Chavicol (BioDeep_00000011486)
Secondary id: BioDeep_00000861772, BioDeep_00001868230
human metabolite PANOMIX_OTCML-2023 natural product
代谢物信息卡片
化学式: C9H10O (134.073161)
中文名称: 4-烯丙基苯酚, 對烯丙苯酚
谱图信息:
最多检出来源 Homo sapiens(plant) 8.94%
分子结构信息
SMILES: c1cc(ccc1CC=C)O
InChI: InChI=1S/C9H10O/c1-2-3-8-4-6-9(10)7-5-8/h2,4-7,10H,1,3H2
描述信息
Chavicol is found in allspice. Chavicol is found in many essential oils, e.g. anise and Gardenia. Chavicol is used in perfumery and flavours.
Found in many essential oils, e.g. anise and Gardenia. It is used in perfumery and flavours.
同义名列表
21 个代谢物同义名
laquo gammaraquo -(P-Hydroxyphenyl)-alpha -propylene; gamma-(p-Hydroxyphenyl)-alpha-propylene; g-(p-Hydroxyphenyl)-a-propylene; Γ-(p-hydroxyphenyl)-α-propylene; 3-(P-Hydroxyphenyl)-1-propene; Phenol, 4-(2-propenyl)- (9ci); 4-(prop-2-en-1-yl)phenol; 4-(Prop-2-enyl)-phenol; Phenol, P-allyl- (8ci); 4-(2-Propenyl)-phenol; P-Hydroxyallylpropene; p-Hydroxyallylbenzene; 4-(2-Propenyl)phenol; alpha -Propylene; P-Allyl-phenol; p-Allylphenol; 4-Allylphenol; p-Chavicol; Chavicol; Chavicol; 4-Allylphenol
数据库引用编号
17 个数据库交叉引用编号
- ChEBI: CHEBI:50158
- KEGG: C16930
- PubChem: 68148
- HMDB: HMDB0034107
- Metlin: METLIN71442
- ChEMBL: CHEMBL108862
- Wikipedia: Chavicol
- MetaCyc: CPD-6483
- KNApSAcK: C00000621
- foodb: FDB012373
- chemspider: 21105856
- CAS: 501-92-8
- PMhub: MS000025493
- PubChem: 96023422
- NIKKAJI: J6.195F
- LOTUS: LTS0008864
- KNApSAcK: 50158
分类词条
相关代谢途径
Reactome(0)
代谢反应
37 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(2)
- volatile cinnamoic ester biosynthesis:
SAM + isoeugenol ⟶ H+ + SAH + isomethyleugenol
- furcatin degradation:
H2O + furcatin ⟶ β-D-apiofuranosyl-(1->6)-D-glucose + chavicol
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(35)
- furcatin degradation:
H2O + furcatin ⟶ β-D-apiofuranosyl-(1->6)-D-glucose + chavicol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + isoeugenol ⟶ H+ + SAH + isomethyleugenol
- furcatin degradation:
H2O + furcatin ⟶ β-D-apiofuranosyl-(1->6)-D-glucose + chavicol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- furcatin degradation:
H2O + furcatin ⟶ β-D-apiofuranosyl-(1->6)-D-glucose + chavicol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- furcatin degradation:
H2O + furcatin ⟶ β-D-apiofuranosyl-(1->6)-D-glucose + chavicol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- furcatin degradation:
H2O + furcatin ⟶ β-D-apiofuranosyl-(1->6)-D-glucose + chavicol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- furcatin degradation:
H2O + furcatin ⟶ β-D-apiofuranosyl-(1->6)-D-glucose + chavicol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + isoeugenol ⟶ H+ + SAH + isomethyleugenol
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
91 个相关的物种来源信息
- 4206 - Adoxaceae: LTS0008864
- 39130 - Agastache: LTS0008864
- 39271 - Agastache rugosa: 10.1080/10412905.1992.9698139
