Exact Mass: 755.5465

Exact Mass Matches: 755.5465

Found 500 metabolites which its exact mass value is equals to given mass value 755.5465, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

PC(16:0/18:3)

(2-{[(2R)-3-(hexadecanoyloxy)-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C42H78NO8P (755.5465)


PC(16:0/18:3(9Z,12Z,15Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(16:0/18:3(9Z,12Z,15Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of a-linolenic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(16:1(9Z)/18:2(9Z,12Z))

(2-{[(2R)-3-[(9Z)-hexadec-9-enoyloxy]-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C42H78NO8P (755.5465)


PC(16:1(9Z)/18:2(9Z,12Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(16:1(9Z)/18:2(9Z,12Z)), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of linoleic acid at the C-2 position. The palmitoleic acid moiety is derived from animal fats and vegetable oils, while the linoleic acid moiety is derived from seed oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(14:0/20:3(5Z,8Z,11Z))

(2-{[(2R)-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]-3-(tetradecanoyloxy)propyl phosphonato]oxy}ethyl)trimethylazanium

C42H78NO8P (755.5465)


PC(14:0/20:3(5Z,8Z,11Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(14:0/20:3(5Z,8Z,11Z)), in particular, consists of one chain of myristic acid at the C-1 position and one chain of mead acid at the C-2 position. The myristic acid moiety is derived from nutmeg and butter, while the mead acid moiety is derived from fish oils, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(14:0/20:3(8Z,11Z,14Z))

(2-{[(2R)-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]-3-(tetradecanoyloxy)propyl phosphonato]oxy}ethyl)trimethylazanium

C42H78NO8P (755.5465)


PC(14:0/20:3(8Z,11Z,14Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(14:0/20:3(8Z,11Z,14Z)), in particular, consists of one chain of myristic acid at the C-1 position and one chain of homo-g-linolenic acid at the C-2 position. The myristic acid moiety is derived from nutmeg and butter, while the homo-g-linolenic acid moiety is derived from fish oils, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(14:0/20:3(8Z,11Z,14Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(14:0/20:3(8Z,11Z,14Z)), in particular, consists of one chain of myristic acid at the C-1 position and one chain of homo-g-linolenic acid at the C-2 position. The myristic acid moiety is derived from nutmeg and butter, while the homo-g-linolenic acid moiety is derived from fish oils, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(14:1(9Z)/20:2(11Z,14Z))

(2-{[(2R)-2-[(11Z,14Z)-icosa-11,14-dienoyloxy]-3-[(9Z)-tetradec-9-enoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C42H78NO8P (755.5465)


PC(14:1(9Z)/20:2(11Z,14Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(14:1(9Z)/20:2(11Z,14Z)), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of eicosadienoic acid at the C-2 position. The myristoleic acid moiety is derived from milk fats, while the eicosadienoic acid moiety is derived from fish oils and liver. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(16:0/18:3(6Z,9Z,12Z))

(2-{[(2R)-3-(hexadecanoyloxy)-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C42H78NO8P (755.5465)


PC(16:0/18:3(6Z,9Z,12Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(16:0/18:3(6Z,9Z,12Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of g-linolenic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the g-linolenic acid moiety is derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(18:2(9Z,12Z)/16:1(9Z))

(2-{[(2R)-2-[(9Z)-hexadec-9-enoyloxy]-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C42H78NO8P (755.5465)


PC(18:2(9Z,12Z)/16:1(9Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:2(9Z,12Z)/16:1(9Z)), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. The linoleic acid moiety is derived from seed oils, while the palmitoleic acid moiety is derived from animal fats and vegetable oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(18:3(6Z,9Z,12Z)/16:0)

(2-{[(2R)-2-(hexadecanoyloxy)-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C42H78NO8P (755.5465)


PC(18:3(6Z,9Z,12Z)/16:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:3(6Z,9Z,12Z)/16:0), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of palmitic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(18:3(6Z,9Z,12Z)/16:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:3(6Z,9Z,12Z)/16:0), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of palmitic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(18:3(9Z,12Z,15Z)/16:0)

(2-{[(2R)-2-(hexadecanoyloxy)-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C42H78NO8P (755.5465)


PC(18:3(9Z,12Z,15Z)/16:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:3(9Z,12Z,15Z)/16:0), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of palmitic acid at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

   

PC(20:2(11Z,14Z)/14:1(9Z))

(2-{[(2R)-3-[(11Z,14Z)-icosa-11,14-dienoyloxy]-2-[(9Z)-tetradec-9-enoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C42H78NO8P (755.5465)


PC(20:2(11Z,14Z)/14:1(9Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:2(11Z,14Z)/14:1(9Z)), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. The eicosadienoic acid moiety is derived from fish oils and liver, while the myristoleic acid moiety is derived from milk fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(20:2(11Z,14Z)/14:1(9Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:2(11Z,14Z)/14:1(9Z)), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. The eicosadienoic acid moiety is derived from fish oils and liver, while the myristoleic acid moiety is derived from milk fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(20:3(5Z,8Z,11Z)/14:0)

(2-{[(2R)-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]-2-(tetradecanoyloxy)propyl phosphonato]oxy}ethyl)trimethylazanium

C42H78NO8P (755.5465)


PC(20:3(5Z,8Z,11Z)/14:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:3(5Z,8Z,11Z)/14:0), in particular, consists of one chain of mead acid at the C-1 position and one chain of myristic acid at the C-2 position. The mead acid moiety is derived from fish oils, liver and kidney, while the myristic acid moiety is derived from nutmeg and butter. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(20:3(5Z,8Z,11Z)/14:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:3(5Z,8Z,11Z)/14:0), in particular, consists of one chain of mead acid at the C-1 position and one chain of myristic acid at the C-2 position. The mead acid moiety is derived from fish oils, liver and kidney, while the myristic acid moiety is derived from nutmeg and butter. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(20:3(8Z,11Z,14Z)/14:0)

(2-{[(2R)-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]-2-(tetradecanoyloxy)propyl phosphonato]oxy}ethyl)trimethylazanium

C42H78NO8P (755.5465)


PC(20:3(8Z,11Z,14Z)/14:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:3(8Z,11Z,14Z)/14:0), in particular, consists of one chain of homo-g-linolenic acid at the C-1 position and one chain of myristic acid at the C-2 position. The homo-g-linolenic acid moiety is derived from fish oils, liver and kidney, while the myristic acid moiety is derived from nutmeg and butter. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(20:3(8Z,11Z,14Z)/14:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:3(8Z,11Z,14Z)/14:0), in particular, consists of one chain of homo-g-linolenic acid at the C-1 position and one chain of myristic acid at the C-2 position. The homo-g-linolenic acid moiety is derived from fish oils, liver and kidney, while the myristic acid moiety is derived from nutmeg and butter. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE(20:1(11Z)/P-18:1(11Z))

(2-aminoethoxy)[(2R)-3-[(11Z)-icos-11-enoyloxy]-2-[(1Z,11Z)-octadeca-1,11-dien-1-yloxy]propoxy]phosphinic acid

C43H82NO7P (755.5829)


PE(20:1(11Z)/P-18:1(11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:1(11Z)/P-18:1(11Z)), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of plasmalogen 18:1n7 at the C-2 position. The eicosenoic acid moiety is derived from vegetable oils and cod oils, while the plasmalogen 18:1n7 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.

   

PE(20:1(11Z)/P-18:1(9Z))

(2-aminoethoxy)[(2R)-3-[(11Z)-icos-11-enoyloxy]-2-[(1Z,9Z)-octadeca-1,9-dien-1-yloxy]propoxy]phosphinic acid

C43H82NO7P (755.5829)


PE(20:1(11Z)/P-18:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:1(11Z)/P-18:1(9Z)), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of plasmalogen 18:1n9 at the C-2 position. The eicosenoic acid moiety is derived from vegetable oils and cod oils, while the plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PE(20:1(11Z)/P-18:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:1(11Z)/P-18:1(9Z)), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of plasmalogen 18:1n9 at the C-2 position. The eicosenoic acid moiety is derived from vegetable oils and cod oils, while the plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE(20:2(11Z,14Z)/P-18:0)

(2-aminoethoxy)[(2R)-3-[(11Z,14Z)-icosa-11,14-dienoyloxy]-2-[(1Z)-octadec-1-en-1-yloxy]propoxy]phosphinic acid

C43H82NO7P (755.5829)


PE(20:2(11Z,14Z)/P-18:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:2(11Z,14Z)/P-18:0), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of plasmalogen 18:0 at the C-2 position. The eicosadienoic acid moiety is derived from fish oils and liver, while the plasmalogen 18:0 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.

   

PE(22:2(13Z,16Z)/P-16:0)

(2-aminoethoxy)[(2R)-3-[(13Z,16Z)-docosa-13,16-dienoyloxy]-2-[(1Z)-hexadec-1-en-1-yloxy]propoxy]phosphinic acid

C43H82NO7P (755.5829)


PE(22:2(13Z,16Z)/P-16:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(22:2(13Z,16Z)/P-16:0), in particular, consists of one chain of docosadienoic acid at the C-1 position and one chain of plasmalogen 16:0 at the C-2 position. The docosadienoic acid moiety is derived from animal fats, while the plasmalogen 16:0 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.

