Linamarin (BioDeep_00000000674)
Secondary id: BioDeep_00000407855
human metabolite PANOMIX_OTCML-2023 Antitumor activity natural product Volatile Flavor Compounds
代谢物信息卡片
化学式: C10H17NO6 (247.10558220000001)
中文名称: 亞麻苷, 亚麻苦苷
谱图信息:
最多检出来源 Viridiplantae(plant) 0.06%
分子结构信息
SMILES: CC(C)(C#N)OC1C(C(C(C(O1)CO)O)O)O
InChI: InChI=1S/C10H17NO6/c1-10(2,4-11)17-9-8(15)7(14)6(13)5(3-12)16-9/h5-9,12-15H,3H2,1-2H3/t5-,6-,7+,8-,9+/m1/s1
描述信息
Linamarin is a beta-D-glucoside. It is functionally related to a 2-hydroxy-2-methylpropanenitrile.
Linamarin is a natural product found in Osteospermum ecklonis, Lotus arenarius, and other organisms with data available.
Linamarin is found in coffee and coffee products. Linamarin occurs in manioc (Manihot utilissimus), flax (Linum usitatissimum), Phaseolus lunatus (butter bean), Trifolium repens (white clover) and other plants. First isloated in 1830.
Occurs in manioc (Manihot utilissimus), flax (Linum usitatissimum), Phaseolus lunatus (butter bean), Trifolium repens (white clover) and other plants. First isol in 1830. Linamarin is found in many foods, some of which are gooseberry, chinese broccoli, cascade huckleberry, and leek.
Linamarin is found in coffee and coffee products. Linamarin occurs in manioc (Manihot utilissimus), flax (Linum usitatissimum), Phaseolus lunatus (butter bean), Trifolium repens (white clover) and other plants. First isloated in 1830.
Linamarin, a natural compound, possesses anticancer activity[1].
Linamarin, a natural compound, possesses anticancer activity[1].
同义名列表
37 个代谢物同义名
2-Methyl-2-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)propanenitrile; 2-methyl-2-((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yloxy)propanenitrile; 2-methyl-2-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propanenitrile; 2-methyl-2-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropanenitrile; alpha-Hydroxyisobutyronitrile beta-D-glucopyranoside, >=98.0\\% (HPLC); Propanenitrile, 2-(beta-D-glucopyranosyloxy)-2-methyl-; 2-(.BETA.-D-GLUCOPYRANOSYLOXY)-2-METHYLPROPANENITRILE; 2-(b-D-Glucopyranosyloxy)-2-methylpropanenitrile, 9CI; 2-(beta-D-Glucopyranosyloxy)-2-methyl-Propanenitrile; alpha-Hydroxyisobutyronitrile beta-D-glucopyranoside; 2-(beta-D-Glucopyranosyloxy)-2-methylpropanenitrile; 2-beta-d-glucopyranosyloxy-2-methylpropanenitrile; alpha-Hydroxyisobutyronitrile-beta-D-glucose; 5-17-07-00397 (Beilstein Handbook Reference); 2-(beta-D-Glucopyranosyloxy)isobutyronitrile; 1-cyano-1-methylethyl beta-D-glucoside; 1-Cyano-1-methylethyl b-D-glucoside; 1-Cyano-1-methylethyl β-D-glucoside; Linamarin min. 99\\%; Spectrum5_000575; Spectrum3_001622; Spectrum4_001668; LINAMARIN [HSDB]; Spectrum2_001972; UNII-H3V9RP3WLO; LINAMARIN [MI]; DivK1c_007032; phaseolunatin; KBio3_002503; KBio2_007628; KBio1_001976; KBio2_002492; KBio2_005060; Manihotoxin; H3V9RP3WLO; Linamarin; Linamarin
数据库引用编号
22 个数据库交叉引用编号
- ChEBI: CHEBI:16441
- KEGG: C01594
- PubChem: 11128
- HMDB: HMDB0033699
- Metlin: METLIN63624
- ChEMBL: CHEMBL3039425
- Wikipedia: Linamarin
- MeSH: linamarin
- ChemIDplus: 0000554358
- MetaCyc: LINAMARIN
- KNApSAcK: C00001446
- foodb: FDB011809
- chemspider: 10657
- CAS: 554-35-8
- medchemexpress: HY-123114
- PMhub: MS000013177
- PubChem: 4749
- NIKKAJI: J6.462I
- RefMet: Linamarin
- LOTUS: LTS0032647
- KNApSAcK: 16441
- LOTUS: LTS0206216
分类词条
相关代谢途径
Reactome(0)
BioCyc(4)
PlantCyc(4)
代谢反应
48 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(5)
- linustatin bioactivation:
2-hydroxy-2-methylpropanenitrile ⟶ acetone + hydrogen cyanide
- linamarin degradation:
H2O + linamarin ⟶ β-D-glucose + acetone cyanohydrin
- superpathway of linamarin and lotaustralin biosynthesis:
(E)-2-methylpropanal-oxime ⟶ (Z)-2-methylpropanal-oxime
- linamarin biosynthesis:
(E)-2-methylpropanal-oxime ⟶ (Z)-2-methylpropanal-oxime
- linamarin degradation:
2-hydroxy-2-methylpropanenitrile ⟶ acetone + hydrogen cyanide
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(43)
- linustatin bioactivation:
H2O + linamarin ⟶ 2-hydroxy-2-methylpropanenitrile + D-glucopyranose
- linustatin bioactivation:
2-hydroxy-2-methylpropanenitrile ⟶ acetone + hydrogen cyanide
- linustatin bioactivation:
H2O + linustatin ⟶ D-glucopyranose + linamarin
- glucosinolate activation:
H2O + an aliphatic glucosinolate ⟶ D-glucopyranose + a thiohydroximate-O-sulfate
- linamarin degradation:
H2O + linamarin ⟶ 2-hydroxy-2-methylpropanenitrile + D-glucopyranose
- linamarin degradation:
H2O + linamarin ⟶ 2-hydroxy-2-methylpropanenitrile + D-glucopyranose
- linamarin degradation:
2-hydroxy-2-methylpropanenitrile ⟶ acetone + hydrogen cyanide
- superpathway of linamarin and lotaustralin biosynthesis:
N,N-dihydroxy-L-valine + H+ ⟶ (E)-2-methylpropanal-oxime + CO2 + H2O
