Sphingosine 1-phosphate (BioDeep_00000001610)
Secondary id: BioDeep_00000873036
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite
代谢物信息卡片
化学式: C18H38NO5P (379.2487)
中文名称: D-赤型鞘氨醇-1-磷酸, D-苏式-鞘胺醇-1-磷酸
谱图信息:
最多检出来源 Homo sapiens(blood) 24.75%
Last reviewed on 2024-07-15.
Cite this Page
Sphingosine 1-phosphate. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/sphingosine_1-phosphate (retrieved
2024-12-26) (BioDeep RN: BioDeep_00000001610). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: CCCCCCCCCCCCC/C=C/[C@@H](O)[C@@H](N)COP(=O)(O)O
InChI: InChI=1S/C18H38NO5P/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-18(20)17(19)16-24-25(21,22)23/h14-15,17-18,20H,2-13,16,19H2,1H3,(H2,21,22,23)/b15-14+/t17-,18+/m0/s1
描述信息
Sphingosine 1-phosphate (S1P), also known as sphing-4-enine-1-phosphate, is classified as a member of the phosphosphingolipids. Phosphosphingolipids are sphingolipids with a structure based on a sphingoid base that is attached to a phosphate head group. They differ from phosphonospingolipids which have a phosphonate head group. S1P is a compound with potent bioactive actions in sphingolipid metabolism, the calcium signalling pathway, and neuroactive ligand-receptor interaction. Generated by sphingosine kinases and ceramide kinase, S1P control numerous aspects of cell physiology, including cell survival and mammalian inflammatory responses. S1P is involved in cyclooxygenase-2 induction (COX-2) and regulates the production of eicosanoids (important inflammatory mediators). S1P functions mainly via G-protein-coupled receptors and probably also has intracellular targets (PMID: 16219683). S1P is considered to be practically insoluble (in water) and acidic.
Sphingosine-1-phosphate. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=26993-30-6 (retrieved 2024-07-15) (CAS RN: 26993-30-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
同义名列表
20 个代谢物同义名
(2S,3R,4E)-2-Amino-4-octadecene-1,3-diol 1-(dihydrogen phosphoric acid); {[(2S,3R,4E)-2-amino-3-hydroxyoctadec-4-en-1-yl]oxy}phosphonic acid; (2S,3R,4E)-2-Amino-4-octadecene-1,3-diol 1-(dihydrogen phosphate); C18-Sphingosine 1-phosphate; D-erythro-Sphingosine-1-phosphate; (2-Amino-3-hydroxy-octadec-4-enoxy)phosphonic acid; (2-Amino-3-hydroxy-octadec-4-enoxy)phosphonate; D-Erythro-sphingosine 1-phosphoric acid; C18-Sphingosine 1-phosphoric acid; D-Erythro-sphingosine 1-phosphate; Sphing-4-enine 1-phosphoric acid; Sphingosine 1-phosphoric acid; Sphingosine-1-phosphoric acid; C18-Sphingosine 1-phosphate; Sphingosine 1-phosphic acid; Sphing-4-enine 1-phosphate; Sphingosine 1-phosphate; Sphingosine-1-phosphate; S1p Compound; S1P; Sphingosine 1-phosphate
数据库引用编号
20 个数据库交叉引用编号
- ChEBI: CHEBI:37550
- KEGG: C06124
- PubChem: 5283560
- HMDB: HMDB0000277
- Metlin: METLIN3891
- ChEMBL: CHEMBL225155
- Wikipedia: Sphingosine-1-phosphate
- KNApSAcK: C00053795
- chemspider: 4446673
- CAS: 26993-30-6
- MoNA: PS082203
- PMhub: MS000000850
- LipidMAPS: LMSP01050001
- PDB-CCD: S1P
- 3DMET: B05165
- NIKKAJI: J627.163D
- RefMet: Sphingosine 1-phosphate
- LOTUS: LTS0010692
- PubChem: 8381
- KNApSAcK: 37550
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
53 个相关的代谢反应过程信息。
Reactome(23)
- Signaling Pathways:
AMP + p-AMPK heterotrimer ⟶ p-AMPK heterotrimer:AMP
- Signaling by GPCR:
H2O + cAMP ⟶ AMP
- GPCR downstream signalling:
H2O + cAMP ⟶ AMP
- G alpha (i) signalling events:
H2O + cAMP ⟶ AMP
- Signaling by Receptor Tyrosine Kinases:
H2O + cAMP ⟶ AMP
- Signaling by VEGF:
ATP + H0Z2U9 ⟶ ADP + phospho-p-S,2T-MAPKAPK3
- VEGFA-VEGFR2 Pathway:
ATP + H0Z2U9 ⟶ ADP + phospho-p-S,2T-MAPKAPK3
- VEGFR2 mediated cell proliferation:
ATP + VEGFA dimer:p-6Y-VEGFR2 dimer:PLCG1 ⟶ ADP + VEGFA dimer:p-6Y-VEGFR2 dimer:p-4Y-PLCG1
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Sphingolipid metabolism:
3-ketosphinganine + H+ + TPNH ⟶ SPA + TPN
- Sphingolipid de novo biosynthesis:
3-ketosphinganine + H+ + TPNH ⟶ SPA + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Sphingolipid metabolism:
3-ketosphinganine + H+ + TPNH ⟶ SPA + TPN
- Sphingolipid de novo biosynthesis:
3-ketosphinganine + H+ + TPNH ⟶ SPA + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Sphingolipid metabolism:
H2O + dehydroepiandrosterone sulfate ⟶ DHEA + SO4(2-)
- Sphingolipid de novo biosynthesis:
3-ketosphinganine + H+ + TPNH ⟶ SPA + TPN
- GPCR ligand binding:
Ade-Rib + H0YT13 ⟶ ADORA1,3:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
Ade-Rib + H0YT13 ⟶ ADORA1,3:Ade-Rib
- Lysosphingolipid and LPA receptors:
S1P + S1PR1-5 ⟶ S1PR1-5:S1P
BioCyc(0)
WikiPathways(8)
- Sphingolipid metabolism (integrated pathway):
Palmitoyl-CoA ⟶ 3-keto-sphinganine
- Sphingolipid metabolism: integrated pathway:
Palmitoyl-CoA ⟶ 3-keto-sphinganine
- Synthesis of ceramides and 1-deoxyceramides:
lactosylceramide ⟶ Lc3Cer
- Sphingolipid metabolism overview:
3-keto-sphinganine ⟶ Sphinganine
- Sphingolipid pathway:
Serine ⟶ 3-ketosphinganine
- Sphingolipid metabolism overview:
3-keto-sphinganine ⟶ Sphinganine
- Modulation of PI3K-Akt-mTOR signaling by bioactive sphingolipids:
Sphingosine ⟶ Sphingosine 1-phosphate
- Sphingolipid metabolism in senescence:
3-ketodihydrosphingosine ⟶ C18-dihydrosphingosine
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(22)
- Globoid Cell Leukodystrophy:
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Metachromatic Leukodystrophy (MLD):
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Fabry Disease:
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Krabbe Disease:
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Sphingolipid Metabolism:
L-Serine + Palmityl-CoA ⟶ 3-Dehydrosphinganine + Carbon dioxide
- Sphingolipid Metabolism:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Gaucher Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Globoid Cell Leukodystrophy:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Metachromatic Leukodystrophy (MLD):
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Sphingolipid Metabolism:
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Krabbe Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Sphingolipid Metabolism:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Sphingolipid Metabolism:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Sphingolipid Metabolism:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Sphingolipid Metabolism:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Fabry Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Globoid Cell Leukodystrophy:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Metachromatic Leukodystrophy (MLD):
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Fabry Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Krabbe Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Gaucher Disease:
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Gaucher Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
PharmGKB(0)
9 个相关的物种来源信息
- 7711 - Chordata: LTS0010692
- 2759 - Eukaryota: LTS0010692
- 9606 - Homo sapiens: -
- 40674 - Mammalia: LTS0010692
- 33208 - Metazoa: LTS0010692
- 10066 - Muridae: LTS0010692
- 10088 - Mus: LTS0010692
- 10090 - Mus musculus: LTS0010692
- 10090 - Mus musculus: NA
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Ji-Ping Lan, Ya-Fu Xue, Jia-Ying Pu, Yan Ding, Zhong-Yuan Gan, Ying-Bo Yang, Zheng-Tao Wang, Xiao-Lu Jie, Li Yang. Plantaginis semen ameliorates diabetic kidney disease via targeting the sphingosine kinase 1/sphingosine-1-phosphate pathway.