   

PE(P-16:0/22:2(13Z,16Z))

(2-aminoethoxy)[(2R)-2-[(13Z,16Z)-docosa-13,16-dienoyloxy]-3-[(1Z)-hexadec-1-en-1-yloxy]propoxy]phosphinic acid

C43H82NO7P (755.5829)


PE(P-16:0/22:2(13Z,16Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-16:0/22:2(13Z,16Z)), in particular, consists of one chain of plasmalogen 16:0 at the C-1 position and one chain of docosadienoic acid at the C-2 position. The plasmalogen 16:0 moiety is derived from animal fats, liver and kidney, while the docosadienoic acid moiety is derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PE(P-16:0/22:2(13Z,16Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-16:0/22:2(13Z,16Z)), in particular, consists of one chain of plasmalogen 16:0 at the C-1 position and one chain of docosadienoic acid at the C-2 position. The plasmalogen 16:0 moiety is derived from animal fats, liver and kidney, while the docosadienoic acid moiety is derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE(P-18:0/20:2(11Z,14Z))

(2-aminoethoxy)[(2R)-2-[(11Z,14Z)-icosa-11,14-dienoyloxy]-3-[(1Z)-octadec-1-en-1-yloxy]propoxy]phosphinic acid

C43H82NO7P (755.5829)


PE(P-18:0/20:2(11Z,14Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:0/20:2(11Z,14Z)), in particular, consists of one chain of plasmalogen 18:0 at the C-1 position and one chain of eicosadienoic acid at the C-2 position. The plasmalogen 18:0 moiety is derived from animal fats, liver and kidney, while the eicosadienoic acid moiety is derived from fish oils and liver. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PE(P-18:0/20:2(11Z,14Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:0/20:2(11Z,14Z)), in particular, consists of one chain of plasmalogen 18:0 at the C-1 position and one chain of eicosadienoic acid at the C-2 position. The plasmalogen 18:0 moiety is derived from animal fats, liver and kidney, while the eicosadienoic acid moiety is derived from fish oils and liver. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE(P-18:1(11Z)/20:1(11Z))

(2-aminoethoxy)[(2R)-2-[(11Z)-icos-11-enoyloxy]-3-[(1Z,11Z)-octadeca-1,11-dien-1-yloxy]propoxy]phosphinic acid

C43H82NO7P (755.5829)


PE(P-18:1(11Z)/20:1(11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:1(11Z)/20:1(11Z)), in particular, consists of one chain of plasmalogen 18:1n7 at the C-1 position and one chain of eicosenoic acid at the C-2 position. The plasmalogen 18:1n7 moiety is derived from animal fats, liver and kidney, while the eicosenoic acid moiety is derived from vegetable oils and cod oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PE(P-18:1(11Z)/20:1(11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(P-18:1(11Z)/20:1(11Z)), in particular, consists of one chain of plasmalogen 18:1n7 at the C-1 position and one chain of eicosenoic acid at the C-2 position. The plasmalogen 18:1n7 moiety is derived from animal fats, liver and kidney, while the eicosenoic acid moiety is derived from vegetable oils and cod oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE(P-18:1(9Z)/20:1(11Z))

(2-aminoethoxy)[(2R)-2-[(11Z)-icos-11-enoyloxy]-3-[(1Z,9Z)-octadeca-1,9-dien-1-yloxy]propoxy]phosphinic acid

C43H82NO7P (755.5829)


PE(P-18:1(9Z)/20:1(11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(dm18:1(9Z)/20:1(11Z)), in particular, consists of one chain of plasmalogen 18:P-9 at the C-1 position and one chain of eicosenoic acid at the C-2 position. The plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney, while the eicosenoic acid moiety is derived from vegetable oils and cod oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PE(P-18:1(9Z)/20:1(11Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(dm18:1(9Z)/20:1(11Z)), in particular, consists of one chain of plasmalogen 18:P-9 at the C-1 position and one chain of eicosenoic acid at the C-2 position. The plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney, while the eicosenoic acid moiety is derived from vegetable oils and cod oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE-NMe(14:1(9Z)/22:2(13Z,16Z))

{2-[(13Z,16Z)-docosa-13,16-dienoyloxy]-3-[(9Z)-tetradec-9-enoyloxy]propoxy}[2-(methylamino)ethoxy]phosphinic acid

C42H78NO8P (755.5465)


PE-NMe(14:1(9Z)/22:2(13Z,16Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(14:1(9Z)/22:2(13Z,16Z)), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of docosadienoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(16:0/20:3(5Z,8Z,11Z))

[3-(hexadecanoyloxy)-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propoxy][2-(methylamino)ethoxy]phosphinic acid

C42H78NO8P (755.5465)


PE-NMe(16:0/20:3(5Z,8Z,11Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(16:0/20:3(5Z,8Z,11Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of mead acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(16:0/20:3(8Z,11Z,14Z))

[3-(hexadecanoyloxy)-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propoxy][2-(methylamino)ethoxy]phosphinic acid

C42H78NO8P (755.5465)


PE-NMe(16:0/20:3(8Z,11Z,14Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(16:0/20:3(8Z,11Z,14Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of dihomo-gamma-linolenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(16:1(9Z)/20:2(11Z,14Z))

{3-[(9Z)-hexadec-9-enoyloxy]-2-[(11Z,14Z)-icosa-11,14-dienoyloxy]propoxy}[2-(methylamino)ethoxy]phosphinic acid

C42H78NO8P (755.5465)


PE-NMe(16:1(9Z)/20:2(11Z,14Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(16:1(9Z)/20:2(11Z,14Z)), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of eicosadienoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(18:0/18:3(6Z,9Z,12Z))

[2-(methylamino)ethoxy]({2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]-3-(octadecanoyloxy)propoxy})phosphinic acid

C42H78NO8P (755.5465)


PE-NMe(18:0/18:3(6Z,9Z,12Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:0/18:3(6Z,9Z,12Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of gamma-linolenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(18:0/18:3(9Z,12Z,15Z))

[2-(methylamino)ethoxy]({2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]-3-(octadecanoyloxy)propoxy})phosphinic acid

C42H78NO8P (755.5465)


PE-NMe(18:0/18:3(9Z,12Z,15Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:0/18:3(9Z,12Z,15Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of alpha-linolenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(18:1(11Z)/18:2(9Z,12Z))

[2-(methylamino)ethoxy]({3-[(11Z)-octadec-11-enoyloxy]-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy})phosphinic acid

C42H78NO8P (755.5465)


PE-NMe(18:1(11Z)/18:2(9Z,12Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:1(11Z)/18:2(9Z,12Z)), in particular, consists of one chain of cis-vaccenic acid at the C-1 position and one chain of linoleic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(18:1(9Z)/18:2(9Z,12Z))

[2-(methylamino)ethoxy]({3-[(9Z)-octadec-9-enoyloxy]-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy})phosphinic acid

C42H78NO8P (755.5465)


PE-NMe(18:1(9Z)/18:2(9Z,12Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:1(9Z)/18:2(9Z,12Z)), in particular, consists of one chain of oleic acid at the C-1 position and one chain of linoleic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(18:2(9Z,12Z)/18:1(11Z))

[2-(methylamino)ethoxy]({2-[(11Z)-octadec-11-enoyloxy]-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy})phosphinic acid

C42H78NO8P (755.5465)


PE-NMe(18:2(9Z,12Z)/18:1(11Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:2(9Z,12Z)/18:1(11Z)), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of cis-vaccenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(18:2(9Z,12Z)/18:1(9Z))

[2-(methylamino)ethoxy]({2-[(9Z)-octadec-9-enoyloxy]-3-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy})phosphinic acid

C42H78NO8P (755.5465)


PE-NMe(18:2(9Z,12Z)/18:1(9Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:2(9Z,12Z)/18:1(9Z)), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of oleic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(18:3(6Z,9Z,12Z)/18:0)

[2-(methylamino)ethoxy]({3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]-2-(octadecanoyloxy)propoxy})phosphinic acid

C42H78NO8P (755.5465)


PE-NMe(18:3(6Z,9Z,12Z)/18:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:3(6Z,9Z,12Z)/18:0), in particular, consists of one chain of gamma-linolenic acid at the C-1 position and one chain of stearic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(18:3(9Z,12Z,15Z)/18:0)

[2-(methylamino)ethoxy]({3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]-2-(octadecanoyloxy)propoxy})phosphinic acid

C42H78NO8P (755.5465)


PE-NMe(18:3(9Z,12Z,15Z)/18:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:3(9Z,12Z,15Z)/18:0), in particular, consists of one chain of alpha-linolenic acid at the C-1 position and one chain of stearic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(20:2(11Z,14Z)/16:1(9Z))

{2-[(9Z)-hexadec-9-enoyloxy]-3-[(11Z,14Z)-icosa-11,14-dienoyloxy]propoxy}[2-(methylamino)ethoxy]phosphinic acid

C42H78NO8P (755.5465)


PE-NMe(20:2(11Z,14Z)/16:1(9Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(20:2(11Z,14Z)/16:1(9Z)), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(20:3(5Z,8Z,11Z)/16:0)

[2-(hexadecanoyloxy)-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propoxy][2-(methylamino)ethoxy]phosphinic acid

C42H78NO8P (755.5465)


PE-NMe(20:3(5Z,8Z,11Z)/16:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(20:3(5Z,8Z,11Z)/16:0), in particular, consists of one chain of mead acid at the C-1 position and one chain of palmitic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(20:3(8Z,11Z,14Z)/16:0)

[2-(hexadecanoyloxy)-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propoxy][2-(methylamino)ethoxy]phosphinic acid

C42H78NO8P (755.5465)


PE-NMe(20:3(8Z,11Z,14Z)/16:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(20:3(8Z,11Z,14Z)/16:0), in particular, consists of one chain of dihomo-gamma-linolenic acid at the C-1 position and one chain of palmitic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(22:2(13Z,16Z)/14:1(9Z))

{3-[(13Z,16Z)-docosa-13,16-dienoyloxy]-2-[(9Z)-tetradec-9-enoyloxy]propoxy}[2-(methylamino)ethoxy]phosphinic acid

C42H78NO8P (755.5465)


PE-NMe(22:2(13Z,16Z)/14:1(9Z)) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(22:2(13Z,16Z)/14:1(9Z)), in particular, consists of one chain of docosadienoic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(15:0/20:3(5Z,8Z,11Z))

[2-(dimethylamino)ethoxy]({2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]-3-(pentadecanoyloxy)propoxy})phosphinic acid

C42H78NO8P (755.5465)


PE-NMe2(15:0/20:3(5Z,8Z,11Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(15:0/20:3(5Z,8Z,11Z)), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of mead acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(15:0/20:3(8Z,11Z,14Z))

[2-(dimethylamino)ethoxy]({2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]-3-(pentadecanoyloxy)propoxy})phosphinic acid

C42H78NO8P (755.5465)


PE-NMe2(15:0/20:3(8Z,11Z,14Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(15:0/20:3(8Z,11Z,14Z)), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of dihomo-gamma-linolenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(20:3(5Z,8Z,11Z)/15:0)

[2-(dimethylamino)ethoxy]({3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]-2-(pentadecanoyloxy)propoxy})phosphinic acid

C42H78NO8P (755.5465)


