondary id: BioDeep_00000002820, BioDeep_00000006456, BioDeep_00000033825, BioDeep_00000181903, BioDeep_00000265581, BioDeep_00000398599, BioDeep_00000400423, BioDeep_00000405441, BioDeep_00000412671, BioDeep_00001869223

PANOMIX_OTCML-2023 BioNovoGene_Lab2019


代谢物信息卡片


(-)-lamenallenic acid;(-)-octadeca-5,6-trans-16-trienoic acid

化学式: C18H30O2 (278.2246)
中文名称: α-亚麻酸, 亚麻子油酸, 11(E)-octadecen-9-壬酸, (E,E,E)-8,10,12-十八(碳)三烯酸, γ-亚麻酸, gamma-亚麻酸, 亚麻酸, 松脂酸
谱图信息: 最多检出来源 Homo sapiens(plant) 16.91%

分子结构信息

SMILES: C(/C/C=C/C/C=C/CC)=C\CCCCCCCC(=O)O
InChI: InChI=1S/C18H30O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20/h2H,1,3-4,7-17H2,(H,19,20)

描述信息

CONFIDENCE standard compound; INTERNAL_ID 143
COVID info from WikiPathways
D - Dermatologicals
Same as: D07213
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1].
Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1].
α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1].
α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1].
α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1].

同义名列表

214 个代谢物同义名

9,12,15-Octadecatrienoic acid, (9Z,12Z,15Z)- (9CI); cis-9, cis-12, cis-15-octadecatrienoic acid; (9Z,12Z,15Z)-octadeca-9,12,15-trienoic acid; (9Z,12Z,15Z)-9,12,15-Octadecatrienoic acid; cis-9,cis-12,cis-15-Octadecatrienoic acid; cis-Delta(9,12,15)-octadecatrienoic acid; (Z,Z,Z)-Octadeca-9,12,15-trienoic acid; 9,12,15-all-cis-Octadecatrienoic acid; (all-Z)-9,12,15-Octadecatrienoic acid; (9Z,12Z,15Z)-Octadecatrienoic acid; 9Z,12Z,15Z-Octadecatrienoic acid; 9,12,15-Octadecatrienoic acid; (9,12,15)-linolenic acid; alpha-Linolenic acid; alpha-Linolenate; α-Linolenic acid; NCGC00091058-06; NCGC00091058-04; NCGC00091058-01; NCGC00091058-05; Linolenic Acid; BSPBio_001376; C18:3n-3,6,9; LMFA01030152; 62160_FLUKA; 62170_FLUKA; IDI1_033846; L2376_SIGMA; CHEBI:27432; linolenate; alpha-Lnn; CMC_7371; ST072192; FA 18:3; C06427; (9Z,12Z,15R)-octadeca-9,12-dien-15-olide; 9Z,12Z-octadecen-15R-olide; cucujolide XI; (8Z,11Z,14Z)-octadeca-8,11,14-trienoic acid; 8Z,11Z,14Z-octadecatrienoic acid; 18:3n-4; (6Z,9E,11E)-octadeca-6,9,11-trienoic acid; 6Z,9E,11E-octadecatrienoic acid; 6E,9E,11E-octadeca-6,9,11-trienoic acid; 6E,9E,11E-octadecatrienoic acid; 18:3n-7; 9E,11E,15Z-octadeca-9,11,15-trienoic acid; 9E,11E,15Z-octadecatrienoic acid; 3,6,9-Octadecatrienoic acid, (3Z,6Z,9Z)-; 3,6,9-Octadecatrienoic acid, (Z,Z,Z)-; Z,Z,Z-3,6,9-Octadecatrienoic acid; Octadeca-3c,6c,9c-trienoic acid; 3Z,6Z,9Z-Octadecatrienoic acid; octadeca-9Z,11E,15Z-trienoic acid; 9Z,11E,15Z-octadecatrienoic acid; Rumelenic acid; C18:3n-3,7,9; 9Z,13E,15Z-octadecatrienoic acid; Isorumelenic acid; 2-(1,2-tetra-decadienyl)-cyclopropanecarboxylic acid; 9-Tridecenoic acid, 13-(2-cyclopenten-1-yl)-, (Z)-; 13-(2-cyclopenten-1-yl)-9Z-Tridecenoic acid; 13-(2-Cyclopentenyl)-9Z-tridecenoic acid; 13-(2-cyclopenten-1-yl)-4Z-tridecenoic acid; Isogorlic acid; 13R-(2-cyclopenten-1-yl)-6Z-tridecenoic acid; Gorlic acid; 5Z,8Z,15Z-octadecatrienoic acid; C18:3n-3,10,13; Dinheic acid; 5Z,8Z,11Z-octadecatrienoic acid; C18:3n-7,10,13; 9Z-octadecen-6-ynoic acid; Octadec-2E-en-4-ynedioic acid; 7Z-Octadecene-9-ynoic acid; (E)-octadec-13-en-11-ynoic acid; Octadeca-13E-en-11-ynoic acid; 7-octadec-17-en-ynoic acid; Octadec-17-en-7-ynoic acid; 16-heptadecen-12-ynoic acid; Heptadec-16-en-12-ynoic; scleropyric acid; 3,9,12-Octadecatrienoic acid, (Z,Z,Z)-; 3Z,9Z,12Z-Octadecatrienoic acid; 3c,9c,12c-Octadecatrienoic acid; E-7-Octadecen-9-ynoic acid; 7E-Octadecen-9-ynoic acid; 18:2-delta-7t,9a; 10Z-octadecen-8-ynoic acid; Xionenynic acid; octa­dec-17-en-8-ynoic acid; 17-octa­decen-8-ynoic acid; Alvaradonic acid; Octa-dec-17-en-6-ynoic acid; 17-Octa-decen-6-ynoic acid; Alvaradoic acid; 9E,11Z,13E-octadecatrienoic acid; 9E,11E,13Z-octadecatrienoic acid; 18:3(9E,11E,13Z); Catalpic acid; 5E,9Z,12Z-octadecatrienoic acid; Isolinolenic acid; Ranunculeic acid; Columbinic acid; Aquilegic acid; C18:3n-6,9,13; octadeca-11E,13E,15Z-trienoic acid; 11E,13E,15Z-octadecatrienoic acid; C18:3n-3,5,7; 5S,6,16E-octadecatrienoic acid; (S)-lamenallenic acid; C18:3n-13; (-)-lamenallenic acid;(-)-octadeca-5,6-trans-16-trienoic acid; 5R,6,16E-octadecatrienoic acid; (R)-lamenallenic acid; octadeca-9Z,11E,14Z-trienoic acid; 9Z,11E,14Z-octadecatrienoic acid; C18:3n-4,7,9; 9Z-Octadecen-12-ynoic acid; Crepeninic acid; Crepenynic acid; 9E-Octadecen-12-ynoic acid; Acetylenic acids; 17-Octadecen-9-ynoic acid; 11-Octadecen-9-ynoic acid, (Z)-; cis-11-Octadecen-9-ynoic acid; 11Z-octadecen-9-ynoic acid; trans-11-Octadecen-9-ynoic acid; 11-Octadecen-9-ynoic acid, (E)-; 11E-octadecen-9-ynoic acid; Agonandoic acid; Santalbic acid; Ximeninic acid; Ximenynic acid; 9Z,12Z,15E-octadecatrienoic acid; 9Z,12E,15Z-octadecatrienoic acid; 9Z,12E,15E-octadecatrienoic acid; 9E,12Z,15Z-octadecatrienoic acid; 9E,12Z,15E-octadecatrienoic acid; 9E,12E,15Z-octadecatrienoic acid; 9E,11Z,13Z-octadecatrienoic acid; C18:3n-5,7,9; 7Z,9Z,12Z-octadecatrienoic acid; C18:3n-6,9,11; 7E,9Z,12Z-octadecatrienoic acid; 5Z,9Z,12Z-octadecatrienoic acid; Pinolenic acid; 5Z,9Z,12E-octadecatrienoic acid; 5,9,12-octadecatrienoic acid; 5,8,11-octadecatrienoic acid; 2E,9Z,12Z-octadecatrienoic acid; C18:3n-6,9,16; 10,12,15-octadecatrienoic acid; C18:3n-3,6,8; trans-10, trans-12, trans-14-octadecatrienoic acid; 10E,12E,14E-octadecatrienoic acid; Pseudoeleostearic acid; C18:3n-4,6,8; 10,12,14-octadecatrienoic acid; trans-9, trans-12, trans-15-octadecatrienoic acid; 9E,12E,15E-octadecatrienoic acid; Elaidolinolenic acid; Linolenelaidic acid; 9,12,14-octadecatrienoic acid; C18:3n-4,6,9; trans-9, trans-11, trans-13-octadecatrienoic acid; 9E,11E,13E-octadecatrienoic acid; beta-eleostearinic acid; beta-Eleostearic acid; cis-9, trans-11, trans-13-octadecatrienoic acid; 9Z,11E,13E-octadecatrienoic acid; alpha-eleostearinic acid; alpha-Eleostearic acid; cis-Eleostearic acid; Margarolic acid; trans-8, trans-10, trans-12-octadecatrienoic acid; (8E,10E,12E)-8,10,12-Octadecatrienoic acid; 8E,10E,12E-octadecatrienoic acid; beta-calendic acid; C18:3n-6,8,10; trans-8, trans-10, cis-12-octadecatrienoic acid; 8E,10E,12Z-octadecatrienoic acid; alpha-calendic acid; a-calendic acid; Calendulicacid; cis-8, trans-10, cis-12-octadecatrienoic acid; 8Z,10E,12Z-octadecatrienoic acid; Jacaranda acid; Jacaric acid; 6,10,14-octadecatrienoic acid; C18:3n-4,8,12; trans-3, cis-9, cis-12-octadecatrienoic acid; 3E,9Z,12Z-octadecatrienoic acid; C18:3n-6,9,15; Caleic acid; 16-methyl-6Z,9Z,12Z-heptadecatrienoic acid; cis-6, cis-9, cis-12-octadecatrienoic acid; 6(Z),9(Z),12(Z)-Octadecatrienoic acid; (6Z,9Z,12Z)-Octadecatrienoic acid; 6Z,9Z,12Z-octadecatrienoic acid; 6,9,12-Octadecatrienoic acid; Gamma-Linolenic acid; γ-Linolenic acid; Gammolenic acid; Gamolenic Acid; C18:3n-6,9,12; GLA; (6Z,9Z,12Z)-Octadecatrienoic acid; (9Z,11E,13E)-Octadecatrienoic acid; (9Z,12Z,15Z)-Octadecatrienoic acid; Crepenynate; Linolenic acid; gamma-Linolenic acid; Pinolenic acid