- 39271 - Agastache rugosa: LTS0008864
- 3515 - Alnus: LTS0008864
- 109067 - Alnus pendula: 10.1246/BCSJ.45.2058
- 109067 - Alnus pendula: LTS0008864
- 94326 - Alpinia: LTS0008864
- 105671 - Alpinia conchigera:
- 105671 - Alpinia conchigera: 10.1016/S0031-9422(00)90374-1
- 105671 - Alpinia conchigera: 10.1080/10412905.1995.9698499
- 105671 - Alpinia conchigera: LTS0008864
- 94327 - Alpinia galanga: 10.1016/S0031-9422(00)80814-6
- 94327 - Alpinia galanga: LTS0008864
- 4037 - Apiaceae: LTS0008864
- 4210 - Asteraceae: LTS0008864
- 3514 - Betulaceae: LTS0008864
- 13428 - Cinnamomum: LTS0008864
- 119261 - Cinnamomum burmannii: 10.1248/YAKUSHI1947.106.1_17
- 119266 - Cinnamomum sieboldii: 10.1248/YAKUSHI1947.106.1_17
- 119266 - Cinnamomum sieboldii: LTS0008864
- 392618 - Cunila: 10.1007/S00299-018-2303-8
- 392618 - Cunila: LTS0008864
- 4609 - Cyperaceae: LTS0008864
- 4610 - Cyperus: LTS0008864
- 1423382 - Cyperus conglomeratus: 10.1002/CHIN.200052207
- 1423382 - Cyperus conglomeratus: LTS0008864
- 2759 - Eukaryota: LTS0008864
- 9606 - Homo sapiens: -
- 13097 - Illicium: LTS0008864
- 124772 - Illicium difengpi: 10.1673/031.011.15201
- 124772 - Illicium difengpi: LTS0008864
- 4136 - Lamiaceae: LTS0008864
- 3433 - Lauraceae: LTS0008864
- 4447 - Liliopsida: LTS0008864
- 3402 - Magnolia: LTS0008864
- 1010628 - Magnolia garrettii: 10.1055/S-2006-960999
- 1010628 - Magnolia garrettii: LTS0008864
- 349509 - Magnolia obovata:
- 349509 - Magnolia obovata: 10.1248/YAKUSHI1947.96.2_218
- 349509 - Magnolia obovata: LTS0008864
- 3401 - Magnoliaceae: LTS0008864
- 3398 - Magnoliopsida: LTS0008864
- 24647 - Mandragora: LTS0008864
- 389206 - Mandragora autumnalis: 10.1080/10412905.1998.9700991
- 389206 - Mandragora autumnalis: LTS0008864
- 33117 - Mandragora officinarum: 10.1080/10412905.1998.9700991
- 33117 - Mandragora officinarum: LTS0008864
- 3931 - Myrtaceae: LTS0008864
- 4085 - Nicotiana: LTS0008864
- 118694 - Nicotiana bonariensis: 10.1016/J.PHYTOCHEM.2006.05.038
- 118694 - Nicotiana bonariensis: LTS0008864
- 39173 - Ocimum: LTS0008864
- 49557 - Osmorhiza: LTS0008864
- 49558 - Osmorhiza aristata: 10.1248/YAKUSHI1947.99.11_1116
- 49558 - Osmorhiza aristata: LTS0008864
- 260138 - Pimenta: LTS0008864
- 260139 - Pimenta racemosa:
- 260139 - Pimenta racemosa: 10.1002/FFJ.2730100506
- 260139 - Pimenta racemosa: 10.1080/10412905.1991.9697952
- 260139 - Pimenta racemosa: 10.1080/10412905.1995.9698553
- 260139 - Pimenta racemosa: LTS0008864
- 3318 - Pinaceae: LTS0008864
- 58019 - Pinopsida: LTS0008864
- 3337 - Pinus: LTS0008864
- 3339 - Pinus contorta: 10.1016/0031-9422(77)84029-6
- 3339 - Pinus contorta: LTS0008864
- 13215 - Piper: LTS0008864
- 13217 - Piper betle: 10.1021/JF00126A011
- 13217 - Piper betle: LTS0008864
- 16739 - Piperaceae: LTS0008864
- 16733 - Schisandraceae: LTS0008864