Journal of ethnopharmacology.
2024 Sep; 331(?):118221. doi:
10.1016/j.jep.2024.118221
. [PMID: 38677576] - Shinji Tanaka. Targeting inflammation in perivascular cells and neuroimmune interactions for treating kidney disease.
Clinical and experimental nephrology.
2024 Jun; 28(6):505-512. doi:
10.1007/s10157-024-02494-7
. [PMID: 38630367] - Daniela M Magalhães, Nicolas A Stewart, Myrthe Mampay, Sara O Rolle, Chloe M Hall, Emad Moeendarbary, Melanie S Flint, Ana M Sebastião, Cláudia A Valente, Marcus K Dymond, Graham K Sheridan. The sphingosine 1-phosphate analogue, FTY720, modulates the lipidomic signature of the mouse hippocampus.
Journal of neurochemistry.
2024 Jun; 168(6):1113-1142. doi:
10.1111/jnc.16073
. [PMID: 38339785] - Jian Zhang, Qian Meng, Qiaoling Wang, Hongju Zhang, Huidan Tian, Tiantian Wang, Fan Xu, Xingying Yan, Ming Luo. Cotton sphingosine kinase GhLCBK1 participates in fiber cell elongation by affecting sphingosine-1-phophate and auxin synthesis.
International journal of biological macromolecules.
2024 May; 267(Pt 1):131323. doi:
10.1016/j.ijbiomac.2024.131323
. [PMID: 38574912] - Aritra Bhattacharyya, Ranjha Khan, Joanna Y Lee, Gizachew Tassew, Babak Oskouian, Maria L Allende, Richard L Proia, Xiaoyang Yin, Javier G Ortega, Mallar Bhattacharya, Julie D Saba. Gene therapy with AAV9-SGPL1 in an animal model of lung fibrosis.
The Journal of pathology.
2024 05; 263(1):22-31. doi:
10.1002/path.6256
. [PMID: 38332723] - Christine Bassila, George E G Kluck, Narmadaa Thyagarajan, Kevin M Chathely, Leticia Gonzalez, Bernardo L Trigatti. Ligand-dependent interactions between SR-B1 and S1PR1 in macrophages and atherosclerotic plaques.
Journal of lipid research.
2024 May; 65(5):100541. doi:
10.1016/j.jlr.2024.100541
. [PMID: 38583587] - Yong-Shan Zheng, Ya-Li Liu, Zeng-Guang Xu, Cheng He, Zhan-Yun Guo. Is myeloid-derived growth factor a ligand of the sphingosine-1-phosphate receptor 2?.
Biochemical and biophysical research communications.
2024 Apr; 706(?):149766. doi:
10.1016/j.bbrc.2024.149766
. [PMID: 38484568] - Waqas Younis, Ira J Goldberg. Can another lipid, sphingosine-1-phosphate, treat atherosclerosis?.
Cardiovascular research.
2024 Apr; 120(5):435-436. doi:
10.1093/cvr/cvae050
. [PMID: 38563326] - Annalena Wille, Sarah Weske, Karin von Wnuck Lipinski, Philipp Wollnitzke, Nathalie H Schröder, Nadine Thomas, Melissa K Nowak, Jennifer Deister-Jonas, Björn Behr, Petra Keul, Bodo Levkau. Sphingosine-1-phosphate promotes osteogenesis by stimulating osteoblast growth and neovascularization in a vascular endothelial growth factor-dependent manner.
Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.
2024 Apr; 39(3):357-372. doi:
10.1093/jbmr/zjae006
. [PMID: 38477738] - Xiaoqian Ji, Zihao Chen, Qiyuan Wang, Bin Li, Yan Wei, Yun Li, Jianqing Lin, Weisheng Cheng, Yijie Guo, Shilin Wu, Longkun Mao, Yuzhou Xiang, Tian Lan, Shanshan Gu, Meng Wei, Joe Z Zhang, Lan Jiang, Jia Wang, Jin Xu, Nan Cao. Sphingolipid metabolism controls mammalian heart regeneration.
Cell metabolism.
2024 Apr; 36(4):839-856.e8. doi:
10.1016/j.cmet.2024.01.017
. [PMID: 38367623] - Zhengzheng Zhang, Naama Karu, Alida Kindt, Madhulika Singh, Lieke Lamont, Adriaan J van Gammeren, Anton A M Ermens, Amy C Harms, Lutzen Portengen, Roel C H Vermeulen, Willem A Dik, Anton W Langerak, Vincent H J van der Velden, Thomas Hankemeier. Association of Altered Plasma Lipidome with Disease Severity in COVID-19 Patients.
Biomolecules.
2024 Mar; 14(3):. doi:
10.3390/biom14030296
. [PMID: 38540716] - Gabriel da Silva, Thaís Moré Milan, Andréia Machado Leopoldino. The accumulation of sphingosine kinase 2 disrupts the DNA damage response and promotes resistance to genotoxic agents.