数据库引用编号

238 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(5)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

478 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 9 APOB, APOE, BDNF, CASP3, FASN, NOS2, PIK3CA, PPARG, PTGS2
Peripheral membrane protein 2 ACHE, PTGS2
Endosome membrane 1 APOB
Endoplasmic reticulum membrane 5 APOB, FADS1, FADS2, HSP90B1, PTGS2
Nucleus 7 ACHE, APOE, CASP3, HSP90B1, NOS2, PPARA, PPARG
cytosol 8 APOB, CASP3, FASN, HSP90B1, LEP, NOS2, PIK3CA, PPARG
dendrite 2 APOE, BDNF
nucleoplasm 4 CASP3, NOS2, PPARA, PPARG
RNA polymerase II transcription regulator complex 1 PPARG
Cell membrane 1 ACHE
lamellipodium 1 PIK3CA
Multi-pass membrane protein 3 CPT1A, FADS1, FADS2
Synapse 1 ACHE
cell surface 2 ACHE, ADIPOQ
glutamatergic synapse 2 APOE, CASP3
Golgi apparatus 3 ACHE, APOE, FASN
neuromuscular junction 1 ACHE
neuronal cell body 3 APOB, APOE, CASP3
smooth endoplasmic reticulum 2 APOB, HSP90B1
synaptic vesicle 1 BDNF
Cytoplasm, cytosol 1 NOS2
plasma membrane 8 ACHE, APOB, APOE, FADS2, FASN, GCG, NOS2, PIK3CA
Membrane 8 ACHE, APOE, BDNF, CPT1A, FADS1, FADS2, FASN, HSP90B1
axon 1 BDNF
caveola 1 PTGS2
extracellular exosome 4 APOB, APOE, FASN, HSP90B1
endoplasmic reticulum 4 ADIPOQ, APOE, HSP90B1, PTGS2
extracellular space 9 ACHE, ADIPOQ, APOB, APOE, BDNF, CXCL8, GCG, IL10, LEP
lysosomal lumen 1 APOB
perinuclear region of cytoplasm 6 ACHE, BDNF, HSP90B1, NOS2, PIK3CA, PPARG
intercalated disc 1 PIK3CA
mitochondrion 2 CPT1A, FADS1
protein-containing complex 2 HSP90B1, PTGS2
intracellular membrane-bounded organelle 3 APOB, FADS1, PPARG
Microsome membrane 1 PTGS2
postsynaptic density 1 CASP3
Secreted 9 ACHE, ADIPOQ, APOB, APOE, BDNF, CXCL8, GCG, IL10, LEP
extracellular region 10 ACHE, ADIPOQ, APOB, APOE, BDNF, CXCL8, GCG, HSP90B1, IL10, LEP
Mitochondrion outer membrane 1 CPT1A
mitochondrial outer membrane 1 CPT1A
Extracellular side 1 ACHE
Endosome, multivesicular body 1 APOE
Extracellular vesicle 1 APOE
Secreted, extracellular space, extracellular matrix 1 APOE
chylomicron 2 APOB, APOE
high-density lipoprotein particle 1 APOE
low-density lipoprotein particle 2 APOB, APOE
multivesicular body 1 APOE
very-low-density lipoprotein particle 2 APOB, APOE
midbody 1 HSP90B1
Cytoplasm, P-body 1 NOS2
P-body 1 NOS2
Early endosome 2 APOB, APOE
Cytoplasm, perinuclear region 1 NOS2
focal adhesion 1 HSP90B1
extracellular matrix 1 APOE
Peroxisome 1 NOS2
basement membrane 1 ACHE
collagen trimer 1 ADIPOQ
peroxisomal matrix 1 NOS2
collagen-containing extracellular matrix 3 ADIPOQ, APOE, HSP90B1
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
receptor complex 1 PPARG
neuron projection 1 PTGS2
chromatin 2 PPARA, PPARG
Secreted, extracellular space 1 APOE
blood microparticle 1 APOE
Lipid-anchor, GPI-anchor 1 ACHE
endosome lumen 1 APOB
Lipid droplet 1 APOB
[Isoform 1]: Endoplasmic reticulum membrane 1 FADS1
Melanosome 3 APOE, FASN, HSP90B1
side of membrane 1 ACHE
sperm plasma membrane 1 HSP90B1
secretory granule lumen 1 GCG
endoplasmic reticulum lumen 6 APOB, APOE, BDNF, GCG, HSP90B1, PTGS2
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
endoplasmic reticulum exit site 1 APOB
clathrin-coated endocytic vesicle membrane 2 APOB, APOE
Sarcoplasmic reticulum lumen 1 HSP90B1
synaptic cleft 2 ACHE, APOE
death-inducing signaling complex 1 CASP3
[Isoform 2]: Endoplasmic reticulum membrane 1 FADS1
discoidal high-density lipoprotein particle 1 APOE
endocytic vesicle lumen 3 APOB, APOE, HSP90B1
[Glucagon-like peptide 1]: Secreted 1 GCG
chylomicron remnant 2 APOB, APOE
intermediate-density lipoprotein particle 2 APOB, APOE
lipoprotein particle 1 APOE
multivesicular body, internal vesicle 1 APOE
cortical cytoskeleton 1 NOS2
mature chylomicron 1 APOB
endoplasmic reticulum chaperone complex 1 HSP90B1
[Isoform H]: Cell membrane 1 ACHE
[Neurotrophic factor BDNF precursor form]: Secreted 1 BDNF
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
glycogen granule 1 FASN