- linamarin biosynthesis:
N,N-dihydroxy-L-valine + H+ ⟶ (E)-2-methylpropanal-oxime + CO2 + H2O
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- superpathway of linamarin and lotaustralin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- superpathway of linamarin and lotaustralin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- superpathway of linamarin and lotaustralin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- superpathway of linamarin and lotaustralin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- superpathway of linamarin and lotaustralin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- superpathway of linamarin and lotaustralin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- linamarin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- superpathway of linamarin and lotaustralin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
- superpathway of linamarin and lotaustralin biosynthesis:
2-hydroxy-2-methylpropanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + linamarin
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
173 个相关的物种来源信息
- 3808 - Acacia: LTS0206216
- 4210 - Asteraceae: LTS0206216
- 13490 - Dimorphotheca: LTS0206216
- 2759 - Eukaryota: LTS0032647
- 2759 - Eukaryota: LTS0206216
- 3977 - Euphorbiaceae: LTS0032647
- 3977 - Euphorbiaceae: LTS0206216
- 3803 - Fabaceae: LTS0206216
- 3980 - Hevea: LTS0206216
- 336955 - Hevea benthamiana:
- 336955 - Hevea benthamiana: 10.1016/0031-9422(91)83601-G
- 336955 - Hevea benthamiana: 10.1016/S0031-9422(00)81211-X
- 336955 - Hevea benthamiana: LTS0206216
- 3981 - Hevea brasiliensis:
- 3981 - Hevea brasiliensis: 10.1016/0031-9422(91)83601-G
- 3981 - Hevea brasiliensis: 10.1016/S0031-9422(00)81211-X
- 3981 - Hevea brasiliensis: 10.1016/S0031-9422(00)86154-3
- 3981 - Hevea brasiliensis: 10.4038/JNSFSR.V19I2.8157
- 3981 - Hevea brasiliensis: LTS0206216
- 2733477 - Hevea camargoana:
- 2733477 - Hevea camargoana: 10.1016/0031-9422(91)83601-G
- 2733477 - Hevea camargoana: 10.1016/S0031-9422(00)81211-X
- 2733477 - Hevea camargoana: LTS0206216
- 882917 - Hevea guianensis: 10.1016/S0031-9422(00)81211-X
- 882917 - Hevea guianensis: LTS0206216
- 1318717 - Hevea pauciflora:
- 1318717 - Hevea pauciflora: 10.1016/0031-9422(91)83601-G
- 1318717 - Hevea pauciflora: 10.1016/S0031-9422(00)81211-X
- 1318717 - Hevea pauciflora: LTS0206216
- 1318718 - Hevea spruceana: 10.1016/S0031-9422(00)81211-X
- 1318718 - Hevea spruceana: LTS0206216
- 9606 - Homo sapiens: -
- 4004 - Linaceae: LTS0032647
- 4004 - Linaceae: LTS0206216
- 4005 - Linum: LTS0032647
- 4005 - Linum: LTS0206216
- 1000420 - Linum alpinum: LTS0206216
- 586375 - Linum austriacum: 10.1016/S0031-9422(97)00953-9
- 586375 - Linum austriacum: LTS0206216
- 524254 - Linum catharticum: 10.1016/S0031-9422(97)00953-9
- 524254 - Linum catharticum: LTS0206216
- 559336 - Linum grandiflorum:
- 559336 - Linum grandiflorum: 10.1016/S0031-9422(00)86154-3
- 559336 - Linum grandiflorum: 10.1080/14786410802364168
- 559336 - Linum grandiflorum: LTS0032647
- 559336 - Linum grandiflorum: LTS0206216
- 544668 - Linum narbonense: 10.1016/S0031-9422(00)86154-3
- 544668 - Linum narbonense: LTS0206216
- 35941 - Linum perenne: 10.1016/S0031-9422(00)86154-3
- 35941 - Linum perenne: LTS0206216
- 586397 - Linum tenuifolium: 10.1016/S0031-9422(97)00953-9
- 586397 - Linum tenuifolium: LTS0206216
- 4006 - Linum usitatissimum:
- 4006 - Linum usitatissimum: 10.1007/BF02540586
- 4006 - Linum usitatissimum: 10.1016/S0031-9422(00)86154-3
- 4006 - Linum usitatissimum: 10.1016/S0031-9422(97)00953-9
- 4006 - Linum usitatissimum: 10.1021/JF00020A010
- 4006 - Linum usitatissimum: 10.1021/JF00118A027
- 4006 - Linum usitatissimum: 10.1021/JF950838J
- 4006 - Linum usitatissimum: LTS0032647
- 4006 - Linum usitatissimum: LTS0206216
- 4006 - Linum usitatissimum L.: -
- 3867 - Lotus: LTS0206216
- 181260 - Lotus arabicus: 10.1016/S0031-9422(00)86154-3
- 181260 - Lotus arabicus: LTS0206216
- 118906 - Lotus arenarius: 10.1016/S0031-9422(00)86154-3
- 118906 - Lotus arenarius: LTS0206216
- 47247 - Lotus corniculatus: 10.1016/S0031-9422(00)86154-3
- 47247 - Lotus corniculatus: LTS0206216
- 1211582 - Lotus corniculatus subsp. corniculatus: 10.1111/J.1365-313X.2011.04685.X
- 1211582 - Lotus corniculatus subsp. corniculatus: LTS0206216
- 181267 - Lotus creticus:
- 181267 - Lotus creticus: 10.1016/0031-9422(90)89077-M
- 181267 - Lotus creticus: 10.1016/S0031-9422(00)86154-3
- 181267 - Lotus creticus: LTS0206216
- 347380 - Lotus cytisoides:
- 181270 - Lotus edulis: 10.1016/S0031-9422(00)86154-3
- 181270 - Lotus edulis: LTS0206216
- 181271 - Lotus gebelia: 10.1016/S0031-9422(00)86154-3
- 34305 - Lotus japonicus: 10.1111/J.1365-313X.2011.04685.X