PE-NMe2(20:3(5Z,8Z,11Z)/15:0) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(20:3(5Z,8Z,11Z)/15:0), in particular, consists of one chain of mead acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(20:3(8Z,11Z,14Z)/15:0)

[2-(dimethylamino)ethoxy]({3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]-2-(pentadecanoyloxy)propoxy})phosphinic acid

C42H78NO8P (755.5465)


PE-NMe2(20:3(8Z,11Z,14Z)/15:0) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(20:3(8Z,11Z,14Z)/15:0), in particular, consists of one chain of dihomo-gamma-linolenic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PC(P-16:0/18:2(10E,12Z)+=O(9))

(2-{[(2R)-3-[(1E)-hexadec-1-en-1-yloxy]-2-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C42H78NO8P (755.5465)


PC(P-16:0/18:2(10E,12Z)+=O(9)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(P-16:0/18:2(10E,12Z)+=O(9)), in particular, consists of one chain of one 1Z-hexadecenyl at the C-1 position and one chain of 9-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(18:2(10E,12Z)+=O(9)/P-16:0)

(2-{[(2R)-2-[(1E)-hexadec-1-en-1-yloxy]-3-{[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C42H78NO8P (755.5465)


PC(18:2(10E,12Z)+=O(9)/P-16:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:2(10E,12Z)+=O(9)/P-16:0), in particular, consists of one chain of one 9-oxo-octadecadienoyl at the C-1 position and one chain of 1Z-hexadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(P-16:0/18:2(9Z,11E)+=O(13))

(2-{[(2R)-3-[(1E)-hexadec-1-en-1-yloxy]-2-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C42H78NO8P (755.5465)


PC(P-16:0/18:2(9Z,11E)+=O(13)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(P-16:0/18:2(9Z,11E)+=O(13)), in particular, consists of one chain of one 1Z-hexadecenyl at the C-1 position and one chain of 13-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(18:2(9Z,11E)+=O(13)/P-16:0)

(2-{[(2R)-2-[(1E)-hexadec-1-en-1-yloxy]-3-{[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C42H78NO8P (755.5465)


PC(18:2(9Z,11E)+=O(13)/P-16:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:2(9Z,11E)+=O(13)/P-16:0), in particular, consists of one chain of one 13-oxo-octadecadienoyl at the C-1 position and one chain of 1Z-hexadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(P-16:0/18:3(10,12,15)-OH(9))

(2-{[(2R)-3-[(1E)-hexadec-1-en-1-yloxy]-2-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C42H78NO8P (755.5465)


PC(P-16:0/18:3(10,12,15)-OH(9)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(P-16:0/18:3(10,12,15)-OH(9)), in particular, consists of one chain of one 1Z-hexadecenyl at the C-1 position and one chain of 9-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(18:3(10,12,15)-OH(9)/P-16:0)

(2-{[(2R)-2-[(1E)-hexadec-1-en-1-yloxy]-3-{[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C42H78NO8P (755.5465)


PC(18:3(10,12,15)-OH(9)/P-16:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:3(10,12,15)-OH(9)/P-16:0), in particular, consists of one chain of one 9-hydroxyoctadecatrienoyl at the C-1 position and one chain of 1Z-hexadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(P-16:0/18:3(9,11,15)-OH(13))

(2-{[(2R)-3-[(1E)-hexadec-1-en-1-yloxy]-2-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C42H78NO8P (755.5465)


PC(P-16:0/18:3(9,11,15)-OH(13)) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(P-16:0/18:3(9,11,15)-OH(13)), in particular, consists of one chain of one 1Z-hexadecenyl at the C-1 position and one chain of 13-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

PC(18:3(9,11,15)-OH(13)/P-16:0)

(2-{[(2R)-2-[(1E)-hexadec-1-en-1-yloxy]-3-{[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]oxy}propyl phosphono]oxy}ethyl)trimethylazanium

C42H78NO8P (755.5465)


PC(18:3(9,11,15)-OH(13)/P-16:0) is an oxidized phosphatidylcholine (PC or GPCho). Oxidized phosphatidylcholines are glycerophospholipids in which a phosphorylcholine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylcholines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PC(18:3(9,11,15)-OH(13)/P-16:0), in particular, consists of one chain of one 13-hydroxyoctadecatrienoyl at the C-1 position and one chain of 1Z-hexadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PCs can be synthesized via three different routes. In one route, the oxidized PC is synthetized de novo following the same mechanisms as for PCs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidated acyl chains with an oxidated acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PC backbone, mainely through the action of LOX (PMID: 33329396).

   

Phosphatidylcholine 14:0-20:3

Phosphatidylcholine 14:0-20:3

C42H78NO8P (755.5465)


   

Phosphatidylcholine 16:0-18:3

Phosphatidylcholine 16:0-18:3

C42H78NO8P (755.5465)


   

Phosphatidylcholine 16:1-18:2

Phosphatidylcholine 16:1-18:2

C42H78NO8P (755.5465)


   

Phosphatidylethanolamine 17:0-20:3

Phosphatidylethanolamine 17:0-20:3

C42H78NO8P (755.5465)


   

Phosphatidylethanolamine alkenyl 20:1-18:2

Phosphatidylethanolamine alkenyl 20:1-18:2

C43H82NO7P (755.5829)


   

Phosphatidylethanolamine alkenyl 18:0-20:2

Phosphatidylethanolamine alkenyl 18:0-20:2

C43H82NO7P (755.5829)


   

Phosphatidylethanolamine alkenyl 18:1-20:1

Phosphatidylethanolamine alkenyl 18:1-20:1

C43H82NO7P (755.5829)


   

PC 34:3

1-(9Z-hexadecenoyl)-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphocholine

C42H78NO8P (755.5465)


Found in mouse heart; TwoDicalId=468; MgfFile=160902_Heart_Control_Neg_05; MgfId=576 Found in mouse liver; TwoDicalId=155; MgfFile=160824_Liver_normal_Neg_01; MgfId=481 Found in mouse muscle; TwoDicalId=150; MgfFile=160824_Muscle_normal_Neg_01_sute; MgfId=755

   

PC(15:0/19:3)[U]

3,5,8-Trioxa-4-phosphaheptacosa-17,20,23-trien-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-7-[[(1-oxopentadecyl)oxy]methyl]-, inner salt, 4-oxide, (Z,Z,Z)-

C42H78NO8P (755.5465)


   

PC(16:0/18:3)[U]

3,5,8-Trioxa-4-phosphahexacosa-14,17,20-trien-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-7-[[(1-oxohexadecyl)oxy]methyl]-, inner salt, 4-oxide, (Z,Z,Z)-

C42H78NO8P (755.5465)


   

PC(16:1/18:2)[U]

3,5,8-Trioxa-4-phosphahexacosa-17,20-dien-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-7-[[(1-oxo-9-hexadecenyl)oxy]methyl]-, inner salt, 4-oxide, (Z,Z,Z)-

C42H78NO8P (755.5465)


   

Lecithin

1-homo-gamma-linolenoyl-2-myristoyl-sn-glycero-3-phosphocholine

C42H78NO8P (755.5465)


   

PE(38:2)

1-(1-Enyl-palmitoyl)-2-docosadienoyl-sn-glycero-3-phosphoethanolamine

C43H82NO7P (755.5829)


   

PC(17:1(9Z)/17:2(9Z,12Z))

1-(9Z-heptadecenoyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphocholine

C42H78NO8P (755.5465)


   

PC(17:2(9Z,12Z)/17:1(9Z))

1-(9Z,12Z-heptadecadienoyl)-2-(9Z-heptadecenoyl)-glycero-3-phosphocholine

C42H78NO8P (755.5465)


   

PC(P-18:0/17:2(9Z,12Z))

1-(1Z-octadecenyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphocholine

C43H82NO7P (755.5829)


   

PE(15:1(9Z)/22:2(13Z,16Z))

1-(9Z-pentadecenoyl)-2-(13Z,16Z-docosadienoyl)-glycero-3-phosphoethanolamine

C42H78NO8P (755.5465)


   

PE(17:0/20:3(8Z,11Z,14Z))

1-heptadecanoyl-2-(8Z,11Z,14Z-eicosatrienoyl)-glycero-3-phosphoethanolamine

C42H78NO8P (755.5465)


   

PE(17:1(9Z)/20:2(11Z,14Z))

1-(9Z-heptadecenoyl)-2-(11Z,14Z-eicosadienoyl)-glycero-3-phosphoethanolamine

C42H78NO8P (755.5465)


   

PE(17:2(9Z,12Z)/20:1(11Z))

1-(9Z,12Z-heptadecadienoyl)-2-(11Z-eicosenoyl)-glycero-3-phosphoethanolamine

C42H78NO8P (755.5465)


   

PE(18:2(9Z,12Z)/19:1(9Z))

1-(9Z,12Z-octadecadienoyl)-2-(9Z-nonadecenoyl)-glycero-3-phosphoethanolamine

C42H78NO8P (755.5465)


   

PE(18:3(6Z,9Z,12Z)/19:0)

1-(6Z,9Z,12Z-octadecatrienoyl)-2-nonadecanoyl-glycero-3-phosphoethanolamine

C42H78NO8P (755.5465)


   

PE(18:3(9Z,12Z,15Z)/19:0)

1-(9Z,12Z,15Z-octadecatrienoyl)-2-nonadecanoyl-glycero-3-phosphoethanolamine

C42H78NO8P (755.5465)


   

PE(19:0/18:3(6Z,9Z,12Z))

1-nonadecanoyl-2-(6Z,9Z,12Z-octadecatrienoyl)-glycero-3-phosphoethanolamine

C42H78NO8P (755.5465)


   

PE(19:0/18:3(9Z,12Z,15Z))

1-nonadecanoyl-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phosphoethanolamine

C42H78NO8P (755.5465)


   

PE(19:1(9Z)/18:2(9Z,12Z))

1-(9Z-nonadecenoyl)-2-(9Z,12Z-octadecadienoyl)-glycero-3-phosphoethanolamine

C42H78NO8P (755.5465)


   

PE(20:1(11Z)/17:2(9Z,12Z))

1-(11Z-eicosenoyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphoethanolamine

C42H78NO8P (755.5465)


   

PE(20:2(11Z,14Z)/17:1(9Z))