Gene.
2024 Mar; 897(?):148063. doi:
10.1016/j.gene.2023.148063
. [PMID: 38048970] - Zhen Wang, Shu-Ying Yi, Yuan-Ying Zhang, Yu-di Wang, Han-Lin Chen, Yi-Jie Guo, Xin-Ming Wei, Du-Xiao Yang. The role of vitamin D through SphK1/S1P in the regulation of MS progression.
The Journal of steroid biochemistry and molecular biology.
2024 Feb; 236(?):106425. doi:
10.1016/j.jsbmb.2023.106425
. [PMID: 37984747] - Yu-Xin Xie, Hui Yao, Jin-Fu Peng, Dan Ni, Wan-Ting Liu, Chao-Quan Li, Guang-Hui Yi. Insight into Modulators of Sphingosine-1-phosphate Receptor and Implications for Cardiovascular Therapeutics.
Journal of drug targeting.
2024 Jan; ?(?):1-20. doi:
10.1080/1061186x.2024.2309577
. [PMID: 38269855] - Yosuke Osawa, Hironari Kawai, Keigo Nakashima, Yuichi Nakaseko, Daisuke Suto, Keisuke Yanagida, Tomomi Hashidate-Yoshida, Taizo Mori, Sachiyo Yoshio, Takaaki Ohtake, Hideo Shindou, Tatsuya Kanto. Sphingosine-1-phosphate promotes liver fibrosis in metabolic dysfunction-associated steatohepatitis.
PloS one.
2024; 19(5):e0303296. doi:
10.1371/journal.pone.0303296
. [PMID: 38753743] - Gehui Sun, Bin Wang, Xiaoyu Wu, Jiangfeng Cheng, Junming Ye, Chunli Wang, Hongquan Zhu, Xiaofeng Liu. How do sphingosine-1-phosphate affect immune cells to resolve inflammation?.
Frontiers in immunology.
2024; 15(?):1362459. doi:
10.3389/fimmu.2024.1362459
. [PMID: 38482014] - Nadine Thomas, Nathalie H Schröder, Melissa K Nowak, Philipp Wollnitzke, Shahrooz Ghaderi, Karin von Wnuck Lipinski, Annalena Wille, Jennifer Deister-Jonas, Jens Vogt, Markus H Gräler, Lisa Dannenberg, Tobias Buschmann, Philipp Westhoff, Amin Polzin, Malte Kelm, Petra Keul, Sarah Weske, Bodo Levkau. Sphingosine-1-phosphate suppresses GLUT activity through PP2A and counteracts hyperglycemia in diabetic red blood cells.
Nature communications.
2023 Dec; 14(1):8329. doi:
10.1038/s41467-023-44109-x
. [PMID: 38097610] - Yash Flora, K Adam Bohnert. SPIN-4/Spinster supports sperm activation in C. elegans via sphingosine-1-phosphate transport.
Developmental biology.
2023 12; 504(?):137-148. doi:
10.1016/j.ydbio.2023.09.013
. [PMID: 37805103] - Reem Rida, Sawsan Kreydiyyeh. Effect of FTY720P on lipid accumulation in HEPG2 cells.
Scientific reports.
2023 11; 13(1):19716. doi:
10.1038/s41598-023-46011-4
. [PMID: 37953311] - Jialin Wu, Ying Liang, Panfeng Fu, Anlin Feng, Qing Lu, Hoshang J Unwalla, David P Marciano, Stephen M Black, Ting Wang. Sphingosine-1-Phosphate Receptor 3 Induces Endothelial Barrier Loss via ADAM10-Mediated Vascular Endothelial-Cadherin Cleavage.
International journal of molecular sciences.
2023 Nov; 24(22):. doi:
10.3390/ijms242216083
. [PMID: 38003272] - Jan Schielke, Till Ittermann, Stefan Groß, Eileen Moritz, Matthias Nauck, Nele Friedrich, Edzard Schwedhelm, Bernhard H Rauch, Henry Völzke, Robin Bülow, Bishwas Chamling, Stephan Burkhard Felix, Martin Bahls, Marcus Dörr, Marcello Ricardo Paulista Markus. Sphingosine-1-phosphate levels are inversely associated with left ventricular and atrial chamber volume and cardiac mass in men : The Study of Health in Pomerania (SHIP).
Clinical research in cardiology : official journal of the German Cardiac Society.
2023 Nov; 112(11):1587-1599. doi:
10.1007/s00392-023-02200-9
. [PMID: 37097463] - Xiao Wang, Yang Liu, Mingxi Li, Yongxu Ju, Jian Tang, Tiandong Chen, Xubo Lin, Ning Gu, Fang Yang. Neuroinflammation catching nanobubbles for microglia-neuron unit modulation against epilepsy.
Biomaterials.
2023 11; 302(?):122302. doi:
10.1016/j.biomaterials.2023.122302
. [PMID: 37666103] - Bryce A Jones, Komuraiah Myakala, Mahilan Guha, Shania Davidson, Sharmila Adapa, Isabel Lopez Santiago, Isabel Schaffer, Yang Yue, Jeremy C Allegood, L Ashley Cowart, Xiaoxin X Wang, Avi Z Rosenberg, Moshe Levi. Farnesoid X receptor prevents neutrophil extracellular traps via reduced sphingosine-1-phosphate in chronic kidney disease.
American journal of physiology. Renal physiology.
2023 Oct; ?(?):. doi:
10.1152/ajprenal.00292.2023
. [PMID: 37823198] - Christopher W Shrader, Daniel Foster, Yugesh Kharel, Tao Huang, Kevin R Lynch, Webster L Santos. Imidazole-based sphingosine-1-phosphate transporter Spns2 inhibitors.
Bioorganic & medicinal chemistry letters.
2023 Oct; ?(?):129516. doi:
10.1016/j.bmcl.2023.129516
. [PMID: 37832799] - Gengyuan Yu, Mo Sun, Tonghua Zhang, Haoran Xu, Jiaqi Wang, Wanting Ye, Peng Wang, Shiyun Zhang, Chenning Zhang, Yikun Sun. Lanhuashen stimulates the positive cross-regulation mediated by the S1P axis to ameliorate the disorder of glucolipid metabolism induced by the high sucrose diet in Drosophila melanogaster.
Journal of ethnopharmacology.
2023 Oct; 319(Pt 2):117248. doi:
10.1016/j.jep.2023.117248
. [PMID: 37804923] - Jun-Ichi Morishige, Kazuaki Yoshioka, Hiroki Nakata, Kazuhiro Ishimaru, Naoto Nagata, Tamotsu Tanaka, Yoh Takuwa, Hitoshi Ando. Sphingosine Kinase 1 is Involved in Triglyceride Breakdown by Maintaining Lysosomal Integrity in Brown Adipocytes.