- 181276 - Lotus maroccanus: 10.1016/S0031-9422(00)86154-3
- 181276 - Lotus maroccanus: LTS0206216
- 181280 - Lotus parviflorus: 10.1016/S0031-9422(00)86154-3
- 181280 - Lotus parviflorus: LTS0206216
- 347994 - Lotus pedunculatus: 10.1016/S0031-9422(00)86154-3
- 347996 - Lotus tenuis: 10.1016/S0031-9422(00)86154-3
- 347996 - Lotus tenuis: LTS0206216
- 181288 - Lotus uliginosus: 10.1016/S0031-9422(00)86154-3
- 3398 - Magnoliopsida: LTS0032647
- 3398 - Magnoliopsida: LTS0206216
- 3982 - Manihot: LTS0032647
- 3982 - Manihot: LTS0206216
- 510184 - Manihot carthagenensis: 10.1016/S0031-9422(00)86154-3
- 510184 - Manihot carthaginensis: 10.1016/S0031-9422(00)86154-3
- 3983 - Manihot esculenta:
- 3983 - Manihot esculenta: 10.1016/0003-9861(92)90062-2
- 3983 - Manihot esculenta: 10.1016/0031-9422(94)00878-W
- 3983 - Manihot esculenta: 10.1016/0031-9422(95)00398-Q
- 3983 - Manihot esculenta: 10.1021/JF00118A027
- 3983 - Manihot esculenta: 10.3891/ACTA.CHEM.SCAND.48-0178
- 3983 - Manihot esculenta: 10.3891/ACTA.CHEM.SCAND.49-0540
- 3983 - Manihot esculenta: LTS0032647
- 3983 - Manihot esculenta: LTS0206216
- 41617 - Osteospermum: LTS0206216
- 1053381 - Osteospermum ecklonis: 10.1016/S0031-9422(00)86154-3
- 1053381 - Osteospermum ecklonis: LTS0206216
- 379268 - Osteospermum jucundum: 10.1016/S0031-9422(00)86154-3
- 379268 - Osteospermum jucundum: LTS0206216
- 3684 - Passiflora: LTS0032647
- 3684 - Passiflora: LTS0206216
- 237834 - Passiflora adenopoda:
- 237834 - Passiflora adenopoda: 10.1016/0031-9422(86)88016-5
- 237834 - Passiflora adenopoda: 10.1016/S0031-9422(01)00485-X
- 237834 - Passiflora adenopoda: LTS0206216
- 159421 - Passiflora foetida:
- 159421 - Passiflora foetida: 10.1016/S0031-9422(01)00485-X
- 159421 - Passiflora foetida: 10.1016/S0031-9422(98)80070-8
- 159421 - Passiflora foetida: LTS0032647
- 159421 - Passiflora foetida: LTS0206216
- 330177 - Passiflora lutea:
- 330177 - Passiflora lutea: 10.1016/0305-1978(85)90039-0
- 330177 - Passiflora lutea: 10.1016/S0031-9422(01)00485-X
- 330177 - Passiflora lutea: LTS0206216
- 159435 - Passiflora morifolia:
- 159435 - Passiflora morifolia: 10.1016/0031-9422(86)88016-5
- 159435 - Passiflora morifolia: 10.1016/0031-9422(92)80427-G
- 159435 - Passiflora morifolia: 10.1016/0031-9422(96)00065-9
- 159435 - Passiflora morifolia: 10.1016/S0031-9422(01)00485-X
- 159435 - Passiflora morifolia: 10.1055/S-2007-971239
- 159435 - Passiflora morifolia: LTS0032647
- 159435 - Passiflora morifolia: LTS0206216
- 1341377 - Passiflora pendens:
- 1341377 - Passiflora pendens: 10.1016/0031-9422(86)88016-5
- 1341377 - Passiflora pendens: 10.1016/S0031-9422(01)00485-X
- 1341377 - Passiflora pendens: LTS0206216
- 1822414 - Passiflora subpeltata: 10.1016/0031-9422(89)85023-X
- 1822414 - Passiflora subpeltata: LTS0032647
- 1822414 - Passiflora subpeltata: LTS0206216
- 3683 - Passifloraceae: LTS0032647
- 3683 - Passifloraceae: LTS0206216
- 3883 - Phaseolus: LTS0206216
- 3884 - Phaseolus lunatus:
- 3884 - Phaseolus lunatus: 10.1016/S0031-9422(00)86154-3
- 3884 - Phaseolus lunatus: 10.1021/JF00118A027
- 3884 - Phaseolus lunatus: LTS0206216
- 33090 - Plants: -
- 35493 - Streptophyta: LTS0032647
- 35493 - Streptophyta: LTS0206216
- 58023 - Tracheophyta: LTS0032647
- 58023 - Tracheophyta: LTS0206216
- 3898 - Trifolium: LTS0206216
- 74524 - Trifolium occidentale: 10.1016/S0305-1978(99)00110-6
- 74524 - Trifolium occidentale: LTS0206216
- 3899 - Trifolium repens:
- 3899 - Trifolium repens: 10.1002/PCA.2800050511
- 3899 - Trifolium repens: 10.1016/0304-4211(84)90134-2
- 3899 - Trifolium repens: 10.1016/S0031-9422(00)86154-3
- 3899 - Trifolium repens: 10.1016/S0031-9422(00)97343-6
- 3899 - Trifolium repens: 10.1016/S0305-1978(99)00110-6
- 3899 - Trifolium repens: LTS0206216
- 45183 - Turnera: LTS0032647
- 45183 - Turnera: LTS0206216
- 1908416 - Turnera angustifolia: 10.1016/0031-9422(96)00065-9
- 1908416 - Turnera angustifolia: LTS0032647
- 1908416 - Turnera angustifolia: LTS0206216
- 45184 - Turnera ulmifolia: 10.1016/0031-9422(96)00065-9
- 45184 - Turnera ulmifolia: LTS0032647
- 45184 - Turnera ulmifolia: LTS0206216
- 45182 - Turneraceae: LTS0032647
- 45182 - Turneraceae: LTS0206216
- 207708 - Vachellia aroma: 10.1016/0305-1978(83)90023-6
- 33090 - Viridiplantae: LTS0032647
- 33090 - Viridiplantae: LTS0206216
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Matthew S Bramble, Neerja Vashist, Arthur Ko, Sambhawa Priya, Céleste Musasa, Alban Mathieu, D' Andre Spencer, Michel Lupamba Kasendue, Patrick Mamona Dilufwasayo, Kevin Karume, Joanna Nsibu, Hans Manya, Mary N A Uy, Brian Colwell, Michael Boivin, J P Banae Mayambu, Daniel Okitundu, Arnaud Droit, Dieudonné Mumba Ngoyi, Ran Blekhman, Desire Tshala-Katumbay, Eric Vilain. The gut microbiome in konzo.