1-(11Z,14Z-eicosadienoyl)-2-(9Z-heptadecenoyl)-glycero-3-phosphoethanolamine

C42H78NO8P (755.5465)


   

PE(20:3(8Z,11Z,14Z)/17:0)

1-(8Z,11Z,14Z-eicosatrienoyl)-2-heptadecanoyl-glycero-3-phosphoethanolamine

C42H78NO8P (755.5465)


   

PE(22:2(13Z,16Z)/15:1(9Z))

1-(13Z,16Z-docosadienoyl)-2-(9Z-pentadecenoyl)-glycero-3-phosphoethanolamine

C42H78NO8P (755.5465)


   

PE(O-18:0/20:3(8Z,11Z,14Z))

1-octadecyl-2-(8Z,11Z,14Z-eicosatrienoyl)-glycero-3-phosphoethanolamine

C43H82NO7P (755.5829)


   

PE(O-20:0/18:3(6Z,9Z,12Z))

1-eicosyl-2-(6Z,9Z,12Z-octadecatrienoyl)-glycero-3-phosphoethanolamine

C43H82NO7P (755.5829)


   

PE(O-20:0/18:3(9Z,12Z,15Z))

1-eicosyl-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phosphoethanolamine

C43H82NO7P (755.5829)


   

PE(P-20:0/18:2(9Z,12Z))

1-(1Z-eicosenyl)-2-(9Z,12Z-octadecadienoyl)-glycero-3-phosphoethanolamine

C43H82NO7P (755.5829)


   

PC O-35:3

1-(1Z-octadecenyl)-2-(9Z,12Z-heptadecadienoyl)-glycero-3-phosphocholine

C43H82NO7P (755.5829)


   

PE 37:3

1-(13Z,16Z-docosadienoyl)-2-(9Z-pentadecenoyl)-glycero-3-phosphoethanolamine

C42H78NO8P (755.5465)


   

PE O-38:3

1-(1Z-octadecenyl)-2-(11Z,14Z-eicosadienoyl)-glycero-3-phosphoethanolamine

C43H82NO7P (755.5829)


   

(5α,6α)-17-Methyl-7,8-didehydro-4,5-epoxymorphinan-3,6-diyl diace tate - (3β)-cholest-5-en-3-ol (1:1)

(5α,6α)-17-Methyl-7,8-didehydro-4,5-epoxymorphinan-3,6-diyl diace tate - (3β)-cholest-5-en-3-ol (1:1)

C48H69NO6 (755.5125)


   

[3-hexadecanoyloxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-hexadecanoyloxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO8P (755.5465)


   

[3-[(Z)-hexadec-9-enoyl]oxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-hexadec-9-enoyl]oxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO8P (755.5465)


   

PC(P-16:0/18:2(10E,12Z)+=O(9))

PC(P-16:0/18:2(10E,12Z)+=O(9))

C42H78NO8P (755.5465)


   

PC(18:2(10E,12Z)+=O(9)/P-16:0)

PC(18:2(10E,12Z)+=O(9)/P-16:0)

C42H78NO8P (755.5465)


   

PC(P-16:0/18:2(9Z,11E)+=O(13))

PC(P-16:0/18:2(9Z,11E)+=O(13))

C42H78NO8P (755.5465)


   

PC(18:2(9Z,11E)+=O(13)/P-16:0)

PC(18:2(9Z,11E)+=O(13)/P-16:0)

C42H78NO8P (755.5465)


   

PC(P-16:0/18:3(10,12,15)-OH(9))

PC(P-16:0/18:3(10,12,15)-OH(9))

C42H78NO8P (755.5465)


   

PC(18:3(10,12,15)-OH(9)/P-16:0)

PC(18:3(10,12,15)-OH(9)/P-16:0)

C42H78NO8P (755.5465)


   

PC(P-16:0/18:3(9,11,15)-OH(13))

PC(P-16:0/18:3(9,11,15)-OH(13))

C42H78NO8P (755.5465)


   

PC(18:3(9,11,15)-OH(13)/P-16:0)

PC(18:3(9,11,15)-OH(13)/P-16:0)

C42H78NO8P (755.5465)


   

2-[[(E,2S,3R)-2-[[(5R,6Z,8E,10E,12S,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]amino]-3-hydroxyhexadec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(E,2S,3R)-2-[[(5R,6Z,8E,10E,12S,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]amino]-3-hydroxyhexadec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C41H76N2O8P+ (755.5339)


   

2-[[(E,2S,3R)-2-[[(5S,6E,8Z,11Z,13E,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]amino]-3-hydroxyhexadec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(E,2S,3R)-2-[[(5S,6E,8Z,11Z,13E,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]amino]-3-hydroxyhexadec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C41H76N2O8P+ (755.5339)


   

2-[[(E,2S,3R)-2-[[(5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]amino]-3-hydroxyhexadec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(E,2S,3R)-2-[[(5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]amino]-3-hydroxyhexadec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C41H76N2O8P+ (755.5339)


   

2-[[(2S,3R,4E,8Z)-2-[[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]amino]-3-hydroxyhexadeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2S,3R,4E,8Z)-2-[[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]amino]-3-hydroxyhexadeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C41H76N2O8P+ (755.5339)


   

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]amino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]amino]heptadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C42H80N2O7P+ (755.5703)


   

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]amino]nonadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(10E,12Z)-9-oxooctadeca-10,12-dienoyl]amino]nonadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C42H80N2O7P+ (755.5703)


   

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]amino]nonadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(9Z,11E)-13-oxooctadeca-9,11-dienoyl]amino]nonadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C42H80N2O7P+ (755.5703)


   

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]amino]nonadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(10E,12E,15E)-9-hydroxyoctadeca-10,12,15-trienoyl]amino]nonadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C42H80N2O7P+ (755.5703)


   

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]amino]nonadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E,2S,3R)-3-hydroxy-2-[[(9E,11E,15E)-13-hydroxyoctadeca-9,11,15-trienoyl]amino]nonadec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C42H80N2O7P+ (755.5703)


   

PE(20:1(11Z)/P-18:1(9Z))

PE(20:1(11Z)/P-18:1(9Z))

C43H82NO7P (755.5829)


   

PE(20:1(11Z)/P-18:1(11Z))

PE(20:1(11Z)/P-18:1(11Z))

C43H82NO7P (755.5829)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] (Z)-icos-11-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] (Z)-icos-11-enoate

C43H82NO7P (755.5829)


   

Ldgcc 36:7

Ldgcc 36:7

C46H77NO7 (755.57)


   

HexCer 9:0;2O/30:8

HexCer 9:0;2O/30:8

C45H73NO8 (755.5336)


   

HexCer 9:1;2O/30:7

HexCer 9:1;2O/30:7

C45H73NO8 (755.5336)


   

HexCer 21:3;2O/18:5

HexCer 21:3;2O/18:5

C45H73NO8 (755.5336)


   

HexCer 17:3;2O/22:5

HexCer 17:3;2O/22:5

C45H73NO8 (755.5336)


   

HexCer 13:2;2O/26:6

HexCer 13:2;2O/26:6

C45H73NO8 (755.5336)


   

HexCer 15:2;2O/24:6

HexCer 15:2;2O/24:6

C45H73NO8 (755.5336)


   

HexCer 19:3;2O/20:5

HexCer 19:3;2O/20:5

C45H73NO8 (755.5336)


   

HexCer 11:1;2O/28:7

HexCer 11:1;2O/28:7

C45H73NO8 (755.5336)


   

HexCer 13:1;2O/26:7

HexCer 13:1;2O/26:7

C45H73NO8 (755.5336)


   

HexCer 15:3;2O/24:5

HexCer 15:3;2O/24:5

C45H73NO8 (755.5336)


   

HexCer 17:2;2O/22:6

HexCer 17:2;2O/22:6

C45H73NO8 (755.5336)


   

[2-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]oxy-3-nonoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]oxy-3-nonoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H82NO7P (755.5829)


   

2-[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-nonanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-nonanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C45H73NO8 (755.5336)


   

Lnape 19:2/N-18:1

Lnape 19:2/N-18:1

C42H78NO8P (755.5465)


   

Lnape 22:3/N-15:0

Lnape 22:3/N-15:0

C42H78NO8P (755.5465)


   

Lnape 18:1/N-19:2

Lnape 18:1/N-19:2

C42H78NO8P (755.5465)


   

Lnape 15:0/N-22:3

Lnape 15:0/N-22:3

C42H78NO8P (755.5465)


   

Lnape 26:3/N-11:0

Lnape 26:3/N-11:0

C42H78NO8P (755.5465)


   

Lnape 21:1/N-16:2

Lnape 21:1/N-16:2

C42H78NO8P (755.5465)


   

Lnape 20:2/N-17:1

Lnape 20:2/N-17:1

C42H78NO8P (755.5465)


   

Lnape 21:0/N-16:3

Lnape 21:0/N-16:3

C42H78NO8P (755.5465)


   

Lnape 19:0/N-18:3

Lnape 19:0/N-18:3

C42H78NO8P (755.5465)


   

Lnape 18:3/N-19:0

Lnape 18:3/N-19:0

C42H78NO8P (755.5465)


   

Lnape 16:3/N-21:0

Lnape 16:3/N-21:0

C42H78NO8P (755.5465)


   

Lnape 16:2/N-21:1

Lnape 16:2/N-21:1

C42H78NO8P (755.5465)


   

Lnape 17:2/N-20:1

Lnape 17:2/N-20:1

C42H78NO8P (755.5465)


   

Lnape 13:1/N-24:2

Lnape 13:1/N-24:2

C42H78NO8P (755.5465)


   

Lnape 16:1/N-21:2

Lnape 16:1/N-21:2

C42H78NO8P (755.5465)


   

Lnape 18:2/N-19:1

Lnape 18:2/N-19:1

C42H78NO8P (755.5465)


   

Lnape 20:1/N-17:2

Lnape 20:1/N-17:2

C42H78NO8P (755.5465)


   

Lnape 20:3/N-17:0

Lnape 20:3/N-17:0

C42H78NO8P (755.5465)


   

Lnape 22:2/N-15:1

Lnape 22:2/N-15:1

C42H78NO8P (755.5465)


   

Lnape 19:1/N-18:2

Lnape 19:1/N-18:2

C42H78NO8P (755.5465)


   