文献列表

  • Salim Makni, Sébastien Acket, Stéphanie Guenin, Sana Afensiss, Adeline Guellier, Raquel Martins-Noguerol, Antonio J Moreno-Perez, Brigitte Thomasset, Enrique Martinez-Force, Laurent Gutierrez, Eric Ruelland, Adrian Troncoso-Ponce. Arabidopsis seeds altered in the circadian clock protein TOC1 are characterized by higher level of linolenic acid. Plant science : an international journal of experimental plant biology. 2024 Jul; 344(?):112087. doi: 10.1016/j.plantsci.2024.112087. [PMID: 38599247]
  • Xiaodan Wu, Sansan Bao, Linan Sun, Maoyu Zhang, Liang Yu, Ying Wang, Yujie Fu. A new integrated strategy for high purity pinolenic acid production from Pinus koraiensis Sieb. et Zucc seed oil and evaluation of its hypolipidemic activity in vivo. Fitoterapia. 2024 Jun; 175(?):105842. doi: 10.1016/j.fitote.2024.105842. [PMID: 38296168]
  • Lin Liu, Ya Zhang, Meng-Di Yuan, Dong-Miao Xiao, Wei-Hua Xu, Qi Zheng, Qi-Wei Qin, You-Hua Huang, Xiao-Hong Huang. Integrated multi-omics analysis reveals liver metabolic reprogramming by fish iridovirus and antiviral function of alpha-linolenic acid. Zoological research. 2024 May; 45(3):520-534. doi: 10.24272/j.issn.2095-8137.2024.028. [PMID: 38682434]
  • Jingzhi Nie, Wenyue Ma, Xueyuan Ma, De Zhu, Xin Li, Caijin Wang, Guofeng Xu, Canni Chen, Dengjie Luo, Sichen Xie, Guanjing Hu, Peng Chen. Integrated Transcriptomic and Metabolomic Analysis Reveal the Dynamic Process of Bama Hemp Seed Development and the Accumulation Mechanism of α-Linolenic Acid and Linoleic Acid. Journal of agricultural and food chemistry. 2024 May; 72(19):10862-10878. doi: 10.1021/acs.jafc.3c09309. [PMID: 38712687]
  • Mostafa H Baky, Eman M El-Taher, Dina M Y El Naggar, Mostafa B Abouelela. Phytochemical investigation of the n-hexane-extracted oil from four umbelliferous vegetables using GC/MS analysis in the context of antibacterial activity. Scientific reports. 2024 05; 14(1):10592. doi: 10.1038/s41598-024-60631-4. [PMID: 38719900]
  • Nobuyuki Fukuoka, Ryusei Watanabe, Tatsuro Hamada. Impact of changes in root biomass on the occurrence of internal browning in radish root. Plant physiology and biochemistry : PPB. 2024 May; 210(?):108563. doi: 10.1016/j.plaphy.2024.108563. [PMID: 38554535]
  • Zhixiong Chen, Ni Hong, Cui Yan, Zhongbo Zheng, Jie Xi, Ping Cao. The potential of Paeonia lactiflora pall seeds oil as a pure natural cosmetics raw material: In Vitro findings. Journal of cosmetic dermatology. 2024 May; 23(5):1875-1883. doi: 10.1111/jocd.16204. [PMID: 38450923]
  • Weizong Yang, Ziwei Xin, Qingyu Zhang, Yanlong Zhang, Lixin Niu. The tree peony DREB transcription factor PrDREB2D regulates seed α-linolenic acid accumulation. Plant physiology. 2024 Apr; 195(1):745-761. doi: 10.1093/plphys/kiae082. [PMID: 38365221]
  • Marija Takić, Slavica Ranković, Zdenka Girek, Suzana Pavlović, Petar Jovanović, Vesna Jovanović, Ivana Šarac. Current Insights into the Effects of Dietary α-Linolenic Acid Focusing on Alterations of Polyunsaturated Fatty Acid Profiles in Metabolic Syndrome. International journal of molecular sciences. 2024 Apr; 25(9):. doi: 10.3390/ijms25094909. [PMID: 38732139]
  • Maciej Strzemski, Lubomir Adamec, Sławomir Dresler, Barbara Mazurek, Katarzyna Dubaj, Piotr Stolarczyk, Marcin Feldo, Bartosz J Płachno. Shoots and Turions of Aquatic Plants as a Source of Fatty Acids. Molecules (Basel, Switzerland). 2024 Apr; 29(9):. doi: 10.3390/molecules29092062. [PMID: 38731554]
  • Lena Hong, Peter Zahradka, Carla G Taylor. Differential Modulation by Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) of Mesenteric Fat and Macrophages and T Cells in Adipose Tissue of Obese fa/fa Zucker Rats. Nutrients. 2024 Apr; 16(9):. doi: 10.3390/nu16091311. [PMID: 38732558]
  • Kun-Pyo Kim, Kyung-Oh Shin, Sangmin Lee, Jihyeon Yun, Taehoon Lee, Yunhi Cho. PNPLA1 knockdown inhibits esterification of γ-linolenic acid to ceramide 1 in differentiated keratinocytes. Biochemical and biophysical research communications. 2024 Apr; 702(?):149618. doi: 10.1016/j.bbrc.2024.149618. [PMID: 38340658]
  • Jiaying Huo, Wu Peng, Hui Ouyang, Xiaolong Liu, Ping Wang, Xiongwei Yu, Tingting Xie, Shugang Li. Exploration of markers in oxidized rancidity walnut kernels based on lipidomics and volatolomics. Food research international (Ottawa, Ont.). 2024 Apr; 182(?):114141. doi: 10.1016/j.foodres.2024.114141. [PMID: 38519173]
  • Zarrin Basharat, Zainab Murtaza, Aisha Siddiqa, Sulaiman Mohammed Alnasser, Alotaibi Meshal. Therapeutic target mapping from the genome of Kingella negevensis and biophysical inhibition assessment through PNP synthase binding with traditional medicinal compounds. Molecular diversity. 2024 Apr; 28(2):581-594. doi: 10.1007/s11030-023-10604-y. [PMID: 36645537]
  • Meijun Du, Mengyue Gong, Gangcheng Wu, Jun Jin, Xingguo Wang, Qingzhe Jin. Conjugated Linolenic Acid (CLnA) vs Conjugated Linoleic Acid (CLA): A Comprehensive Review of Potential Advantages in Molecular Characteristics, Health Benefits, and Production Techniques. Journal of agricultural and food chemistry. 2024 Mar; 72(11):5503-5525. doi: 10.1021/acs.jafc.3c08771. [PMID: 38442367]
  • Melika Sharifi, Nasim Nourani, Sarvin Sanaie, Sanaz Hamedeyazdan. The effect of Oenothera biennis (Evening primrose) oil on inflammatory diseases: a systematic review of clinical trials. BMC complementary medicine and therapies. 2024 Feb; 24(1):89. doi: 10.1186/s12906-024-04378-5. [PMID: 38360611]
  • Zeyan Chen, Yonghui Kong, Zishu Huang, Xiaoyu Zheng, Zhihong Zheng, Defu Yao, Shen Yang, Yueling Zhang, Jude Juventus Aweya. Exogenous alpha-linolenic acid and Vibrio parahaemolyticus induce EPA and DHA levels mediated by delta-6 desaturase to enhance shrimp immunity. International journal of biological macromolecules. 2024 Feb; 257(Pt 2):128583. doi: 10.1016/j.ijbiomac.2023.128583. [PMID: 38056755]