Nature communications.
2021 09; 12(1):5371. doi:
10.1038/s41467-021-25694-1
. [PMID: 34508085] - Michael L A E Easson, Osnat Malka, Christian Paetz, Anna Hojná, Michael Reichelt, Beate Stein, Sharon van Brunschot, Ester Feldmesser, Lahcen Campbell, John Colvin, Stephan Winter, Shai Morin, Jonathan Gershenzon, Daniel G Vassão. Activation and detoxification of cassava cyanogenic glucosides by the whitefly Bemisia tabaci.
Scientific reports.
2021 06; 11(1):13244. doi:
10.1038/s41598-021-92553-w
. [PMID: 34168179] - Érika C Pinheiro de Castro, Rojan Demirtas, Anna Orteu, Carl Erik Olsen, Mohammed Saddik Motawie, Márcio Zikan Cardoso, Mika Zagrobelny, Søren Bak. The dynamics of cyanide defences in the life cycle of an aposematic butterfly: Biosynthesis versus sequestration.
Insect biochemistry and molecular biology.
2020 01; 116(?):103259. doi:
10.1016/j.ibmb.2019.103259
. [PMID: 31698083] - Rafael Díaz-Sobac, Alma Vázquez-Luna, Eduardo Rivadeneyra-Domínguez, Juan Francisco Rodríguez-Landa, Tomás Guerrero, J Sergio Durand-Niconoff. New paths of cyanogenesis from enzymatic-promoted cleavage of β-cyanoglucosides are suggested by a mixed DFT/QTAIM approach.
Journal of molecular modeling.
2019 Sep; 25(9):295. doi:
10.1007/s00894-019-4170-9
. [PMID: 31478108] - E Rivadeneyra-Domínguez, C J Rosas-Jarquín, A Vázquez-Luna, R Díaz-Sobac, J F Rodríguez-Landa. Effects of acetone cyanohydrin, a derivative of cassava, on motor activity and kidney and liver function in Wistar rats.
Neurologia (Barcelona, Spain).
2019 Jun; 34(5):300-308. doi:
10.1016/j.nrl.2017.01.004
. [PMID: 28318734] - Nusra Tongtubtim, Pornpanna Thenchartanan, Khakhanang Ratananikom, Khuanjarat Choengpanya, Jisnuson Svasti, Prachumporn T Kongsaeree. Multiple mutations in the aglycone binding pocket to convert the substrate specificity of dalcochinase to linamarase.
Biochemical and biophysical research communications.
2018 10; 504(4):647-653. doi:
10.1016/j.bbrc.2018.08.202
. [PMID: 30205957] - Youn Young Shim, Clara M Olivia, Jun Liu, Rineke Boonen, Jianheng Shen, Martin J T Reaney. Secoisolariciresinol Diglucoside and Cyanogenic Glycosides in Gluten-free Bread Fortified with Flaxseed Meal.
Journal of agricultural and food chemistry.
2016 Dec; 64(50):9551-9558. doi:
10.1021/acs.jafc.6b03962
. [PMID: 27998066] - Daniela Lai, Martina Pičmanová, Maher Abou Hachem, Mohammed Saddik Motawia, Carl Erik Olsen, Birger Lindberg Møller, Fred Rook, Adam M Takos. Lotus japonicus flowers are defended by a cyanogenic β-glucosidase with highly restricted expression to essential reproductive organs.
Plant molecular biology.
2015 Sep; 89(1-2):21-34. doi:
10.1007/s11103-015-0348-4
. [PMID: 26249044] - Islamiyat Folashade Bolarinwa. Synthesis and Characterization of Hapten-Protein Conjugates for Antibody Production against Cyanogenic Glycosides.
Journal of food protection.
2015 Jul; 78(7):1408-13. doi:
10.4315/0362-028x.jfp-15-033
. [PMID: 26197297] - M Sulyok, F Beed, S Boni, A Abass, A Mukunzi, R Krska. Quantitation of multiple mycotoxins and cyanogenic glucosides in cassava samples from Tanzania and Rwanda by an LC-MS/MS-based multi-toxin method.
Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment.