Lnape 13:0/N-24:3

Lnape 13:0/N-24:3

C42H78NO8P (755.5465)


   

Lnape 17:0/N-20:3

Lnape 17:0/N-20:3

C42H78NO8P (755.5465)


   

Lnape 15:1/N-22:2

Lnape 15:1/N-22:2

C42H78NO8P (755.5465)


   

Lnape 24:2/N-13:1

Lnape 24:2/N-13:1

C42H78NO8P (755.5465)


   

Lnape 24:3/N-13:0

Lnape 24:3/N-13:0

C42H78NO8P (755.5465)


   

Lnape 17:1/N-20:2

Lnape 17:1/N-20:2

C42H78NO8P (755.5465)


   

Lnape 21:2/N-16:1

Lnape 21:2/N-16:1

C42H78NO8P (755.5465)


   

Lnape 11:0/N-26:3

Lnape 11:0/N-26:3

C42H78NO8P (755.5465)


   

2-[3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C45H73NO8 (755.5336)


   

2-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C45H73NO8 (755.5336)


   

HexCer 21:3;3O/15:0;(2OH)

HexCer 21:3;3O/15:0;(2OH)

C42H77NO10 (755.5547)


   

HexCer 19:3;3O/17:0;(2OH)

HexCer 19:3;3O/17:0;(2OH)

C42H77NO10 (755.5547)


   

HexCer 20:3;3O/16:0;(2OH)

HexCer 20:3;3O/16:0;(2OH)

C42H77NO10 (755.5547)


   

HexCer 23:3;3O/13:0;(2OH)

HexCer 23:3;3O/13:0;(2OH)

C42H77NO10 (755.5547)


   

HexCer 18:3;3O/18:0;(2OH)

HexCer 18:3;3O/18:0;(2OH)

C42H77NO10 (755.5547)


   

HexCer 22:3;3O/14:0;(2OH)

HexCer 22:3;3O/14:0;(2OH)

C42H77NO10 (755.5547)


   

HexCer 12:1;3O/24:2;(2OH)

HexCer 12:1;3O/24:2;(2OH)

C42H77NO10 (755.5547)


   

HexCer 24:3;3O/12:0;(2OH)

HexCer 24:3;3O/12:0;(2OH)

C42H77NO10 (755.5547)


   

[3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]-2-nonanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]-2-nonanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H82NO7P (755.5829)


   

[2-heptanoyloxy-3-[(14Z,17Z,20Z)-octacosa-14,17,20-trienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-heptanoyloxy-3-[(14Z,17Z,20Z)-octacosa-14,17,20-trienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H82NO7P (755.5829)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-henicos-11-enoxy]propan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-henicos-11-enoxy]propan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C43H82NO7P (755.5829)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C43H82NO7P (755.5829)


   

(4E,8E,12E)-2-[[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]amino]-3-hydroxyicosa-4,8,12-triene-1-sulfonic acid

(4E,8E,12E)-2-[[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]amino]-3-hydroxyicosa-4,8,12-triene-1-sulfonic acid

C46H77NO5S (755.5522)


   

(4E,8E,12E)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]hexacosa-4,8,12-triene-1-sulfonic acid

(4E,8E,12E)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]hexacosa-4,8,12-triene-1-sulfonic acid

C46H77NO5S (755.5522)


   

(E)-2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3-hydroxyicos-4-ene-1-sulfonic acid

(E)-2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3-hydroxyicos-4-ene-1-sulfonic acid

C46H77NO5S (755.5522)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-tetracosa-13,16-dienoxy]propan-2-yl] (Z)-tetradec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-tetracosa-13,16-dienoxy]propan-2-yl] (Z)-tetradec-9-enoate

C43H82NO7P (755.5829)


   

(4E,8E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxyicosa-4,8-diene-1-sulfonic acid

(4E,8E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxyicosa-4,8-diene-1-sulfonic acid

C46H77NO5S (755.5522)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-decoxypropan-2-yl] (14Z,17Z,20Z)-octacosa-14,17,20-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-decoxypropan-2-yl] (14Z,17Z,20Z)-octacosa-14,17,20-trienoate

C43H82NO7P (755.5829)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

C43H82NO7P (755.5829)


   

(4E,8E,12E)-2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxytetracosa-4,8,12-triene-1-sulfonic acid

(4E,8E,12E)-2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxytetracosa-4,8,12-triene-1-sulfonic acid

C46H77NO5S (755.5522)


   

(4E,8E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]docosa-4,8-diene-1-sulfonic acid

(4E,8E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]docosa-4,8-diene-1-sulfonic acid

C46H77NO5S (755.5522)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-icosoxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-icosoxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C43H82NO7P (755.5829)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propan-2-yl] docosanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propan-2-yl] docosanoate

C43H82NO7P (755.5829)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-docos-13-enoxy]propan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-docos-13-enoxy]propan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C43H82NO7P (755.5829)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoxy]propan-2-yl] (Z)-henicos-11-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoxy]propan-2-yl] (Z)-henicos-11-enoate

C43H82NO7P (755.5829)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] (Z)-octadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] (Z)-octadec-9-enoate

C43H82NO7P (755.5829)


   

(4E,8E)-2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxytetracosa-4,8-diene-1-sulfonic acid

(4E,8E)-2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxytetracosa-4,8-diene-1-sulfonic acid

C46H77NO5S (755.5522)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-docosoxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-docosoxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C43H82NO7P (755.5829)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propan-2-yl] tetradecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propan-2-yl] tetradecanoate

C43H82NO7P (755.5829)


   

(4E,8E,12E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]amino]docosa-4,8,12-triene-1-sulfonic acid

(4E,8E,12E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]amino]docosa-4,8,12-triene-1-sulfonic acid

C46H77NO5S (755.5522)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoxy]propan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoxy]propan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

C43H82NO7P (755.5829)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoxy]propan-2-yl] (Z)-heptadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoxy]propan-2-yl] (Z)-heptadec-9-enoate

C43H82NO7P (755.5829)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecoxypropan-2-yl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecoxypropan-2-yl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate

C43H82NO7P (755.5829)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-docosa-13,16-dienoxy]propan-2-yl] (Z)-hexadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-docosa-13,16-dienoxy]propan-2-yl] (Z)-hexadec-9-enoate

C43H82NO7P (755.5829)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]propan-2-yl] dodecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]propan-2-yl] dodecanoate

C43H82NO7P (755.5829)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(14Z,17Z,20Z)-octacosa-14,17,20-trienoxy]propan-2-yl] decanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(14Z,17Z,20Z)-octacosa-14,17,20-trienoxy]propan-2-yl] decanoate

C43H82NO7P (755.5829)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecoxypropan-2-yl] (12Z,15Z,18Z)-hexacosa-12,15,18-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecoxypropan-2-yl] (12Z,15Z,18Z)-hexacosa-12,15,18-trienoate

C43H82NO7P (755.5829)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] (Z)-nonadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] (Z)-nonadec-9-enoate

C43H82NO7P (755.5829)


   

[3-[(11Z,14Z)-icosa-11,14-dienoxy]-2-[(Z)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(11Z,14Z)-icosa-11,14-dienoxy]-2-[(Z)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H82NO7P (755.5829)


   

[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-tridecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-tridecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H82NO7P (755.5829)


   

[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(Z)-nonadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(Z)-nonadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H82NO7P (755.5829)


   

[3-[(Z)-heptadec-9-enoxy]-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-heptadec-9-enoxy]-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H82NO7P (755.5829)


   

[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-pentadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-pentadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H82NO7P (755.5829)


   

[2-[(Z)-hexadec-9-enoyl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-hexadec-9-enoyl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H82NO7P (755.5829)


   

[2-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxy-3-undecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxy-3-undecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H82NO7P (755.5829)


   

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-nonadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-nonadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H82NO7P (755.5829)


   

[3-[(11Z,14Z)-henicosa-11,14-dienoxy]-2-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(11Z,14Z)-henicosa-11,14-dienoxy]-2-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H82NO7P (755.5829)


   

[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-2-nonadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-2-nonadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H82NO7P (755.5829)


   

[3-[(13Z,16Z)-docosa-13,16-dienoxy]-2-[(Z)-tridec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(13Z,16Z)-docosa-13,16-dienoxy]-2-[(Z)-tridec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H82NO7P (755.5829)


   

[3-heptadecoxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-heptadecoxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H82NO7P (755.5829)


   

[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-[(Z)-pentadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-[(Z)-pentadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H82NO7P (755.5829)


   

[3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]-2-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]-2-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H82NO7P (755.5829)


   

[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-[(Z)-tridec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-[(Z)-tridec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H82NO7P (755.5829)


   

[3-[(9Z,12Z)-heptadeca-9,12-dienoxy]-2-[(Z)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(9Z,12Z)-heptadeca-9,12-dienoxy]-2-[(Z)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H82NO7P (755.5829)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate

C42H78NO8P (755.5465)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (12Z,15Z,18Z)-hexacosa-12,15,18-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (12Z,15Z,18Z)-hexacosa-12,15,18-trienoate

C42H78NO8P (755.5465)


   

4-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

4-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-tetradecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-tetradecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

4-[3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

4-[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

4-[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

4-[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

4-[2,3-bis[[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy]propoxy]-2-(trimethylazaniumyl)butanoate

4-[2,3-bis[[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy]propoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

4-[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

4-[3-[(Z)-hexadec-9-enoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(Z)-hexadec-9-enoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

HexCer 14:2;3O/22:1;(2OH)

HexCer 14:2;3O/22:1;(2OH)

C42H77NO10 (755.5547)


   

HexCer 20:2;3O/16:1;(2OH)

HexCer 20:2;3O/16:1;(2OH)

C42H77NO10 (755.5547)


   

HexCer 18:1;3O/18:2;(2OH)

HexCer 18:1;3O/18:2;(2OH)

C42H77NO10 (755.5547)


   

HexCer 23:2;3O/13:1;(2OH)

HexCer 23:2;3O/13:1;(2OH)

C42H77NO10 (755.5547)


   

HexCer 20:1;3O/16:2;(2OH)

HexCer 20:1;3O/16:2;(2OH)

C42H77NO10 (755.5547)


   

HexCer 16:1;3O/20:2;(2OH)

HexCer 16:1;3O/20:2;(2OH)