  • Maede Hasanpour, Ali Rezaie, Milad Iranshahy, Mojtaba Yousefi, Satar Saberi, Mehrdad Iranshahi. 1H NMR-based metabolomics study of the lipid profile of omega-3 fatty acid supplements and some vegetable oils. Journal of pharmaceutical and biomedical analysis. 2024 Jan; 238(?):115848. doi: 10.1016/j.jpba.2023.115848. [PMID: 37948777]
  • Heba Nageh Gad El-Hak, Safaa M Kishk, Heba M A Abdelrazek. Evening primrose oil enriched with gamma linolenic acid and D/L-alpha tocopherol acetate attenuated carbon tetrachloride-induced hepatic injury model in male rats via TNF-α, IL-1β, and IL-6 pathway. Toxicology mechanisms and methods. 2024 Jan; ?(?):1-15. doi: 10.1080/15376516.2023.2301357. [PMID: 38166523]
  • Smita Eknath Desale, Hariharakrishnan Chidambaram, Subashchandrabose Chinnathambi. Biochemical and Biophysical Characterization of Tau and α-Linolenic Acid Vesicles In Vitro. Methods in molecular biology (Clifton, N.J.). 2024; 2754(?):193-203. doi: 10.1007/978-1-0716-3629-9_11. [PMID: 38512668]
  • Montserrat Cofán, Antonio Checa, M Serra-Mir, I Roth, Cinta Valls-Pedret, Anna Lopez-Illamola, Monica Doménech, Sujatha Rajaram, Iolanda Lázaro, Joan Sabaté, Emilio Ros, Craig E Wheelock, Aleix Sala-Vila. A Walnut-Enriched Diet for 2 Years Changes the Serum Oxylipin Profile in Healthy Older Persons. The Journal of nutrition. 2023 Dec; ?(?):. doi: 10.1016/j.tjnut.2023.12.007. [PMID: 38081585]
  • Jin-Yi Tang, Mei-Ling Chen, Mei Wan, Jin-Yu Wei, Tian Qian, Yu-Kun Fan, Zhi Yang, Jian Fu, Jian Li. Associations of serum gamma-linolenic acid levels with erythema severity and anxiety/depression status in patients with rosacea. Anais brasileiros de dermatologia. 2023 Dec; ?(?):. doi: 10.1016/j.abd.2023.01.008. [PMID: 38061964]
  • Francisc Vasile Dulf, Dan Cristian Vodnar, Eva-Henrietta Dulf. Solid-state fermentation with Zygomycetes fungi as a tool for biofortification of apple pomace with γ-linolenic acid, carotenoid pigments and phenolic antioxidants. Food research international (Ottawa, Ont.). 2023 11; 173(Pt 2):113448. doi: 10.1016/j.foodres.2023.113448. [PMID: 37803774]
  • Ariadna Pinar-Martí, Silvia Fernández-Barrés, Florence Gignac, Cecilia Persavento, Anna Delgado, Dora Romaguera, Iolanda Lázaro, Emilio Ros, Mònica López-Vicente, Jordi Salas-Salvadó, Aleix Sala-Vila, Jordi Júlvez. Red blood cell omega-3 fatty acids and attention scores in healthy adolescents. European child & adolescent psychiatry. 2023 Nov; 32(11):2187-2195. doi: 10.1007/s00787-022-02064-w. [PMID: 35960396]
  • Akiko Harauma, Hajime Yoshihara, Yukino Hoshi, Kei Hamazaki, Toru Moriguchi. Effects of Varied Omega-3 Fatty Acid Supplementation on Postpartum Mental Health and the Association between Prenatal Erythrocyte Omega-3 Fatty Acid Levels and Postpartum Mental Health. Nutrients. 2023 Oct; 15(20):. doi: 10.3390/nu15204388. [PMID: 37892462]
  • Shiyu Yin, Hai Xu, Jiayue Xia, Dengfeng Xu, Yifei Lu, Jihan Sun, Yuanyuan Wang, Wang Liao, Guiju Sun. Effect of alpha-linolenic acid supplementation on cardiovascular risk profile in individuals with obesity or overweight: A systematic review and meta-analysis of randomized controlled trials. Advances in nutrition (Bethesda, Md.). 2023 Sep; ?(?):. doi: 10.1016/j.advnut.2023.09.010. [PMID: 37778442]
  • Qiong Wang, Xingguo Wang. The Effect of Plant-Derived Low-Ratio Linoleic Acid/α-Linolenic Acid on Markers of Glucose Controls: A Systematic Review and Meta-Analysis. International journal of molecular sciences. 2023 Sep; 24(18):. doi: 10.3390/ijms241814383. [PMID: 37762686]
  • Camilla Bertoni, Martina Abodi, Veronica D'Oria, Gregorio P Milani, Carlo Agostoni, Alessandra Mazzocchi. Alpha-Linolenic Acid and Cardiovascular Events: A Narrative Review. International journal of molecular sciences. 2023 Sep; 24(18):. doi: 10.3390/ijms241814319. [PMID: 37762621]
  • Zhen-Zhong Wu, Zhi-Wei Gan, You-Xian Zhang, Si-Bei Chen, Chun-Dan Gan, Kai Yang, Jin-Yan Yang. Transcriptomic and metabolomic perspectives for the growth of alfalfa (Medicago sativa L.) seedlings with the effect of vanadium exposure. Chemosphere. 2023 Sep; 336(?):139222. doi: 10.1016/j.chemosphere.2023.139222. [PMID: 37343642]
  • Hyo-Suk Ahn, Eun Young Cho, Keun-Sang Yum. Efficacy of γ-linolenic acid, Vitis vinifera extract, and acetyl-L-carnitine combination therapy for improving arterial stiffness in Korean adults: Real-world evidence. Journal of clinical hypertension (Greenwich, Conn.). 2023 Aug; ?(?):. doi: 10.1111/jch.14708. [PMID: 37608640]
  • Mette Jensen, Rikke Poulsen, Rikke Langebæk, Bjørn Munro Jenssen, Johanna Moe, Tomasz M Ciesielski, Rune Dietz, Christian Sonne, Jesper Madsen, Martin Hansen. The metabolome of pink-footed goose: Heavy metals and lipid metabolism. Environmental research. 2023 Aug; 231(Pt 1):116043. doi: 10.1016/j.envres.2023.116043. [PMID: 37156351]
  • Jie Chen, Qin Liu, Longyu Yuan, Wenzhong Shen, Qingxing Shi, Guojun Qi, Ting Chen, Zhenfei Zhang. Osa-miR162a Enhances the Resistance to the Brown Planthopper via α-Linolenic Acid Metabolism in Rice (Oryza sativa). Journal of agricultural and food chemistry. 2023 Aug; 71(31):11847-11859. doi: 10.1021/acs.jafc.3c02637. [PMID: 37493591]
  • Qiong Wang, Xingguo Wang. The Effects of a Low Linoleic Acid/α-Linolenic Acid Ratio on Lipid Metabolism and Endogenous Fatty Acid Distribution in Obese Mice. International journal of molecular sciences. 2023 Jul; 24(15):. doi: 10.3390/ijms241512117. [PMID: 37569494]
  • Wenran Tian, Xianghui Yan, Zheling Zeng, Jiaheng Xia, Junxin Zhao, Guibing Zeng, Ping Yu, Xuefang Wen, Deming Gong. Enzymatic interesterification improves the lipid composition, physicochemical properties and rheological behavior of Cinnamomum camphora seed kernel oil, Pangasius bocourti stearin and perilla seed oil blends. Food chemistry. 2023 Jul; 430(?):137026. doi: 10.1016/j.foodchem.2023.137026. [PMID: 37517373]