2015; 32(4):488-502. doi:
10.1080/19440049.2014.975752
. [PMID: 25350522] - Joel Fürstenberg-Hägg, Mika Zagrobelny, Kirsten Jørgensen, Heiko Vogel, Birger Lindberg Møller, Søren Bak. Chemical defense balanced by sequestration and de novo biosynthesis in a lepidopteran specialist.
PloS one.
2014; 9(10):e108745. doi:
10.1371/journal.pone.0108745
. [PMID: 25299618] - Eduardo Rivadeneyra-Domínguez, Alma Vázquez-Luna, Juan Francisco Rodríguez-Landa, Rafael Díaz-Sobac. Neurotoxic effect of linamarin in rats associated with cassava (Manihot esculenta Crantz) consumption.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2013 Sep; 59(?):230-5. doi:
10.1016/j.fct.2013.06.004
. [PMID: 23778051] - Jumat Salimon, Bashar Mudhaffar Abdullah, Nadia Salih. Rubber (Hevea brasiliensis) seed oil toxicity effect and Linamarin compound analysis.
Lipids in health and disease.
2012 Jun; 11(?):74. doi:
10.1186/1476-511x-11-74
. [PMID: 22694753] - Shigeki Saito, Mohammed Saddik Motawia, Carl Erik Olsen, Birger Lindberg Møller, Søren Bak. Biosynthesis of rhodiocyanosides in Lotus japonicus: rhodiocyanoside A is synthesized from (Z)-2-methylbutanaloxime via 2-methyl-2-butenenitrile.
Phytochemistry.
2012 May; 77(?):260-7. doi:
10.1016/j.phytochem.2012.01.020
. [PMID: 22385904] - Willie Girald, Alejandro Collin, Marta Izquierdo. Toxicity and delivery methods for the linamarase/linamarin/glucose oxidase system, when used against human glioma tumors implanted in the brain of nude rats.
Cancer letters.
2011 Dec; 313(1):99-107. doi:
10.1016/j.canlet.2011.08.029
. [PMID: 21955616] - Rubini Kannangara, Mohammed S Motawia, Natascha K K Hansen, Suzanne M Paquette, Carl E Olsen, Birger L Møller, Kirsten Jørgensen. Characterization and expression profile of two UDP-glucosyltransferases, UGT85K4 and UGT85K5, catalyzing the last step in cyanogenic glucoside biosynthesis in cassava.
The Plant journal : for cell and molecular biology.
2011 Oct; 68(2):287-301. doi:
10.1111/j.1365-313x.2011.04695.x
. [PMID: 21736650] - Priya Kali Dhas, Pachiappan Chitra, Sylvia Jayakumar, Aruna Rita Mary. Study of the effects of hydrogen cyanide exposure in Cassava workers.
Indian journal of occupational and environmental medicine.
2011 Sep; 15(3):133-6. doi:
10.4103/0019-5278.93204
. [PMID: 22412292] - Sukhuman Whankaew, Supannee Poopear, Supanath Kanjanawattanawong, Sithichoke Tangphatsornruang, Opas Boonseng, David A Lightfoot, Kanokporn Triwitayakorn. A genome scan for quantitative trait loci affecting cyanogenic potential of cassava root in an outbred population.
BMC genomics.
2011 May; 12(?):266. doi:
10.1186/1471-2164-12-266
. [PMID: 21609492] - Roman M Kassa, Nyamabo L Kasensa, Victor H Monterroso, Robert J Kayton, John E Klimek, Larry L David, Kalala R Lunganza, Kazadi T Kayembe, Marina Bentivoglio, Sharon L Juliano, Desire D Tshala-Katumbay. On the biomarkers and mechanisms of konzo, a distinct upper motor neuron disease associated with food (cassava) cyanogenic exposure.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2011 Mar; 49(3):571-8. doi:
10.1016/j.fct.2010.05.080
. [PMID: 20538033] - Bola Adamolekun. Neurological disorders associated with cassava diet: a review of putative etiological mechanisms.
Metabolic brain disease.
2011 Mar; 26(1):79-85. doi:
10.1007/s11011-011-9237-y
. [PMID: 21327546] - Bala Nambisan. Strategies for elimination of cyanogens from cassava for reducing toxicity and improving food safety.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2011 Mar; 49(3):690-3. doi:
10.1016/j.fct.2010.10.035
. [PMID: 21074593] - Mohammad Abhary, Dimuth Siritunga, Gene Stevens, Nigel J Taylor, Claude M Fauquet. Transgenic biofortification of the starchy staple cassava (Manihot esculenta) generates a novel sink for protein.
PloS one.
2011 Jan; 6(1):e16256. doi:
10.1371/journal.pone.0016256
. [PMID: 21283593] - Mark Anglin Harris, Charles Kofi Koomson. Moisture-pressure combination treatments for cyanide reduction in grated cassava.
Journal of food science.
2011 Jan; 76(1):T20-4. doi:
10.1111/j.1750-3841.2010.01942.x
. [PMID: 21535726] - Joabe Gomes de Melo, Ariane Gaspar Santos, Elba Lúcia Cavalcanti de Amorim, Silene Carneiro do Nascimento, Ulysses Paulino de Albuquerque. Medicinal plants used as antitumor agents in Brazil: an ethnobotanical approach.
Evidence-based complementary and alternative medicine : eCAM.
2011; 2011(?):365359. doi:
10.1155/2011/365359
. [PMID: 21528006] - Narayanan N Narayanan, Uzoma Ihemere, Claire Ellery, Richard T Sayre. Overexpression of hydroxynitrile lyase in cassava roots elevates protein and free amino acids while reducing residual cyanogen levels.
PloS one.