- 4070 - Solanaceae: LTS0008864
- 59293 - Solidago: LTS0008864
- 1223618 - Solidago odora: 10.1016/S0031-9422(00)83939-4
- 1223618 - Solidago odora: LTS0008864
- 35493 - Streptophyta: LTS0008864
- 178174 - Syzygium: LTS0008864
- 219868 - Syzygium aromaticum: 10.1007/S00436-011-2425-1
- 219868 - Syzygium aromaticum: LTS0008864
- 13707 - Tagetes: LTS0008864
- 169606 - Tagetes lucida: 10.1002/(SICI)1099-1026(199701)12:1<47::AID-FFJ610>3.0.CO;2-7
- 169606 - Tagetes lucida: LTS0008864
- 58023 - Tracheophyta: LTS0008864
- 4204 - Viburnum: LTS0008864
- 237940 - Viburnum furcatum: 10.1016/S0031-9422(00)81125-5
- 237940 - Viburnum furcatum: LTS0008864
- 237942 - Viburnum japonicum: 10.1271/BBB1961.40.2283
- 237942 - Viburnum japonicum: LTS0008864
- 33090 - Viridiplantae: LTS0008864
- 4642 - Zingiberaceae: LTS0008864
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Yue Yang, Zihe Li, Hang Zong, Shimeng Liu, Qiuhui Du, Hao Wu, Zhenzhu Li, Xiao Wang, Lihui Huang, Changlong Lai, Meide Zhang, Wen Wang, Xianqing Chen. Identification and Validation of Magnolol Biosynthesis Genes in Magnolia officinalis.
Molecules (Basel, Switzerland).
2024 Jan; 29(3):. doi:
10.3390/molecules29030587
. [PMID: 38338333] - Daniela-Simina Stefan, Mariana Popescu, Cristina-Mihaela Luntraru, Alexandru Suciu, Mihai Belcu, Lucia-Elena Ionescu, Mihaela Popescu, Petrica Iancu, Mircea Stefan. Comparative Study of Useful Compounds Extracted from Lophanthus anisatus by Green Extraction.
Molecules (Basel, Switzerland).
2022 Nov; 27(22):. doi:
10.3390/molecules27227737
. [PMID: 36431837] - Itay Gonda, Adi Faigenboim, Chen Adler, Renana Milavski, Merrie-Jean Karp, Alona Shachter, Gil Ronen, Kobi Baruch, David Chaimovitsh, Nativ Dudai. The genome sequence of tetraploid sweet basil, Ocimum basilicum L., provides tools for advanced genome editing and molecular breeding.
DNA research : an international journal for rapid publication of reports on genes and genomes.
2020 Dec; 27(5):. doi:
10.1093/dnares/dsaa027
. [PMID: 33340318] - Akhtar Atiya, Barij Nayan Sinha, Uma Ranjan Lal. The new ether derivative of phenylpropanoid and bioactivity was investigated from the leaves of Piper betle L.
Natural product research.
2020 Mar; 34(5):638-645. doi:
10.1080/14786419.2018.1495634
. [PMID: 30169967] - Akhtar Atiya, Barij Nayan Sinha, Uma Ranjan Lal. Bioactive phenylpropanoid analogues from Piper betle L. var. birkoli leaves.
Natural product research.
2017 Nov; 31(22):2604-2611. doi:
10.1080/14786419.2017.1285297
. [PMID: 28278665] - Fatemeh Khakdan, Jaber Nasiri, Mojtaba Ranjbar, Houshang Alizadeh. Water deficit stress fluctuates expression profiles of 4Cl, C3H, COMT, CVOMT and EOMT genes involved in the biosynthetic pathway of volatile phenylpropanoids alongside accumulation of methylchavicol and methyleugenol in different Iranian cultivars of basil.