  • Nannan Zhang, Yi Zhu, Xuewu Zhang, Kaiping Yang, Xia Yang, Mingyu An, Changlin Tian, Jun Li. Based on network pharmacology and experiments to explore the underlying mechanism of Mahonia bealei (Fortune) Carrière for treating alcoholic hepatocellular carcinoma. Journal of ethnopharmacology. 2023 Jul; ?(?):116919. doi: 10.1016/j.jep.2023.116919. [PMID: 37453621]
  • Yun Wang, Dongmei Liu, Haiyan Yin, Hongqi Wang, Cheng Cao, Junyan Wang, Jia Zheng, Jihong Liu. Transcriptomic and Metabolomic Analyses of the Response of Resistant Peanut Seeds to Aspergillus flavus Infection. Toxins. 2023 06; 15(7):. doi: 10.3390/toxins15070414. [PMID: 37505683]
  • Zhan Li, Ying Wang, Lili Yu, Yongzhe Gu, Lijuan Zhang, Jun Wang, Lijuan Qiu. Overexpression of the Purple Perilla (Perilla frutescens (L.)) FAD3a Gene Enhances Salt Tolerance in Soybean. International journal of molecular sciences. 2023 Jun; 24(13):. doi: 10.3390/ijms241310533. [PMID: 37445708]
  • Hao Han, Jie Li, Lei Tian, Liyuan Pei, Mingming Zheng. Through regulation of the SIRT1 pathway plant sterol ester of α-linolenic acid inhibits pyroptosis thereby attenuating the development of NASH in mice. The Journal of nutritional biochemistry. 2023 Jun; ?(?):109408. doi: 10.1016/j.jnutbio.2023.109408. [PMID: 37336331]
  • Ana Paredes, Raquel Justo-Méndez, Daniel Jiménez-Blasco, Vanessa Núñez, Irene Calero, María Villalba-Orero, Andrea Alegre-Martí, Thierry Fischer, Ana Gradillas, Viviane Aparecida Rodrigues Sant'Anna, Felipe Were, Zhiqiang Huang, Pablo Hernansanz-Agustín, Carmen Contreras, Fernando Martínez, Emilio Camafeita, Jesús Vázquez, Jesús Ruiz-Cabello, Estela Area-Gómez, Fátima Sánchez-Cabo, Eckardt Treuter, Juan Pedro Bolaños, Eva Estébanez-Perpiñá, Francisco Javier Rupérez, Coral Barbas, José Antonio Enríquez, Mercedes Ricote. γ-Linolenic acid in maternal milk drives cardiac metabolic maturation. Nature. 2023 May; ?(?):. doi: 10.1038/s41586-023-06068-7. [PMID: 37225978]
  • Tone-Kari Knutsdatter Østbye, Oddrun Anita Gudbrandsen, Aslaug Drotningsvik, Bente Ruyter, Gerd Marit Berge, Gjermund Vogt, Astrid Nilsson. Different Dietary Ratios of Camelina Oil to Sandeel Oil Influence the Capacity to Synthesise and Deposit EPA and DHA in Zucker Fa/Fa Rats. Nutrients. 2023 May; 15(10):. doi: 10.3390/nu15102344. [PMID: 37242227]
  • Cancan Ma, Cheng Zhang, Xiaoyan Wang, Fuyuan Zhu, Xianrong Wang, Min Zhang, Yifan Duan. Alternative Splicing Analysis Revealed the Role of Alpha-Linolenic Acid and Carotenoids in Fruit Development of Osmanthus fragrans. International journal of molecular sciences. 2023 May; 24(10):. doi: 10.3390/ijms24108666. [PMID: 37240011]
  • Adam Yasgar, Danielle Bougie, Richard T Eastman, Ruili Huang, Misha Itkin, Jennifer Kouznetsova, Caitlin Lynch, Crystal McKnight, Mitch Miller, Deborah K Ngan, Tyler Peryea, Pranav Shah, Paul Shinn, Menghang Xia, Xin Xu, Alexey V Zakharov, Anton Simeonov. Quantitative Bioactivity Signatures of Dietary Supplements and Natural Products. ACS pharmacology & translational science. 2023 May; 6(5):683-701. doi: 10.1021/acsptsci.2c00194. [PMID: 37200814]
  • Mid-Eum Park, Hyun-A Choi, Hyun Uk Kim. Physaria fendleri FAD3-1 overexpression increases ɑ-linolenic acid content in Camelina sativa seeds. Scientific reports. 2023 May; 13(1):7143. doi: 10.1038/s41598-023-34364-9. [PMID: 37130939]
  • Rachel Gervais, Daniel E Rico, Sara M Peňa-Cotrino, Yolaine Lebeuf, P Yvan Chouinard. Effect of postruminal supply of linseed oil in dairy cows: 1. Production performance and fate of postruminally available α-linolenic acid. The Journal of dairy research. 2023 May; 90(2):118-123. doi: 10.1017/s0022029923000250. [PMID: 37138530]
  • Aleksandra Arsic, Predrag Krstic, Marija Paunovic, Jasmina Nedovic, Vladimir Jakovljevic, Vesna Vucic. Anti-inflammatory effect of combining fish oil and evening primrose oil supplementation on breast cancer patients undergoing chemotherapy: a randomized placebo-controlled trial. Scientific reports. 2023 04; 13(1):6449. doi: 10.1038/s41598-023-28411-8. [PMID: 37081029]
  • H U Xingyao, Liu Hongning, Yan Xiaojun, Chen Zhong, F U Liu, Liu Ge, Chen Xuan, Shang Guangbin. Liver metabolomic characteristics in three different rat models of deficiency based on ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan. 2023 Apr; 43(2):274-285. doi: 10.19852/j.cnki.jtcm.20230201.001. [PMID: 36994515]
  • Jie Xia, Xiuyue Li, Min Lin, Jiani Yu, Zhongda Zeng, Fei Ye, Guanjun Hu, Qiang Miu, Qiuling He, Xiaodan Zhang, Zongsuo Liang. Screening out Biomarkers of Tetrastigma hemsleyanum for Anti-Cancer and Anti-Inflammatory Based on Spectrum-Effect Relationship Coupled with UPLC-Q-TOF-MS. Molecules (Basel, Switzerland). 2023 Mar; 28(7):. doi: 10.3390/molecules28073021. [PMID: 37049789]
  • Lucia Cambiaggi, Akash Chakravarty, Nazek Noureddine, Martin Hersberger. The Role of α-Linolenic Acid and Its Oxylipins in Human Cardiovascular Diseases. International journal of molecular sciences. 2023 Mar; 24(7):. doi: 10.3390/ijms24076110. [PMID: 37047085]
  • Yunpeng Cao, Tingting Fan, Lihu Wang, Lin Zhang, Yanli Li. Large-scale analysis of putative Euphorbiaceae R2R3-MYB transcription factors identifies a MYB involved in seed oil biosynthesis. BMC plant biology. 2023 Mar; 23(1):145. doi: 10.1186/s12870-023-04163-5. [PMID: 36927311]
  • Adriano B Chaves-Filho, Albert S Peixoto, Érique Castro, Tiago E Oliveira, Luiz A Perandini, Rafael J Moreira, Railmara P da Silva, Beatriz P da Silva, Eduardo H Moretti, Alexandre A Steiner, Sayuri Miyamoto, Marcos Y Yoshinaga, William T Festuccia. Futile cycle of β-oxidation and de novo lipogenesis are associated with essential fatty acids depletion in lipoatrophy. Biochimica et biophysica acta. Molecular and cell biology of lipids. 2023 03; 1868(3):159264. doi: 10.1016/j.bbalip.2022.159264. [PMID: 36535597]
  • Lisa A Rodway, Samantha D Pauls, Christopher D Pascoe, Harold M Aukema, Carla G Taylor, Peter Zahradka. Distinct effects of α-linolenic acid and docosahexaenoic acid on the expression of genes related to cholesterol metabolism and the response to infection in THP-1 monocytes and immune cells of obese humans. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2023 Mar; 159(?):114167. doi: 10.1016/j.biopha.2022.114167. [PMID: 36621145]