2011; 6(7):e21996. doi:
10.1371/journal.pone.0021996
. [PMID: 21799761] - Niels Bjerg Jensen, Mika Zagrobelny, Karin Hjernø, Carl Erik Olsen, Jens Houghton-Larsen, Jonas Borch, Birger Lindberg Møller, Søren Bak. Convergent evolution in biosynthesis of cyanogenic defence compounds in plants and insects.
Nature communications.
2011; 2(?):273. doi:
10.1038/ncomms1271
. [PMID: 21505429] - M Guadalupe Rojas, Juan Alfredo Morales-Ramos. Tri-trophic level impact of host plant linamarin and lotaustralin on Tetranychus urticae and its predator Phytoseiulus persimilis.
Journal of chemical ecology.
2010 Dec; 36(12):1354-62. doi:
10.1007/s10886-010-9872-5
. [PMID: 20953678] - Adam Takos, Daniela Lai, Lisbeth Mikkelsen, Maher Abou Hachem, Dale Shelton, Mohammed Saddik Motawia, Carl Erik Olsen, Trevor L Wang, Cathie Martin, Fred Rook. Genetic screening identifies cyanogenesis-deficient mutants of Lotus japonicus and reveals enzymatic specificity in hydroxynitrile glucoside metabolism.
The Plant cell.
2010 May; 22(5):1605-19. doi:
10.1105/tpc.109.073502
. [PMID: 20453117] - Soad A L Bayoumi, Michael G Rowan, John R Beeching, Ian S Blagbrough. Constituents and secondary metabolite natural products in fresh and deteriorated cassava roots.
Phytochemistry.
2010 Apr; 71(5-6):598-604. doi:
10.1016/j.phytochem.2009.10.012
. [PMID: 20137795] - Lotte Kolind-Hansen, Leon Brimer. The retail market for fresh cassava root tubers in the European Union (EU): the case of Copenhagen, Denmark--a chemical food safety issue?.
Journal of the science of food and agriculture.
2010 Jan; 90(2):252-6. doi:
10.1002/jsfa.3804
. [PMID: 20355039] - Somphit Sornyotha, Khin Lay Kyu, Khanok Ratanakhanokchai. An efficient treatment for detoxification process of cassava starch by plant cell wall-degrading enzymes.
Journal of bioscience and bioengineering.
2010 Jan; 109(1):9-14. doi:
10.1016/j.jbiosc.2009.06.021
. [PMID: 20129074] - Mika Zagrobelny, Karsten Scheibye-Alsing, Niels Bjerg Jensen, Birger Lindberg Møller, Jan Gorodkin, Søren Bak. 454 pyrosequencing based transcriptome analysis of Zygaena filipendulae with focus on genes involved in biosynthesis of cyanogenic glucosides.
BMC genomics.
2009 Dec; 10(?):574. doi:
10.1186/1471-2164-10-574
. [PMID: 19954531] - Daniel J Ballhorn, Stefanie Kautz, Martin Heil, Adrian D Hegeman. Cyanogenesis of wild lima bean (Phaseolus lunatus L.) is an efficient direct defence in nature.
PloS one.
2009; 4(5):e5450. doi:
"
. [PMID: 19424497] - Vega García-Escudero, Ricardo Gargini. Autophagy induction as an efficient strategy to eradicate tumors.
Autophagy.
2008 Oct; 4(7):923-5. doi:
10.4161/auto.6714
. [PMID: 18716458] - Anne Vinther Morant, Nanna Bjarnholt, Mads Emil Kragh, Christian Hauge Kjaergaard, Kirsten Jørgensen, Suzanne Michelle Paquette, Markus Piotrowski, Anne Imberty, Carl Erik Olsen, Birger Lindberg Møller, Søren Bak. The beta-glucosidases responsible for bioactivation of hydroxynitrile glucosides in Lotus japonicus.
Plant physiology.
2008 Jul; 147(3):1072-91. doi:
10.1104/pp.107.109512
. [PMID: 18467457] - Nanna Bjarnholt, Mette Laegdsmand, Hans C B Hansen, Ole H Jacobsen, Birger Lindberg Møller. Leaching of cyanogenic glucosides and cyanide from white clover green manure.
Chemosphere.
2008 Jun; 72(6):897-904. doi:
10.1016/j.chemosphere.2008.03.047
. [PMID: 18472138] - Tetsuya Sakurai, Germán Plata, Fausto Rodríguez-Zapata, Motoaki Seki, Andrés Salcedo, Atsushi Toyoda, Atsushi Ishiwata, Joe Tohme, Yoshiyuki Sakaki, Kazuo Shinozaki, Manabu Ishitani. Sequencing analysis of 20,000 full-length cDNA clones from cassava reveals lineage specific expansions in gene families related to stress response.
BMC plant biology.
2007 Dec; 7(?):66. doi:
10.1186/1471-2229-7-66
. [PMID: 18096061] - Mika Zagrobelny, Søren Bak, Carl Erik Olsen, Birger Lindberg Møller. Intimate roles for cyanogenic glucosides in the life cycle of Zygaena filipendulae (Lepidoptera, Zygaenidae).
Insect biochemistry and molecular biology.
2007 Nov; 37(11):1189-97. doi:
10.1016/j.ibmb.2007.07.008
. [PMID: 17916505] - Christopher Avwoghokoghene Idibie, Hajierah Davids, Sunny Esayegbemu Iyuke. Cytotoxicity of purified cassava linamarin to a selected cancer cell lines.
Bioprocess and biosystems engineering.
2007 Jul; 30(4):261-9. doi:
10.1007/s00449-007-0122-3
. [PMID: 17566787] - Mika Zagrobelny, Søren Bak, Claus Thorn Ekstrøm, Carl Erik Olsen, Birger Lindberg Møller. The cyanogenic glucoside composition of Zygaena filipendulae (Lepidoptera: Zygaenidae) as effected by feeding on wild-type and transgenic lotus populations with variable cyanogenic glucoside profiles.
Insect biochemistry and molecular biology.