Journal of plant physiology.
2017 Nov; 218(?):74-83. doi:
10.1016/j.jplph.2017.07.012
. [PMID: 28787649] - Atul Anand, Ramesha H Jayaramaiah, Supriya D Beedkar, Priyanka A Singh, Rakesh S Joshi, Fayaj A Mulani, Bhushan B Dholakia, Sachin A Punekar, Wasudeo N Gade, Hirekodathakallu V Thulasiram, Ashok P Giri. Comparative functional characterization of eugenol synthase from four different Ocimum species: Implications on eugenol accumulation.
Biochimica et biophysica acta.
2016 11; 1864(11):1539-47. doi:
10.1016/j.bbapap.2016.08.004
. [PMID: 27519164] - Xing Li, Dongming Ma, Jianlin Chen, Gaobin Pu, Yunpeng Ji, Caiyan Lei, Zhigao Du, Benye Liu, Hechun Ye, Hong Wang. Biochemical characterization and identification of a cinnamyl alcohol dehydrogenase from Artemisia annua.
Plant science : an international journal of experimental plant biology.
2012 Sep; 193-194(?):85-95. doi:
10.1016/j.plantsci.2012.05.011
. [PMID: 22794921] - Landry Charlier, Karim Mazeau. Molecular modeling of the structural and dynamical properties of secondary plant cell walls: influence of lignin chemistry.
The journal of physical chemistry. B.
2012 Apr; 116(14):4163-74. doi:
10.1021/jp300395k
. [PMID: 22429051] - Saunia Withers, Fachuang Lu, Hoon Kim, Yimin Zhu, John Ralph, Curtis G Wilkerson. Identification of grass-specific enzyme that acylates monolignols with p-coumarate.
The Journal of biological chemistry.
2012 Mar; 287(11):8347-55. doi:
10.1074/jbc.m111.284497
. [PMID: 22267741] - Keng-Chong Wong, Dafaalla Mohamed Hag Ali, Peng-Lim Boey. Chemical constituents and antibacterial activity of Melastoma malabathricum L.
Natural product research.
2012; 26(7):609-18. doi:
10.1080/14786419.2010.538395
. [PMID: 21834640] - Erin D Scully, Kelli Hoover, John Carlson, Ming Tien, Scott M Geib. Proteomic analysis of Fusarium solani isolated from the Asian longhorned beetle, Anoplophora glabripennis.
PloS one.
2012; 7(4):e32990. doi:
10.1371/journal.pone.0032990
. [PMID: 22496740] - M M Rahman, S H Ahmad, K S Lgu. Psidium guajava and Piper betle leaf extracts prolong vase life of cut carnation (Dianthus caryophyllus) flowers.
TheScientificWorldJournal.
2012; 2012(?):102805. doi:
10.1100/2012/102805
. [PMID: 22619568] - Ilga Porth, Björn Hamberger, Richard White, Kermit Ritland. Defense mechanisms against herbivory in Picea: sequence evolution and expression regulation of gene family members in the phenylpropanoid pathway.
BMC genomics.
2011 Dec; 12(?):608. doi:
10.1186/1471-2164-12-608
. [PMID: 22177423] - Marina Varbanova, Katie Porter, Fachuang Lu, John Ralph, Ray Hammerschmidt, A Daniel Jones, Brad Day. Molecular and biochemical basis for stress-induced accumulation of free and bound p-coumaraldehyde in cucumber.
Plant physiology.
2011 Nov; 157(3):1056-66. doi:
10.1104/pp.111.184358
. [PMID: 21940999] - Venugopal Mendu, Anne E Harman-Ware, Mark Crocker, Jungho Jae, Jozsef Stork, Samuel Morton, Andrew Placido, George Huber, Seth Debolt. Identification and thermochemical analysis of high-lignin feedstocks for biofuel and biochemical production.