  • Gabriela Alarcon, Liliana Sierra, Julieta Roco, Carina Van Nieuwenhove, Analia Medina, Mirta Medina, Susana Jerez. Effects of Cold Pressed Chia Seed Oil Intake on Hematological and Biochemical Biomarkers in Both Normal and Hypercholesterolemic Rabbits. Plant foods for human nutrition (Dordrecht, Netherlands). 2023 Mar; 78(1):179-185. doi: 10.1007/s11130-022-01036-4. [PMID: 36515802]
  • Zhen Yang, Piaopiao Tan, Zhihao Huang, Zhenzhen Sun, Zhixiang Liu, Lili Liu, Chaozhen Zeng, Jianhua Tong, Mingli Yan. Metabolic profiles in the xylem sap of Brassica juncea exposed to cadmium. Physiologia plantarum. 2023 Mar; 175(2):e13886. doi: 10.1111/ppl.13886. [PMID: 36862032]
  • S G Yammine, I Huybrechts, C Biessy, L Dossus, S Panico, M J Sánchez, V Benetou, R Turzanski-Fortner, V Katzke, A Idahl, G Skeie, K Standahl Olsen, A Tjønneland, J Halkjaer, S Colorado-Yohar, A K Heath, E Sonestedt, H Sartor, M B Schulze, D Palli, M Crous-Bou, A Dorronsoro, K Overvad, A Barricarte Gurrea, G Severi, R C H Vermeulen, T M Sandanger, R C Travis, T Key, P Amiano, B Van Guelpen, M Johansson, M Sund, R Tumino, N Wareham, C Sacerdote, V Krogh, P Brennan, E Riboli, E Weiderpass, M J Gunter, V Chajès. Dietary fatty acids and endometrial cancer risk within the European Prospective Investigation into Cancer and Nutrition. BMC cancer. 2023 Feb; 23(1):159. doi: 10.1186/s12885-023-10611-0. [PMID: 36797668]
  • Ana Luiza Fontes, Lígia Leão Pimentel, Ana Maria Silva Soares, Maria do Rosário Domingues, Luis Miguel Rodríguez-Alcalá, Ana Maria Gomes. Study of the viability of using lipase-hydrolyzed commercial vegetable oils to produce microbially conjugated linolenic acid-enriched milk. Food chemistry. 2023 Feb; 413(?):135665. doi: 10.1016/j.foodchem.2023.135665. [PMID: 36787664]
  • Lixia Hou, Ming Yang, Xiaomei Sun, Yujin Zhang, Bingkai Wang, Xuede Wang. Effect of Flaxseed Addition on the Quality and Storage Stability of Sesame Paste. Journal of oleo science. 2023 Feb; 72(2):117-130. doi: 10.5650/jos.ess22242. [PMID: 36631101]
  • Pei-Chi Huang, Hsuan Cheng, Yu-Ting Su, Meng-Chuan Huang, Chih-Cheng Hsu, Shang-Jyh Hwang, Shyi-Jang Shin, Wen-Tsan Chang. Interaction among dietary n-3 and n-6 polyunsaturated fatty acid intake, fatty acid desaturase 2 genetic variants, and low-density lipoprotein cholesterol levels in type 2 diabetes patients. Journal of diabetes investigation. 2023 Feb; 14(2):297-308. doi: 10.1111/jdi.13944. [PMID: 36412559]
  • Zhihui Xue, Zhidan Chen, Yankun Wang, Weijiang Sun. Proteomic Analysis Reveals the Association between the Pathways of Glutathione and α-Linolenic Acid Metabolism and Lanthanum Accumulation in Tea Plants. Molecules (Basel, Switzerland). 2023 Jan; 28(3):. doi: 10.3390/molecules28031124. [PMID: 36770792]
  • Kwok Leung Ong, Matti Marklund, Liping Huang, Kerry-Anne Rye, Nicholas Hui, Xiong-Fei Pan, Casey M Rebholz, Hyunju Kim, Lyn M Steffen, Anniek C van Westing, Johanna M Geleijnse, Ellen K Hoogeveen, Yun-Yu Chen, Kuo-Liong Chien, Amanda M Fretts, Rozenn N Lemaitre, Fumiaki Imamura, Nita G Forouhi, Nicholas J Wareham, Anna Birukov, Susanne Jäger, Olga Kuxhaus, Matthias B Schulze, Vanessa Derenji de Mello, Jaakko Tuomilehto, Matti Uusitupa, Jaana Lindström, Nathan Tintle, William S Harris, Keisuke Yamasaki, Yoichiro Hirakawa, Toshiharu Ninomiya, Toshiko Tanaka, Luigi Ferrucci, Stefania Bandinelli, Jyrki K Virtanen, Ari Voutilainen, Tharusha Jayasena, Anbupalam Thalamuthu, Anne Poljak, Sonia Bustamante, Perminder S Sachdev, Mackenzie K Senn, Stephen S Rich, Michael Y Tsai, Alexis C Wood, Markku Laakso, Maria Lankinen, Xiaowei Yang, Liang Sun, Huaixing Li, Xu Lin, Christoph Nowak, Johan Ärnlöv, Ulf Risérus, Lars Lind, Mélanie Le Goff, Cécilia Samieri, Catherine Helmer, Frank Qian, Renata Micha, Adrienne Tin, Anna Köttgen, Ian H de Boer, David S Siscovick, Dariush Mozaffarian, Jason Hy Wu. Association of omega 3 polyunsaturated fatty acids with incident chronic kidney disease: pooled analysis of 19 cohorts. BMJ (Clinical research ed.). 2023 01; 380(?):e072909. doi: 10.1136/bmj-2022-072909. [PMID: 36653033]
  • Magdalena Franczyk-Żarów, Tomasz Tarko, Anna Drahun-Misztal, Izabela Czyzynska-Cichon, Edyta Kus, Renata B Kostogrys. Pomegranate Seed Oil as a Source of Conjugated Linolenic Acid (CLnA) Has No Effect on Atherosclerosis Development but Improves Lipid Profile and Affects the Expression of Lipid Metabolism Genes in apoE/LDLR-/- Mice. International journal of molecular sciences. 2023 Jan; 24(2):. doi: 10.3390/ijms24021737. [PMID: 36675252]
  • Rabaa Takala, Dipak P Ramji, Ernest Choy. The Beneficial Effects of Pine Nuts and Its Major Fatty Acid, Pinolenic Acid, on Inflammation and Metabolic Perturbations in Inflammatory Disorders. International journal of molecular sciences. 2023 Jan; 24(2):. doi: 10.3390/ijms24021171. [PMID: 36674687]
  • Antoni Banaś, Katarzyna Jasieniecka-Gazarkiewicz, Sylwia Klińska. Biosynthesis and Transfer of α-Elostearic Acid In Vivo in Momordica charantia L. Developing Seeds and In Vitro in Microsomal Fractions of These Seeds. International journal of molecular sciences. 2023 Jan; 24(1):. doi: 10.3390/ijms24010848. [PMID: 36614287]
  • Yingjie Ma, Jingyan Song, Xianling Cao, Zhengao Sun. Mechanism of Guilu Erxian ointment based on targeted metabolomics in intervening in vitro fertilization and embryo transfer outcome in older patients with poor ovarian response of kidney-qi deficiency type. Frontiers in endocrinology. 2023; 14(?):1045384. doi: 10.3389/fendo.2023.1045384. [PMID: 36742408]
  • Yaguang Zhao, Fenghua Zhang, Bede Mickan, Dan Wang. Inoculation of wheat with Bacillus sp. wp-6 altered amino acid and flavonoid metabolism and promoted plant growth. Plant cell reports. 2023 Jan; 42(1):165-179. doi: 10.1007/s00299-022-02947-x. [PMID: 36348065]