C42H77NO10 (755.5547)


   

HexCer 16:2;3O/20:1;(2OH)

HexCer 16:2;3O/20:1;(2OH)

C42H77NO10 (755.5547)


   

HexCer 15:2;3O/21:1;(2OH)

HexCer 15:2;3O/21:1;(2OH)

C42H77NO10 (755.5547)


   

HexCer 21:2;3O/15:1;(2OH)

HexCer 21:2;3O/15:1;(2OH)

C42H77NO10 (755.5547)


   

HexCer 14:1;3O/22:2;(2OH)

HexCer 14:1;3O/22:2;(2OH)

C42H77NO10 (755.5547)


   

HexCer 24:2;3O/12:1;(2OH)

HexCer 24:2;3O/12:1;(2OH)

C42H77NO10 (755.5547)


   

HexCer 22:2;3O/14:1;(2OH)

HexCer 22:2;3O/14:1;(2OH)

C42H77NO10 (755.5547)


   

HexCer 17:2;3O/19:1;(2OH)

HexCer 17:2;3O/19:1;(2OH)

C42H77NO10 (755.5547)


   

HexCer 18:2;3O/18:1;(2OH)

HexCer 18:2;3O/18:1;(2OH)

C42H77NO10 (755.5547)


   

[3-[(Z)-hexadec-9-enoxy]-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-hexadec-9-enoxy]-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H82NO7P (755.5829)


   

[3-[(9Z,12Z)-hexadeca-9,12-dienoxy]-2-[(Z)-nonadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(9Z,12Z)-hexadeca-9,12-dienoxy]-2-[(Z)-nonadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H82NO7P (755.5829)


   

[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]-2-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]-2-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H82NO7P (755.5829)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octadecoxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octadecoxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C43H82NO7P (755.5829)


   

[2-[(Z)-heptadec-9-enoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-heptadec-9-enoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H82NO7P (755.5829)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]propan-2-yl] hexadecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]propan-2-yl] hexadecanoate

C43H82NO7P (755.5829)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

C43H82NO7P (755.5829)


   

[2-heptadecanoyloxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-heptadecanoyloxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H82NO7P (755.5829)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoxy]propan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoxy]propan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

C43H82NO7P (755.5829)


   

[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-[(Z)-tetradec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-[(Z)-tetradec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H82NO7P (755.5829)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propan-2-yl] (Z)-docos-13-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propan-2-yl] (Z)-docos-13-enoate

C43H82NO7P (755.5829)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C43H82NO7P (755.5829)


   

[3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]-2-pentadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]-2-pentadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H82NO7P (755.5829)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] icosanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] icosanoate

C43H82NO7P (755.5829)


   

[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(Z)-octadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(Z)-octadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C43H82NO7P (755.5829)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] octadecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] octadecanoate

C43H82NO7P (755.5829)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecoxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecoxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C43H82NO7P (755.5829)


   

[2-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]oxy-3-octanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]oxy-3-octanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO8P (755.5465)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (14Z,17Z,20Z)-octacosa-14,17,20-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (14Z,17Z,20Z)-octacosa-14,17,20-trienoate

C42H78NO8P (755.5465)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] nonadecanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] nonadecanoate

C42H78NO8P (755.5465)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecanoyloxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecanoyloxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C42H78NO8P (755.5465)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

C42H78NO8P (755.5465)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

C42H78NO8P (755.5465)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] henicosanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] henicosanoate

C42H78NO8P (755.5465)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoyl]oxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoyl]oxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C42H78NO8P (755.5465)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C42H78NO8P (755.5465)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropyl] (Z)-henicos-11-enoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropyl] (Z)-henicos-11-enoate

C42H78NO8P (755.5465)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropyl] (Z)-nonadec-9-enoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropyl] (Z)-nonadec-9-enoate

C42H78NO8P (755.5465)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropyl] (Z)-icos-11-enoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropyl] (Z)-icos-11-enoate

C42H78NO8P (755.5465)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

C42H78NO8P (755.5465)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

C42H78NO8P (755.5465)


   

[3-decanoyloxy-2-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-decanoyloxy-2-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO8P (755.5465)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecanoyloxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecanoyloxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate

C42H78NO8P (755.5465)


   

[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO8P (755.5465)


   

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO8P (755.5465)


   

[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO8P (755.5465)


   

[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO8P (755.5465)


   

[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-dodecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-dodecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO8P (755.5465)


   

[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO8P (755.5465)


   

[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO8P (755.5465)


   

[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(Z)-heptadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(Z)-heptadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO8P (755.5465)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hydroxypropyl] (24Z,27Z,30Z)-octatriaconta-24,27,30-trienoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hydroxypropyl] (24Z,27Z,30Z)-octatriaconta-24,27,30-trienoate

C43H82NO7P (755.5829)


   

plasmenyl-PC 35:2

plasmenyl-PC 35:2

C43H82NO7P (755.5829)


   

[(2R)-3-[(E)-hexadec-9-enoyl]oxy-2-[(6E,9E)-octadeca-6,9-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-hexadec-9-enoyl]oxy-2-[(6E,9E)-octadeca-6,9-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO8P (755.5465)


   

4-[3-dodecanoyloxy-2-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-dodecanoyloxy-2-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO8P (755.5465)


   

4-[2-[(E)-heptadec-7-enoyl]oxy-3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(E)-heptadec-7-enoyl]oxy-3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] nonadecanoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] nonadecanoate

C42H78NO8P (755.5465)


   

[(2S)-3-[(5E,8E)-icosa-5,8-dienoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-3-[(5E,8E)-icosa-5,8-dienoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO8P (755.5465)


   

[(2R)-3-[(E)-hexadec-9-enoyl]oxy-2-[(9E,11E)-octadeca-9,11-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-hexadec-9-enoyl]oxy-2-[(9E,11E)-octadeca-9,11-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO8P (755.5465)


   

4-[3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-[(11E,14E)-icosa-11,14-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-[(11E,14E)-icosa-11,14-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

4-[3-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-2-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-2-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

[(2R)-3-hexadecanoyloxy-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-hexadecanoyloxy-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO8P (755.5465)


   

4-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(E)-icos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(E)-icos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

4-[2-[(10E,12E)-octadeca-10,12-dienoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(10E,12E)-octadeca-10,12-dienoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecanoyloxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecanoyloxypropan-2-yl] (8E,11E,14E)-icosa-8,11,14-trienoate

C42H78NO8P (755.5465)


   

4-[2-[(E)-dodec-5-enoyl]oxy-3-[(6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(E)-dodec-5-enoyl]oxy-3-[(6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

4-[2-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[(14E,17E,20E,23E)-hexacosa-14,17,20,23-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[(14E,17E,20E,23E)-hexacosa-14,17,20,23-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] (E)-icos-13-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] (E)-icos-13-enoate

C42H78NO8P (755.5465)


   

4-[2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-tetradecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-tetradecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] henicosanoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] henicosanoate

C42H78NO8P (755.5465)


   

4-[3-[(E)-dec-4-enoyl]oxy-2-[(11E,14E,17E,20E,23E)-hexacosa-11,14,17,20,23-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(E)-dec-4-enoyl]oxy-2-[(11E,14E,17E,20E,23E)-hexacosa-11,14,17,20,23-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

4-[3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-heptadecanoyloxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-heptadecanoyloxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

C42H78NO8P (755.5465)


   

4-[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-[(14E,17E,20E,23E)-hexacosa-14,17,20,23-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-[(14E,17E,20E,23E)-hexacosa-14,17,20,23-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

4-[2-[(E)-dec-4-enoyl]oxy-3-[(11E,14E,17E,20E,23E)-hexacosa-11,14,17,20,23-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(E)-dec-4-enoyl]oxy-3-[(11E,14E,17E,20E,23E)-hexacosa-11,14,17,20,23-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-icos-1-enoxy]propan-2-yl] (6E,9E)-octadeca-6,9-dienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-icos-1-enoxy]propan-2-yl] (6E,9E)-octadeca-6,9-dienoate

C43H82NO7P (755.5829)


   

4-[3-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxy-2-[(E)-tridec-8-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxy-2-[(E)-tridec-8-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

4-[3-[(10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoyl]oxy-2-[(E)-undec-4-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoyl]oxy-2-[(E)-undec-4-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-heptadec-9-enoyl]oxypropyl] (11E,14E)-icosa-11,14-dienoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-heptadec-9-enoyl]oxypropyl] (11E,14E)-icosa-11,14-dienoate

C42H78NO8P (755.5465)


   

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-[(2E,4E)-octadeca-2,4-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-[(2E,4E)-octadeca-2,4-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO8P (755.5465)


   

4-[2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

4-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-[(9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-[(9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

4-[2-[(10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoyl]oxy-3-[(E)-undec-4-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoyl]oxy-3-[(E)-undec-4-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropan-2-yl] nonadecanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropan-2-yl] nonadecanoate

C42H78NO8P (755.5465)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-1-enoxy]propan-2-yl] (11E,14E)-icosa-11,14-dienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-1-enoxy]propan-2-yl] (11E,14E)-icosa-11,14-dienoate

C43H82NO7P (755.5829)


   

4-[3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-tetradecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-tetradecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (13E,16E)-docosa-13,16-dienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (13E,16E)-docosa-13,16-dienoate

C42H78NO8P (755.5465)


   

4-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(E)-icos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(E)-icos-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

4-[3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-2-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-2-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-heptadecanoyloxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-heptadecanoyloxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate

C42H78NO8P (755.5465)


   

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-[(6E,9E)-octadeca-6,9-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-[(6E,9E)-octadeca-6,9-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO8P (755.5465)


   

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-[(6E,9E)-octadeca-6,9-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-[(6E,9E)-octadeca-6,9-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO8P (755.5465)


   

4-[3-[(9E,11E,13E)-henicosa-9,11,13-trienoyl]oxy-2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(9E,11E,13E)-henicosa-9,11,13-trienoyl]oxy-2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

4-[2-[(10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

4-[3-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

[(2R)-3-hexadecanoyloxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-hexadecanoyloxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO8P (755.5465)


   

4-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(11E,14E)-icosa-11,14-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(11E,14E)-icosa-11,14-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