Biotechnology for biofuels.
2011 Oct; 4(?):43. doi:
10.1186/1754-6834-4-43
. [PMID: 22018114] - Xiao Wu, Sébastien Monchy, Safiyh Taghavi, Wei Zhu, Juan Ramos, Daniel van der Lelie. Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida.
FEMS microbiology reviews.
2011 Mar; 35(2):299-323. doi:
10.1111/j.1574-6976.2010.00249.x
. [PMID: 20796030] - Sajida Abdureyim, Nurmuhammat Amat, Anwar Umar, Halmurat Upur, Benedicte Berke, Nicholas Moore. Anti-inflammatory, immunomodulatory, and heme oxygenase-1 inhibitory activities of ravan napas, a formulation of uighur traditional medicine, in a rat model of allergic asthma.
Evidence-based complementary and alternative medicine : eCAM.
2011; 2011(?):. doi:
10.1155/2011/725926
. [PMID: 20953388] - Sudeep Roy, Nidhi Maheshwari, Rashi Chauhan, Naresh Kumar Sen, Ashok Sharma. Structure prediction and functional characterization of secondary metabolite proteins of Ocimum.
Bioinformation.
2011; 6(8):315-9. doi:
10.6026/97320630006315
. [PMID: 21769194] - Haitao Zhang, Xing Xu, Lili Chen, Jing Chen, Lihong Hu, Hualiang Jiang, Xu Shen. Molecular determinants of magnolol targeting both RXRα and PPARγ.
PloS one.
2011; 6(11):e28253. doi:
10.1371/journal.pone.0028253
. [PMID: 22140563] - Gordon V Louie, Marianne E Bowman, Yi Tu, Aidyn Mouradov, German Spangenberg, Joseph P Noel. Structure-function analyses of a caffeic acid O-methyltransferase from perennial ryegrass reveal the molecular basis for substrate preference.
The Plant cell.
2010 Dec; 22(12):4114-27. doi:
10.1105/tpc.110.077578
. [PMID: 21177481] - Seon-Jin Kim, Su-Hwa Jung, Joo-Sik Kim. Fast pyrolysis of palm kernel shells: influence of operation parameters on the bio-oil yield and the yield of phenol and phenolic compounds.
Bioresource technology.
2010 Dec; 101(23):9294-300. doi:
10.1016/j.biortech.2010.06.110
. [PMID: 20667720] - Tongming Yin, Xinye Zhang, Lee Gunter, Ranjan Priya, Robert Sykes, Mark Davis, Stan D Wullschleger, Gerald A Tuskan. Differential detection of genetic Loci underlying stem and root lignin content in Populus.
PloS one.
2010 Nov; 5(11):e14021. doi:
10.1371/journal.pone.0014021
. [PMID: 21151641] - Hiroshi Sakagami, Tatsuya Kushida, Takaaki Oizumi, Hideki Nakashima, Toru Makino. Distribution of lignin-carbohydrate complex in plant kingdom and its functionality as alternative medicine.
Pharmacology & therapeutics.
2010 Oct; 128(1):91-105. doi:
10.1016/j.pharmthera.2010.05.004
. [PMID: 20547183] - John H Grabber, Paul F Schatz, Hoon Kim, Fachuang Lu, John Ralph. Identifying new lignin bioengineering targets: 1. Monolignol-substitute impacts on lignin formation and cell wall fermentability.
BMC plant biology.
2010 Jun; 10(?):114. doi:
10.1186/1471-2229-10-114
. [PMID: 20565789] - Fachuang Lu, Jane M Marita, Catherine Lapierre, Lise Jouanin, Kris Morreel, Wout Boerjan, John Ralph. Sequencing around 5-hydroxyconiferyl alcohol-derived units in caffeic acid O-methyltransferase-deficient poplar lignins.
Plant physiology.