2007 Jan; 37(1):10-8. doi:
10.1016/j.ibmb.2006.09.008
. [PMID: 17175442] - Kirsten Jørgensen, Søren Bak, Peter Kamp Busk, Charlotte Sørensen, Carl Erik Olsen, Johanna Puonti-Kaerlas, Birger Lindberg Møller. Cassava plants with a depleted cyanogenic glucoside content in leaves and tubers. Distribution of cyanogenic glucosides, their site of synthesis and transport, and blockage of the biosynthesis by RNA interference technology.
Plant physiology.
2005 Sep; 139(1):363-74. doi:
10.1104/pp.105.065904
. [PMID: 16126856] - Ismael B F Fofana, Abdourahamane Sangaré, Ray Collier, Christopher Taylor, Claude M Fauquet. A geminivirus-induced gene silencing system for gene function validation in cassava.
Plant molecular biology.
2004 Nov; 56(4):613-24. doi:
10.1007/s11103-004-0161-y
. [PMID: 15630624] - Dimuth Siritunga, Richard Sayre. Engineering cyanogen synthesis and turnover in cassava (Manihot esculenta).
Plant molecular biology.
2004 Nov; 56(4):661-9. doi:
10.1007/s11103-004-3415-9
. [PMID: 15630626] - Lisbeth Garbrecht Thygesen, Kirsten Jørgensen, Birger Lindberg Møller, Søren Balling Engelsen. Raman spectroscopic analysis of cyanogenic glucosides in plants: development of a flow injection surface-enhanced Raman scatter (FI-SERS) method for determination of cyanide.
Applied spectroscopy.
2004 Feb; 58(2):212-7. doi:
10.1366/000370204322842959
. [PMID: 15000716] - Dimuth Siritunga, Diana Arias-Garzon, Wanda White, Richard T Sayre. Over-expression of hydroxynitrile lyase in transgenic cassava roots accelerates cyanogenesis and food detoxification.
Plant biotechnology journal.
2004 Jan; 2(1):37-43. doi:
10.1046/j.1467-7652.2003.00047.x
. [PMID: 17166141] - Lisbeth Riis, Anthony Charles Bellotti, Meredith Bonierbale, Gerard Michael O'Brien. Cyanogenic potential in cassava and its influence on a generalist insect herbivore Cyrtomenus bergi (Hemiptera: Cydnidae).
Journal of economic entomology.
2003 Dec; 96(6):1905-14. doi:
10.1093/jee/96.6.1905
. [PMID: 14977132] - V G Sreeja, N Nagahara, Q Li, M Minami. New aspects in pathogenesis of konzo: neural cell damage directly caused by linamarin contained in cassava (Manihot esculenta Crantz).
The British journal of nutrition.
2003 Aug; 90(2):467-72. doi:
10.1079/bjn2003902
. [PMID: 12908909] - Dimuth Siritunga, Richard T Sayre. Generation of cyanogen-free transgenic cassava.
Planta.
2003 Jul; 217(3):367-73. doi:
10.1007/s00425-003-1005-8
. [PMID: 14520563] - José María Izquierdo Rojo. [The canine model in the gene therapy of glioblastoma].
Anales de la Real Academia Nacional de Medicina.
2003; 120(4):703-10; discussion 711. doi:
. [PMID: 15147056]
- María Angélica Santana, Valeria Vásquez, Juan Matehus, Rafael Rangel Aldao. Linamarase expression in cassava cultivars with roots of low- and high-cyanide content.
Plant physiology.
2002 Aug; 129(4):1686-94. doi:
10.1104/pp.000927
. [PMID: 12177481] - Maria Luisa Cortés, Vega García-Escudero, Monica Hughes, Marta Izquierdo. Cyanide bystander effect of the linamarase/linamarin killer-suicide gene therapy system.
The journal of gene medicine.
2002 Jul; 4(4):407-14. doi:
10.1002/jgm.280
. [PMID: 12124983] - P B Grindley, F O Omoruyi, H N Asemota, E Y Morrison. Effect of yam (Dioscorea cayenensis) and dasheen (Colocassia esculenta) extracts on the kidney of streptozotocin-induced diabetic rats.
International journal of food sciences and nutrition.
2001 Sep; 52(5):429-33. doi:
10.1080/09637480120078311
. [PMID: 11517735] - A Onabolu, M Bokanga, T Tylleskär, H Rosling. High cassava production and low dietary cyanide exposure in mid-west Nigeria.
Public health nutrition.
2001 Feb; 4(1):3-9. doi:
10.1079/phn200049
. [PMID: 11255490] - Z Keresztessy, K Brown, M A Dunn, M A Hughes. Identification of essential active-site residues in the cyanogenic beta-glucosidase (linamarase) from cassava (Manihot esculenta Crantz) by site-directed mutagenesis.
The Biochemical journal.
2001 Jan; 353(Pt 2):199-205. doi:
10.1042/0264-6021:3530199
. [PMID: 11139381] - J Cliff, D Nicala, F Saute, R Givragy, G Azambuja, A Taela, L Chavane, A Gani. Ankle clonus and thiocyanate, linamarin, and inorganic sulphate excretion in school children in communities with Konzo, Mozambique.
Journal of tropical pediatrics.
1999 06; 45(3):139-42. doi:
10.1093/tropej/45.3.139
. [PMID: 10401190] - L Carlsson, N Mlingi, A Juma, G Ronquist, H Rosling. Metabolic fates in humans of linamarin in cassava flour ingested as stiff porridge.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
1999 Apr; 37(4):307-12. doi:
10.1016/s0278-6915(99)00015-0
. [PMID: 10418947] - B Nambisan. Cassava latex as a source of linamarase for determination of linamarin.
Journal of agricultural and food chemistry.