[(2R)-3-[(E)-hexadec-7-enoyl]oxy-2-[(2E,4E)-octadeca-2,4-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-hexadec-7-enoyl]oxy-2-[(2E,4E)-octadeca-2,4-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO8P (755.5465)


   

4-[2-[(9E,11E,13E)-henicosa-9,11,13-trienoyl]oxy-3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(9E,11E,13E)-henicosa-9,11,13-trienoyl]oxy-3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (13E,16E)-docosa-13,16-dienoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (13E,16E)-docosa-13,16-dienoate

C42H78NO8P (755.5465)


   

[(2R)-2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO8P (755.5465)


   

4-[3-[(E)-dodec-5-enoyl]oxy-2-[(6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(E)-dodec-5-enoyl]oxy-2-[(6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-heptadec-9-enoyl]oxypropan-2-yl] (11E,14E)-icosa-11,14-dienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-heptadec-9-enoyl]oxypropan-2-yl] (11E,14E)-icosa-11,14-dienoate

C42H78NO8P (755.5465)


   

4-[2-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxy-3-undecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxy-3-undecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

4-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-1-enoxy]propan-2-yl] (5E,8E)-icosa-5,8-dienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-octadec-1-enoxy]propan-2-yl] (5E,8E)-icosa-5,8-dienoate

C43H82NO7P (755.5829)


   

4-[3-[(10E,12E)-octadeca-10,12-dienoyl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(10E,12E)-octadeca-10,12-dienoyl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

4-[2-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

[(2R)-3-[(E)-hexadec-7-enoyl]oxy-2-[(9E,11E)-octadeca-9,11-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-hexadec-7-enoyl]oxy-2-[(9E,11E)-octadeca-9,11-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO8P (755.5465)


   

4-[2-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxy-3-tridecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxy-3-tridecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

4-[3-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-2-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-2-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

[(2R)-3-[(E)-hexadec-9-enoyl]oxy-2-[(2E,4E)-octadeca-2,4-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-hexadec-9-enoyl]oxy-2-[(2E,4E)-octadeca-2,4-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO8P (755.5465)


   

4-[2-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-1-enoxy]propan-2-yl] (13E,16E)-docosa-13,16-dienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-hexadec-1-enoxy]propan-2-yl] (13E,16E)-docosa-13,16-dienoate

C43H82NO7P (755.5829)


   

4-[2-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-3-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-3-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

4-[3-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO8P (755.5465)


   

4-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(15E,18E,21E)-tetracosa-15,18,21-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(15E,18E,21E)-tetracosa-15,18,21-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

4-[3-[(E)-heptadec-7-enoyl]oxy-2-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(E)-heptadec-7-enoyl]oxy-2-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

4-[3-[(10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoyl]oxy-2-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(10E,13E,16E,19E)-docosa-10,13,16,19-tetraenoyl]oxy-2-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

[(2R)-2-hexadecanoyloxy-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-hexadecanoyloxy-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO8P (755.5465)


   

[(2S)-3-[(11E,14E)-icosa-11,14-dienoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-3-[(11E,14E)-icosa-11,14-dienoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO8P (755.5465)


   

4-[2-dodecanoyloxy-3-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-dodecanoyloxy-3-[(6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

[(2R)-3-[(E)-hexadec-7-enoyl]oxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-hexadec-7-enoyl]oxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO8P (755.5465)


   

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-[(9E,11E)-octadeca-9,11-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-[(9E,11E)-octadeca-9,11-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO8P (755.5465)


   

4-[2-[(6E,9E)-dodeca-6,9-dienoyl]oxy-3-[(9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(6E,9E)-dodeca-6,9-dienoyl]oxy-3-[(9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO8P (755.5465)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropyl] nonadecanoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropyl] nonadecanoate

C42H78NO8P (755.5465)


   

[(2R)-3-[(E)-hexadec-7-enoyl]oxy-2-[(6E,9E)-octadeca-6,9-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-hexadec-7-enoyl]oxy-2-[(6E,9E)-octadeca-6,9-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO8P (755.5465)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] nonadecanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] nonadecanoate

C42H78NO8P (755.5465)


   

4-[3-[(13E,16E,19E)-docosa-13,16,19-trienoyl]oxy-2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(13E,16E,19E)-docosa-13,16,19-trienoyl]oxy-2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-icos-1-enoxy]propan-2-yl] (9E,11E)-octadeca-9,11-dienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-icos-1-enoxy]propan-2-yl] (9E,11E)-octadeca-9,11-dienoate

C43H82NO7P (755.5829)


   

[(2R)-3-[(E)-hexadec-9-enoyl]oxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-hexadec-9-enoyl]oxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO8P (755.5465)


   

4-[2,3-bis[[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxy]propoxy]-2-(trimethylazaniumyl)butanoate

4-[2,3-bis[[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxy]propoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

4-[2-[(E)-hexadec-7-enoyl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(E)-hexadec-7-enoyl]oxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

4-[3-hexadecanoyloxy-2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-hexadecanoyloxy-2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

4-[2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

[(2R)-2-hexadecanoyloxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-hexadecanoyloxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO8P (755.5465)


   

[(2R)-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-2-[(E)-heptadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-2-[(E)-heptadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO8P (755.5465)


   

4-[3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-icos-1-enoxy]propan-2-yl] (9E,12E)-octadeca-9,12-dienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-icos-1-enoxy]propan-2-yl] (9E,12E)-octadeca-9,12-dienoate

C43H82NO7P (755.5829)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] (E)-icos-11-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] (E)-icos-11-enoate

C42H78NO8P (755.5465)


   

[(2S)-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-2-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-2-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO8P (755.5465)


   

4-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(15E,18E,21E)-tetracosa-15,18,21-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(15E,18E,21E)-tetracosa-15,18,21-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

4-[3-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxy-2-undecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxy-2-undecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO8P (755.5465)


   

[(2S)-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-2-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-2-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO8P (755.5465)


   

4-[2-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-3-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(9E,11E,13E,15E)-henicosa-9,11,13,15-tetraenoyl]oxy-3-[(9E,12E)-pentadeca-9,12-dienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

4-[3-[(E)-hexadec-7-enoyl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(E)-hexadec-7-enoyl]oxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

4-[3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxy-2-[(E)-octadec-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxy-2-[(E)-octadec-11-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (E)-icos-13-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (E)-icos-13-enoate

C42H78NO8P (755.5465)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (E)-icos-11-enoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (E)-icos-11-enoate

C42H78NO8P (755.5465)


   

4-[2-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxy-3-[(E)-tridec-8-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(8E,11E,14E,17E,20E)-tricosa-8,11,14,17,20-pentaenoyl]oxy-3-[(E)-tridec-8-enoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(E)-heptadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(E)-heptadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO8P (755.5465)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] (E)-henicos-9-enoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] (E)-henicos-9-enoate

C42H78NO8P (755.5465)


   

4-[3-decanoyloxy-2-[(8E,11E,14E,17E,20E,23E)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-decanoyloxy-2-[(8E,11E,14E,17E,20E,23E)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-heptadec-9-enoyl]oxypropyl] (5E,8E)-icosa-5,8-dienoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-heptadec-9-enoyl]oxypropyl] (5E,8E)-icosa-5,8-dienoate

C42H78NO8P (755.5465)


   

4-[2-hexadecanoyloxy-3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-hexadecanoyloxy-3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

[(2R)-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO8P (755.5465)


   

4-[2-[(13E,16E,19E)-docosa-13,16,19-trienoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(13E,16E,19E)-docosa-13,16,19-trienoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

[(2R)-2-[(5E,8E)-icosa-5,8-dienoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(5E,8E)-icosa-5,8-dienoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO8P (755.5465)


   

4-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-icos-1-enoxy]propan-2-yl] (2E,4E)-octadeca-2,4-dienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-icos-1-enoxy]propan-2-yl] (2E,4E)-octadeca-2,4-dienoate

C43H82NO7P (755.5829)


   

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-[(9E,11E)-octadeca-9,11-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-[(9E,11E)-octadeca-9,11-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO8P (755.5465)


   

4-[3-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxy-2-tridecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxy-2-tridecanoyloxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

4-[2-decanoyloxy-3-[(8E,11E,14E,17E,20E,23E)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-decanoyloxy-3-[(8E,11E,14E,17E,20E,23E)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C46H77NO7 (755.57)


   

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-[(2E,4E)-octadeca-2,4-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-[(2E,4E)-octadeca-2,4-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO8P (755.5465)


   

[(2R)-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H78NO8P (755.5465)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-heptadec-9-enoyl]oxypropan-2-yl] (5E,8E)-icosa-5,8-dienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-heptadec-9-enoyl]oxypropan-2-yl] (5E,8E)-icosa-5,8-dienoate

C42H78NO8P (755.5465)


   

2-[[(8E,12E)-3,4-dihydroxy-2-[[(9Z,12Z)-nonadeca-9,12-dienoyl]amino]octadeca-8,12-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(8E,12E)-3,4-dihydroxy-2-[[(9Z,12Z)-nonadeca-9,12-dienoyl]amino]octadeca-8,12-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H80N2O7P+ (755.5703)


   

2-[[(8E,12E,16E)-3,4-dihydroxy-2-[[(Z)-nonadec-9-enoyl]amino]octadeca-8,12,16-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(8E,12E,16E)-3,4-dihydroxy-2-[[(Z)-nonadec-9-enoyl]amino]octadeca-8,12,16-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H80N2O7P+ (755.5703)


   

1-palmitoyl-2-[(9Z,12Z,15Z)-octadecatrienoyl]-sn-glycero-3-phosphocholine

1-palmitoyl-2-[(9Z,12Z,15Z)-octadecatrienoyl]-sn-glycero-3-phosphocholine

C42H78NO8P (755.5465)


A phosphatidylcholine 34:3 in which the acyl groups specified at positions 1 and 2 are palmitoyl and (9Z,12Z,15Z)-octadecatrienoyl (alpha-linolenoyl) respectively.

   

PC(16:1(9Z)/18:2(9Z,12Z))

PC(16:1(9Z)/18:2(9Z,12Z))

C42H78NO8P (755.5465)


   

1-palmitoyl-2-[(6Z,9Z,12Z)-octadecatrienoyl]-sn-glycero-3-phosphocholine

1-palmitoyl-2-[(6Z,9Z,12Z)-octadecatrienoyl]-sn-glycero-3-phosphocholine

C42H78NO8P (755.5465)


A phosphatidylcholine 34:3 in which the acyl groups specified at positions 1 and 2 are palmitoyl and (6Z,9Z,12Z)-octadecatrienoyl (gamma-linolenoyl) respectively.