2010 Jun; 153(2):569-79. doi:
10.1104/pp.110.154278
. [PMID: 20427467] - Blake A Simmons, Dominique Loqué, John Ralph. Advances in modifying lignin for enhanced biofuel production.
Current opinion in plant biology.
2010 Jun; 13(3):313-20. doi:
10.1016/j.pbi.2010.03.001
. [PMID: 20359939] - Qing-Hu Ma. Functional analysis of a cinnamyl alcohol dehydrogenase involved in lignin biosynthesis in wheat.
Journal of experimental botany.
2010 Jun; 61(10):2735-44. doi:
10.1093/jxb/erq107
. [PMID: 20400532] - Annette Zeller, Kathie Horst, Michael Rychlik. Study of the metabolism of estragole in humans consuming fennel tea.
Chemical research in toxicology.
2009 Dec; 22(12):1929-37. doi:
10.1021/tx900236g
. [PMID: 19908891] - Ans Punt, Alicia Paini, Marelle G Boersma, Andreas P Freidig, Thierry Delatour, Gabriele Scholz, Benoît Schilter, Peter J van Bladeren, Ivonne M C M Rietjens. Use of physiologically based biokinetic (PBBK) modeling to study estragole bioactivation and detoxification in humans as compared with male rats.
Toxicological sciences : an official journal of the Society of Toxicology.
2009 Aug; 110(2):255-69. doi:
10.1093/toxsci/kfp102
. [PMID: 19447879] - Marcello Iriti, Franco Faoro. Chemical diversity and defence metabolism: how plants cope with pathogens and ozone pollution.
International journal of molecular sciences.
2009 Jul; 10(8):3371-3399. doi:
10.3390/ijms10083371
. [PMID: 20111684] - Susanna Roeder, Katharina Dreschler, Markus Wirtz, Simona M Cristescu, Frans J M van Harren, Rüdiger Hell, Birgit Piechulla. SAM levels, gene expression of SAM synthetase, methionine synthase and ACC oxidase, and ethylene emission from N. suaveolens flowers.
Plant molecular biology.
2009 Jul; 70(5):535-46. doi:
10.1007/s11103-009-9490-1
. [PMID: 19396585] - Ans Punt, Andreas P Freidig, Thierry Delatour, Gabriele Scholz, Marelle G Boersma, Benoît Schilter, Peter J van Bladeren, Ivonne M C M Rietjens. A physiologically based biokinetic (PBBK) model for estragole bioactivation and detoxification in rat.
Toxicology and applied pharmacology.
2008 Sep; 231(2):248-59. doi:
10.1016/j.taap.2008.04.011
. [PMID: 18539307] - Alfonso Ros Barceló, Laura V Gómez Ros, Alberto Esteban Carrasco. Looking for syringyl peroxidases.
Trends in plant science.
2007 Nov; 12(11):486-491. doi:
10.1016/j.tplants.2007.09.002
. [PMID: 17928259] - Gordon V Louie, Thomas J Baiga, Marianne E Bowman, Takao Koeduka, John H Taylor, Snejina M Spassova, Eran Pichersky, Joseph P Noel. Structure and reaction mechanism of basil eugenol synthase.
PloS one.
2007 Oct; 2(10):e993. doi:
10.1371/journal.pone.0000993
. [PMID: 17912370] - Buhyun Youn, Sung-Jin Kim, Syed G A Moinuddin, Choonseok Lee, Diana L Bedgar, Athena R Harper, Laurence B Davin, Norman G Lewis, Chulhee Kang. Mechanistic and structural studies of apoform, binary, and ternary complexes of the Arabidopsis alkenal double bond reductase At5g16970.
The Journal of biological chemistry.
2006 Dec; 281(52):40076-88. doi:
10.1074/jbc.m605900200
. [PMID: 17028190] - José C del Río, Ana Gutiérrez. Chemical composition of abaca (Musa textilis) leaf fibers used for manufacturing of high quality paper pulps.