Journal of lipid research.
2023 Sep; ?(?):100450. doi:
10.1016/j.jlr.2023.100450
. [PMID: 37751791] - Hiroki Nagaro, Hiroshi Ichikawa, Kazuyasu Takizawa, Masayuki Nagahashi, Shun Abe, Yuki Hirose, Kazuki Moro, Kohei Miura, Masato Nakano, Yoshifumi Shimada, Jun Sakata, Toshifumi Wakai. Clinical Significance of Phosphorylated Sphingosine Kinase 1 Expression in Pancreatic Ductal Adenocarcinoma.
Anticancer research.
2023 Sep; 43(9):3969-3977. doi:
10.21873/anticanres.16584
. [PMID: 37648331] - Sabira Mohammed, Anu Bindu, Arun Viswanathan, Kuzhuvelil B Harikumar. Sphingosine 1-phosphate signaling during infection and immunity.
Progress in lipid research.
2023 Aug; ?(?):101251. doi:
10.1016/j.plipres.2023.101251
. [PMID: 37633365] - Nick D Bergkamp, Jeffrey R van Senten, Hendrik J Brink, Maarten P Bebelman, Jelle van den Bor, Tuğçe S Çobanoğlu, Kasper Dinkla, Johannes Köster, Gunnar Klau, Marco Siderius, Martine J Smit. A virally encoded GPCR drives glioblastoma through feed-forward activation of the SK1-S1P1 signaling axis.
Science signaling.
2023 08; 16(798):eade6737. doi:
10.1126/scisignal.ade6737
. [PMID: 37582160] - Sarah Ali-Berrada, Jeanne Guitton, Sophie Tan-Chen, Anna Gyulkhandanyan, Eric Hajduch, Hervé Le Stunff. Circulating Sphingolipids and Glucose Homeostasis: An Update.
International journal of molecular sciences.
2023 Aug; 24(16):. doi:
10.3390/ijms241612720
. [PMID: 37628901] - David Martín-Hernández, Marina Muñoz-López, Hiram Tendilla-Beltrán, Javier R Caso, Borja García-Bueno, Luis Menchén, Juan C Leza. Immune System and Brain/Intestinal Barrier Functions in Psychiatric Diseases: Is Sphingosine-1-Phosphate at the Helm?.
International journal of molecular sciences.
2023 Aug; 24(16):. doi:
10.3390/ijms241612634
. [PMID: 37628815] - Wenyue Wang, Tessa Sherry, Xinran Cheng, Qi Fan, Rebecca Cornell, Jie Liu, Zhicheng Xiao, Roger Pocock. An intestinal sphingolipid confers intergenerational neuroprotection.
Nature cell biology.
2023 Aug; ?(?):. doi:
10.1038/s41556-023-01195-9
. [PMID: 37537365] - Haiping Tang, Huanyu Li, Dheeraj Prakaash, Conrado Pedebos, Xingyu Qiu, David B Sauer, Syma Khalid, Katharina Duerr, Carol V Robinson. The solute carrier SPNS2 recruits PI(4,5)P2 to synergistically regulate transport of sphingosine-1-phosphate.
Molecular cell.
2023 08; 83(15):2739-2752.e5. doi:
10.1016/j.molcel.2023.06.033
. [PMID: 37499662] - Junhua Xiao. Sphingosine 1-Phosphate Lyase in the Developing and Injured Nervous System: a Dichotomy?.
Molecular neurobiology.
2023 Jul; ?(?):. doi:
10.1007/s12035-023-03524-3
. [PMID: 37507574] - Li Jianbin, Huang Yiping, Zhang Yueqin, Liu Pengcheng, Liu Mengxia, Zhang Min, Wu Rui. S1P/S1PR signaling pathway advancements in autoimmune diseases.
Biomolecules & biomedicine.
2023 Jul; ?(?):. doi:
10.17305/bb.2023.9082
. [PMID: 37504219] - Shah Alam, Sumaiya Yasmeen Afsar, Maya Anik Wolter, Luisa Michelle Volk, Daniel Nicolae Mitroi, Dagmar Meyer Zu Heringdorf, Gerhild van Echten-Deckert. S1P Lyase Deficiency in the Brain Promotes Astrogliosis and NLRP3 Inflammasome Activation via Purinergic Signaling.
Cells.
2023 07; 12(14):. doi:
10.3390/cells12141844
. [PMID: 37508508] - Federica Pierucci, Antony Chirco, Elisabetta Meacci. Irisin Is Target of Sphingosine-1-Phosphate/Sphingosine-1-Phosphate Receptor-Mediated Signaling in Skeletal Muscle Cells.
International journal of molecular sciences.
2023 Jun; 24(13):. doi:
10.3390/ijms241310548
. [PMID: 37445724] - Nicholas P France, Christopher Rubino, M Courtney Safir, Mari Maurer, Tram Duong, Deepika Singamsetty, Khalid Abd-Elaziz, Thomas Chou, Sethu Sankaranarayanan, Marieke Ettema, Rebecca Cosford, Peter Dogterom, Enchi Liu, Carrolee Barlow. A Phase 1 First-in-Human Single-Ascending-Dose Trial With ESB1609, a Selective Agonist to the Sphingosine-1-Phosphate Receptor 5.
Clinical pharmacology in drug development.
2023 06; 12(6):625-638. doi:
10.1002/cpdd.1256
. [PMID: 37191222] - Lihua Cui, Caixia Li, Guixian Zhang, Lanqiu Zhang, Guowang Yao, Yuzhen Zhuo, Naiqiang Cui, Shukun Zhang. S1P/S1PR2 promote pancreatic stellate cell activation and pancreatic fibrosis in chronic pancreatitis by regulating autophagy and the NLRP3 inflammasome.
Chemico-biological interactions.
2023 May; 380(?):110541. doi:
10.1016/j.cbi.2023.110541
. [PMID: 37169277] - Keisuke Kiyozuka, Xian Zhao, Akimitsu Konishi, Yoji Andrew Minamishima, Hideru Obinata. Apolipoprotein M supports S1P production and conservation and mediates prolonged Akt activation via S1PR1 and S1PR3.
Journal of biochemistry.
2023 Apr; ?(?):. doi:
10.1093/jb/mvad037
. [PMID: 37098187] - Yuechun Zhao, Yuheng Zhang, Jiaqi Li, Ningxin Zhang, Qiubai Jin, Yuxia Qi, Ping Song. Pathogenic sphingosine 1-phosphate pathway in psoriasis: a critical review of its pathogenic significance and potential as a therapeutic target.