   

PC(18:2(9Z,12Z)/16:1(9Z))

PC(18:2(9Z,12Z)/16:1(9Z))

C42H78NO8P (755.5465)


   

PC(18:3(9Z,12Z,15Z)/16:0)

PC(18:3(9Z,12Z,15Z)/16:0)

C42H78NO8P (755.5465)


   

PC(18:3(6Z,9Z,12Z)/16:0)

PC(18:3(6Z,9Z,12Z)/16:0)

C42H78NO8P (755.5465)


   

PC(20:3(5Z,8Z,11Z)/14:0)

PC(20:3(5Z,8Z,11Z)/14:0)

C42H78NO8P (755.5465)


   

PC(14:0/20:3(8Z,11Z,14Z))

PC(14:0/20:3(8Z,11Z,14Z))

C42H78NO8P (755.5465)


   

PC(20:3(8Z,11Z,14Z)/14:0)

PC(20:3(8Z,11Z,14Z)/14:0)

C42H78NO8P (755.5465)


   

PC(14:1(9Z)/20:2(11Z,14Z))

PC(14:1(9Z)/20:2(11Z,14Z))

C42H78NO8P (755.5465)


   

PC(20:2(11Z,14Z)/14:1(9Z))

PC(20:2(11Z,14Z)/14:1(9Z))

C42H78NO8P (755.5465)


   

PC(14:0/20:3(5Z,8Z,11Z))

PC(14:0/20:3(5Z,8Z,11Z))

C42H78NO8P (755.5465)


   

PE-NMe(16:0/20:3(5Z,8Z,11Z))

PE-NMe(16:0/20:3(5Z,8Z,11Z))

C42H78NO8P (755.5465)


   

PE-NMe(18:0/18:3(6Z,9Z,12Z))

PE-NMe(18:0/18:3(6Z,9Z,12Z))

C42H78NO8P (755.5465)


   

PE-NMe(18:3(6Z,9Z,12Z)/18:0)

PE-NMe(18:3(6Z,9Z,12Z)/18:0)

C42H78NO8P (755.5465)


   

PE-NMe(20:3(5Z,8Z,11Z)/16:0)

PE-NMe(20:3(5Z,8Z,11Z)/16:0)

C42H78NO8P (755.5465)


   

PE-NMe(16:0/20:3(8Z,11Z,14Z))

PE-NMe(16:0/20:3(8Z,11Z,14Z))

C42H78NO8P (755.5465)


   

PE-NMe(18:0/18:3(9Z,12Z,15Z))

PE-NMe(18:0/18:3(9Z,12Z,15Z))

C42H78NO8P (755.5465)


   

PE-NMe(18:1(9Z)/18:2(9Z,12Z))

PE-NMe(18:1(9Z)/18:2(9Z,12Z))

C42H78NO8P (755.5465)


   

PE-NMe(18:2(9Z,12Z)/18:1(9Z))

PE-NMe(18:2(9Z,12Z)/18:1(9Z))

C42H78NO8P (755.5465)


   

PE-NMe(18:3(9Z,12Z,15Z)/18:0)

PE-NMe(18:3(9Z,12Z,15Z)/18:0)

C42H78NO8P (755.5465)


   

PE-NMe(20:3(8Z,11Z,14Z)/16:0)

PE-NMe(20:3(8Z,11Z,14Z)/16:0)

C42H78NO8P (755.5465)


   

PE-NMe2(15:0/20:3(5Z,8Z,11Z))

PE-NMe2(15:0/20:3(5Z,8Z,11Z))

C42H78NO8P (755.5465)


   

PE-NMe2(20:3(5Z,8Z,11Z)/15:0)

PE-NMe2(20:3(5Z,8Z,11Z)/15:0)

C42H78NO8P (755.5465)


   

PE-NMe(14:1(9Z)/22:2(13Z,16Z))

PE-NMe(14:1(9Z)/22:2(13Z,16Z))

C42H78NO8P (755.5465)


   

PE-NMe(16:1(9Z)/20:2(11Z,14Z))

PE-NMe(16:1(9Z)/20:2(11Z,14Z))

C42H78NO8P (755.5465)


   

PE-NMe(18:1(11Z)/18:2(9Z,12Z))

PE-NMe(18:1(11Z)/18:2(9Z,12Z))

C42H78NO8P (755.5465)


   

PE-NMe(18:2(9Z,12Z)/18:1(11Z))

PE-NMe(18:2(9Z,12Z)/18:1(11Z))

C42H78NO8P (755.5465)


   

PE-NMe(20:2(11Z,14Z)/16:1(9Z))

PE-NMe(20:2(11Z,14Z)/16:1(9Z))

C42H78NO8P (755.5465)


   

PE-NMe(22:2(13Z,16Z)/14:1(9Z))

PE-NMe(22:2(13Z,16Z)/14:1(9Z))

C42H78NO8P (755.5465)


   

PE-NMe2(15:0/20:3(8Z,11Z,14Z))

PE-NMe2(15:0/20:3(8Z,11Z,14Z))

C42H78NO8P (755.5465)


   

PE-NMe2(20:3(8Z,11Z,14Z)/15:0)

PE-NMe2(20:3(8Z,11Z,14Z)/15:0)

C42H78NO8P (755.5465)


   

1-heptadecanoyl-2-(8Z,11Z,14Z-eicosatrienoyl)-glycero-3-phosphoethanolamine

1-heptadecanoyl-2-(8Z,11Z,14Z-eicosatrienoyl)-glycero-3-phosphoethanolamine

C42H78NO8P (755.5465)


   

1-nonadecanoyl-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phosphoethanolamine

1-nonadecanoyl-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phosphoethanolamine

C42H78NO8P (755.5465)


   

phosphatidylethanolamine 37:3 zwitterion

phosphatidylethanolamine 37:3 zwitterion

C42H78NO8P (755.5465)


A 1,2-diacyl-sn-glycero-3-phosphoethanolamine zwitterion in which the acyl groups at C-1 and C-2 contain 37 carbons in total with 3 double bonds.

   

phosphatidylcholine 34:3

phosphatidylcholine 34:3

C42H78NO8P (755.5465)


A 1,2-diacyl-sn-glycero-3-phosphocholine in which the acyl groups at C-1 and C-2 contain 34 carbons in total with 3 double bonds.

   

phosphatidylcholine (16:0/18:3)

phosphatidylcholine (16:0/18:3)

C42H78NO8P (755.5465)


A phosphatidylcholine 34:3 in which the fatty acyl groups at positions 1 and 2 are specified as C16:0 and C18:3 respectively.

   

phosphatidylcholine (16:1/18:2)

phosphatidylcholine (16:1/18:2)

C42H78NO8P (755.5465)


A phosphatidylcholine 34:3 in which the fatty acyl groups at positions 1 and 2 are specified as C16:1 and C18:2 respectively.

   

1-Palmitoleoyl-2-linoleoyl-sn-glycero-3-phosphocholine

1-Palmitoleoyl-2-linoleoyl-sn-glycero-3-phosphocholine

C42H78NO8P (755.5465)


A phosphatidylcholine 34:3 in which the acyl groups specified at positions 1 and 2 are palmitoleoyl and linoleoyl respectively.

   

MePC(33:3)

MePC(15:0_18:3)

C42H78NO8P (755.5465)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

MePC(34:3)

MePC(16:1(1)_18:2)

C43H82NO7P (755.5829)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

dMePE(36:3)

dMePE(18:1(1)_18:2)

C43H82NO7P (755.5829)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

dMePE(35:3)

dMePE(17:1_18:2)

C42H78NO8P (755.5465)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   

DGTS 36:6

DGTS 36:6

C46H77NO7 (755.57)


   
   
   
   
   
   

PC P-16:0/18:3;O

PC P-16:0/18:3;O

C42H78NO8P (755.5465)


   

PC P-16:1/18:2;O

PC P-16:1/18:2;O

C42H78NO8P (755.5465)


   
   

PC P-17:0/18:2 or PC O-17:1/18:2

PC P-17:0/18:2 or PC O-17:1/18:2

C43H82NO7P (755.5829)


   
   

PC P-18:0/17:2 or PC O-18:1/17:2

PC P-18:0/17:2 or PC O-18:1/17:2

C43H82NO7P (755.5829)


   
   

PC P-18:1/17:1 or PC O-18:2/17:1

PC P-18:1/17:1 or PC O-18:2/17:1

C43H82NO7P (755.5829)


   
   

PC P-20:1/15:1 or PC O-20:2/15:1

PC P-20:1/15:1 or PC O-20:2/15:1

C43H82NO7P (755.5829)


   
   

PC P-35:2 or PC O-35:3

PC P-35:2 or PC O-35:3

C43H82NO7P (755.5829)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

PE P-16:0/22:2 or PE O-16:1/22:2

PE P-16:0/22:2 or PE O-16:1/22:2

C43H82NO7P (755.5829)


   
   
   
   
   
   
   
   
   
   

PE-NMe 18:1_18:2

PE-NMe 18:1_18:2

C42H78NO8P (755.5465)


   

PC 34:3 or PE 37:3

PC 34:3 or PE 37:3

C42H78NO8P (755.5465)


   

GalCer 17:2;O2/22:6

GalCer 17:2;O2/22:6

C45H73NO8 (755.5336)


   

GalCer 39:8;O2

GalCer 39:8;O2

C45H73NO8 (755.5336)


   

GlcCer 17:2;O2/22:6

GlcCer 17:2;O2/22:6

C45H73NO8 (755.5336)


   

GlcCer 39:8;O2

GlcCer 39:8;O2

C45H73NO8 (755.5336)


   

HexCer 12:1;O3/24:2;O

HexCer 12:1;O3/24:2;O

C42H77NO10 (755.5547)


   

HexCer 17:2;O2/22:6

HexCer 17:2;O2/22:6

C45H73NO8 (755.5336)


   

HexCer 39:8;O2

HexCer 39:8;O2

C45H73NO8 (755.5336)