  • Shinji Yamashita, Azusa Miwa, Yu Hinata, Koji Urita, Kazuo Miyashita, Mikio Kinoshita. Herbal Leaves Can Suppress Oxidation of Perilla Oil. Journal of nutritional science and vitaminology. 2023; 69(5):382-387. doi: 10.3177/jnsv.69.382. [PMID: 37940579]
  • R De Giuseppe, I Di Napoli, C E Tomasinelli, A Vincenti, G Biino, E Sommella, L Ferron, P Campiglia, F Ferrara, P M Casali, H Cena. The Effect of Crackers Enriched with Camelina Sativa Oil on Omega-3 Serum Fatty Acid Composition in Older Adults: A Randomized Placebo-Controlled Pilot Trial. The journal of nutrition, health & aging. 2023; 27(6):463-471. doi: 10.1007/s12603-023-1925-x. [PMID: 37357331]
  • Di Qin, Jiehua Xing, Ping Cheng, Guohui Yu. Genome-wide association and RNA-seq analyses reveal a potential gene related to linolenic acid in soybean seeds. PeerJ. 2023; 11(?):e16138. doi: 10.7717/peerj.16138. [PMID: 37933254]
  • Shaowen Wu, Qunjie Zhang, Wenyang Zhang, Wenjie Huang, Qian Kong, Qinjian Liu, Wenyan Li, Xinlu Zou, Chun-Ming Liu, Shijuan Yan. Linolenic Acid-Derived Oxylipins Inhibit Aflatoxin Biosynthesis in Aspergillus flavus through Activation of Imizoquin Biosynthesis. Journal of agricultural and food chemistry. 2022 Dec; 70(50):15928-15944. doi: 10.1021/acs.jafc.2c06230. [PMID: 36508213]
  • Topi Meuronen, Maria A Lankinen, Johan Kolmert, Vanessa Derenji de Mello, Taisa Sallinen, Jyrki Ågren, Kirsi A Virtanen, Markku Laakso, Craig E Wheelock, Jussi Pihlajamäki, Ursula Schwab. The FADS1 rs174550 Genotype Modifies the n-3 and n-6 PUFA and Lipid Mediator Responses to a High Alpha-Linolenic Acid and High Linoleic Acid Diets. Molecular nutrition & food research. 2022 12; 66(24):e2200351. doi: 10.1002/mnfr.202200351. [PMID: 36367234]
  • Fatemeh Hajibabaie, Navid Abedpoor, Kamran Safavi, Farzaneh Taghian. Natural remedies medicine derived from flaxseed (secoisolariciresinol diglucoside, lignans, and α-linolenic acid) improve network targeting efficiency of diabetic heart conditions based on computational chemistry techniques and pharmacophore modeling. Journal of food biochemistry. 2022 12; 46(12):e14480. doi: 10.1111/jfbc.14480. [PMID: 36239429]
  • Alicia Leikin-Frenkel, Michal Schnaider Beeri, Itzik Cooper. How Alpha Linolenic Acid May Sustain Blood-Brain Barrier Integrity and Boost Brain Resilience against Alzheimer's Disease. Nutrients. 2022 Nov; 14(23):. doi: 10.3390/nu14235091. [PMID: 36501121]
  • Jun-Dae Kim, Teng Zhou, Aijun Zhang, Shumin Li, Anisha A Gupte, Dale J Hamilton, Longhou Fang. AIBP Regulates Metabolism of Ketone and Lipids but Not Mitochondrial Respiration. Cells. 2022 11; 11(22):. doi: 10.3390/cells11223643. [PMID: 36429071]
  • Zongzhen Li, Yanhao Lian, Pu Gong, Linhu Song, Junjie Hu, Haifang Pang, Yongzhe Ren, Zeyu Xin, Zhiqiang Wang, Tongbao Lin. Network of the transcriptome and metabolomics reveals a novel regulation of drought resistance during germination in wheat. Annals of botany. 2022 11; 130(5):717-735. doi: 10.1093/aob/mcac102. [PMID: 35972226]
  • Iraj Yaghoubian, Seyed Ali Mohammad Modarres-Sanavy, Donald L Smith. Plant growth promoting microorganisms (PGPM) as an eco-friendly option to mitigate water deficit in soybean (Glycine max L.): Growth, physio-biochemical properties and oil content. Plant physiology and biochemistry : PPB. 2022 Nov; 191(?):55-66. doi: 10.1016/j.plaphy.2022.09.013. [PMID: 36183672]
  • Pan Liang, Yining Ma, Luyin Yang, Linshen Mao, Qin Sun, Changzhen Sun, Zengjin Liu, Maryam Mazhar, Sijin Yang, Wei Ren. Uncovering the Mechanisms of Active Components from Toad Venom against Hepatocellular Carcinoma Using Untargeted Metabolomics. Molecules (Basel, Switzerland). 2022 Nov; 27(22):. doi: 10.3390/molecules27227758. [PMID: 36431859]
  • Mahmoud Bahmani, Samira Shokri, Zabih Nosrati Akhtar, Saber Abbaszadeh, Aliasghar Manouchehri. The effect of pomegranate seed oil on human health, especially epidemiology of polycystic ovary syndrome; a systematic review. JBRA assisted reproduction. 2022 11; 26(4):631-636. doi: 10.5935/1518-0557.20210121. [PMID: 35257560]
  • Makoto Noguchi, Makoto Shimizu, Peng Lu, Yu Takahashi, Yoshio Yamauchi, Shintaro Sato, Hiroshi Kiyono, Shigenobu Kishino, Jun Ogawa, Koji Nagata, Ryuichiro Sato. Lactic acid bacteria-derived γ-linolenic acid metabolites are PPARδ ligands that reduce lipid accumulation in human intestinal organoids. The Journal of biological chemistry. 2022 11; 298(11):102534. doi: 10.1016/j.jbc.2022.102534. [PMID: 36162507]
  • Xu-Cong Lv, Qi Wu, Yu-Jie Yuan, Lu Li, Wei-Ling Guo, Xiao-Bin Lin, Zi-Rui Huang, Ping-Fan Rao, Lian-Zhong Ai, Li Ni. Organic chromium derived from the chelation of Ganoderma lucidum polysaccharide and chromium (III) alleviates metabolic syndromes and intestinal microbiota dysbiosis induced by high-fat and high-fructose diet. International journal of biological macromolecules. 2022 Oct; 219(?):964-979. doi: 10.1016/j.ijbiomac.2022.07.211. [PMID: 35940431]
  • William Craig Byrdwell, Robert J Goldschmidt. Fatty Acids of Ten Commonly Consumed Pulses. Molecules (Basel, Switzerland). 2022 Oct; 27(21):. doi: 10.3390/molecules27217260. [PMID: 36364086]
  • Yolanda Carmona-Jiménez, Jose M Igartuburu, Dominico A Guillén-Sánchez, M Valme García-Moreno. Fatty Acid and Tocopherol Composition of Pomace and Seed Oil from Five Grape Varieties Southern Spain. Molecules (Basel, Switzerland). 2022 Oct; 27(20):. doi: 10.3390/molecules27206980. [PMID: 36296576]
  • Qingqing Xu, Xiaoli Qin, Dongming Lan, Xuan Liu, Bo Yang, Sentai Liao, Weifei Wang, Yonghua Wang. Water-in-oil emulsions enriched with alpha-linolenic acid in diacylglycerol form: Stability, formation mechanism and in vitro digestion analysis. Food chemistry. 2022 Oct; 391(?):133201. doi: 10.1016/j.foodchem.2022.133201. [PMID: 35609461]