Lipids in health and disease.
2023 Apr; 22(1):52. doi:
10.1186/s12944-023-01813-3
. [PMID: 37072847] - Shun Yaginuma, Jumpei Omi, Kuniyuki Kano, Junken Aoki. Lysophospholipids and their producing enzymes: Their pathological roles and potential as pathological biomarkers.
Pharmacology & therapeutics.
2023 Apr; 246(?):108415. doi:
10.1016/j.pharmthera.2023.108415
. [PMID: 37061204] - Gerhild van Echten-Deckert. The role of sphingosine 1-phosphate metabolism in brain health and disease.
Pharmacology & therapeutics.
2023 Apr; 244(?):108381. doi:
10.1016/j.pharmthera.2023.108381
. [PMID: 36907249] - Colin Niaudet, Bongnam Jung, Andrew Kuo, Steven Swendeman, Edward Bull, Takahiro Seno, Reed Crocker, Zhongjie Fu, Lois E H Smith, Timothy Hla. Therapeutic activation of endothelial sphingosine-1-phosphate receptor 1 by chaperone-bound S1P suppresses proliferative retinal neovascularization.
EMBO molecular medicine.
2023 Mar; ?(?):e16645. doi:
10.15252/emmm.202216645
. [PMID: 36912000] - C J Smith, J L Williams, C Hall, J Casas, M P Caley, E A O'Toole, R Prasad, L A Metherell. Ichthyosis linked to sphingosine 1-phosphate lyase insufficiency is due to aberrant sphingolipid and calcium regulation.
Journal of lipid research.
2023 Mar; ?(?):100351. doi:
10.1016/j.jlr.2023.100351
. [PMID: 36868360] - Shah Alam, Sumaiya Yasmeen Afsar, Gerhild Van Echten-Deckert. S1P Released by SGPL1-Deficient Astrocytes Enhances Astrocytic ATP Production via S1PR2,4, Thus Keeping Autophagy in Check: Potential Consequences for Brain Health.
International journal of molecular sciences.
2023 Feb; 24(5):. doi:
10.3390/ijms24054581
. [PMID: 36902011] - Makoto Kurano, Kazuhisa Tsukamoto, Tomo Shimizu, Masumi Hara, Yutaka Yatomi. Apolipoprotein M/sphingosine 1-phosphate protects against diabetic nephropathy.
Translational research : the journal of laboratory and clinical medicine.
2023 Feb; ?(?):. doi:
10.1016/j.trsl.2023.02.004
. [PMID: 36805561] - Nao Sugimoto, Yoshifumi Morita, Eri Sakai, Yutaka Yatomi, Makoto Kurano. Modulations of urinary lipid mediators in acute bladder cystitis.
Prostaglandins & other lipid mediators.
2023 02; 164(?):106690. doi:
10.1016/j.prostaglandins.2022.106690
. [PMID: 36332874] - Makoto Kurano, Kazuhisa Tsukamoto, Shigeo Kamitsuji, Naoyuki Kamatani, Koji Hasegawa, Masumi Hara, Toshio Ishikawa, Yutaka Yatomi, Tamio Teramoto. Apolipoprotein D modulates lipid mediators and osteopontin in an anti-inflammatory direction.
Inflammation research : official journal of the European Histamine Research Society ... [et al.].
2023 Feb; 72(2):263-280. doi:
10.1007/s00011-022-01679-8
. [PMID: 36536251] - Aissa Miriam Röhrig, Katja Jakobi, Julia Dietz, Dominique Thomas, Eva Herrmann, Christoph Welsch, Christoph Sarrazin, Josef Pfeilschifter, Stefan Zeuzem, Georgios Grammatikos. The role of serum sphingolipids as potential biomarkers of non-response to direct acting antiviral therapy in chronic hepatitis C virus infection.
Journal of viral hepatitis.
2023 Feb; 30(2):138-147. doi:
10.1111/jvh.13776
. [PMID: 36463431] - Hayder M Al-Kuraishy, Gaber El-Saber Batiha, Ali I Al-Gareeb, Nasser A Hadi Al-Harcan, Nermeen N Welson. Receptor-dependent effects of sphingosine-1-phosphate (S1P) in COVID-19: the black side of the moon.
Molecular and cellular biochemistry.
2023 Jan; ?(?):. doi:
10.1007/s11010-023-04658-7
. [PMID: 36652045] - Burkhard Kleuser, Wolfgang Bäumer. Sphingosine 1-Phosphate as Essential Signaling Molecule in Inflammatory Skin Diseases.
International journal of molecular sciences.
2023 Jan; 24(2):. doi:
10.3390/ijms24021456
. [PMID: 36674974] - Xingtong Wang, Wei Guo, Xiaoju Shi, Yujia Chen, Youxi Yu, Beibei Du, Min Tan, Li Tong, Anna Wang, Xianying Yin, Jing Guo, Robert C Martin, Ou Bai, Yan Li. S1PR1/S1PR3-YAP signaling and S1P-ALOX15 signaling contribute to an aggressive behavior in obesity-lymphoma.
Journal of experimental & clinical cancer research : CR.
2023 Jan; 42(1):3. doi:
10.1186/s13046-022-02589-7
. [PMID: 36600310] - Michel V Levesque, Timothy Hla. Signal Transduction and Gene Regulation in the Endothelium.
Cold Spring Harbor perspectives in medicine.
2023 Jan; 13(1):. doi:
10.1101/cshperspect.a041153
. [PMID: 35667710] - Edward D Johnstone, Melissa Westwood, Mark Dilworth, Jonathan R Wray, Alexandra C Kendall, Anna Nicolaou, Jenny E Myers. Plasma S1P and Sphingosine are not Different Prior to Pre-Eclampsia in Women at High Risk of Developing the Disease.
Journal of lipid research.
2023 01; 64(1):100312. doi:
10.1016/j.jlr.2022.100312
. [PMID: 36370808] - Jiahui Zhao, Mingyan Tang, Huaiyun Tang, Mei Wang, Huijuan Guan, Lisha Tang, Hong Zhang. Sphingosine 1-phosphate alleviates radiation-induced ferroptosis in ovarian granulosa cells by upregulating glutathione peroxidase 4.
Reproductive toxicology (Elmsford, N.Y.).
2023 01; 115(?):49-55. doi:
10.1016/j.reprotox.2022.12.002
. [PMID: 36503164] - Chieh-Yu Liao, Fanta Barrow, Nanditha Venkatesan, Yasuhiko Nakao, Amy S Mauer, Gavin Fredrickson, Myeong Jun Song, Tejasav S Sehrawat, Debanjali Dasgupta, Rondell P Graham, Xavier S Revelo, Harmeet Malhi. Modulating sphingosine 1-phosphate receptor signaling skews intrahepatic leukocytes and attenuates murine nonalcoholic steatohepatitis.