1999 Feb; 47(2):372-3. doi:
10.1021/jf980768r
. [PMID: 10563902] - M L Cortés, P de Felipe, V Martín, M A Hughes, M Izquierdo. Successful use of a plant gene in the treatment of cancer in vivo.
Gene therapy.
1998 Nov; 5(11):1499-507. doi:
10.1038/sj.gt.3300751
. [PMID: 9930303] - N Mlingi, M Abrahamsson, J Yuen, M Gebre-Medhin, H Rosling. Low cyanide exposure from consumption of cassava in Dar es Salaam, Tanzania.
Natural toxins.
1998; 6(2):67-72. doi:
10.1002/(sici)1522-7189(199804)6:2<67::aid-nt17>3.0.co;2-9
. [PMID: 9888632] - J P Banea-Mayambu, T Tylleskär, N Gitebo, N Matadi, M Gebre-Medhin, H Rosling. Geographical and seasonal association between linamarin and cyanide exposure from cassava and the upper motor neurone disease konzo in former Zaire.
Tropical medicine & international health : TM & IH.
1997 Dec; 2(12):1143-51. doi:
10.1046/j.1365-3156.1997.d01-215.x
. [PMID: 9438470] - T Barrett, C G Suresh, S P Tolley, E J Dodson, M A Hughes. The crystal structure of a cyanogenic beta-glucosidase from white clover, a family 1 glycosyl hydrolase.
Structure (London, England : 1993).
1995 Sep; 3(9):951-60. doi:
10.1016/s0969-2126(01)00229-5
. [PMID: 8535788] - B P Kamalu. The adverse effects of long-term cassava (Manihot esculenta Crantz) consumption.
International journal of food sciences and nutrition.
1995 Feb; 46(1):65-93. doi:
10.3109/09637489509003387
. [PMID: 7712344] - T Hernández, P Lundquist, L Oliveira, R Pérez Cristiá, E Rodriguez, H Rosling. Fate in humans of dietary intake of cyanogenic glycosides from roots of sweet cassava consumed in Cuba.
Natural toxins.
1995; 3(2):114-7. doi:
10.1002/nt.2620030210
. [PMID: 7613736] - L Carlsson, N Mlingi, G Ronquist, H Rosling. A specific and sensitive method for the determination of linamarin in Urine.
Natural toxins.
1995; 3(5):378-82. doi:
10.1002/nt.2620030509
. [PMID: 8581323] - L Carlsson, G Ronquist, H Rosling. Analysis of the cyanogenic glycoside linamarin in urine by isotachophoresis.
Journal of analytical toxicology.
1994 Mar; 18(2):91-4. doi:
10.1093/jat/18.2.91
. [PMID: 8207940] - L Brimer, H Rosling. Microdiffusion method with solid state detection of cyanogenic glycosides from cassava in human urine.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
1993 Aug; 31(8):599-603. doi:
10.1016/0278-6915(93)90210-p
. [PMID: 8349206] - B P Kamalu. Pathological changes in growing dogs fed on a balanced cassava (Manihot esculenta Crantz) diet.
The British journal of nutrition.
1993 May; 69(3):921-34. doi:
10.1079/bjn19930092
. [PMID: 8329365] - E N Maduagwu. Metabolism of linamarin in rats.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
1989 Jul; 27(7):451-4. doi:
10.1016/0278-6915(89)90031-8
. [PMID: 2550336] - G Padmaja, K R Panikkar. Pattern of enzyme changes in rabbits administered linamarin or potassium cyanide.
Indian journal of experimental biology.
1989 Jun; 27(6):551-5. doi:
. [PMID: 2555300]
- A Nahrstedt. Cyanogenesis and the role of cyanogenic compounds in insects.
Ciba Foundation symposium.
1988; 140(?):131-50. doi:
10.1002/9780470513712.ch9
. [PMID: 3073053] - I B Umoh, F O Ogunkoya, E N Maduagwu, O L Oke. Effect of thiamin status on the metabolism of linamarin in rats.
Annals of nutrition & metabolism.
1985; 29(5):319-24. doi:
10.1159/000176987
. [PMID: 4051453] - L Dalgaard, L Brimer. Electrochemical detection of cyanogenic glycosides after enzymatic post-column cleavage.
Journal of chromatography.
1984 Oct; 303(1):67-76. doi:
10.1016/s0021-9673(01)96046-7
. [PMID: 6511841] - M A Hughes, J D Stirling, D B Collinge. The inheritance of cyanoglucoside content in Trifolium repens L.
Biochemical genetics.
1984 Feb; 22(1-2):139-51. doi:
10.1007/bf00499294
. [PMID: 6712586] - M D Barret, J C Alexander, D C Hill. Effect of linamarin on thiocyanate production and thyroid activity in rats.
Journal of toxicology and environmental health.
1978 Sep; 4(5-6):735-40. doi:
10.1080/15287397809529695
. [PMID: 731726] - D J Philbrick, D C Hill, J C Alexander. Physiological and biochemical changes associated with linamarin administration to rats.
Toxicology and applied pharmacology.
1977 Dec; 42(3):539-51. doi:
10.1016/s0041-008x(77)80039-2
. [PMID: 203059] - M D Barrett, D C Hill, J C Alexander, A Zitnak. Fate of orally dosed linamarin in the rat.
Canadian journal of physiology and pharmacology.
1977 Feb; 55(1):134-6. doi:
10.1139/y77-021
. [PMID: 843989] - M LUDTKE. [Flax tuber linamarin].
Biochemische Zeitschrift.
1953; 323(6):428-36. doi:
"
. [PMID: 13066440] - . .
.
. doi:
. [PMID: 10636899]
- . .
.
. doi:
. [PMID: 1727632]
- . .
.
. doi:
. [PMID: 15122013]
- . .
.
. doi:
. [PMID: 21429539]
- . .
.
. doi:
. [PMID: 21045121]
- . .
.
. doi:
. [PMID: 20943239]