  • Elisabeth Koch, Michelle Wiebel, Ariane Löwen, Ina Willenberg, Nils Helge Schebb. Characterization of the Oxylipin Pattern and Other Fatty Acid Oxidation Products in Freshly Pressed and Stored Plant Oils. Journal of agricultural and food chemistry. 2022 Oct; 70(40):12935-12945. doi: 10.1021/acs.jafc.2c04987. [PMID: 36173729]
  • Emilia Neag, Zamfira Stupar, Cerasel Varaticeanu, Marin Senila, Cecilia Roman. Optimization of Lipid Extraction from Spirulina spp. by Ultrasound Application and Mechanical Stirring Using the Taguchi Method of Experimental Design. Molecules (Basel, Switzerland). 2022 Oct; 27(20):. doi: 10.3390/molecules27206794. [PMID: 36296385]
  • Liting Zhang, Yu Xia, Yage Dong, Tianyi Xie, Wenqiang Sun, Sibin Yu. Natural Variation of Fatty Acid Desaturase Gene Affects Linolenic Acid Content and Starch Pasting Viscosity in Rice Grains. International journal of molecular sciences. 2022 Oct; 23(19):. doi: 10.3390/ijms231912055. [PMID: 36233354]
  • Aleix Sala-Vila, Jennifer Fleming, Penny Kris-Etherton, Emilio Ros. Impact of α-Linolenic Acid, the Vegetable ω-3 Fatty Acid, on Cardiovascular Disease and Cognition. Advances in nutrition (Bethesda, Md.). 2022 10; 13(5):1584-1602. doi: 10.1093/advances/nmac016. [PMID: 35170723]
  • Elif Ayşe Erdogan Eliuz, Erdal Yabalak, Gülden Gökşen, Deniz Ayas. Chemical composition, antifungal activity, antifungal mechanism and interaction manner of the fatty acid of Prunus mahaleb L. with fluconazole. International journal of environmental health research. 2022 Oct; 32(10):2337-2349. doi: 10.1080/09603123.2021.1963686. [PMID: 34382873]
  • Syusuke Egoshi, Kosuke Dodo, Mikiko Sodeoka. Deuterium Raman imaging for lipid analysis. Current opinion in chemical biology. 2022 10; 70(?):102181. doi: 10.1016/j.cbpa.2022.102181. [PMID: 35792373]
  • Shuai-Ying Shi, Xi-Ning Ding, Zhan-Chao Wang, Xiang-Feng Guo, Gai-Na Zhang, Yong-Hong Hu, Guo-An Shi. [Grain oil quality formation and metabolism-related genes difference expression of Paeonia suffruticosa cv. 'Fengdan' grown at different altitudes.]. Ying yong sheng tai xue bao = The journal of applied ecology. 2022 Oct; 33(11):2987-2996. doi: 10.13287/j.1001-9332.202211.012. [PMID: 36384833]
  • H Huang, Z Gong. Characterization and differentiation of pollen lipidomes and proteomes from different intrafloral stamens in heterantherous Senna bicapsularis. Plant biology (Stuttgart, Germany). 2022 Oct; 24(6):998-1009. doi: 10.1111/plb.13457. [PMID: 35880492]
  • Younes M Rashad, Sara A Abdalla, Ahmed S Shehata. Aspergillus flavus YRB2 from Thymelaea hirsuta (L.) Endl., a non-aflatoxigenic endophyte with ability to overexpress defense-related genes against Fusarium root rot of maize. BMC microbiology. 2022 09; 22(1):229. doi: 10.1186/s12866-022-02651-6. [PMID: 36175855]
  • Yujiao Wu, Jie Chen, Guoli Liao, Mengjiao Hu, Qing Zhang, Xianzhi Meng, Tian Li, Mengxian Long, Xiaodong Fan, Qing Yu, Liping Zhang, Guoqing Pan, Zeyang Zhou. Down-Regulation of Lipid Metabolism in the Hepatopancreas of Shrimp Litopenaeus vannamei upon Light and Heavy Infection of Enterocytozoon hepatopenaei: A Comparative Proteomic Study. International journal of molecular sciences. 2022 Sep; 23(19):. doi: 10.3390/ijms231911574. [PMID: 36232879]
  • Maryam Sadat Mirbagheri Firoozabad, Hamidreza Akhbariyoon. Engineering and fermenter production of fungi GLA in Pichia pastoris GS115 using oil waste. Archives of microbiology. 2022 Sep; 204(10):635. doi: 10.1007/s00203-022-03182-4. [PMID: 36127512]
  • Roshina Rabail, Muhammad Tauseef Sultan, Abdur Rauf Khalid, Aqiba Tus Sahar, Sania Zia, Przemysław Łukasz Kowalczewski, Paweł Jeżowski, Muhammad Asim Shabbir, Rana Muhammad Aadil. Clinical, Nutritional, and Functional Evaluation of Chia Seed-Fortified Muffins. Molecules (Basel, Switzerland). 2022 Sep; 27(18):. doi: 10.3390/molecules27185907. [PMID: 36144643]
  • Mengyue Ren, Yi Wang, Lin Lin, Shaoqiang Li, Qinhai Ma. α-Linolenic Acid Screened by Molecular Docking Attenuates Inflammation by Regulating Th1/Th2 Imbalance in Ovalbumin-Induced Mice of Allergic Rhinitis. Molecules (Basel, Switzerland). 2022 Sep; 27(18):. doi: 10.3390/molecules27185893. [PMID: 36144628]
  • Ruohui Xu, Xiaoli Xiao, Shengan Zhang, Jiashu Pan, Yingjue Tang, Wenjun Zhou, Guang Ji, Yanqi Dang. The methyltransferase METTL3-mediated fatty acid metabolism revealed the mechanism of cinnamaldehyde on alleviating steatosis. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2022 Sep; 153(?):113367. doi: 10.1016/j.biopha.2022.113367. [PMID: 35780619]
  • A Leikin-Frenkel, H Cohen, R Keshet, R Shnerb-GanOr, M Kandel-Kfir, A Harari, K S Hollander, A Shaish, D Harats, Y Kamari. The effect of α-linolenic acid enrichment in perinatal diets in preventing high fat diet-induced SCD1 increased activity and lipid disarray in adult offspring of low density lipoprotein receptor knockout (LDLRKO) mice. Prostaglandins, leukotrienes, and essential fatty acids. 2022 09; 184(?):102475. doi: 10.1016/j.plefa.2022.102475. [PMID: 35940045]
  • Amanda Manoj Malik, Charanjit S Riar. Difference in the nutritional, in vitro, and functional characteristics of protein and fat isolates of two Indian chia (Salvia hispanica L) seed genotypes with variation in seed coat color. Journal of food science. 2022 Sep; 87(9):3872-3887. doi: 10.1111/1750-3841.16276. [PMID: 35982647]
  • Hao Han, Tingli Xue, Jie Li, Yan Guo, Xiaoyu Li, Linqi Wang, Liyuan Pei, Mingming Zheng. Plant sterol ester of α-linolenic acid improved non-alcoholic fatty liver disease by attenuating endoplasmic reticulum stress-triggered apoptosis via activation of the AMPK. The Journal of nutritional biochemistry. 2022 09; 107(?):109072. doi: 10.1016/j.jnutbio.2022.109072. [PMID: 35660097]
  • Junhuan Yang, Xiuwen Wang, Hassan Mohamed, Shaoqi Li, Chen Wu, Wenyue Shi, Futing Xue, Sergio López-García, Yuanda Song. Homologous and Heterologous Expression of Delta(12)-Desaturase in Mucor circinelloides Enhanced the Production of Linolenic Acid. Molecules (Basel, Switzerland). 2022 Aug; 27(17):. doi: 10.3390/molecules27175511. [PMID: 36080278]