Frontiers in immunology.
2023; 14(?):1130184. doi:
10.3389/fimmu.2023.1130184
. [PMID: 37153573] - Kazufumi Yoshida, Yuko Morishima, Satoshi Ano, Hirofumi Sakurai, Kenya Kuramoto, Yoshiya Tsunoda, Kai Yazaki, Masayuki Nakajima, Mingma Thering Sherpa, Masashi Matsuyama, Takumi Kiwamoto, Yosuke Matsuno, Yukio Ishii, Akio Hayashi, Takashi Matsuzaka, Hitoshi Shimano, Nobuyuki Hizawa. ELOVL6 deficiency aggravates allergic airway inflammation through the ceramide-S1P pathway in mice.
The Journal of allergy and clinical immunology.
2022 Dec; ?(?):. doi:
10.1016/j.jaci.2022.12.808
. [PMID: 36592705] - Sagarika Chakrabarty, Quyen Bui, Leylla Badeanlou, Kelly Hester, Jerold Chun, Wolfram Ruf, Theodore P Ciaraldi, Fahumiya Samad. S1P/S1PR3 signalling axis protects against obesity-induced metabolic dysfunction.
Adipocyte.
2022 12; 11(1):69-83. doi:
10.1080/21623945.2021.2021700
. [PMID: 35094654] - Mario Ruiz, Ranjan Devkota, Dimitra Panagaki, Per-Olof Bergh, Delaney Kaper, Marcus Henricsson, Ali Nik, Kasparas Petkevicius, Johanna L Höög, Mohammad Bohlooly-Y, Peter Carlsson, Jan Borén, Marc Pilon. Sphingosine 1-phosphate mediates adiponectin receptor signaling essential for lipid homeostasis and embryogenesis.
Nature communications.
2022 11; 13(1):7162. doi:
10.1038/s41467-022-34931-0
. [PMID: 36418331] - Lilla Juhász, Hajnalka Lőrincz, Anita Szentpéteri, Bíborka Nádró, Éva Varga, György Paragh, Mariann Harangi. Sphingosine 1-Phosphate and Apolipoprotein M Levels and Their Correlations with Inflammatory Biomarkers in Patients with Untreated Familial Hypercholesterolemia.
International journal of molecular sciences.
2022 Nov; 23(22):. doi:
10.3390/ijms232214065
. [PMID: 36430543] - Anna Borup, Ida Donkin, Mariëtte R Boon, Martin Frydland, Borja Martinez-Tellez, Annika Loft, Sune H Keller, Andreas Kjaer, Jesper Kjaergaard, Christian Hassager, Romain Barrès, Patrick C N Rensen, Christina Christoffersen. Association of apolipoprotein M and sphingosine-1-phosphate with brown adipose tissue after cold exposure in humans.
Scientific reports.
2022 11; 12(1):18753. doi:
10.1038/s41598-022-21938-2
. [PMID: 36335116] - Lisa Peters, Wolfgang M Kuebler, Szandor Simmons. Sphingolipids in Atherosclerosis: Chimeras in Structure and Function.
International journal of molecular sciences.
2022 Oct; 23(19):. doi:
10.3390/ijms231911948
. [PMID: 36233252] - Moritz Liebmann, Katharina Grupe, Melissa Asuaje Pfeifer, Ingo Rustenbeck, Stephan Scherneck. Differences in lipid metabolism in acquired versus preexisting glucose intolerance during gestation: role of free fatty acids and sphingosine-1-phosphate.
Lipids in health and disease.
2022 Oct; 21(1):99. doi:
10.1186/s12944-022-01706-x
. [PMID: 36209101] - Shingo Yasuda, Takayoshi Sumioka, Masayasu Miyajima, Hiroki Iwanishi, Tomoya Morii, Naoki Mochizuki, Peter S Reinach, Winston W Y Kao, Yuka Okada, Chia-Yang Liu, Shizuya Saika. Anomaly of cornea and ocular adnexa in spinster homolog 2 (Spns2) knockout mice.
The ocular surface.
2022 10; 26(?):111-127. doi:
10.1016/j.jtos.2022.08.007
. [PMID: 35988880] - Sumaiya Y Afsar, Shah Alam, Carina Fernandez Gonzalez, Gerhild van Echten-Deckert. Sphingosine-1-phosphate-lyase deficiency affects glucose metabolism in a way that abets oncogenesis.
Molecular oncology.
2022 Oct; 16(20):3642-3653. doi:
10.1002/1878-0261.13300
. [PMID: 35973936] - Elisa N D Palladino, Tytus Bernas, Christopher D Green, Cynthia Weigel, Sandeep K Singh, Can E Senkal, Andrea Martello, John P Kennelly, Erhard Bieberich, Peter Tontonoz, David A Ford, Sheldon Milstien, Emily R Eden, Sarah Spiegel. Sphingosine kinases regulate ER contacts with late endocytic organelles and cholesterol trafficking.
Proceedings of the National Academy of Sciences of the United States of America.
2022 09; 119(39):e2204396119. doi:
10.1073/pnas.2204396119
. [PMID: 36122218] - Céline Tolksdorf, Eileen Moritz, Robert Wolf, Ulrike Meyer, Sascha Marx, Sandra Bien-Möller, Ulrike Garscha, Gabriele Jedlitschky, Bernhard H Rauch. Platelet-Derived S1P and Its Relevance for the Communication with Immune Cells in Multiple Human Diseases.
International journal of molecular sciences.
2022 Sep; 23(18):. doi:
10.3390/ijms231810278
. [PMID: 36142188] - Melanie Glueck, Alexander Koch, Robert Brunkhorst, Nerea Ferreiros Bouzas, Sandra Trautmann, Liliana Schaefer, Waltraud Pfeilschifter, Josef Pfeilschifter, Rajkumar Vutukuri. The atypical sphingosine 1-phosphate variant, d16:1 S1P, mediates CTGF induction via S1P2 activation in renal cell carcinoma.
The FEBS journal.
2022 09; 289(18):5670-5681. doi:
10.1111/febs.16446
. [PMID: 35320610] - Michela Terlizzi, Chiara Colarusso, Pasquale Somma, Ilaria De Rosa, Luigi Panico, Aldo Pinto, Rosalinda Sorrentino. S1P-Induced TNF-α and IL-6 Release from PBMCs Exacerbates Lung Cancer-Associated Inflammation.
Cells.