Journal of agricultural and food chemistry.
2006 Jun; 54(13):4600-10. doi:
10.1021/jf053016n
. [PMID: 16787004] - Sanna Koutaniemi, Merja M Toikka, Anna Kärkönen, Maaret Mustonen, Taina Lundell, Liisa K Simola, Ilkka A Kilpeläinen, Teemu H Teeri. Characterization of basic p-coumaryl and coniferyl alcohol oxidizing peroxidases from a lignin-forming Picea abies suspension culture.
Plant molecular biology.
2005 May; 58(2):141-57. doi:
10.1007/s11103-005-5345-6
. [PMID: 16027971] - A Ros Barceló. Xylem parenchyma cells deliver the H2O2 necessary for lignification in differentiating xylem vessels.
Planta.
2005 Mar; 220(5):747-56. doi:
10.1007/s00425-004-1394-3
. [PMID: 15747145] - Hisashi Matsuda, Toshio Morikawa, Hiromi Managi, Masayuki Yoshikawa. Antiallergic principles from Alpinia galanga: structural requirements of phenylpropanoids for inhibition of degranulation and release of TNF-alpha and IL-4 in RBL-2H3 cells.
Bioorganic & medicinal chemistry letters.
2003 Oct; 13(19):3197-202. doi:
10.1016/s0960-894x(03)00710-8
. [PMID: 12951092] - David R Gang, Till Beuerle, Pascaline Ullmann, Daniéle Werck-Reichhart, Eran Pichersky. Differential production of meta hydroxylated phenylpropanoids in sweet basil peltate glandular trichomes and leaves is controlled by the activities of specific acyltransferases and hydroxylases.
Plant physiology.
2002 Nov; 130(3):1536-44. doi:
10.1104/pp.007146
. [PMID: 12428018] - Aldwin M Anterola, Jae-Heung Jeon, Laurence B Davin, Norman G Lewis. Transcriptional control of monolignol biosynthesis in Pinus taeda: factors affecting monolignol ratios and carbon allocation in phenylpropanoid metabolism.
The Journal of biological chemistry.
2002 May; 277(21):18272-80. doi:
10.1074/jbc.m112051200
. [PMID: 11891223] - David J Chitwood. Phytochemical based strategies for nematode control.
Annual review of phytopathology.
2002; 40(?):221-49. doi:
10.1146/annurev.phyto.40.032602.130045
. [PMID: 12147760] - T Sonoda, T Ona, H Yokoi, Y Ishida, H Ohtani, S Tsuge. Quantitative analysis of detailed lignin monomer composition by pyrolysis-gas chromatography combined with preliminary acetylation of the samples.
Analytical chemistry.
2001 Nov; 73(22):5429-35. doi:
10.1021/ac010557c
. [PMID: 11816569] - K L Nielsen, C Indiani, A Henriksen, A Feis, M Becucci, M Gajhede, G Smulevich, K G Welinder. Differential activity and structure of highly similar peroxidases. Spectroscopic, crystallographic, and enzymatic analyses of lignifying Arabidopsis thaliana peroxidase A2 and horseradish peroxidase A2.
Biochemistry.
2001 Sep; 40(37):11013-21. doi:
10.1021/bi010661o
. [PMID: 11551197] - D R Gang, J Wang, N Dudareva, K H Nam, J E Simon, E Lewinsohn, E Pichersky. An investigation of the storage and biosynthesis of phenylpropenes in sweet basil.
Plant physiology.
2001 Feb; 125(2):539-55. doi:
10.1104/pp.125.2.539
. [PMID: 11161012] - . .
.
. doi:
. [PMID: 21343428]
- . .
.
. doi:
. [PMID: 11884690]
- . .
.
. doi:
. [PMID: 12122678]
- . .
.
. doi:
. [PMID: 20165801]
- . .
.
. doi:
. [PMID: 18987218]
- . .
.
. doi:
. [PMID: 14976214]