2022 08; 11(16):. doi:
10.3390/cells11162524
. [PMID: 36010601] - Hironari Kawai, Yosuke Osawa, Michitaka Matsuda, Tomoyuki Tsunoda, Keisuke Yanagida, Daisuke Hishikawa, Miku Okawara, Yuzuru Sakamoto, Tomonari Shimagaki, Yuriko Tsutsui, Yuichi Yoshida, Shiori Yoshikawa, Kana Hashi, Hiroyoshi Doi, Taizo Mori, Taiji Yamazoe, Sachiyo Yoshio, Masaya Sugiyama, Daisuke Okuzaki, Haruki Komatsu, Ayano Inui, Miwa Tamura-Nakano, Chinatsu Oyama, Hideo Shindou, Hironori Kusano, Masayoshi Kage, Toru Ikegami, Katsuhiko Yanaga, Tatsuya Kanto. Sphingosine-1-phosphate promotes tumor development and liver fibrosis in mouse model of congestive hepatopathy.
Hepatology (Baltimore, Md.).
2022 07; 76(1):112-125. doi:
10.1002/hep.32256
. [PMID: 34855990] - Gary Álvarez Bravo, René Robles Cedeño, Marc Puig Casadevall, Lluís Ramió-Torrentà. Sphingosine-1-Phosphate (S1P) and S1P Signaling Pathway Modulators, from Current Insights to Future Perspectives.
Cells.
2022 06; 11(13):. doi:
10.3390/cells11132058
. [PMID: 35805142] - Russell Fritzemeier, Daniel Foster, Ashley Peralta, Michael Payette, Yugesh Kharel, Tao Huang, Kevin R Lynch, Webster L Santos. Discovery of In Vivo Active Sphingosine-1-phosphate Transporter (Spns2) Inhibitors.
Journal of medicinal chemistry.
2022 06; 65(11):7656-7681. doi:
10.1021/acs.jmedchem.1c02171
. [PMID: 35609189] - Lin Cheng, Lantian Su, Xiaowen Tian, Fan Xia, Chang Zhao, Wei Yan, Zhenhua Shao. A Pipeline to Investigate the Structures and Signaling Pathways of Sphingosine 1-Phosphate Receptors.
Journal of visualized experiments : JoVE.
2022 06; ?(184):. doi:
10.3791/64054
. [PMID: 35758708] - Patrice Therond, M John Chapman. Sphingosine-1-phosphate: metabolism, transport, atheroprotection and effect of statin treatment.
Current opinion in lipidology.
2022 06; 33(3):199-207. doi:
10.1097/mol.0000000000000825
. [PMID: 35695616] - Mari Kono, Lila E Hoachlander-Hobby, Saurav Majumder, Ronit Schwartz, Colleen Byrnes, Hongling Zhu, Richard L Proia. Identification of two lipid phosphatases that regulate sphingosine-1-phosphate cellular uptake and recycling.
Journal of lipid research.
2022 06; 63(6):100225. doi:
10.1016/j.jlr.2022.100225
. [PMID: 35568252] - Luisa Rotheudt, Eileen Moritz, Marcello R P Markus, Diana Albrecht, Henry Völzke, Nele Friedrich, Edzard Schwedhelm, Günter Daum, Ulf Schminke, Stephan B Felix, Bernhard H Rauch, Marcus Dörr, Martin Bahls. Sphingosine-1-phosphate and vascular disease in the general population.
Atherosclerosis.
2022 06; 350(?):73-81. doi:
10.1016/j.atherosclerosis.2022.03.020
. [PMID: 35533519] - Xuzhang Jiao, Zhifeng Li, Senlin Wang. Changes in Serum Copeptin and Sphingosine 1-Phosphate in Patients with Restenosis after Stent Implantation of Symptomatic Intracranial Artery Stenosis.
Journal of the College of Physicians and Surgeons--Pakistan : JCPSP.
2022 Jun; 32(6):697-700. doi:
10.29271/jcpsp.2022.06.697
. [PMID: 35686398] - Bongkun Choi, Ji-Eun Kim, Si-On Park, Eun-Young Kim, Soyoon Oh, Hyuksu Choi, Dohee Yoon, Hyo-Jin Min, Hyung-Ryong Kim, Eun-Ju Chang. Sphingosine-1-phosphate hinders the osteogenic differentiation of dental pulp stem cells in association with AKT signaling pathways.
International journal of oral science.
2022 04; 14(1):21. doi:
10.1038/s41368-022-00173-5
. [PMID: 35459199] - Leiye Yu, Licong He, Bing Gan, Rujuan Ti, Qingjie Xiao, Hongli Hu, Lizhe Zhu, Sheng Wang, Ruobing Ren. Structural insights into sphingosine-1-phosphate receptor activation.
Proceedings of the National Academy of Sciences of the United States of America.
2022 04; 119(16):e2117716119. doi:
10.1073/pnas.2117716119
. [PMID: 35412894] - Rongzhi Zhang, Qiang Wang, Jianshe Yang. Potential of sphingosine-1-phosphate in preventing SARS-CoV-2 infection by stabilizing and protecting endothelial cells: Narrative review.
Medicine.
2022 Apr; 101(15):e29164. doi:
10.1097/md.0000000000029164
. [PMID: 35475801] - J T Toebbe, Mary Beth Genter. An Update on Sphingosine-1-Phosphate and Lysophosphatidic Acid Receptor Transcripts in Rodent Olfactory Mucosa.
International journal of molecular sciences.
2022 Apr; 23(8):. doi:
10.3390/ijms23084343
. [PMID: 35457160] - Norishi Ueda. A Rheostat of Ceramide and Sphingosine-1-Phosphate as a Determinant of Oxidative Stress-Mediated Kidney Injury.
International journal of molecular sciences.
2022 Apr; 23(7):. doi:
10.3390/ijms23074010
. [PMID: 35409370] - María Concepción Izquierdo, Niroshan Shanmugarajah, Samuel X Lee, Michael J Kraakman, Marit Westerterp, Takumi Kitamoto, Michael Harris, Joshua R Cook, Galina A Gusarova, Kendra Zhong, Elijah Marbuary, InSug O-Sullivan, Nikolaus Rasmus, Stefania Camastra, Terry G Unterman, Ele Ferrannini, Barry E Hurwitz, Rebecca A Haeusler. Hepatic FoxOs link insulin signaling with plasma lipoprotein metabolism through an apolipoprotein M/sphingosine-1-phosphate pathway.
The Journal of clinical investigation.
2022 04; 132(7):. doi:
10.1172/jci146219
. [PMID: 35104242] - Chin-Wang Hsu, Chi-Won Suk, Yuan-Pin Hsu, Jer-Hwa Chang, Chung-Te Liu, Shau-Ku Huang, Shih-Chang Hsu. Sphingosine-1-phosphate and CRP as potential combination biomarkers in discrimination of COPD with community-acquired pneumonia and acute exacerbation of COPD.
Respiratory research.
2022 Mar; 23(1):63. doi:
10.1186/s12931-022-01991-1
. [PMID: 35307030] - Lawrence N Diebel, David M Liberati, Timothy Hla, Steven Swendeman. Plasma components to protect the endothelial barrier after shock: A role for sphingosine 1-phosphate.
Surgery.
2022 03; 171(3):825-832. doi:
10.1016/j.surg.2021.08.068
. [PMID: 34865862] - Yan Qiu, Junyi Shen, Wenli Jiang, Yi Yang, Xiaoheng Liu, Ye Zeng. Sphingosine 1-phosphate and its regulatory role in vascular endothelial cells.
Histology and histopathology.
2022 Mar; 37(3):213-225. doi:
10.14670/hh-18-428
. [PMID: 35118637] - Naoya Hirata, Shigeru Yamada, Shota Yanagida, Atsushi Ono, Yukuto Yasuhiko, Motohiro Nishida, Yasunari Kanda. Lysophosphatidic Acid Promotes the Expansion of Cancer Stem Cells via TRPC3 Channels in Triple-Negative Breast Cancer.
International journal of molecular sciences.
2022 Feb; 23(4):. doi:
10.3390/ijms23041967
. [PMID: 35216080] - Shian Liu, Navid Paknejad, Lan Zhu, Yasuyuki Kihara, Manisha Ray, Jerold Chun, Wei Liu, Richard K Hite, Xin-Yun Huang. Differential activation mechanisms of lipid GPCRs by lysophosphatidic acid and sphingosine 1-phosphate.
Nature communications.
2022 02; 13(1):731. doi:
10.1038/s41467-022-28417-2
. [PMID: 35136060] - Chang Zhao, Lin Cheng, Wei Wang, Heli Wang, Yongbo Luo, Yuying Feng, Xuehui Wang, Hong Fu, Ye Cai, Shengyong Yang, Ping Fu, Wei Yan, Zhenhua Shao. Structural insights into sphingosine-1-phosphate recognition and ligand selectivity of S1PR3-Gi signaling complexes.
Cell research.
2022 02; 32(2):218-221. doi:
10.1038/s41422-021-00567-w
. [PMID: 34545189] - Tomasz Wollny, Marzena Wątek, Urszula Wnorowska, Ewelina Piktel, Stanisław Góźdź, Krzysztof Kurek, Przemysław Wolak, Grzegorz Król, Małgorzata Żendzian-Piotrowska, Robert Bucki. Hypogelsolinemia and Decrease in Blood Plasma Sphingosine-1-Phosphate in Patients Diagnosed with Severe Acute Pancreatitis.
Digestive diseases and sciences.
2022 02; 67(2):536-545. doi:
10.1007/s10620-021-06865-y
. [PMID: 33620599] - Paola Di Pietro, Albino Carrizzo, Eduardo Sommella, Marco Oliveti, Licia Iacoviello, Augusto Di Castelnuovo, Fausto Acernese, Antonio Damato, Massimiliano De Lucia, Fabrizio Merciai, Paola Iesu, Eleonora Venturini, Raffaele Izzo, Valentina Trimarco, Michele Ciccarelli, Giuseppe Giugliano, Roberto Carnevale, Vittoria Cammisotto, Serena Migliarino, Nicola Virtuoso, Andrea Strianese, Viviana Izzo, Pietro Campiglia, Elena Ciaglia, Bodo Levkau, Annibale A Puca, Carmine Vecchione. Targeting the ASMase/S1P pathway protects from sortilin-evoked vascular damage in hypertension.
The Journal of clinical investigation.
2022 02; 132(3):. doi:
10.1172/jci146343
. [PMID: 35104805] - Mengqiao Cui, Verena Göbel, Hongjie Zhang. Uncovering the 'sphinx' of sphingosine 1-phosphate signalling: from cellular events to organ morphogenesis.
Biological reviews of the Cambridge Philosophical Society.
2022 02; 97(1):251-272. doi:
10.1111/brv.12798
. [PMID: 34585505] - Kang Liu, Taotao Sun, Yang Luan, Yinwei Chen, Jingyu Song, Le Ling, Penghui Yuan, Rui Li, Kai Cui, Yajun Ruan, Ruzhu Lan, Tao Wang, Shaogang Wang, Jihong Liu, Ke Rao. Berberine ameliorates erectile dysfunction in rats with streptozotocin-induced diabetes mellitus through the attenuation of apoptosis by inhibiting the SPHK1/S1P/S1PR2 and MAPK pathways.
Andrology.
2022 02; 10(2):404-418. doi:
10.1111/andr.13119
. [PMID: 34674380] - Ewa Gurgul-Convey. To Be or Not to Be: The Divergent Action and Metabolism of Sphingosine-1 Phosphate in Pancreatic Beta-Cells in Response to Cytokines and Fatty Acids.
International journal of molecular sciences.
2022 Jan; 23(3):. doi:
10.3390/ijms23031638
. [PMID: 35163559] - Franziska E Uhl, Lotte Vanherle, Frank Matthes, Anja Meissner. Therapeutic CFTR Correction Normalizes Systemic and Lung-Specific S1P Level Alterations Associated with Heart Failure.
International journal of molecular sciences.
2022 Jan; 23(2):. doi:
10.3390/ijms23020866
. [PMID: 35055052] - Yan Hu, Kezhi Dai. Sphingosine 1-Phosphate Metabolism and Signaling.
Advances in experimental medicine and biology.
2022; 1372(?):67-76. doi:
10.1007/978-981-19-0394-6_6
. [PMID: 35503175] - Simona Federica Spampinato, Maria Angela Sortino, Salvatore Salomone. Sphingosine-1-phosphate and Sphingosine-1-phosphate receptors in the cardiovascular system: pharmacology and clinical implications.
Advances in pharmacology (San Diego, Calif.).
2022; 94(?):95-139. doi:
10.1016/bs.apha.2022.02.001
. [PMID: 35659378] - Chien-Chung Yang, Li-Der Hsiao, Ya-Fang Shih, Mei-Hsiu Su, Chuen-Mao Yang. Sphingosine 1-Phosphate-Upregulated COX-2/PGE2 System Contributes to Human Cardiac Fibroblast Apoptosis: Involvement of MMP-9-Dependent Transactivation of EGFR Cascade.
Oxidative medicine and cellular longevity.
2022; 2022(?):7664290. doi:
10.1155/2022/7664290
. [PMID: 35242277]